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Abstract

The aim of this paper is to investigate the effects of the presence of a transverse crack in a rotating
shaft under uncertain physical parameters in order to obtain some indications that might be useful in
detecting the presence of a crack in rotating system. The random dynamic response of the cracked rotor
is evaluated by expanding the changing stiffness of the crack (i.e. the breathing mechanism) as a ran-
dom truncated Fourier series. To avoid the use of the Monte Carlo simulations (MCS), an alternative
procedure that is based on a combination of the Harmonic Balance Method and the Stochastic Finite
Element Method (SFEM) using the Polynomial Chaos Expansion (PCE) is proposed. So the response
of the Fourier components of the cracked rotor is expanded in the polynomial chaoses. The ran-
dom dynamic response obtained by applying this procedure is compared with that evaluated through
numerical integration based on the Harmonic Balance Method and the Monte Carlo simulations.

1 Introduction

The effect of crack in rotors is important to ensure the integrity of structural components for a wide
range of engineering applications. In recent years a lot of effort has been devoted to the detection
of transverse cracks in shafts [1–5]. In most of the studies for crack detection in mechanical or rotor
systems, researchers used changes in natural frequencies [6] and evolution of the non-linear behaviour
of the system at the super-harmonics components as the diagnostic tools. For example, Gash [1, 7]
demonstrated that a slight decrease in the natural frequencies and the appearance of new resonances
when the rotational speeds of the rotor reach 1

2
, 1

3
and 1

4
of the resonant frequencies of the rotor are

key indicators for the detection of transverse cracks in a rotating shaft. He also suggested that the
non-linear behavior of the damage rotor and the opening and closing of the crack during its rotation
are due mainly to the shaft’s self-weight. Then, Sinou [8] indicated that the vibration amplitudes in
the 1

n
sub-critical resonances (with n ≥ 2) depend not only on the rotor damping, unbalance, position

and depth of the crack, but also on the combinations of the unbalance and the crack parameters. The
sensitivity of the magnitudes of 1

2
and 1

3
sub-critical resonances with respect to the unbalance angle
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and the unbalance-crack interactions are different in the vertical and horizontal directions. However,
the author suggested that the magnitudes of the sub-critical resonance peaks do not greatly change
if the crack effect is predominant. Adewusi and Al-Bedoor [9, 10] investigated an experimental study
on the non-linear dynamic response of an overhung rotor with a propagating transverse crack. They
observed that the appearance of second harmonic component is the first signature of the presence of
damage. It was demonstrated that the third harmonic components are excited just before fracture,
and so can not be used as an efficient and robust factor for the detection of damage in early stages.
Some researchers [9, 11–14] proposed to introduce time-scale signal processing tools based on wavelet
transform for the detection of damage in rotating machinery due to the limitation of the conventional
Fourier analysis that is suitable for steady state vibration signals, but provides a poor representation
of transient signals due to a strong increase of the shaft’s rotating speed.

Due to the fact that crack breathes when the system rotates, the cracked rotor has a time-dependent
coefficient. The amount of open part of the crack varies with the rotation of the shaft, thereby changing
the stiffness of the cracked rotor. Gash [1, 7] also suggested that the opening and closing of the crack
during its rotation are due mainly to the shaft’s self-weight. Researchers highlight the possibility of
crack detection through the observation of the non-linear dynamic behaviour of rotor systems due to
the this breathing mechanism [15, 15–20]. They concluded that the primary response characteristic
resulting from the changes in the non-linear dynamical behaviour of the rotor system through half
resonance speeds appears to be the characteristic signature for detecting the presence of a crack rotor.
They also indicated that emerging of the 3X super-harmonic frequency components and the distortion
of the orbit, and formation of a double loop and inside loop in the orbit [8], may provide useful
information on the presence of a crack and may be used on an on-line crack monitoring rotor system.
For example, Darpe [21] studied both numerically and experimentally the evolution of orbital patterns
during the passage through sub-critical resonances. The authors explained that the inner loop is
present at one-half of the first resonant speed due to dominant second harmonic component. When
the rotor is passing through the 1

2
sub-critical speed, the inner loop changes its orientation by almost

180 degrees. Moreover, Darpe et al. [22] used impulse axial excitation to a rotating cracked shaft to
detect damage. They indicated that the presence of damage induces not only the coupling mechanism
in lateral and longitudinal vibrations but also the combination of harmonics due to the interaction
of rotational frequency and its harmonics with the constant excitation frequency and its harmonics.
Then the same results of coupling measurements and appearance of combination harmonics have been
observed for slant crack in rotor: coupled longitudinal, bending and torsional vibrations [23, 24].

