
HAL Id: hal-00630415
https://hal.science/hal-00630415

Submitted on 10 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New stacked central configurations for the planar
5-body problem

Jaume Llibre, Luis Fernando Mello, Ernesto Perez-Chavela

To cite this version:
Jaume Llibre, Luis Fernando Mello, Ernesto Perez-Chavela. New stacked central configurations for
the planar 5-body problem. Celestial Mechanics and Dynamical Astronomy, 2011, 110 (1), pp.43-52.
�10.1007/s10569-011-9342-6�. �hal-00630415�

https://hal.science/hal-00630415
https://hal.archives-ouvertes.fr


NEW STACKED CENTRAL CONFIGURATIONS

FOR THE PLANAR 5–BODY PROBLEM

JAUME LLIBRE
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Abstract. A stacked central configuration in the n–body problem is one that has
a proper subset of the n–bodies forming a central configuration. In this paper we
study the case where three bodies with masses m1, m2, m3 (bodies 1, 2, 3) form
an equilateral central configuration, and the other two with masses m4, m5 are
symmetric with respect to the mediatrix of the segment joining 1 and 2, and they are
above the triangle generated by {1, 2, 3}. We show the existence and non-existence
of this kind of stacked central configurations for the planar 5–body problem.

Keywords: Planar central configurations, n–body problem, stacked central config-
urations.

1. Introduction

The classical planar Newtonian n–body problem in celestial mechanics
consists in studying the motion of n pointlike masses in a fixed plane,
interacting among themselves through no other forces than their mu-
tual gravitational attraction according to Newton’s gravitational law
(Newton 1687).

The center of mass of the system, given by
n
∑

j=1

mjrj/M , where M =

m1 + · · · + mn is the total mass and rj is the position vector of the
mass mj , is considered at the origin of an inertial system. Usually this
inertial system is called the inertial barycentric system.

The simplest motion of the n bodies, called a homographic solution,
is a motion such that the configuration of the n bodies remains the
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same (with respect to the inertial barycentric system) up to a dilation
and a rotation of R

2.

The first homographic solutions for the 3–body problem were found
by Euler (1767), for which three bodies are collinear at any time, and
by Lagrange (1873), where the three bodies are at any time at the
vertices of an equilateral triangle.

At a given instant t = t0 the configuration of the n bodies is central if
the gravitational acceleration acting on every mass point is proportional
to its position (referred to the inertial barycentric system). Central
configurations and homographic solutions are linked by the Laplace
theorem (see for instance Boccaletti and Pucacco 1996; Wintner 1941):
the configuration of the n bodies in a homographic solution is central
at any instant of time.

If we have a central configuration, any dilation and any rotation
(centered at the center of mass) of it provides another central config-
uration. We say that two central configurations are similar if we can
pass from one to another through a dilation and a rotation. So we
can study the classes of central configurations defined by the above
equivalence relation. Thus the 3–body problem has exactly 5 classes of
central configurations for any value of the positive masses.

Central configurations of the n–body problem are important be-
cause: they allow the computation of homographic solutions; if the n
bodies are heading for a simultaneous collision then the bodies tend
to a central configuration (see Saari 1980); there is a relation between
central configurations and the bifurcations of the hypersurfaces of con-
stant energy and angular momentum (see Smale 1970). See also the
Refs. Moeckel 1990; Moulton 1910.

The main general open problem for the planar central configurations
is due to Wintner (1941) and Smale (1998): Is the number of classes
of planar central configurations finite for any choice of the (positive)
masses m1, . . . , mn?

