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Let τ : N→ Z be defined by:∑
n≥0

τ(n)qn = q
∏
n≥1

(1− qn)24 in Z[[q]].

Then we have, in Z/19Z:

τ(101000 + 1357) = ±4,

τ(101000 + 7383) = ±2,

τ(101000 + 21567) = ±3,

τ(101000 + 27057) = 0,

τ(101000 + 46227) = 0,

τ(101000 + 57867) = 0,

τ(101000 + 64749) = ±7,

τ(101000 + 68367) = 0,

τ(101000 + 78199) = ±8,

τ(101000 + 128647) = 0.

Section 7.5, Lemma 7.4.1, and [Magma], [SAGE] and [PARI].
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Preface

This is a book about computational aspects of modular forms and the Galois
representations attached to them. The main result is the following: Galois
representations over finite fields attached to modular forms of level one can,
in almost all cases, be computed in polynomial time in the weight and the
size of the finite field. As a consequence, coefficients of modular forms can
be computed fast via congruences, as in Schoof’s algorithm for the number
of points of elliptic curves over finite fields. The most important feature of
the proof of the main result is that exact computations involving systems of
polynomial equations in many variables are avoided by approximations and
height bounds, i.e., bounds for the accuracy that is necessary to derive exact
values from the approximations.

The books authors are the two editors, Jean-Marc Couveignes and Bas
Edixhoven, together with Johan Bosman, Robin de Jong, and Franz Merkl.
Each chapter has its own group of authors.

Chapter 1 gives an introduction to the subject, precise statements of the
main results, and places these in a somewhat wider context. Chapter 2 pro-
vides the necessary background concerning modular curves and modular
forms. Chapter 3 gives a first, informal description of the algorithms. These
first three chapters should allow readers without much background in arith-
metic geometry to still get a good idea of what happens in the book, skip-
ping, if necessary, some parts of Chapter 2.

Chapters 4 and 5 provide the necessary background on heights and
Arakelov theory, and on algorithmic aspects of the computation with a de-
sired accuracy of the roots of complex polynomials and power series.

Chapters 6 and 7 are concerned with some real computations of Galois
representations attached to modular forms, and end with a table dealing with
all cases of forms of weight at most 22 and finite fields of characteristic at
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most 23.
The main ingredients for the proof of the main result are established in

Chapters 8, 9, 10, 11, 12, and 13. The topics dealt with are, respectively:
construction of suitable divisors on modular curves, bounding heights using
Arakelov theory, bounding Arakelov invariants of certain modular curves,
approximation of divisors using complex numbers, and using finite fields.

The main result on the computation of Galois representations is proved
in Chapter 14, where one finds a detailed description of the algorithm and a
rigorous proof of the complexity bound.

Chapter 15 contains the application of the main result to the computation
of coefficients of modular forms.

The Epilogue announces some work on generalisations and applications
that will be completed in the near future, as well as a direction of further
research outside the context of modular forms.
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Chapter One

Introduction, main results, context

B. Edixhoven

1.1 STATEMENT OF THE MAIN RESULTS

As the final results in this book are about fast computation of coefficients of
modular forms, I start by describing the state of the art in this subject.

A convenient way to view modular forms and their coefficients in this
context is as follows, in terms of Hecke algebras. For N and k positive
integers, let Sk(Γ1(N)) be the finite dimensional complex vector space of
cuspforms of weight k on the congruence subgroup Γ1(N) of SL2(Z). Each
f in Sk(Γ1(N)) has a power series expansion f =

∑
n≥1 an(f)qn, a com-

plex power series converging on the unit disk. These an(f) are the coef-
ficients of f that we want to compute, in particular for large n. For each
positive integer n we have an endomorphism Tn of Sk(Γ1(N)), and we let
T(N, k) denote the sub-Z-algebra of End(Sk(Γ1(N)) generated by them.
The T(N, k) are commutative, and free Z-modules of rank the dimension
of Sk(Γ1(N)), which is of polynomially bounded growth in N and k. For
each N , k and n one has the identity an(f) = a1(Tnf). The C-valued pair-
ing between Sk(Γ1(N),C) and T(N, k) given by (f, t) 7→ a1(tf) identifies
Sk(Γ1(N),C) with the space of Z-linear maps from T(N, k) to C, and we
can write f(Tn) for an(f). All together this means that the key to the com-
putation of coefficients of modular forms is the computation of the Hecke
algebras T(N, k) and their elements Tn. A modular form f in Sk(Γ1(N))
is determined by the f(Ti) with i ≤ k·[SL2(Z) : Γ1(N)]/12, hence if Tn is
known as a Z-linear combination of these Ti, then f(Tn) can be computed
as the same Z-linear combination of the f(Ti).



bookarxiv March 18, 2010

2 CHAPTER 1

The state of the art in computing the algebras T(N, k) can now be sum-
marised as follows.