In practice the material parameters and the unbalance excitation force in the rotor systems are
subjected to inherent physical variability and so are not exactly known. The dynamic properties of
the rotor system can be deeply affected by small variations of some of these parameters and so they
can be within a band of possible values due to uncertainties of some parameters such as stiffness and
unbalance. However, the efficiency of the most practical indicators for health monitoring purposes is
not analyzed in the presence of uncertainties present on rotating systems. The paper addresses this
important issue of the changes in response of a cracked rotor under uncertain parameters and the
robustness of indicators for monitoring rotating machinery.

Numerous methods have been developed to quantify physical uncertainties in a variety of compu-
tational problems e.g. the Monte Carlo approach, the perturbation method and the polynomial chaos
expansions. The Monte Carlo simulations consists in including the uncertainties by calculating n times
the deterministic problem, that is, for n independent samples of the random parameter. Therefore, the
statistical response is easily obtained. With its easy use, the Monte Carlo method is one of the most fre-
quently used. However, the convergence rate of this method is very slow which brings computations to
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be intensive really fast and not adapted to high-dimensional deterministic problems or high CPU time
deterministic computations. In particular, rotordynamic problems are quite complex in a deterministic
sense. The second type of methods includes either the perturbation method [25] random quantities in
expansion of Taylor series or the Neumann method based on Neumann series expansion [26,27]. These
methods obtain acceptable results only if the random fluctuations are small, therefore if we consider a
problem with one excitation close to the resonance frequency, they can not be efficiently used. Finally,
the polynomial chaos expansion associated with a Galerkin projection, named the Stochastic Finite El-
ement Method [28] showed its effectiveness for quantifying uncertainties through the value of stochastic
processes or variables in orthogonal bases of random variables. It is based on the homogeneous chaos
theory of Wiener [29] and the original polynomial chaos expansion [28] that consists in a mean-square
convergent expansion of multidimensional Hermite polynomials of normalized Gaussian variables. The
Hermite polynomials are orthogonal with respect to the Gaussian measure then optimal exponential
convergence is obtained for Gaussian inputs [30]. Besides, many extensions were made on the nature
of the expansion (e.g. non Gaussian variables) to solve very different types of problems, especially in
structural dynamics [31].

In this paper, due to the fact that determining all the Fourier components of the rotor system for the
deterministic problem is already computationally intensive, the computational costs of Monte Carlo
simulations can become impractical. Consequently, we use the polynomial chaos expansion method
in the form of the stochastic finite element model that seems to be well adapted for a combination
with the Harmonic Balance Method: the response of the Fourier components of the rotor system
returns as random and is then expanded in the polynomial chaos basis. To validate the method, all the
calculations are compared to those obtained from the combination of the Harmonic Balance Method
and the Monte Carlo simulations.

First of all, a brief introduction of the rotor system and the modeling of the crack based on the notion
of stiffness reduction are described. Then, the paper presents the numerical procedure for calculating
the response of a cracked rotor under uncertain parameters. To quantify the effects of uncertainties
on response variability in cracked rotor systems the stochastic response via the combination of the
Harmonic Balance Method and the Polynomial Chaos Expansion procedure are explained and studied.
Finally, the results obtained by applying the alternative approach via the Harmonic Balance Method
and the Polynomial Chaos Expansion are compared with those evaluated by the Harmonic Balance
Method with the Monte Carlo Simulations. The efficiency and the robustness of the combination of the
Harmonic Balance Method with the Polynomial Chaos Expansion is demonstrated through different
numerical simulations in order to analyze the random non-linear response of a cracked rotor against
uncertain parameters and random excitation to assess its accuracy and the computation time.

