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Abstract–Cost-effective, predictive and proactive maintenance of wind turbines assumes more 

importance with the increasing number of installed wind farms in more remote location (offshore). 

A well-known method for assessing impeding problems is to use current sensors installed within 

the wind turbine generator. This paper describes then an approach based on the generator stator 

current data collection and attempts to highlight the use of the Hilbert transform for failure 

detection in a doubly-fed induction generator-based. Indeed, this generator is commonly used in 

modern variable-speed wind turbines. The proposed failure detection technique has been 

validated experimentally regarding bearing failures. Indeed, a large fraction of wind turbine 

downtime is due to bearing failures, particularly in the generator and gearbox. Copyright © 2011 

Praise Worthy Prize S.r.l. - All rights reserved. 

 

Keywords: Wind turbine, doubly-fed induction generator, fault detection, amplitude modulation, 

Hilbert transform. 

 

 

Nomenclature 

WT  = Wind Turbine; 

DFIG = Doubly-Fed Induction Generator; 

HT  = Hilbert Transform; 

DHT = Discrete Hilbert Transform; 

FFT = Fast Fourier Transform; 

IFFT = Inverse FFT; 

AM  = Amplitude Modulation; 

i  = Current; 

n  = Sample index (n = 0, ..., N – 1); 

N  = Number of received samples; 

  = Phase parameter; 

Fe  = Sampling frequency. 

I. Introduction 

Recent experience has shown that despite the benefit 

of successful integration of a large proportion of wind 

energy into the domestic supply, and a continuous 

expansion of the wind turbine industry, the profitability 

of wind farms is increasingly affected by poor system 

reliability, and hence, high maintenance costs [1]. 

Moreover, the effect of low reliability on turbine 

downtime has become more acute for offshore wind 

farms. With the development these wind farms due to 

increasing land constraints, new challenges arise 

particularly with regard to maintenance. Indeed, 

maintenance is significantly restricted during periods of 

high wind speed and significant wave height. In this 

context, cost-effective, predictive and proactive 

maintenance of wind turbines assumes more importance 

(Fig. 1) [2-4]. Wind turbine condition monitoring systems 

provide then an early indication of component incipient 

failure, allowing the operator to plan system repair prior 

to complete failure. 

A quantitative analysis of real wind turbine failure 

data has shown important features of failure rate values 

and trends. A failures number distribution check-off is 

reported in Figs. 2 and 3 for Swedish, Danish and 

German wind power plants that occurred between 1994 

and 2004 [4-5]. These figures show that approximately 

45% of failures were linked to the electrical system, 

sensors and blades/pitch components. The experience 

feedback of wind turbine industries states that the major 

concern is on the electrical system. Typical failures 

include: dynamic air gap irregularities, generator bearing 

failure, stator and rotor winding; insulation failures, inter-

turn short circuits in stator windings, broken rotor bar or 

cracked rotor end-rings and harmonic derating. 

Many techniques and tools are available for the 

condition monitoring of wind turbines in order to extend 

their life span. Some of the technology used for 

monitoring includes pre-installed sensors, which may 

measure speed, output torque, vibrations, temperature, 

flux densities, etc. 
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Fig. 1. The shift to condition-based maintenance monitoring. 



 
 

Fig. 1. Failures number distribution 

for Swedish wind power plants (2000-2004) [5]. 
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Fig. 3. Failure rates for Danish and German wind power plants [5]. 

 

These sensors are managed together in different 

architectures and coupled with algorithms to allow an 

efficient monitoring of the system condition. Those 

methods are inspired from electric motor condition 

monitoring [6]. From the theoretical and experimental 

point of view, the well-established methods are: electrical 

quantities signature analysis (current, power...), vibration 

monitoring, temperature monitoring and oil monitoring. 

