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A stacked central configuration in the n-body problem is one that has a proper subset of the n-bodies forming a central configuration. In this paper we study the case where three bodies with masses m1, m2, m3 (bodies 1, 2, 3) form an equilateral central configuration, and the other two with masses m4, m5 are symmetric with respect to the mediatrix of the segment joining 1 and 2, and they are above the triangle generated by {1, 2, 3}. We show the existence and non-existence of this kind of stacked central configurations for the planar 5-body problem.

Introduction

The classical planar Newtonian n-body problem in celestial mechanics consists in studying the motion of n pointlike masses in a fixed plane, interacting among themselves through no other forces than their mutual gravitational attraction according to Newton's gravitational law [START_REF] Newton | Philosophi Naturalis Principia Mathematica[END_REF].

The center of mass of the system, given by n j=1 m j r j /M , where M = m 1 + • • • + m n is the total mass and r j is the position vector of the mass m j , is considered at the origin of an inertial system. Usually this inertial system is called the inertial barycentric system.

The simplest motion of the n bodies, called a homographic solution, is a motion such that the configuration of the n bodies remains the same (with respect to the inertial barycentric system) up to a dilation and a rotation of R 2 .

The first homographic solutions for the 3-body problem were found by [START_REF] Euler | De moto rectilineo trium corporum se mutuo attahentium[END_REF], for which three bodies are collinear at any time, and by [START_REF] Lagrange | Essai sur le problème de trois corps[END_REF], where the three bodies are at any time at the vertices of an equilateral triangle.

At a given instant t = t 0 the configuration of the n bodies is central if the gravitational acceleration acting on every mass point is proportional to its position (referred to the inertial barycentric system). Central configurations and homographic solutions are linked by the Laplace theorem (see for instance [START_REF] Boccaletti | Integrable systems and non-perturbative methods[END_REF][START_REF] Wintner | The Analytical Foundations of Celestial Mechanics[END_REF]): the configuration of the n bodies in a homographic solution is central at any instant of time.

If we have a central configuration, any dilation and any rotation (centered at the center of mass) of it provides another central configuration. We say that two central configurations are similar if we can pass from one to another through a dilation and a rotation. So we can study the classes of central configurations defined by the above equivalence relation. Thus the 3-body problem has exactly 5 classes of central configurations for any value of the positive masses.

Central configurations of the n-body problem are important because: they allow the computation of homographic solutions; if the n bodies are heading for a simultaneous collision then the bodies tend to a central configuration (see [START_REF] Saari | On the role and properties of central configurations[END_REF]; there is a relation between central configurations and the bifurcations of the hypersurfaces of constant energy and angular momentum (see [START_REF] Smale | Topology and mechanics II: The planar n-body problem[END_REF]. See also the Refs. [START_REF] Moeckel | On central configurations[END_REF][START_REF] Moulton | The straight line solutions of n bodies[END_REF] The main general open problem for the planar central configurations is due to [START_REF] Wintner | The Analytical Foundations of Celestial Mechanics[END_REF] and [START_REF] Smale | Mathematical problems for the next century[END_REF]: Is the number of classes of planar central configurations finite for any choice of the (positive) masses m 1 , . . . , m n ? [START_REF] Hampton | Finiteness of relative equilibria of the fourbody problem[END_REF], proved this conjecture for the 4body problem. The conjecture remains open for n > 4. But if one mass can be negative, [START_REF] Roberts | A continuum of relative equilibria in the five-body problem[END_REF], proved that there exists a oneparameter not equivalent family of planar central configurations for the 5-body problem. Also considering the particles endowed with masses and charges, [START_REF] Alfaro | Families of continua of central configurations in charged problems[END_REF] proved the existence of a continuum of central configurations in a particular 4-body problem.