2 The model of the cracked rotor

The layout of the cracked rotor system under consideration is shown in Figure 1. The rotor is composed
of a shaft of length 0.5m with one disc at the mid-span. All the values of the material properties and
dimensions of the rotor are given in Table 1.
The uncraked rotor is discretized into Timoshenko beam finite elements, with four degrees of freedoms
at each node, the axial and torsional degrees of freedom being not considered. After assembling the
various shaft elements, the rigid disc and the bearing supports, the equations of the uncracked rotor
can be written as

Mẍ+Dẋ+Kx = f + q (1)
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where f and q contain the gravitational and balance forces, respectively. The mass matrix M includes
the mass matrices of the shaft and the rigid disc. The matrix D combines the effects of the shaft’s
internal damping, damping of the supports, and gyroscopic moments. The matrix K includes the
stiffness matrices of the shaft and the supports, together with the circulatory matrix which accounts
for the shaft’s internal damping.

Figure 1: Finite-element model of the rotor and the cracked-beam section

Notation Description Value

R radius of the rotor shaft 0.005m
L length of the rotor shaft 0.5m
RD outer radius of the disk 0.025m
hD thickness of the disk 0.015m
E Young’s modulus of elasticity 2.1 1011N.m−2

G shear modulus 7.7 1010N.m−2

ρ density 7800kg.m−3

ν Poisson ratio 0.3
η coefficient of damping 0.1 10−5

Ks stiffness of supports 2 106N.m−1

Table 1: Value of the physical parameters

Then, due to strain energy concentration in the vicinity of the tip of the crack under load, the
presence of a transverse crack introduces local flexibility. For a comprehensive literature survey of
various crack modeling techniques, see [2, 3].
In this paper, the model proposed by Mayes and Davies [4, 5] is used in order to locally represent
the stiffness properties of the crack cross section. This model considers the reduction of the second
moment of area ∆I of the element at the location of the crack that may be defined by

∆I = I0




R

l

(
1− ν2

)
F (µ)

1 +
R

l

(
1− ν2

)
F (µ)


 , (2)

where I0, R , l, and ν are the second moments of area, beam radius, length of the section and Poisson’s
ratio, respectively. µ is the non-dimensional crack depth and is given by µ = h

R
where h defines the
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crack depth of the beam, as shown in Figure 1. F (µ) defines the non-linear compliance as a function of
variations in non-dimensional crack depth µ, which can be derived from a series of experiments using
chordal cracks (see Mayes and Davies [4, 5]). For the interested reader, the complete expressions of
the stiffness matrix Kcrack at the transverse crack location are given in [17]. In this study, the crack
model is restricted to a chordal crack.

Then, one of the models of a crack is that of Mayes and Davies [5] where the opening and closing
of the crack were described by a cosine function by assuming that the gravity force is much greater
than the imbalance force: when a cracked rotor rotates slowly under the load of its own weight, the
crack will open and close once per revolution. This periodic opening and closing of the crack is called
“breathing” phenomenon [1]. The function describing a simple crack breathing phenomenon such as
discussed by Sinou and Lees [17,32], typical in weight dominated systems, may be approximated by a
cosine function g(t)

g (t) =
1− cosωt

2
(3)

where ω defines the rotational speed of the rotor. If g(t) = 0, the crack is closed and has no effect on
the dynamic behaviour of the rotor (i.e. the rotor may be treated as uncracked). If g(t) = 1, the crack
is fully open.
Finally, the equations of the cracked rotor can be written as

Mẍ+Dẋ+ (K− g (t)Kc)x = f + q (4)

where ẍ, ẋ and x are the acceleration, velocity and displacement vectors. M and K are the mass and
stiffness matrices of the complete uncracked rotor. f and q are the gravitational and balance forces,
respectively. The global stiffness matrix Kc due to the presence of the crack is given by

diag (Kc) = ( 0 · · · 0 Kcrack 0 · · · 0 )
↑

ith element
(5)

where Kcrack defines the stiffness matrix of the crack element. It is situated at the ith beam location.
0 defines the 8× 8 null matrix.

3 Response of the cracked rotor under uncertain parameters via the
Harmonic Balance Method and the Polynomial Chaos Expansion

(HBM-PCE)

3.1 Deterministic response via the Harmonic balance Method

As previously indicated, the above equations of the cracked rotor have a time-dependent coefficient
due to the fact that the crack breathes when the system rotates. The amount of open part of the
crack constantly varies with the rotation of the shaft, thereby changing the stiffness of the cracked
rotor. The global stiffness matrix of the rotor consists of a constant part K and a time dependent part
g (t)Kc.