In the case of DFIG-based wind turbines, it has been 

shown that failure in the drive train could be diagnosed 

from the electrical quantities of the generator [7-8]. This 

principle has been used to diagnose unbalance and failure 

in the blades of a small wind turbine by measuring the 

power spectrum density at the turbine generator terminal 

[9]. The advantage of signature analysis of the generator 

electrical quantities is that those quantities are easily 

extractible during operation i.e. the current can be 

acquired by current transformer, the voltage via a voltage 

transformer and the power by computation. Moreover, 

current and voltage transducers are usually cheaper than 

vibration and torque transducers. Analysis of the 

generator electrical quantities usually involves the use of 

signal processing techniques. 

For steady state operations, the FFT is the most 

popular algorithm. However, in the case of variable speed 

DFIG-based wind turbines, FFT is difficult to interpret 

since the operation is predominately nonstationary due 

the stochastic behavior of the wind speed. To overcome 

this problem, electric machine conditions monitoring and 

failure diagnosis procedures based on time-frequency 

representations (Spectrogram, Quadratic TFR, etc...) or 

time-scale analysis (wavelet) have been proposed in the 

literature of the electric machines community [10-15]. 

Nevertheless, theses techniques have drawbacks such as 

high complexity, poor resolution and/or may suffer from 

artifacts (cross-terms, etc.). 

This paper presents a less complex failure detector for 

DFIG-based wind turbines which is appropriate for 

nonstationary operations and transient behavior [16-18]. 

It focuses on mechanical failures that lead to stator 

current amplitude modulation. These include, for 

example, air gap eccentricity, bearing wear and failure 

[19]. The proposed failure detection technique will be 

experimentally tested in case of bearing failures. Indeed, 

a large fraction of wind turbine downtime is due to 

bearing failures, particularly in the generator and gearbox 

[4]. 

II. Design of the Hilbert Transform-Based 

Failure Detector 

The Hilbert transform-based failure detector principle 

is illustrated by Fig. 4. 

II.1. Generator Current 

An amplitude-modulated stator current can be 

expressed by 

 

( ) ( ) cos(2 / )
e

i n a n nf F           (1) 

 

The amplitude a(n) in (1) depends on the failure 

hypothesis: for a healthy generator, a(n) is constant, and 

for faulty generator, it varies with time (AM) [19]. 

For failure detection, a two-step approach can be used: 

first, an amplitude demodulation technique is used to 

estimate a(n); then, a statistical test is performed to track 

its time-variation. 
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Fig. 4. HT-Based failure detector principle. 



II.2. Amplitude Demodulation 

Popular amplitude demodulation techniques include 

Hilbert transform [20] and Teager energy operator [21]. 

Furthermore for three-phase system, it has been recently 

shown that the Concordia transform can be employed to 

perform demodulation [22]. In this study, one phase 

current is considered. In this context, the Hilbert 

transform is chosen to estimate the envelope a(n) since it 

is usually more robust against noise than the Teager 

energy operator. 

Let us consider a discrete sequence i(n). The discrete 

Hilbert transform of i(n) is given by 
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where F{.} and F
-1

{.} correspond to the FFT and IFFT, 

respectively, and where u(n) is defined as 
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Using (1), the estimated envelope, denoted â(n), is 

given by 
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k
a n i n i n  H         (4) 

II.3. Statistical Test for Failure Detection 

Once the envelope â(n) has been estimated, a 

statistical test is performed to detect if â(n) is constant or 

varies with time. For that purpose, let us compute the 

variance 
2
 of the estimated envelope with the following 

equation 
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where  is â(n) mean which is defined by 
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As â(n) is theoretically constant for healthy generator, 

it follows that  = â(n) and then 
2
 = 0. For faulty 

generator, the envelope â(n) is time-varying which 

implies that   â(n) and then 
2
  0. These two 

properties lead us to propose a simple hypothesis test for 

failure detection based on 
2
: 

– If 
2
 < , the generator is stated healthy. 

– If 
2
  , the generator is stated faulty. 

where  is a threshold which can be set subjectively 

depending on a false alarm probability. 

III. Hilbert Transform-Based Failure 

Detector Tests 

III.1. Test Facility Description 

As mentioned in a number of previously published 

paper, one of the main difficulties in real word testing of 

developed condition monitoring technique, is the lack of 

collaboration needed with WT operators and 

manufacturers, due to data confidentiality, particularly 

when failures are present [2]. 