Other recent papers on central configurations are due to [START_REF] Corbera | On the central configurations of the planar 1+3 body problem[END_REF], Corbera and Llibre (2010), [START_REF] Gidea | Symmetric planar central configurations of five bodies: Euler plus two[END_REF], [START_REF] Piña | Central configurations for the planar Newtonian four-body problem[END_REF][START_REF] Hampton | Stacked central configurations: new examples in the planar five-body problem[END_REF][START_REF] Hampton | Stacked central configurations: new examples in the planar five-body problem[END_REF] provides a new family of planar central configurations, called stacked central configuration, for the 5-body problem with an interesting property: the central configuration has a subset of three bodies forming a central configuration of the 3-body problem, in fact these three bodies are in an equilateral triangle, and the remaining two bodies are in the interior of the triangle and are located symmetrically with respect to a perpendicular bisector.

Recently the first and second author of this paper gave new examples of stacked central configurations of the 5-bodies which, as the ones studied by [START_REF] Hampton | Stacked central configurations: new examples in the planar five-body problem[END_REF], have three bodies in the vertices of an equilateral triangle, but the other two are on the perpendicular bisector [START_REF] Llibre | New central configurations for the planar 5-body problem[END_REF].

In this paper we find a new class of stacked central configurations in a 5-body problem which has three bodies in the vertices of an equilateral triangle and the other two are located symmetrically with respect to a perpendicular bisector in the exterior and above of the triangle, see Figure 1.

1 1 1 m 1 m 2 m 3 m 4 m 5
Figure 1. Three bodies at the vertices of an equilateral triangle and two bodies located symmetrically with respect to a perpendicular bisector.

The paper is organized as follows, in Section 2 we prove the existence and non-existence of this new class of stacked central configurations.

In section 3 we show some numerical evidence of the existence and non-existence of another families of this kind of central configurations.

Existence and non-existence of stacked central configurations

The equations of motion of the planar Newtonian n-body problem are given by ri = -

n j = 1 j = i m j r i -r j r 3 ij , (1) 
for i = 1, 2, . . . , n. Here the gravitational constant is taken equal to 1, r j ∈ R 2 is the position vector of the punctual mass m j in the inertial barycentric system, and as before r ij = |r i -r j | is the Euclidean distance between r i and r j .

For the central configurations we have rj = λr j with λ = 0 for all j = 1, . . . , n. So from equation (1) we have

λr i = - n j = 1 j = i m j r i -r j r 3 ij , (2) 
for i = 1, 2, . . . , n.

For the planar central configurations instead of working with equation (2) we shall use the Dziobek equations (see Hagihara 1970, p. 241)

f ij = n k = 1 k = i, j m k (R ik -R jk ) ∆ ijk = 0, (3) for 1 ≤ i < j ≤ n, where R ij = 1/r 3 ij and ∆ ijk = (r i -r j ) ∧ (r i -r k ).
As usual ∧ denotes the cross product of two vectors.

For the 5-body problem equations ( 3) is a set of ten equations. Our class of configurations with five bodies as in Figure 1 without collisions must satisfy

r 12 = r 23 = r 13 = 1, r 14 = r 25 , r 15 = r 24 , r 34 = r 35 , r 14 > r 24 , ∆ 124 = ∆ 125 , ∆ 143 = ∆ 235 , ∆ 145 = ∆ 245 , ∆ 135 = ∆ 243 .
We are also assuming ∆ 145 = 0, that is, the bodies m 1 , m 4 and m 5 are not on the same straight line.

The equation

f 45 = 0 of (3) becomes (R 14 -R 15 )∆ 145 (m 1 -m 2 ) = 0.
Thus m 1 = m 2 . Similarly the equation f 12 = 0 of (3) goes over to (R 14 -R 24 )∆ 124 (m 4 -m 5 ) = 0. Therefore m 4 = m 5 . Substituting m 1 = m 2 and m 4 = m 5 into the other eight equations of (3) it follows that

f 13 = 0 ⇔ f 23 = 0, f 15 = 0 ⇔ f 24 = 0, f 14 = 0 ⇔ f 25 = 0, f 34 = 0 ⇔ f 35 = 0,
which can be written respectively as