There is a deterministic algorithm, that on input positive inte-
gers N and k ≥ 2, computes T(N, k): it gives a Z-basis and
the multiplication table for this basis, in running time polyno-
mial in N and k. Moreover, the Hecke operator Tn can be ex-
pressed in this Z-basis in deterministic polynomial time in N ,
k and n.

We do not know a precise reference for this statement, but it is rather obvi-
ous from the literature on calculations with modular forms for which we
refer to William Stein’s book [Ste2], and in particular to Section 8.10.2
of it. The algorithms alluded to above use that Sk(Γ1(N)), viewed as
R-vector space, is naturally isomorphic to the R-vector space obtained
from the so-called “cuspidal subspace” H1(Γ1(N),Z[x, y]k−2)cusp of the
Z-module H1(Γ1(N),Z[x, y]k−2) in group cohomology. Here, Z[x, y]k−2

is the homogeneous part of degree k−2 of the polynomial ring Z[x, y]
on which SL2(Z) acts via its standard representation on Z[x, y]1. In this
way, H1(Γ1(N),Z[x, y]k−2)cusp, modulo its torsion subgroup, is a free Z-
module of finite rank that is a faithful T(N, k)-module, and the action of the
Tn is described explicitly. Algorithms based on this typically use a presen-
tation of H1(Γ1(N),Z[x, y]k−2)cusp in terms of so-called “modular sym-
bols”, and we call them therefore modular symbols algorithms. The theory
of modular symbols was developed by Birch, Manin, Shokurov, Cremona,
Merel,. . . . It has led to many algorithms, implementations and calculations,
which together form the point of departure for this book.

The computation of the element Tn of T(N, k), using modular symbols
algorithms, involves sums of a number of terms that grows at least linearly
in n. If one computes such sums by evaluating and adding the terms one by
one, the computation of Tn, for N and k fixed, will take time at least linear
in n, and hence exponential in log n. The same is true for other methods
for computing Tn that we know of: computations with q-expansions that
involve multiplication of power series, using linear combinations of theta
series, the “graph method” of Mestre and Oesterlé, and the Lefschetz trace
formula for correspondences, holomorphic or not. Efforts to evaluate the en-
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countered sums more quickly seem to lead, in each case, again to the prob-
lem of computing coefficients of modular forms. For example, the graph
method leads to the problem of computing quickly representation numbers
of integer quadratic forms in 4 variables. In the case of the trace formula,
there are maybe onlyO(

√
n) terms, but they contain class numbers of imag-

inary quadratic orders, these numbers being themselves directly related to
coefficients of modular forms of half integral weight.

Here is one of the main results in this book, Theorem 15.2.1.

Assume that the generalised Riemann hypothesis (GRH) holds.
There exists a deterministic algorithm that on input positive in-
tegers n and k, together with the factorisation of n into prime
factors, computes the element Tn of T(1, k) in running time
polynomial in k and log n.

The restriction to modular forms of level 1 in this result is there for a tech-
nical reason. The result will certainly be generalised to much more general
levels; see the Epilogue at the end of this book. The condition that the fac-
torisation of n into primes must be part of the input is necessary because we
do not have a polynomial time algorithm for factoring integers. Vice versa,
see Remark 2.2.4 for evidence that factoring is not harder than computing
coefficients of modular forms.

I now describe how the computation of Galois representations is used for
the computation of Tn. Standard identities express Tn in terms of the Tp for
p dividing n. These Tp are computed, via the LLL basis reduction algorithm,
from sufficiently many of their images under morphisms f from T(1, k) to
finite fields, analogously to Schoof’s algorithm for counting points of an
elliptic curve over a finite field. Indeed, for such an f : T(1, k) → F, with
p not the characteristic, l, say, of F, the image f(Tp) is equal to the trace of
ρf (Frobp), where ρf : Gal(Q/Q) → GL2(F) is the Galois representation
attached to f , and ρf (Frobp) a Frobenius element at p. The representation
ρf is characterised by the following three conditions: it is semi-simple, it is
unramified outside l, and for all prime numbers p 6= l one has:

trace(ρf (Frobp)) = f(Tp) and det(ρf (Frobp)) = pk−1 in F.