Hampton and Moeckel in (2006), proved this conjecture for the 4–
body problem. The conjecture remains open for n > 4. But if one
mass can be negative, Roberts (1999), proved that there exists a one–
parameter not equivalent family of planar central configurations for the
5–body problem. Also considering the particles endowed with masses
and charges, Alfaro and Perez-Chavela (2002) proved the existence of
a continuum of central configurations in a particular 4–body problem.
Other recent papers on central configurations are due to Corbera, Cors
and Llibre (2010), Corbera and Llibre (2010), Gidea and Llibre (2010),
Piña and Lonngi (2010), ...
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In 2005 Hampton (2005) provides a new family of planar central con-
figurations, called stacked central configuration, for the 5–body problem
with an interesting property: the central configuration has a subset of
three bodies forming a central configuration of the 3–body problem,
in fact these three bodies are in an equilateral triangle, and the re-
maining two bodies are in the interior of the triangle and are located
symmetrically with respect to a perpendicular bisector.

Recently the first and second author of this paper gave new examples
of stacked central configurations of the 5–bodies which, as the ones
studied by Hampton (2005), have three bodies in the vertices of an
equilateral triangle, but the other two are on the perpendicular bisector
(Llibre and Mello 2008).

In this paper we find a new class of stacked central configurations in a
5–body problem which has three bodies in the vertices of an equilateral
triangle and the other two are located symmetrically with respect to
a perpendicular bisector in the exterior and above of the triangle, see
Figure 1.

11

1m1 m2

m3

m4m5

Figure 1. Three bodies at the vertices of an equilateral triangle and two bodies
located symmetrically with respect to a perpendicular bisector.

The paper is organized as follows, in Section 2 we prove the existence
and non-existence of this new class of stacked central configurations.
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In section 3 we show some numerical evidence of the existence and
non-existence of another families of this kind of central configurations.

2. Existence and non-existence of stacked central

configurations

The equations of motion of the planar Newtonian n–body problem are
given by

r̈i = −
n
∑

j = 1
j 6= i

mj
ri − rj

r3
ij

, (1)

for i = 1, 2, . . . , n. Here the gravitational constant is taken equal to 1,
rj ∈ R

2 is the position vector of the punctual mass mj in the inertial
barycentric system, and as before rij = |ri−rj | is the Euclidean distance
between ri and rj .

For the central configurations we have r̈j = λrj with λ 6= 0 for all
j = 1, . . . , n. So from equation (1) we have

λri = −
n
∑

j = 1
j 6= i

mj
ri − rj

r3
ij

, (2)

for i = 1, 2, . . . , n.

For the planar central configurations instead of working with equa-
tion (2) we shall use the Dziobek equations (see Hagihara 1970, p.
241)

fij =
n
∑

k = 1
k 6= i, j

mk (Rik − Rjk) ∆ijk = 0, (3)

for 1 ≤ i < j ≤ n, where Rij = 1/r3
ij and ∆ijk = (ri − rj) ∧ (ri − rk).

As usual ∧ denotes the cross product of two vectors.

For the 5–body problem equations (3) is a set of ten equations. Our
class of configurations with five bodies as in Figure 1 without collisions
must satisfy

r12 = r23 = r13 = 1, r14 = r25, r15 = r24, r34 = r35, r14 > r24,

∆124 = ∆125, ∆143 = ∆235, ∆145 = ∆245, ∆135 = ∆243.

We are also assuming ∆145 6= 0, that is, the bodies m1, m4 and m5

are not on the same straight line.
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The equation f45 = 0 of (3) becomes

(R14 − R15)∆145(m1 − m2) = 0.

Thus m1 = m2. Similarly the equation f12 = 0 of (3) goes over to

(R14 − R24)∆124(m4 − m5) = 0.