In order to determine the periodic solutions of the cracked rotor system, we assume that the dy-
namical responses of the cracked rotor system can be approximated by a truncated Fourier series of
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order m with a fundamental frequency

x (t) = A0 +
m∑

k=1

(Ak cos (kωt) +Bk sin (kωt)) (6)

where ω defines the rotational speed of the cracked rotor system. A0, Ak and Bk (with k = 1, · · · ,m)
define the unknown coefficients of the finite Fourier series. The number of harmonic coefficients m is
selected on the basis of the number of significant harmonics expected in the dynamical response of the
crack rotor system.
Then, it may be observed that the gravitational force f and the unbalance force q can also be exactly
defined by finite Fourier series (with constant components and first-order periodic components in the
frequency domain, respectively). Expressions are given by

f = C
f
0 (7)

q = C
q
1 cos (ωt) + S

q
1 sin (ωt) (8)

where C
f
0 is the vector of the constant Fourier components of the gravitational force. C

q
1 and S

q
1 are

first-order periodic components in the frequency domain of the unbalance force.
By combining the approximated dynamical response of the rotor x (see equation 6) and the the global
mechanism of the time dependent part (see equation 3), the expression g (t)Kcx can be approximated
by considering truncated Fourier series of order m

g(t)Kcx =

m∑

k=0

Kc

(
−
1

2
Ak−1 +

1

2
Ak −

1

4
Ak+1

)
cos(kωt)+

m∑

k=1

Kc

(
−
1

2
Bk−1 +

1

2
Bk −

1

4
Bk+1

)
sin(kωt)

(9)
with B0 = A−1 = 0 and k + 1 < m. Finally, substituting Equations 6, 7, 8, 9 into Equations 4 yields
a set of (2m + 1)× n linear equations (where n is the number of degrees of freedom for the complete
cracked rotor)

(Λ+Λc)Θ = Γ (10)

with
Θ = [A0 A1 B1 A2 B2 · · · Ak Bk · · · Am Bm]T (11)

Γ =
[
C

f
0 C

q
1 S

q
1 0 0 · · · 0 0 · · · 0 0

]T
(12)

Λ =




K

Λ1

Λ2

. . .

Λk

. . .

Λm




with Λk =

[
K− k2ω2M kωD

−kωD K− k2ω2M

]
(13)
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Λc =
1

4




2Kc −Kc

−2Kc 2Kc 0 −Kc 0

0 0 2Kc 0 −Kc

−Kc 0 2Kc 0 −Kc 0

0 −Kc 0 2Kc 0 −Kc

. . .

−Kc 0 2Kc 0 −Kc 0

0 −Kc 0 2Kc −0 −Kc

. . .

−Kc 0 2Kc 0

0 −Kc 0 2Kc




(14)

The unknown Fourier coefficients Θ can be found solving Equation 10.

3.2 Stochastic response via the Harmonic Balance Method-Polynomial Chaos Ex-
pansion (HBM-PCE)

Uncertainties on the stiffness parameters and on the unbalance excitation force have to be modeled.
Λ, Θ and Γu are random processes with argument τ denoting the random character, Λc is considered
as deterministic. Equation 10 can then be rewritten in a random way such that

(Λ(τ) +Λc)Θ(τ) = Γ(τ) (15)

In fact, excitation force Γ consists of a deterministic part that is the gravity component Γg and of a
random part that is the unbalance component Γu(τ) such as

Γ = Γg + Γu(τ) (16)

From Equation 12, it yields :

Γg =
[
C

f
0 0 · · · 0

]T
and Γu(τ) = [ 0 C

q
1(τ) S

q
1(τ) 0 · · · 0]

T
(17)

Λ, defined by its deterministic expression by Equation 13, can be randomized using the Karhunen
Loeve expansion with a Gaussian law on the stiffness of the rotor. The use of Karhunen-Loeve expansion
allows to work with random variables instead of random processes [28,33]. It should be noted that the
support boundary conditions are taken as deterministic so the stiffness associated and denoted Kb is
not taken as random. Then, considering that K = Kb + K̃, Equation 13 becomes

Λ = Λd +Λr(τ) (18)

where Λd is the deterministic part of Λ defined by

Λd =




Kb

Λd
1

. . .

Λd
m


 with Λd

k =

[
Kb − k2ω2M kωD

−kωD Kb − k2ω2M

]
(19)
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and Λr(τ) is the random one given by

Λr(τ) =




K̃(τ)
. . .