It is the main result of this book, Theorem 14.1.1, plus some standard com-
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putational number theory, that enables us to compute ρf (Frobp) in time
polynomial in k, #F and log p (note the log!). Under GRH, existence of
sufficiently many maximal ideals of small enough index is guaranteed. The-
orem 14.1.1 says:

There is a deterministic algorithm that on input a positive
integer k, a finite field F, and a surjective ring morphism f

from T(1, k) to F such that the associated Galois representa-
tion ρf : Gal(Q/Q)→ GL2(F) is reducible or has image con-
taining SL2(F), computes ρf in time polynomial in k and #F.

By “computing ρf” we mean the following. LetKf ⊂ Q be the finite Galois
extension such that ρf factors as the natural surjection from Gal(Q/Q) to
Gal(Kf/Q), followed by an injection into GL2(F). Then to give ρf means
to give Kf as Q-algebra, in terms of a multiplication table with respect to a
Q-basis, together with a list of all elements of Gal(Kf/Q), as matrices with
coefficients in Q, and, for each σ in Gal(Kf/Q), to give the corresponding
element ρf (σ) of GL2(F).

Before I describe in more detail, in the next sections, some history and
context concerning our main results, I give one example and I make some
brief remarks. Many of these remarks are treated with more detail further
on.

The first non-trivial example is given by k = 12. The space of cuspidal
modular forms of level one and weight 12 is one-dimensional, generated by
the discriminant modular form ∆, whose coefficients are given by Ramanu-
jan’s τ -function:

∆ = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn = q − 24q2 + 252q3 + · · · in Z[[q]].

In this case, the Hecke algebra T(1, 12) is the ring Z, and, for each n in
Z>0, we have Tn = τ(n). The results above mean that:

for p prime, Ramanujan’s τ(p) can be computed in time poly-
nomial in log p.

For l prime, let ρl denote the Galois representation to GL2(Fl) attached
to ∆. It was proved by Swinnerton-Dyer that for l not in {2, 3, 5, 7, 23, 691}
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the image of ρl contains SL2(Fl). This means that for all l not in this short
list the representation ρl has non-solvable image, and so cannot be com-
puted using computational class field theory. The classical congruences for
Ramanujan’s τ -function correspond to the l in the list above. Our results
provide a generalisation of these congruences in the sense that the number
fields Kl that give the ρl “encode” the τ(p) mod l in such a way that τ(p)
mod l can be computed in time polynomial in l and log p, i.e., just the same
complexity as in the case where one has explicit congruences.

More generally, we hope that non-solvable global field extensions whose
existence and local properties are implied by the Langlands program can be
made accessible to computation and so become even more useful members
of the society of mathematical objects. Explicit descriptions of these fields
make the study of global properties such as class groups and groups of units
possible. Certainly, if we only knew the maximal abelian extension of Q
as described by general class field theory, then roots of unity would be very
much welcomed.

The natural habitat for Galois representations such as the ρf above is that
of higher degree étale cohomology with F`-coefficients of algebraic vari-
eties over Q, together with the action of Gal(Q/Q). Our results provide
some evidence that, also in interesting cases, such objects can be computed
in reasonable time. Note that this question is not restricted to varieties re-
lated to modular forms or automorphic forms. In fact, thinking of elliptic
curves, over Q, say, knowing that these are modular does not help for com-
puting their number of points over finite fields: Schoof’s algorithm uses
algebraic geometry, not modularity.

The problem of computing étale cohomology with Galois action is clearly
related to the question of the existence of polynomial time algorithms for
computing the number of solutions in Fp of a fixed system of polynomial
equations over Z, when p varies. Our results treat this problem for the 11-
dimensional variety that gives rise to ∆; see Section 1.5 for more details and
also for an explicit variety of dimension 19 related to this.

The Epilogue at the end of this book describes a striking application of
a generalisation of our results to the problem of computing representation
numbers of the Z2k equipped with the standard inner product. This again
is an example where only for small k there are explicit formulas, but where
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in general there (surely) exists an algorithm that computes such numbers
as quickly as if such formulas did exist. Hence, from a computational per-
spective, such algorithms form a natural generalisation of the finite series of
formulas.