Therefore, the proposed HT-based failure detector has 

been experimentally tested on setup shown in Fig. 5. 

Indeed, this Fig. 5 describes the experimental setup 

which has been operated in a motor configuration for 

experimental easiness. It is composed of two parts: a 

mechanical part that has a tacho-generator, a three-phase 

induction motor and an alternator. The tacho-generator is 

a DC machine that generates 90 V at 3000 rpm. It is used 

to measure the speed. It produces linear voltage between 

2500 and 3000 rpm. The alternator is a three-phase 

synchronous machine with a regulator and a rectifier 

circuit that stabilize the output voltage at 12 VDC. The 

advantage of using a car alternator instead of DC 

generator is obtaining constant output voltage at various 

speeds. The induction motor could be identically loaded 

at different speeds. 

 

Induction motor AlternatorTacho Generator

 
 

(a) Mechanical part. 
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Fig. 5. Experimental setup. 



Moreover, if the induction motor is supplied from the 

network, motor current will have time and space 

harmonic components as well as bearing fault sourced 

harmonics. This makes it harder to determine the bearing 

failure effect on the stator current and therefore 

complicates the fault detection process. For these 

reasons, the induction is fed by an alternator. By this 

way, supply harmonics effects are eliminated and only 

bearing failure effects could be observed on the stator 

current. Figure 6 is then given to illustrate the 

experimental test philosophy. 

The tested induction motor has the following rated 

parameters: 0.75 kW, 220/380 V, 1.95/3.4 A, 2780 rpm, 

50 Hz, 2 poles, Y-connected. It has two 6204.2ZR type 

bearings. From the bearing data sheet the following 

parameters are obtained: The outside diameter is 47 mm 

and inside one is 20 mm. Assuming that the inner and the 

outer races have the same thickness gives the pitch 

diameter DP = 31.85 mm. The bearing has eight balls (N 

= 8) with an approximate diameter of DB = 12 mm and a 

contact angle  = 0°. These bearings are made to fail by 

drilling holes of various radiuses with a diamond twist bit 

while controlling temperature by oil circulation in 

experiments. Some of the artificially deteriorated 

bearings are shown in Figure 7 [23]. 

III.2. Failure Detector Test 

The proposed Hilbert-transform failure detector has 

been tested with experimental signals corresponding to 

bearing outer race deterioration (Fig. 7a). 

Once the envelope has been estimated, 10 samples 

have been removed at the beginning and at the end of 

â(n) to avoid the edge effects problem of the Hilbert 

transform. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)  
 

Fig. 7. Artificially deteriorated bearings: (a) outer race deterioration, 

(b) inner race deterioration, (c) cage deterioration, (d) ball deterioration. 

 

Figures 8 and 9 display the stator current i(n) and the 

envelope â(n), respectively, for a healthy generator. As 

the system is not perfect, one could note some small 

variations on the envelope â(n). In the presence of a 

bearing failure, the stator current and the envelope are 

shown in Figs. 10 and 11, respectively. Compared to the 

healthy case, stronger oscillations of â(n) can be 

observed. 

Table 1 reports the value of 
2
 for the faulty and 

healthy generators. As previously discussed, 
2
 is not 

strictly equal to 0 even if the generator is healthy (
2
 = 

0.012). However when a bearing failure occurs, this 

criteria is multiplied by 4.333. In this condition, a failure 

can be detected by setting the hypothesis-test threshold to 

 = 0.032 for example. 
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Fig. 6. Test facility. 



TABLE I 

FAULT DETECTOR FOR HEALTHY AND FAULTY GENERATOR. 

Demodulation Healthy case Faulty case 

Hilbert Transform 2 = 0.012 2 = 0.052 
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Fig. 8. Stator current i(n) of a healthy generator. 
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Fig. 9. Envelope â(n) of a healthy generator. 
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Fig. 10. Stator current i(n) of a faulty generator. 
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Fig. 11. Envelope â(n) of a faulty generator. 