K̃(τ)


 (20)

K̃(τ) is expanded using the Karhunen-Loeve expression implemented in the Galerkin formulation of
the finite element method [28] such as

K̃(τ) =

L∑

i=1

K̃i(1 + δKi ξKi (τ)) , (21)

in which {ξi}, i = 1 to L, is a set of orthonormal random variables, Z is the mean of random quantity
Z and δZ is its variation coefficient.

Considering the unbalance excitation force Γu(τ), several random ways of modeling can be possible.
One simple one but sufficiently representative of the reality is done through the Polynomial Chaos
Expansion with a Gaussian law. The associated basis is an orthogonal basis set of random variables,
represented in a mean-square convergent expansion in terms of multidimensional Hermite polynomials
of normalized Gaussian variables [28]. We have

Γu(τ) =
∞∑

j=0

Fuj
Ψj(ξ(τ)) (22)

The unknown solution Θ(τ) is also then expanded in chaos polynomials such as

Θ(τ) =

∞∑

j=0

YjΨj(ξ(τ)) (23)

where Ψj(ξ(τ)) refers to a rearrangement of the p-order finite dimensional orthogonal polynomials
with respect to the Gaussian function which constitute a complete basis in the space of second-order
random variables ; Yj is the unknown deterministic jth vector associated with Ψj(ξ(τ)) and ξ = {ξr},
set of orthonormal random variables [28]. Finally, after projection on the chaos polynomial basis, the
stochastic system to solve is written as

AY = F (24)

where each component [A]ij of A is

[A]ij =
{[

Λc +Λd +
L∑

k=1

Λrk

]
〈Ψ2

i 〉δij +
L∑

k=1

Λrkδ
K
k cijkK

}
(25)

〈Z〉 corresponds to the mathematical expectation of quantity Z, δij is the Kronecker symbol and cijkK
is defined by [28]

cijkK = 〈ξKk ΨiΨj〉 (26)

Finally, vector F(τ) of forces projected on the polynomial chaos basis has polynomial chaos vector
terms given by

Fj(τ) = Γgδ0j〈Ψ
2
i 〉δij + Fuj

〈Ψ2
i 〉δij (27)
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4 Numerical results

In this section, efficiency of the proposed methodology based on the combination of the Harmonic
Balance Method with the Polynomial Chaos Expansion will be firstly demonstrated through numerical
simulations of the rotor system with a breathing crack. Then, the random non-linear response of a
cracked rotor against uncertain parameters and the effects of uncertainties from stiffness properties of
the rotor and external forces will be analyzed in order to propose a robust identification of damage
in rotors. The random aspect will be presented through the mean and the standard deviation of the
response. The standard deviation σr is defined by

σr =
√

〈(Θ(τ) −Θ0)2〉 (28)

Given the orthogonality of the polynomial chaoses, Equation 28 can be rewritten as

σr =

√√√√
∞∑

j=1

Θ2
i (τ)〈Ψ

2
i 〉 (29)

4.1 Choice of the terms in the expansions

Clearly, in a computational context, the summations in the previous expressions are truncated after
some term P . In particular, response Θ(τ) given by Equation 23 can be written as

Θ̃(τ) =

P∑

j=0

YjΨj(ξ(τ)) (30)

where P , the total number of polynomial chaoses used in the expansion (excluding the 0th-order term),
can be determined by P = 1 +

∑p
s=1

1
s!

∏s−1

r=0(L + r), p being the order of the homogeneous chaos
being used [28]. {Ψj(θ)}j=0 to P refers to a rearrangement of the pth-order finite-dimension orthogonal
polynomials with respect to the Gaussian function, which constitute a complete basis of the space of
the second-order random variables.
Besides, the uncertainty is quantified identically along the stiffness of the rotor, consequently the
random modeling of K̃ uses only one random variable. Thus, Equation 21 can be rewritten as

K̃(τ) = K̃(1 + δKξK(τ)) . (31)

It should be noted that the normal distribution assumed has been truncated to avoid negative values
of the parameter, since it is physically strictly positive.
Moreover, the expansion of unbalance force Γu can reasonably be truncated to order 1 which is equiv-
alent to consider the Karhunen-Loeve expansion. Then Equation 22 can be reduced to

Γ̃u(τ) = Γ̃u(1 + δΓuξΓu(τ)) , (32)

considering one random variable. Integrating these hypotheses in Equation 24, the system of equations
to solve becomes