I very briefly describe the method by which we compute the ρf . Their
duals occur in the higher degree étale cohomology of certain higher dimen-
sional varieties, but no-one seems to know how to compute with this directly.

Via some standard methods in étale cohomology (the Leray spectral se-
quence, and passing to a finite cover to trivialise a locally constant sheaf
of finite dimensional Fl-vector spaces), or from the theory of congruences
between modular forms, it is well known that the ρf are realised by sub-
spaces Vf in the l-torsion Jl(Q)[l] of the Jacobian variety Jl of some mod-
ular curve Xl defined over Q. The field Kl is then the field generated by
suitable “coordinates” of the points x ∈ Vl ⊂ Jl(Q)[l]. We are now in the
more familiar situation of torsion points on abelian varieties. But the price
that we have paid for this is that the abelian variety Jl depends on l, and
that its dimension, equal to the genus of Xl, i.e., equal to (l− 5)(l− 7)/24,
grows quadratically with l. This makes it impossible to directly compute
the x ∈ Vl using computer algebra: known algorithms for solving systems
of non-linear polynomial equations take time exponential in the dimension.

Instead of using computer algebra directly, Jean-Marc Couveignes sug-
gested that we use approximations and height bounds. In its simplest form,
this works as follows. Suppose that x is a rational number, x = a/b,
with a and b in Z coprime. Suppose that we have an upper bound M

for max(|a|, |b|). Then x is determined by any approximation y ∈ R
of x such that |y − x| < 1/2M2, simply because for all x′ 6= x with
x′ = a′/b′, where a′ and b′ in Z satisfy max(|a′|, |b′|) < M , we have
|x′ − x| = |(a′b− ab′)/bb′| ≥ 1/M2.

For the computation of Kl, we consider the minimal polynomial Pl
in Q[T ] of a carefully theoretically constructed generator α of Kl. We use
approximations of all Galois conjugates of α, i.e., of all roots of Pl. Instead
of working directly with torsion points of Jl, we work with divisors on the
curve Xl. Using this strategy, the problem of showing that Pl can be com-
puted in time polynomial in l is divided into two different tasks. Firstly,
to show that the number of digits necessary for a good enough approxima-
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tion of Pl is bounded by a fixed power of l. Secondly, to show that, given l
and n, the coefficients of Pl can be approximated with a precision of n digits
in time polynomial in n·l. The first problem is dealt with in Chapters 9, 10,
and 11, using Arakelov geometry. The second problem is solved in Chap-
ters 12 and 13, in two ways: complex approximations (numerical analysis),
and approximations in the sense of reductions modulo many small primes,
using exact computations in Jacobians of modular curves over finite fields.
These five chapters form the technical heart of this book. The preceding
chapters are meant as an introduction to them, or motivation for them, and
the two chapters following them give the main results as relatively straight-
forward applications.

Chapters 6 and 7 stand a bit apart, as they are concerned with some real
computations of Galois representations attached to modular forms. They use
the method by complex approximations, but do not use a rigorously proven
bound for a sufficient accuracy. Instead, the approximations provide good
candidates for polynomials Pl. The Pl that are found have the correct Ga-
lois group, and the right ramification properties. Recent modularity results
by Khare, Wintenberger and Kisin, see [Kh-Wi1], [Kh-Wi2], and [Kis1]
and [Kis2], are then applied to prove that the candidates do indeed give the
right Galois representations.

1.2 HISTORICAL CONTEXT: SCHOOF’S ALGORITHM

The computation of Hecke operators from Galois representations and con-
gruences can be viewed as a generalisation of Schoof’s method to count
points on elliptic curves over finite fields, see [Sch2] and [Sch3]. René
Schoof gave an algorithm to compute, for E an elliptic curve over a finite
field Fq, the number #E(Fq) of Fq-rational points in a time O((log q)5+ε).
His algorithm works as follows.

The elliptic curve is embedded, as usual, in the projective plane P2
Fq as the

zero locus of a Weierstrass equation, which, in inhomogeneous coordinates,
is of the form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with the ai in Fq. We let Fq → Fq be an algebraic closure. We let
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Fq : E → E denote the so-called q-Frobenius. It is the endomorphism of
E with the property that for all (a, b) in the affine part of E(Fq) given by
the Weierstrass equation above we have Fq((a, b)) = (aq, bq). The theory
of elliptic curves over finite fields says:

1. there is a unique integer a, called the trace of Fq, such that in the
endomorphism ring of E one has F2

q − aFq + q = 0;

2. #E(Fq) = 1− a+ q;

3. |a| ≤ 2q1/2.