Therefore m4 = m5. Substituting m1 = m2 and m4 = m5 into the
other eight equations of (3) it follows that

f13 = 0 ⇔ f23 = 0, f15 = 0 ⇔ f24 = 0,

f14 = 0 ⇔ f25 = 0, f34 = 0 ⇔ f35 = 0,

which can be written respectively as

L = (R14 − R34)∆134 + (R15 − R34)∆135 = 0, (4)

(R12 − R15)∆142 m1 + (R12 − R34)∆143 m3 + (R15 − R45)∆145 m4 = 0, (5)

(R12 − R14)∆142 m1 + (R12 − R34)∆153 m3 + (R14 − R45)∆154 m4 = 0, (6)

[(R12 − R14)∆134 + (R12 − R15)∆153] m1 + (R34 − R45)∆345 m4 = 0. (7)

Denote by A = [aij ] the matrix of the coefficients of the homo-
geneous linear system in the variables m1, m3 and m4 defined by
equations (5), (6) and (7). Thus

a11 = (R12 − R15)∆142, a12 = (R12 − R34)∆143, a13 = (R15 − R45)∆145,

a21 = (R12 − R14)∆142, a22 = (R12 − R34)∆153, a23 = (R14 − R45)∆154,

a31 = (R12−R14)∆134+(R12−R15)∆153, a32 = 0, a33 = (R34−R45)∆345.

In order to have a solutions different from m1 = m3 = m4 = 0 the
determinant of the matrix A must be zero, where

detA = (R12 − R34) [(R12 − R15)∆153 − (R12 − R14)∆143] Γ, (8)

with Γ equal to

(R34−R45)∆142∆345+[(R14 − R45)∆143 + (R15 − R45)∆153]∆154. (9)

From equation (4) one has R14∆134 = R34∆134 + (R34 − R15)∆135.
Substituting this equation into equation (9) it follows that Γ = 0 and
therefore, from (8), we get detA = 0. So the homogeneous linear system
in the variables m1, m3 and m4, defined by equations (5), (6) and (7),
has nontrivial solutions under the assumption L = 0, which can be
viewed as a constraint on the geometry of the configuration.
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m1 m2

m3

P0
P1

P2

P3

P4

R14 = 1

R24 = 1

R34 = 1R35 = 1

∆345 = 0

R24 = R45 R14 = R45

L301

L312

L323

L334

L34∞

L3L′
3

Figure 2. The component of the curve {L = 0} in the upper semiplane and its
components L3 and L′

3
.

LEMMA 1. Consider the regions

S1 = {R45 > R34 > R14 > 1}, S2 = {1 > R14 > R34 > R45},

S3 = {∆345 > 0, ∆134 < 0, R34 > R24}

and S′
1, S′

2, S′
3 the symmetrical regions with respect to the mediatrix of

the segment joining r1 and r2. See Figure 3. The curves

Li = {L = 0} ∩ Si, L′
i = {L = 0} ∩ S′

i,

i = 1, 2, 3, are well–defined and are not empty. See Figure 2.

Proof. Without loss of generality we can take a coordinate system
such that r1 = (−1/2, 0), r2 = (1/2, 0) and r3 = (0,

√
3/2) respectively.
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Thus r4 = (x, y) and r5 = (−x, y), where x > 0 and y ∈ R. With these
coordinates we have

L(x, y) =

[

1

((x + 1/2)2 + y2)3/2
− 1

(x2 + (y −
√

2/2)2)3/2

]

M1

+

[

1

((x − 1/2)2 + y2)3/2
− 1

(x2 + (y −
√

2/2)2)3/2

]

M2,

where M1 = y
2

− x
√

3

2
−

√
3

2
and M2 = y

2
+

√
3x
2

−
√

3

2
. It is easy to

see from the above equation that the curve L(x, y) = 0 is symmetric
with respect to the mediatrix of the segment joining r1 and r2. Using
Mathematica we have plotted the graph of the curve L(x, y) = 0, see
Figure 2.