ÃỸ = F̃ (33)
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where each component [Ã]ij of Ã is

[Ã]ij =
[(

Λc +Λd +Λr

)
〈Ψ2

i 〉δij +Λr δ
Kcij1K

]
(34)

and polynomial chaos vectors F̃j are given by

F̃j(τ) = Γgδ0j〈Ψ
2
i 〉δij + F̃uj

[
〈Ψ2

i 〉δ0jδij + δΓu〈Ψi(ξ) ξ
Γu〉

]
(35)

where ξ = {ξK , ξΓu}.
Finally, the standard deviation is also built from a truncated expansion that is

σr =

√√√√
P∑

j=1

Θ2
i (τ)〈Ψ

2
i 〉/Θ0 (36)

It should be noted that the size of the system of equations depends on P and is obviously higher than
those of the deterministic problem.

4.2 Comparison between Monte-Carlo Simulations and Polynomial Chaos Expan-
sion

The example of the non-linear vertical response at the middle of the cracked rotor, for one non-
dimensional crack depth µ equal to 1 and with variations for both shaft stiffness of the rotor system
and the excitation forces of 2% is taken to show the efficiency and the robustness of the HBM-PCE
method versus the HBM-MCS method. The reference solution is obtained with the HBM-MCS method
using 5000 samples. We present the results from the HBM-PCE method using several orders in the
expansion : p = 5, 10 and 20 (for listing of coefficients, see [28]). Here, for a better legibility, the
mean (Figure 2) and the standard deviation (Figure 3) only for harmonic 2 of the random response
are presented. It should be noted that similar conclusions were observed for the other harmonics of
the response. Figures 2 and 3 present each : (a) the response on the whole frequency range studied
and (b) a zoom for example on the resonance second peak. Clearly, for both mean and standard
deviation, we can observe that, outside the resonances, the HBM-PCE solution is identical to that
obtained by the MCS whatever the order p. The more important area where differences between the
HBM-PCE solution and the the HBM-MCS is located at each sub-critical speed. Figures 4 and 5 show
the mean and the standard deviation respectively for the four harmonics of the non-linear vertical
response computed from both methods. Here again, the results for the random response are very
close between both methods even around the resonances. These variations are only due the very small
damping taken into account in the present study. For the interested reader, Figures 6 illustrated the
non-linear vertical response with a higher damping (i.e. η = 10−5). It clearly demonstrated that the
difference between HBM-PCE and HBM-MCS solutions decreases with the value of the damping as
also mentioned in PhD thesis of Dessombz [34]. However, it is clearly seen that the HBM-PCE gets
better with p, even if the damping is very small (i.e. η = 0.1 10−5). Besides, we can stop to order 20
since it seems to be sufficient to represent correctly the random behavior of the response of the cracked
rotor due to the uncertain inputs.
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Figure 2: Mean of the second harmonic order computed by the MCS (solid line) and by the PCE of
several orders : order 5 (dotted lines), order 10 (dotted-dashed lines), order 20 (dashed lines). (a) :
whole frequency range, (b) : zoom on the second peak of resonance
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Figure 3: Standard deviation of the second harmonic order computed by the MCS (solid line) and by
the PCE of several orders : order 5 (dotted lines), order 10 (dotted-dashed lines), order 20 (dashed
lines). (a) : whole frequency range, (b) : zoom on the second peak of resonance
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Figure 4: Mean of the non-linear response. Comparison between the MCS method (solid line) and the
PCE method with order 20 (dashed lines) for the four harmonics of the response : top (harmonic 1)
to the bottom (harmonic 4)
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Figure 5: Standard deviation of the non-linear response. Comparison between the MCS method (solid
line) and the PCE method with order 20 (dashed lines) for the four harmonics of the response : top
(harmonic 1) to the bottom (harmonic 4)
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(b)

Figure 6: Mean and standard deviation of the vertical non-linear response for η = 10−5. Comparison
between the MCS method (solid line) and the PCE method with order 20 (dashed lines) for the four
harmonics of the response : top (harmonic 1) to the bottom (harmonic 4). (a) : Mean, (b) : Standard
deviation
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4.3 Efficiency of the crack detection based on the non-linear responses with un-
certainties

In this first part of the parametric studies, the non-dimensional crack depth µ is equal to 1 (corre-
sponding to the loss of half the shaft’s area). We consider random variations for the stiffness properties
of shaft of the rotor system (applied actually on the Young modulus) and for the excitation forces.
Three cases are investigated in which the coefficients of variation of the shaft’s stiffness and of the
excitation forces are taken equal to 1%, 2% and 5% respectively. We recall that in this case the cost
of calculation may be high since it is directly linked to the number of polynomials and consequently
to the order of polynomial chaoses and the number of random parameters.