So, computing #E(Fq) is equivalent to computing this integer a. Schoof’s
idea is now to compute amodulo l for small prime numbers l. If the product
of the prime numbers l exceeds 4q1/2, the length of the interval in which we
know a to lie, then the congruences modulo these l determine a uniquely.
Analytic number theory tells us that it will be sufficient to take all primes l
up to approximately (log q)/2.

Then the question is how one computes a modulo l. This should be done
in time polynomial in log q and l. The idea is to use the elements of order
dividing l in E(Fq). We assume now that l does not divide q, i.e., we avoid
the characteristic of Fq. For each l, the kernel E(Fq)[l] of multiplication by
l on E(Fq) is a two-dimensional vector space over Fl. The map Fq gives an
endomorphism of E(Fq)[l], and it follows that the image of a in Fl is the
unique element of Fl, also denoted a, such that for each v in E(Fq)[l] we
have aFq(v) = F2

qv + qv. We remark that the image of a in Fl is the trace
of the endomorphism of E(Fq)[l] given by Fq, but this is not really used at
this point.

To find this element a of Fl, one proceeds as follows. We suppose that
l 6= 2. There is a unique monic element ψl of Fq[x] of degree (l2 − 1)/2,
whose roots in Fq are precisely the x-coordinates of the l2 − 1 non-zero
elements in E(Fq)[l] (the rational function x on E is a degree two map to
P1

Fq , which as such is the quotient for the multiplication by −1 map on E).
One then lets Al be the Fq-algebra obtained as:

Al := Fq[x, y]/(y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6, ψl(x)).

The dimension of Al as Fq-vector space is l2− 1. An equivalent description
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of Al is to say that it is the affine coordinate ring of the subscheme of points
of order l of E. By construction of Al, there is a tautological Al-valued
point v in E(Al) (its coordinates are the images of x and y in Al). Now to
find the element a of Fl that we are looking for one then tries one by one the
elements i in 0,±1, . . . ,±(l − 1)/2 until iFq(v) = F2

qv + qv; then i = a

mod l.
It is easy to see that all required computations can be done in time

O((log q)5+ε) (using fast arithmetic for the elementary operations, e.g., a
multiplication in Al costs about (l2(log q))1+ε time; l2(log q) is the number
of bits needed to store one element of Al).

For the sake of completeness, I mention that shortly after the appearance
of Schoof’s algorithm, Atkin and Elkies have added some improvements to
it, making it possible in certain cases to reduce the dimension of the Fq-
algebra from l2 − 1 to linear in l+ 1 or l− 1. This improvement, called the
Schoof-Atkin-Elkies (SEA) algorithm, is important mainly for implemen-
tations. Its (average) complexity is O((log q)4+ε); for details, the reader is
referred to [Sch3].

1.3 SCHOOF’S ALGORITHM DESCRIBED IN TERMS OF ÉTALE CO-
HOMOLOGY

In order to describe Schoof’s algorithm in the previous section, we referred
to the theory of elliptic curves over finite fields. But there is a more gen-
eral framework for getting information on the number of rational points of
algebraic varieties over finite fields: cohomology, and Lefschetz’s trace for-
mula. Cohomology exists in many versions. The version directly related to
Schoof’s algorithm is étale cohomology with coefficients in Fl. Standard
references for étale cohomology are [SGA4], [SGA4.5], [SGA5], [Mil1],
[Fr-Ki]. The reader is referred to these references for the notions that we
will use below. We also recommend Appendix C of [Hart].

For the sake of precision, let I say that we define the notion of algebraic
variety over a field k to mean k-scheme that is separated and of finite type.
Attached to an algebraic varietyX over a field k there are étale cohomology
groups with compact supports Hi

c(Xet,Fl), for all i ≥ 0 and for all prime
numbers l. Actually, the coefficients Fl can be replaced by more general
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objects, sheaves of Abelian groups on the étale site Xet of X , but we do not
need this now. If X is a proper k-scheme, then the Hi

c(Xet,Fl) are equal to
the étale cohomology groups Hi(Xet,Fl) without condition on supports.