Figure 3. Some straight lines and curves for the calculation of the sign of L.
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Define the points

Q1 = {∆345 = 0} ∩ {R24 = R45} ∩ S3,
Q2 = {R24 = 1} ∩ {R24 = R45} ∩ S3,
Q3 = {R24 = 1} ∩ {R14 = R45} ∩ S3,
Q4 = {R34 = 1} ∩ {R14 = R45} ∩ S3,
Q5 = {R34 = 1} ∩ {R24 = R45} ∩ S3,

according to Figure 3. The symmetrical points are denoted by Q′
i,

i = 1, 2, 3, 4, 5. In (Hampton 2005) Hampton studied stacked central
configurations when r4 and r5 are on the components L1 and L′

1 re-
spectively. If r4 ∈ {∆234 = 0} (see Figure 3) then r5 ∈ {∆135 = 0}.
Thus L = (R14−R34)∆134 < 0. If r4 ∈ {R14 = R34} (see Figure 3) then
L = (R15 − R34)∆135 > 0. Therefore there is a connected component
of L = 0 between the lines {∆234 = 0} and {R14 = R34} denoted by
L2. See Figure 2. Its symmetrical component is denoted by L′

2.
If r4 ∈ {∆134 = 0} (see Figure 3) then L = (R24 − R34)∆135 < 0.

If r4 ∈ {R24 = R34} (see Figure 3) then L = (R14 − R34)∆134 > 0.
By the same argument L > 0 on the set {∆345 = 0}. Therefore there
is a connected component of L = 0 between the lines {∆134 = 0} and
{R24 = R34}∪{∆345 = 0} denoted by L3. See Figure 2. Its symmetrical
component is denoted by L′

3.
In the coordinate system that we have introduced previously one

has

Q1 =

(√
13 − 1

6
,

√
3

2

)

, Q2 =

(

1

2
, 1

)

, Q3 =







1 +
√

5

4
,

√

√

√

√1 −
(√

5 − 1

4

)2






,

Q4 = (x4, y4), Q5 = (x5, y5),

where

x4 =
1

4

(√
3 cos(π/18) + 2 cos(π/9) + sin(π/18)

)

,

y4 =
1

2

(

cos(π/18) −
√

3(sin(π/18) − 1)
)

,

x5 =
1

2

√

2 + cos(π/9) −
√

3 sin(π/9),

y5 =
1

2

(

cos(π/18) +
√

3(1 + sin(π/18))
)

.

From elementary calculations one has the following things for L: L(Q1) >
0, L(Q2) < 0, L(Q3) > 0, L(Q4) > 0 and L(Q5) < 0.

�

Stacked-fourth.tex; 12/03/2011; 15:43; p.8



9

Since Q2, Q3 are on the circle R24 = 1 and L(Q2) < 0, L(Q3) > 0,
by continuity there exists at least one point in the intersection of the
curve L3 with the circle R24 = 1. There is numerical evidence that this
point is unique, we denote it as P2. Let be P ′

2 be the symmetric point
respect to the mediatrix of the segment joining the particle with mass
m1 with the particle with mass m2.

The main result of this paper is the following.

THEOREM 2. Assume that the points r1, r2 and r3 (with positive
masses m1, m2 and m3) are at the vertices of an equilateral triangle,
whose sides have length 1, and the points r4 and r5 (with masses m4 and
m5) are located symmetrically with respect to a perpendicular bisector,
as in Figure 1. Then there exist stacked central configurations for which
the particles with masses m4 and m5 are in a small arc of L3 near the
points P2 and P ′

2 respectively.

Proof. When the particles 4 and 5 are at P2 and P ′
2 respectively, then

since R15 = R24 = 1 we obtain a31 = (1 − R14)∆134 < 0. Therefore the
signs of the coefficients of the matrix A are given by

A
∣

∣

∣

P2∪P ′

2

=





0 − +
− + +
− 0 +



 .

By the first row of the above matrix the masses m3 and m4 have
the same sign and by the last row of the matrix the masses m1 and
m4 also have the same sign. So the masses m1, m3 and m4 have the
same sign. Hence when the particles 4 and 5 are at P2 and P ′

2 respec-
tively, there exists masses m1, m3 and m4 which form a stacked central
configuration.