Figures 7 show the mean value and the standard deviation of the non-linear vertical responses at
the middle of the cracked rotor for these three cases. First of all, it appears that variations of the mean
value and of the standard deviation increase when the rotor is passing through 1

n
sub-critical speeds.

For example, the 1× vertical response of the cracked rotor generates highly prominent amplitudes
when the running speed is at the first critical speed and approximately 1

2
of the first critical speed.

An increase of the 2× vertical response at the critical speed, 1
2

and 1
3

of the first critical speed can
also be observed. Finally, the 3× and 4× vertical responses increase at the critical speed, 1

2
, 1

3
and

1

4
of the first critical speed. However it is clear that only 1× component is dominant at first critical

speed and 2× component is very small. Similarly, 2× component is very small while 2× component
is very dominant at 1

2
of critical speed. So, increases of the n× amplitudes at 1

m
of the first critical

speed (with m ≤ n) are clues for the detection of a transverse breathing crack in a rotating shaft,
even if uncertainties are introduced in the rotor system. The same conclusions can be observed for the
evolutions of the the mean value and the standard deviation of the non-linear horizontal response of
the cracked rotor for the three cases (see Figures 8).

Moreover, it appears that increasing uncertainties of the rotor’s stiffness and of the excitation forces
affects the standard deviation of all the n× amplitudes when the rotor is passing through the 1

n
sub-

critical speed. The range of speed where the non-linear amplitudes of the rotor system are predominant
increase drastically with increasing uncertainties. This last observation clearly demonstrates that basic
methods based on linear condition monitoring techniques (such as the changes in frequencies and
modes shapes) can be rendered ineffective in the case of specific configurations taking into account
uncertainties for the detection of cracks in rotor systems. However, whatever the levels and different
kinds of uncertainties (such as material and/or loading characteristics) presented here, these numerical
results demonstrate that emergences and variations in n× harmonic components of the system in the
frequency domain are key indicators for the detection of transverse cracks in a rotating shaft. It is
reminded for the reader comprehension that even if there is uncertainties in the value of stiffness
property and unbalance, the evolution of damage will take a predictable path and the expected value
of the n× amplitudes will be within a band of possible values due to uncertainties.

Finally Figures 9, 10,11 and 12 illustrate the mean values and the standard deviation of the non-
linear n× amplitudes (with n = 1, 2, 3 and 4) for a rotor system containing a small crack (i.e.
µ = 0.5). The previous results (with µ = 1) are also given for comparison. In this last part of
the study, the random stiffness properties of shaft (i.e. for the Young modulus) and the excitation
forces have each a variation coefficient equal to 2%. As previously seen for µ = 1, the emergence
of the n× amplitudes are clearly detected or µ = 0.5. So it may be concluded that using condition
monitoring techniques based on non-linear approaches can be considered to be the first step for a rapid
estimation of the presence of damage in rotors with structural uncertainties even if the crack size is
small. Nevertheless, it is observed that the evolutions of the mean value and the standard deviation of
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the 1× harmonic components (2× and 3× harmonic components, respectively) are not significant at 1
2

of the first critical speed (1
3

and 1
4

respectively). Showing Figures 9, it is observed a large difference in
the mean values of the 1× amplitudes for two different crack depths in horizontal rotor response while
almost no difference in the vertical rotor responses. Then, considering Figures 11 or 12, variations
of the mean values of the 3× and 4× amplitudes are significant for both the vertical and horizontal
directions. These results illustrate interaction between the contributions of the unbalance and the
breathing of the crack.

Finally, it is shown that increasing the crack size induces a small decrease of the frequency values
of the critical and sub-critical speeds that may be observed even if uncertainties of the rotor’s stiffness
and of the excitation forces are introduced. However, these changes in frequencies are quite small and
can not be used for a robust detection of the presence of damage in rotors.