L = (R14 -R34)∆134 + (R15 -R34)∆135 = 0, (4) (R12 -R15)∆142 m1 + (R12 -R34)∆143 m3 + (R15 -R45)∆145 m4 = 0, (5) (R12 -R14)∆142 m1 + (R12 -R34)∆153 m3 + (R14 -R45)∆154 m4 = 0, (6) [(R12 -R14)∆134 + (R12 -R15)∆153] m1 + (R34 -R45)∆345 m4 = 0. (7)
Denote by A = [a ij ] the matrix of the coefficients of the homogeneous linear system in the variables m 1 , m 3 and m 4 defined by equations ( 5), ( 6) and ( 7). Thus

a 11 = (R 12 -R 15 )∆ 142 , a 12 = (R 12 -R 34 )∆ 143 , a 13 = (R 15 -R 45 )∆ 145 , a 21 = (R 12 -R 14 )∆ 142 , a 22 = (R 12 -R 34 )∆ 153 , a 23 = (R 14 -R 45 )∆ 154 , a 31 = (R 12 -R 14 )∆ 134 +(R 12 -R 15 )∆ 153 , a 32 = 0, a 33 = (R 34 -R 45 )∆ 345 .
In order to have a solutions different from m 1 = m 3 = m 4 = 0 the determinant of the matrix A must be zero, where

det A = (R 12 -R 34 ) [(R 12 -R 15 )∆ 153 -(R 12 -R 14 )∆ 143 ] Γ, (8) with Γ equal to (R 34 -R 45 )∆ 142 ∆ 345 +[(R 14 -R 45 )∆ 143 + (R 15 -R 45 )∆ 153 ] ∆ 154 . (9) From equation (4) one has R 14 ∆ 134 = R 34 ∆ 134 + (R 34 -R 15 )∆ 135 .
Substituting this equation into equation ( 9) it follows that Γ = 0 and therefore, from (8), we get det A = 0. So the homogeneous linear system in the variables m 1 , m 3 and m 4 , defined by equations ( 5), ( 6) and ( 7), has nontrivial solutions under the assumption L = 0, which can be viewed as a constraint on the geometry of the configuration.

m 1 m 2 m 3 P 0 P 1 P 2 P 3 P 4 R 14 = 1 R 24 = 1 R 34 = 1 R 35 = 1 ∆ 345 = 0 R 24 = R 45 R 14 = R 45 L 301 L 312 L 323 L 334 L 34∞ L 3 L ′ 3 Figure 2.
The component of the curve {L = 0} in the upper semiplane and its components L 3 and L ′ 3 .

LEMMA 1. Consider the regions

S 1 = {R 45 > R 34 > R 14 > 1}, S 2 = {1 > R 14 > R 34 > R 45 }, S 3 = {∆ 345 > 0, ∆ 134 < 0, R 34 > R 24 } and S ′ 1 , S ′ 2 , S ′
3 the symmetrical regions with respect to the mediatrix of the segment joining r 1 and r 2 . See Figure 3. The curves

L i = {L = 0} ∩ S i , L ′ i = {L = 0} ∩ S ′ i , i = 1, 2, 3
, are well-defined and are not empty. See Figure 2.

Proof. Without loss of generality we can take a coordinate system such that r 1 = (-1/2, 0), r 2 = (1/2, 0) and r 3 = (0, √ 3/2) respectively.

Thus r 4 = (x, y) and r 5 = (-x, y), where x > 0 and y ∈ R. With these coordinates we have

L(x, y) = 1 ((x + 1/2) 2 + y 2 ) 3/2 - 1 (x 2 + (y - √ 2/2) 2 ) 3/2 M 1 + 1 ((x -1/2) 2 + y 2 ) 3/2 - 1 (x 2 + (y - √ 2/2) 2 ) 3/2 M 2 ,
where

M 1 = y 2 -x √ 3 2 - √ 3 2 and M 2 = y 2 + √ 3x 2 - √ 3 
2 . It is easy to see from the above equation that the curve L(x, y) = 0 is symmetric with respect to the mediatrix of the segment joining 1 and r 2 . Using Mathematica we have plotted the graph of the curve L(x, y) = 0, see Figure 2. 