If k is separably closed then the Hi
c(Xet,Fl) are finite dimensional Fl-

vector spaces, zero for i > 2 dim(X). In that case, they are the analog of
the more easily defined cohomology groups Hi

c(X,F) for complex analytic
varieties: the derived functors of the functor that associates to a sheaf F of
Z-modules on X equipped with its Archimedean topology its Z-module of
global sections whose support is compact.

The construction of the Hi
c(Xet,Fl) is functorial for proper morphisms:

a proper morphism f : X → Y of algebraic varieties over k induces a pull-
back morphism f∗ from Hi

c(Yet,Fl) to Hi
c(Xet,Fl).

Let nowX be an algebraic variety over Fq. Then we have the q-Frobenius
morphism Fq from X to itself, and, by extending the base field from Fq to
Fq, from XFq to itself. This morphism Fq is proper, hence induces maps:

F∗q : Hi
c(XFq ,et,Fl) −→ Hi

c(XFq ,et,Fl).

Hence, for each i in Z, the trace trace(F∗q ,H
i
c(XFq ,et,Fl)) of the map above

is defined, and it is zero for i < 0 and i > 2 dim(X). The set of fixed points
of Fq on X(Fq) is precisely the subset X(Fq). The Lefschetz trace formula
then gives the following identity in Fl:

(1.3.1) #X(Fq) =
∑
i

(−1)itrace(F∗q ,H
i
c(XFq ,et,Fl)).

We can now say how Schoof’s algorithm is related to étale cohomology.
We consider again an elliptic curve E over a finite field Fq. We assume
that l does not divide q. Then, as for any smooth proper geometrically con-
nected curve, H0(EFq ,et,Fl) = Fl and F∗q acts on it as the identity, and
H2(EFq ,et,Fl) is one-dimensional and F∗q acts on it by multiplication by q,
the degree of Fq. According to the trace formula (1.3.1), we have:

#E(Fq) = 1− trace(F∗q ,H
1(EFq ,et,Fl)) + q.

It follows that for the integer a of the previous section, the trace of Frobe-
nius, we have, for all l not dividing p the identity in Fl:

a = trace(F∗q ,H
1(EFq ,et,Fl)).
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This identity is explained by the fact that there is a natural isomorphism,
compatible with the action of Fq:

H1(EFq ,et,Fl) = E(Fq)[l].

Let I describe how one constructs this isomorphism. On Eet we have the
short exact sequence of sheaves, called the Kummer sequence:

0 −→ µl −→ Gm −→ Gm −→ 0

where the map on Gm is multiplication by l in the group law of Gm, i.e.,
taking lth powers. This short exact sequence gives an exact sequence of
cohomology groups after pullback to EFq ,et:

{1} −→ µl(Fq) −→ F×q −→ F×q −→ H1(EFq ,et, µl) −→

−→ H1(EFq ,et,Gm) −→ H1(EFq ,et,Gm) −→ · · ·

Just as for any scheme, one has:

H1(EFq ,et,Gm) = Pic(EFq)

It follows that

H1(EFq ,et, µl) = Pic(EFq)[l].

Finally, using the exact sequence:

0 −→ Pic0(EFq) −→ Pic(EFq)
deg−→ Z −→ 0

and the fact that E is its own Jacobian variety, i.e., Pic0(EFq) = E(Fq), we
obtain:

H1(EFq ,et, µl) = Pic(EFq)[l] = Pic0(EFq)[l] = E(Fq)[l].

The choice of an isomorphism between µl(Fq) and Fl gives us the desired
isomorphism between H1(EFq ,et,Fl) and E(Fq)[l]. In fact, we note that
by using the Weil pairing from E(Fq)[l] × E(Fq)[l] to µl(Fq), we get an
isomorphism:

H1(EFq ,et,Fl) = E(Fq)[l]∨

that is more natural than the one used above; in particular, it does not depend
on the choice of an isomorphism Fl → µl(Fq).
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1.4 SOME NATURAL NEW DIRECTIONS

We have seen that the two-dimensional Fl-vector spaces that are used in
Schoof’s algorithm for elliptic curves can also be seen as étale cohomology
groups. A natural question that arises is then the following.

Are there other interesting cases where étale cohomology
groups can be used to construct polynomial time algorithms
for counting rational points of varieties over finite fields?

A more precise question is the following.

Let n andm be in Z≥0, and let f1, . . . , fm be in Z[x1, . . . , xn].
Is there an algorithm that on input a prime number p computes
#{a ∈ Fnp | ∀i : fi(a) = 0} in time polynomial in log p?