IV. Prospective Real Word Implementation 

Condition Monitoring Systems (CMS) that monitor 

key components of wind turbines is becoming a 

component of long-term service packages provided by 

some wind turbine manufacturers (Fig. 12). Condition-

based maintenance of wind turbines encompasses: 

Service and inspection; measuring and evaluating the 

actual wind turbine conditions and determining the 

remaining service life; and maintenance. In general, the 

actual condition of the rotating machinery can be 

measured and evaluated offline using mobile 

measurement equipment and online using permanently 

installed devices. Today it is state-of-the-art for onshore 

and offshore wind turbines to be equipped with vibration-

based condition monitoring. 

The proposed current-based condition monitoring 

could therefore be easily implemented on the same 

platform. 

 

 
 

Fig. 12. CMS mounted on the main carrier of wind turbine. 



The objective of this section is to propose a simple and 

practical approach for an industrial implementation of 

remote fault detection and diagnosis. 

IV.1. Real Wind Turbine 

Today, most turbines are fitted with equipment that 

makes it possible to collect condition monitoring data 

remotely via modem or internet. Moreover, since wind 

turbines are typically built in onshore or offshore wind 

farm configurations; there is a need for building up 

networks. The proposed architecture is based on an 

industrial Embedded PC (EPC) which is dedicated to 

collect data from the DFIG-based wind turbines via the 

extended I/O modules and transfers the data to users 

through LAN network. The EPC is configured to transmit 

data in asynchronous mode such that all the data are 

stored (buffered) in specific data blocs and no data are 

lost during the processing. This allows investigation of 

data for further purposes. The EPC has also the task for 

managing alarm and emergency shut down procedure. 

Figure 13 depicts the data collection approach for a 

real wind turbine via an industrial data bus. In this case, it 

is proposed to use the Microbox PC 420 [24]. Indeed, it 

is the system heart and it provides great flexibility by 

integrating: 

– A real time kernel (WinAC RTX) that allows the 

wind turbine control process management and 

execution through an industrial field bus. 

– A pre-installed operating system (embedded 

Windows XP). 

The data acquisition, supervision, and control tasks are 

managed by an embedded PC, while the failure detection 

and diagnosis task is supervised by another PC on which 

arte implemented the signal processing-based failure 

detection techniques. 

It should be noted, that the proposed Microbox PC 

420 could be easily mounted within or near the CMS. 

IV.2. Wind Farm Case 

With advances in microprocessor memory and 

computing power, communication platforms, open 

protocol architectures, and Internet browsing capabilities, 

SCADA (Supervisory Control and Data Acquisition) 

systems keep developing to provide more flexibility to 

operate turbines and farms [25-27]. 

The wind farm SCADA server, housed within the 

substation control building, receives and transmits data to 

and from various elements of the overall wind farm 

system (Fig. 14) [28]. 

 

 
 

Fig. 1. Wind farm SCADA system [27]. 
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Fig. 13. Prospective real word implementation. 



For the communication within a wind energy converter 

itself and from the wind energy converter to the outside 

world, an Ethernet network with TCP/IP (Transmission 

Control Protocol/Internet Protocol) has been proved to be 

most suitable. There are also other solutions possible, e.g. 

WLAN (Wireless Local Area Networks) from a wind 

energy converter to a centralized SCADA system or farm 

server [25], [29]. 

As mentioned in the previous section and as shown in 

the available literature [25], it is obvious that the 

proposed Microbox PC 420 should be a good candidate 

for wind turbines condition monitoring. 

V. Conclusion 

This paper dealt with implementation of a low-

complexity signal processing technique for bearing 

failure detection in DFIG-based wind turbines. Using 

experimental data, it was found that the proposed 

technique gives a significant criterion for failure 

detection. 

This paper also dealt with a prospective 

implementation in real world. It has therefore been 

proposed the use of the Microbox PC 420 that could be 

easily mounted within or near the CMS. Regarding the 

available literature, the proposal could be an interesting 

practical approach for wind turbines condition 

monitoring. 
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