Define the points

Q 1 = {∆ 345 = 0} ∩ {R 24 = R 45 } ∩ S 3 , Q 2 = {R 24 = 1} ∩ {R 24 = R 45 } ∩ S 3 , Q 3 = {R 24 = 1} ∩ {R 14 = R 45 } ∩ S 3 , Q 4 = {R 34 = 1} ∩ {R 14 = R 45 } ∩ S 3 , Q 5 = {R 34 = 1} ∩ {R 24 = R 45 } ∩ S 3 ,
according to Figure 3. The symmetrical points are denoted by Q ′ i , i = 1, 2, 3, 4, 5. In [START_REF] Hampton | Stacked central configurations: new examples in the planar five-body problem[END_REF]) Hampton studied stacked central configurations when r 4 and r 5 are on the components L 1 and L ′ 1 respectively. If r 4 ∈ {∆ 234 = 0} (see Figure 3) then r 5 ∈ {∆ 135 = 0}. Thus L = (R 14 -R 34 )∆ 134 < 0. If r 4 ∈ {R 14 = R 34 } (see Figure 3) then L = (R 15 -R 34 )∆ 135 > 0. Therefore there is a connected component of L = 0 between the lines {∆ 234 = 0} and {R 14 = R 34 } denoted by L 2 . See Figure 2. Its symmetrical component is denoted by L ′ 2 . If r 4 ∈ {∆ 134 = 0} (see Figure 3) then L = (R 24 -R 34 )∆ 135 < 0. If r 4 ∈ {R 24 = R 34 } (see Figure 3) then L = (R 14 -R 34 )∆ 134 > 0. By the same argument L > 0 on the set {∆ 345 = 0}. Therefore there a connected component of L = 0 between the lines {∆ 134 = 0} and {R 24 = R 34 }∪{∆ 345 = 0} denoted by L 3 . See Figure 2. Its symmetrical component is denoted by L ′ 3 . In the coordinate system that we have introduced previously one has

Q 1 = √ 13 -1 6 , √ 3 2 , Q 2 = 1 2 , 1 , Q 3 =    1 + √ 5 4 , 1 - √ 5 -1 4 2    , Q 4 = (x 4 , y 4 ), Q 5 = (x 5 , y 5 ),
where x 4 = 1 4 √ 3 cos(π/18) + 2 cos(π/9) + sin(π/18) , y 4 = 1 2 cos(π/18) -√ 3(sin(π/18) -1) ,

x 5 = 1 2 2 + cos(π/9) -√ 3 sin(π/9),

y 5 = 1 2 cos(π/18) + √ 3(1 + sin(π/18)) .
From elementary calculations one has the following things for L:

L(Q 1 ) > 0, L(Q 2 ) < 0, L(Q 3 ) > 0, L(Q 4 ) > 0 and L(Q 5 ) < 0.
Since Q 2 , Q 3 are on the circle R 24 = 1 and L(Q 2 ) < 0, L(Q 3 ) > 0, by continuity there exists at least one point in the intersection of the curve L 3 with the circle R 24 = 1. There is numerical evidence that this point is unique, we denote it as P 2 . Let be P ′ 2 be the symmetric point respect to the mediatrix of the segment joining the particle with mass m 1 with the particle with mass m 2 .

The main result of this paper is the following.

THEOREM 2. Assume that the points r 1 , r 2 and r 3 (with positive masses m 1 , m 2 and m 3 ) are at the vertices of an equilateral triangle, whose sides have length 1, and the points r 4 and r 5 (with masses m 4 and m 5 ) are located symmetrically with respect to a perpendicular bisector, as in Figure 1. Then exist stacked central configurations for which the particles with masses m 4 and m 5 are in a small arc of L 3 near the points P 2 and P ′ 2 respectively.

Proof. When the particles 4 and 5 are at P 2 and P ′ 2 respectively, then since R 15 = R 24 = 1 we obtain a 31 = (1 -R 14 )∆ 134 < 0. Therefore the signs of the coefficients of the matrix A are given by

A P 2 ∪P ′ 2 =   0 -+ -+ + -0 +   .
By the first row of the above matrix the masses m 3 and m 4 have the same sign and by the last row of the matrix the masses m 1 and m 4 also have the same sign. So the masses m 1 , m 3 and m 4 have the same sign. Hence when the particles 4 and 5 are at P 2 and P ′ 2 respectively, there exists masses m 1 , m 3 and m 4 which form a stacked central configuration.