Now, since a31 depends continuously on the mutual distances, we
assure that a31 < 0 when particles 4 and 5 are in a small neighborhood
of P2 and P ′

2 respectively, the same is true for the other coefficients of
aij , which preserve its sign in a small neighborhood of P2 and P ′

2. Using
the constraint L = 0 we obtain the small arc cited in the statement of
the theorem.

�

LEMMA 3. The function a31 = (R12 − R14)∆134 + (R12 − R15)∆153 is
negative on the set {L = 0}⋂{R24 < 1}.

Proof. For our class of central configurations one has R14 < R24.
Substituting this inequality into the expression of a31 we have a31 <
(∆143 + ∆135)(R24 − 1) < 0 if r24 > 1. Thus the lemma follows for the
components of L3 in the exterior of the circle {R24 = 1}.
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�

Let P0 be the vertex of the triangle at r3. If the particles 4 and 5
are on the curve L = 0 and close enough to P0, there are no stacked
central configurations. In other words we have the following property

PROPOSITION 4. Assume that we have the masses m1, m2 and m3

at the vertices of an equilateral triangle, whose sides have length 1,
and the masses m4 and m5 are at L3 = 0 and L′

3 respectively, located
symmetrically with respect to a perpendicular bisector. If r4 and r5 are
sufficiently close to P0, then there are no positive masses m1 = m2,
m4 = m5 and m3 such that the five bodies with these masses form
stacked central configurations.

Proof. With the hypothesis of the proposition, we have ∆142 < 0,
by the other hand the point r4 is inside the circle R24 = 1 which
corresponds to the region R24 > 1, that is R24 = R15 < 1, therefore
a11 = (R12−R15)∆142 < 0 in this region and the signs of the coefficients
of the matrix A are given by

A =





− − −
− + +
a31 0 +



 .

The first row in the above matrix implies that m1 = m2, m4 = m5

and m3 cannot have the same sign.

�

3. Numerical evidence of new stacked central configurations

There is numerical evidence that L3 intersects the hyperbola R14 = R45

at a unique point denoted by P4. Also based on numerical evidences we
define L34∞ to be the unbounded connected component of L3 with one
endpoint at P4. As usual, L′

34∞ is the unbounded connected component
of L′

3 with one endpoint at P ′
4.

LEMMA 5. There are no stacked central configurations when r4 and
r5 are on L34∞ and L′

34∞, respectively.

Proof. When r4 and r5 are at P4 and P ′
4, respectively, it is easy verify

that a21 < 0, a22 < 0 and a23 = 0 and this implies that the masses m1

and m3 have opposite signs.
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On the other hand, if r4 and r5 are on the open arcs L34∞ and L′
34∞,

respectively, we have that a21 < 0, a22 < 0 and a23 < 0 and this implies
that two of the masses m1, m3 and m4 have opposite signs. This proves
(5).

�

There is numerical evidence that L3 intersects the hyperbola R24 =
R45 in a unique point denoted as P1, and intersects the circle R34 = 1
in a unique point denoted as P3. We now define: L312, L323 and L334 be
the open arcs L3ij of L3, whose endpoints are Pi and Pj , for i, j = 1, 3, 4.
More precisely,

L312 = L3 ∩ {∆345 > 0, R24 > 1, R24 > R45, R14 < R45},

L323 = L3 ∩ {R24 < 1, R24 > R45, R14 < R45, R34 > 1},

L334 = L3 ∩ {R34 < 1, R24 > R45, R14 < R45}.

The same definitions are valid for L′
3, see Figure 2.

In order to give numerical evidence for the existence of new stacked
central configurations, we have calculated the coordinates of the points
Pi, i = 1, 2, 3, 4

P1 = (0.45179079888471224, 0.9022946174921869),

P2 = (0.63217335448833913, 0.9912266160486711),

P3 = (0.93395902567645331, 1.2234055072562044),

P4 = (0.95907733939463801, 1.2451548857175381).

LEMMA 6. There are no stacked central configurations when r4 and
r5 are on the components L334 and L′

334, respectively.