5 Conclusion

This paper presents an extension of the use of Harmonic Balance Method in the stochastic domain using
the Polynomial Chaos Expansion to calculate the random non-linear dynamical response of mechanical
systems. Here, the proposed methodology is applied to investigate the effects of the presence of a
transverse crack in a rotating shaft under uncertain physical parameters in order to outline some
robust indicators for detecting damage in rotating system. We considered the stiffness properties of
shaft of the rotor system and the excitation forces random by Gaussian law. The random non-linear
response consists in the mean and the standard deviation of the non-linear response and is obtained
by finding the deterministic coefficients associated to the Polynomial Chaos Expansion applied on the
n× harmonics which are given from the Harmonic Balance Method. The comparison of the results
from this method and the reference one, combining the simulations of Monte Carlo and the Harmonic
Balance Method, for one case in particular, validates the proposed methodology. Then a complete
study is done for different cases of uncertainties (from 0% to 5%) appearing on the stiffness properties
of shaft of the rotor system and on the excitation forces to carry out the effect on the non-linear
response. Besides, two values of depths were studied.
For a practical point of view, using condition monitoring techniques based on linear approaches (i.e.
frequency shifts and changes in modal parameters) can be considered to be unpractical and not efficient
for an estimation of the presence of damage if uncertainties are present in the mechanical systems. So
alternative indicators based on the non-linear signature of dynamical systems can be more effective for
a robust detection of the presence of damage in complex mechanical engineering structures. Even if
uncertainties are introduced in real engineering structures (more particularly in rotating applications),
an important observation is the recognition of the appearances of the n× harmonic components when
the running speed reaches 1

n
of the critical speeds. However due to interaction between the unbalance

and the breathing of the crack, the variations of the mean and standard deviation of amplitudes for two
different crack depths can be more significant in the horizontal direction than in the vertical direction.
Moreover, in some cases, no difference for two different crack depths should be observed in the mean
and standard deviation of 1× amplitudes if the unbalance is predominant versus the breathing of the
crack.
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(e) (f)

Figure 7: Evolution of the vertical n× displacements at the middle of the shaft for a non-dimensional
crack depth µ = 1 with variations of the Young modulus and the excitation forces ( black=order 1,
−−blue=order 2 , −.red=order 3 , · · · green=order 4) (a) mean - 1% variations (b) standard deviation
- 1% variations (c) mean - 2% variations (d) standard deviation - 2% variations (e) mean - 5% variations
(f) standard deviation - 5% variations
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Figure 8: Evolution of the horizontal n× displacements at the middle of the shaft for a non-dimensional
crack depth µ = 1 with variations of the Young modulus and the excitation forces ( black=order 1,
−−blue=order 2 , −.red=order 3 , · · · green=order 4) (a) mean - 1% variations (b) standard deviation
- 1% variations (c) mean - 2% variations (d) standard deviation - 2% variations (e) mean - 5% variations
(f) standard deviation - 5% variations
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(c) (d)

Figure 9: Evolution of the vertical and horizontal 1× displacements at the middle of the shaft for
two crack sizes (− − black: µ = 1, red: µ = 0.5) with 2% variations of the Young modulus and the
excitation forces (a) mean of order 1 - horizontal (b) standard deviation of order 1 - horizontal (c)
mean of order 1 - vertical (d) standard deviation of order 1 - vertical
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(c) (d)

Figure 10: Evolution of the vertical and horizontal 2× displacements at the middle of the shaft for
two crack sizes (− − black: µ = 1, red: µ = 0.5) with 2% variations of the Young modulus and the
excitation forces (a) mean of order 2 - horizontal (b) standard deviation of order 2 - horizontal (c)
mean of order 2 - vertical (d) standard deviation of order 2 - vertical
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Figure 11: Evolution of the vertical and horizontal 3× displacements at the middle of the shaft for
two crack sizes (− − black: µ = 1, red: µ = 0.5) with 2% variations of the Young modulus and the
excitation forces (a) mean of order 3 - horizontal (b) standard deviation of order 3 - horizontal (c)
mean of order 3 - vertical (d) standard deviation of order 3 - vertical
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Figure 12: Evolution of the vertical and horizontal 4× displacements at the middle of the shaft for
two crack sizes (− − black: µ = 1, red: µ = 0.5) with 2% variations of the Young modulus and the
excitation forces (a) mean of order 4 - horizontal (b) standard deviation of order 4 - horizontal (c)
mean of order 4 - vertical (d) standard deviation of order 4 - vertical
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