Now, since a 31 continuously on the mutual distances, we assure that a 31 < 0 when particles 4 and 5 are in a small neighborhood of P 2 and P ′ 2 respectively, the same is true for the other coefficients of a ij , which preserve its sign in a small neighborhood of P 2 and P ′ 2 . Using constraint L = 0 we obtain the small arc cited in the statement of the theorem. LEMMA 3. The function

a 31 = (R 12 -R 14 )∆ 134 + (R 12 -R 15 )∆ 153 is negative on the set {L = 0} {R 24 < 1}.
Proof. For our class of central configurations one has R 14 < R 24 . Substituting this inequality into the expression of a 31 we have a 31 < (∆ 143 + ∆ 135 )(R 24 -1) < 0 if r 24 > 1. Thus the lemma follows for the components of L 3 in the exterior of the circle {R 24 = 1}. Let P 0 be the vertex of the triangle at r 3 . If the particles 4 and 5 are on the curve L = 0 and close enough to P 0 , there are no stacked central configurations. In other words we have the following property PROPOSITION 4. Assume that we have the masses m 1 , m 2 and m 3 at the vertices of an equilateral triangle, whose sides have length 1, and the masses m 4 and m 5 are at L 3 = 0 and L ′ 3 respectively, located symmetrically with respect to a perpendicular bisector. If r 4 and r 5 are sufficiently close to P 0 , then there are no positive masses m 1 = m 2 , m 4 = m 5 and m 3 such that the five bodies with these masses form stacked central configurations.

Proof. With the hypothesis of the proposition, we have ∆ 142 < 0, by the other hand the point r 4 inside circle R 24 = 1 which corresponds to the region R 24 > 1, that is R 24 = R 15 < 1, therefore a 11 = (R 12 -R 15 )∆ 142 < 0 in this region and the signs of the coefficients of the matrix A are given by

A =   --- -+ + a 31 0 +   .
The first row in the above matrix implies that m 1 = m 2 , m 4 = m 5 and m 3 cannot have the same sign.

Numerical evidence of new stacked central configurations

There is numerical evidence that L 3 intersects the hyperbola R 14 = R 45 at a unique point denoted by P 4 . Also based on numerical evidences we define L 34∞ to be the unbounded connected component of L 3 with one endpoint at P 4 . As usual, L ′ 34∞ is the unbounded connected component of L ′ 3 with one endpoint at P ′ 4 .

LEMMA 5. There are no stacked central configurations when r 4 and r 5 are on L 34∞ and L ′ 34∞ , respectively.

Proof. When r 4 and r 5 are at P 4 and P ′ 4 , respectively, it is easy verify that a 21 < 0, a 22 < 0 and a 23 = 0 and this implies that the masses m 1 and m 3 have opposite signs.

On the other hand, if r 4 and r 5 are on the open arcs L 34∞ and L ′ 34∞ , respectively, we have that a 21 < 0, a 22 < 0 and a 23 < 0 and this implies that two of the masses m 1 , m 3 and m 4 have opposite signs. This proves (5).

There is numerical evidence that L 3 intersects the hyperbola R 24 = R 45 in a unique denoted as P 1 , and intersects the circle R 34 = 1 in a unique point denoted as P 3 . We now define: L 312 , L 323 and L 334 be the open arcs L 3ij of L 3 , whose endpoints are P i and P j , for i, j = 1, 3, 4. More precisely,

L 312 = L 3 ∩ {∆ 345 > 0, R 24 > 1, R 24 > R 45 , R 14 < R 45 }, L 323 = L 3 ∩ {R 24 < 1, R 24 > R 45 , R 14 < R 45 , R 34 > 1}, L 334 = L 3 ∩ {R 34 < 1, R 24 > R 45 , R 14 < R 45 }.
The same definitions are valid for L ′ 3 , see Figure 2. In order to give numerical evidence for the existence of new stacked central configurations, we have calculated the coordinates of the points P i , i = 1, 2, 3, 4 P 1 = (0.45179079888471224, 0.9022946174921869), P 2 = (0.63217335448833913, 0.9912266160486711), P 3 = (0.93395902567645331, 1.2234055072562044), P 4 = (0.95907733939463801, 1.2451548857175381). LEMMA 6. There are no stacked central configurations when r 4 and r 5 are on the components L 334 and L ′ 334 , respectively.