Proof. For r4 ∈ L334 and r5 ∈ L′
334 the signs of the coefficients of the

matrix A are given by

A
∣

∣

∣

L334∪L′

334

=





− + +
− − +
− 0 +



 .

Using the last row of the above matrix we conclude that m1 and m4

have the same sign. Unfortunately we cannot obtain more information
about the sign of the mass m3 from the above matrix. Nevertheless,
equations (5) and (7) define two planes through the origin in the space
(m1, m3, m4). The normal vectors of these planes are, respectively, n1 =

Stacked-fourth.tex; 12/03/2011; 15:43; p.11
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(a11, a12, a13) and n3 = (a31, 0, a33). Let T = (T1, T2, T3) = n1 ∧ n3 be
the vector parallel to the straight line defined by the intersection of
these two planes. Thus there exist positive masses m1, m3 and m4 as
solutions of equations (5) and (7) if and only if the components of the
vector T have the same sign. It is easy verify that

T1 = a12a33 > 0, and T3 = −a12a31 > 0.

In order to see that T2 = a13a31−a11a33 < 0, and since we already
know the coordinates of the points P3 and P4, we can verify numerically
that the values of T2 on the curve L = 0 between the points P3 and
P4 are in the interval (−0.376045, −0.368863). As not all the above
components have the same sign, Lemma 6 has been proved.

�

LEMMA 7. When r4 and r5 are at P3 and P ′
3, respectively, there are

no stacked central configurations.

Proof. When r4 and r5 are at P3 and P ′
3, the matrix A takes the form

A =





−0.664093 0 0.694115
−1.04073 0 0.00940803
−1.0721 0 0.56513



 .

Then, since columns 1 and 3 in the above matrix are linearly inde-
pendent the masses m1 and m4 must vanish. Therefore there are no
stacked central configurations in this case.

�

The next proposition brings numerical evidence of the existence of
stacked central configurations for r4 ∈ L323.

PROPOSITION 8. Assume that r1, r2 and r3 (with positive masses
m1, m2 and m3) are at the vertices of an equilateral triangle whose
sides have length 1, r4 and r5 (with positive masses m4 and m5) are
located symmetrically with respect to a perpendicular bisector such that
r4 ∈ L323 and r5 ∈ L′

323, as in Figure 2. Then there are positive masses
m1 = m2, m4 = m5 and m3 such that the five bodies with these masses
form stacked central configurations.

Proof. For r4 ∈ L323 and r5 ∈ L′
323 the signs of the coefficients of the

matrix A are given by

A
∣

∣

∣

L323∪L′

323

=





− − +
− + +
− 0 +



 .
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Using the last row of the above matrix we conclude that m1 and m4

have the same sign. Unfortunately we cannot obtain more information
about the sign of the mass m3 from the above matrix. Nevertheless,
equations (5) and (6) define two planes through the origin in the space
(m1, m3, m4). The normal vectors of these planes are, respectively, n1 =
(a11, a12, a13) and n2 = (a21, a22, a23). Let T = (T1, T2, T3) = n1 ∧ n2

be the vector parallel to the straight line defined by the intersection of
these two planes. Thus there exist positive masses m1, m3 and m4 as
solutions of equations (5) and (6) if and only if the components of the
vector T have the same sign. An easy computation shows that

T1 = a12a23 − a13a22 < 0, T3 = a11a22 − a12a21 < 0.

In order to see that T2 = a13a21 − a11a23 < 0, we have verified numer-
ically that the values of T2 on the curve L = 0 between the points P2

and P3 are in the interval (−0.716137, −0.44343). The Proposition 8
has been proved.

�

Acknowledgements

The authors thank to the anonymous referees for their deep review of
the original version. Their valuable comments and suggestions helped
us to improve this work. The first author is partially supported by
a MEC/FEDER grant number MTM2008 03437, by a CIRIT grant
number 2009 SGR 410 and by ICREA Academia. The second author
developed this work under the project CNPq 473747/2006-5. This work
was initiated while the second author visited Universitat Autònoma de
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