Proof. For r 4 ∈ L 334 and r 5 ∈ L ′ 334 the signs of the coefficients of the matrix A are given by

A L 334 ∪L ′ 334 =   -+ + --+ -0 +   .
Using the last row of the above matrix we conclude that m 1 and m 4 have the same sign. Unfortunately we cannot obtain more information the sign of the mass m 3 from the above matrix. Nevertheless, equations ( 5) and ( 7) define two planes through the origin in the space (m 1 , m 3 , m 4 ). The normal vectors of these planes are, respectively, n 1 = (a 11 , a 12 , a 13 ) and n 3 = (a 31 , 0, a 33 ). Let T = (T 1 , T 2 , T 3 ) = n 1 ∧ n 3 be the vector parallel to the straight line defined by the intersection of these two planes. Thus there exist positive masses m 1 , m 3 and m 4 as solutions of equations ( 5) and ( 7) if and only if the components of the vector T have the same sign. It is easy verify that T 1 = a 12 a 33 > 0, and T 3 = -a 12 a 31 > 0.

In order to see that T 2 = a 13 a 31 -a 11 a 33 < 0, and since we already know the coordinates of the points P 3 and P 4 , we can verify numerically that the values of T on the curve L = 0 between the points P 3 and P 4 in the interval (-0.376045, -0.368863). As not all the above components have the same sign, Lemma 6 has been proved. LEMMA 7. When r 4 and r 5 are at P 3 and P ′ 3 respectively, there are no stacked central configurations.

When r 4 and r 5 are at P 3 and P ′ 3 , the matrix A takes the form

A =   -0.664093 0 0.694115 -1.04073 0 0.00940803 -1.0721 0 0.56513   .
Then, since columns 1 and 3 in the above matrix are linearly independent the masses m 1 and m 4 must vanish. Therefore there are no stacked central configurations in this case.

The next proposition brings numerical evidence of the existence of stacked central configurations for r 4 ∈ L 323 . PROPOSITION 8. Assume that r 1 , r 2 and r 3 (with positive masses m 1 , m 2 and m 3 ) are at the vertices of an equilateral triangle whose sides have length 1, r 4 and r 5 (with positive masses m 4 and m 5 ) are located symmetrically with respect to a perpendicular bisector such that r 4 ∈ L 323 and r 5 ∈ L ′ 323 , as in Figure 2. Then there are positive masses m 1 = m 2 , m 4 = m 5 and m 3 such that the five bodies with these masses form stacked central configurations. Using the last row of the above matrix we conclude that m 1 and m 4 have the same sign. Unfortunately we cannot obtain more information about the sign of the mass m 3 from the above matrix. Nevertheless, equations ( 5) and ( 6) define two planes through the origin in the space (m 1 , m 3 , m 4 ). The normal vectors of these planes are, respectively, n 1 = (a 11 , a 12 , a 13 ) and n 2 = (a 21 , a 22 , a 23 ). Let T = (T 1 , T 2 , T 3 ) = n 1 ∧ n 2 be the vector parallel to the straight line defined by the intersection of these two planes. Thus there exist positive masses m 1 , m 3 and m 4 as solutions of equations ( 5) and ( 6) if and only if the components of the vector T have the same sign. An easy computation shows that T 1 = a 12 a 23 -a 13 a 22 < 0, T 3 = a 11 a 22 -a 12 a 21 < 0.

In order to see that T 2 = a 13 a 21 -a 11 a 23 < 0, we have verified numerically that the values of T 2 on the curve L 0 between the points P 2 and P 3 in the interval (-0.716137, -0.44343). The Proposition 8 has been proved.
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