We believe that the answer to this question is yes, and that the way in which
such an algorithm can work is to compute étale cohomology.

1.4.1 Curves of higher genus

The first step in the direction of this question was taken by Jonathan Pila. In
[Pil] he considered principally polarised Abelian varieties of a fixed dimen-
sion, and curves of a fixed genus, and showed that in those cases polyno-
mial time algorithms for computing the number of rational points over finite
fields exist. In these cases, the only relevant cohomology groups are in de-
gree one, i.e., they are of the form H1(XFq ,et,Fl) with X a smooth proper
curve, or an Abelian variety, over the field Fq. As in Schoof’s algorithm, the
way to deal with these cohomology groups is to view them as J(Fq)[l], the
kernel of multiplication by l on the Abelian variety J . In the case where X
is a curve, one lets J be the Jacobian variety of X .

As Pila makes use of explicit systems of equations for Abelian varieties,
his algorithm has a running time that is at least exponential in the dimension
of the Abelian variety, and hence, in the case of curves, as a function of the
genus of the curve.

The current state of affairs concerning the question of counting the ratio-
nal points of curves over finite fields seems still to be the same: algorithms
have a running time that is exponential in the genus. As an illustration, let
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I mention that in [Ad-Hu] Adleman and Huang give an algorithm that com-
putes #X(Fq) in time (log q)O(g2 log g), where X is a hyperelliptic curve
over Fq, and where g is the genus of X .

Recent progress in the case where the characteristic of the finite fields Fq
is fixed, using so-called p-adic methods, will be discussed in Section 1.6
below. In that case, there are algorithms whose running time is polynomial
in g and log q.

1.4.2 Higher degree cohomology, modular forms

Another direction in which one can try to generalise Schoof’s algorithm is
to varieties of higher dimension, where non-trivial cohomology groups of
degree higher than one are needed. In this context, we would call the degree
2 cohomology group of a curve trivial, because the trace of Fq on it is q.

More generally speaking, cohomology groups, but now with l-adic coef-
ficients, that are of dimension one are expected to have the property that the
trace of Fq can only be of the form qnζ, with n an integer greater than or
equal to zero, and ζ a root of unity. This means that one-dimensional coho-
mology groups are not so challenging. Indeed, it is the fact that for elliptic
curves over Fp all integers in the Hasse interval [p+1−2p1/2, p+1+2p1/2]
can occur that makes the problem of point counting very different from point
counting on non-singular quadric surfaces in P3

Fq , for example, where the
outcome can only be q2 + 2q + 1 or q2 + 1.

It follows that the simplest case to consider is cohomology groups of
dimension two, in degree at least two, on which the action of Fq is not given
by a simple rule as in the one-dimensional case. Such cohomology groups
are provided by modular forms, as will be explained later in Section 2.2.
Let I just say for the moment, that there is a direct relation with elliptic
curves, via the concept of modularity of elliptic curves over Q, that I will
now sketch.

Let E be an elliptic curve over Q, given by some Weierstrass equation.
Such a Weierstrass equation can be chosen to have its coefficients in Z. A
Weierstrass equation for E with coefficients in Z is called minimal if its
discriminant is minimal among all Weierstrass equations for E with co-
efficients in Z; this discriminant then only depends on E and will be de-
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noted discr(E). In fact, two minimal Weierstrass equations define isomor-
phic curves in P2

Z, the projective plane over Z. In other words, E has a
Weierstrass minimal model over Z, that will be denoted by EZ. For each
prime number p, let EFp denote the curve over Fp given by reducing a min-
imal Weierstrass equation modulo p; it is the fibre of EZ over Fp. The
curve EFp is smooth if and only if p does not divide discr(E). The possi-
ble singular fibres have exactly one singular point: an ordinary double point
with rational tangents, or with conjugate tangents, or an ordinary cusp. The
three types of reduction are called split multiplicative, non-split multiplica-
tive and additive, respectively, after the type of group law that one gets on
the complement of the singular point. For each p we then get an integer ap
by requiring the following identity:

p+ 1− ap = #E(Fp).

This means that for all p, ap is the trace of Fp on the degree one étale co-
homology of EFp , with coefficients in Fl, or in Z/lnZ or in the l-adic num-

bers Zl. For p not dividing discr(E) we know that |ap| ≤ 2p1/2. If EFp is
multiplicative, then ap = 1 or −1 in the split and non-split case. If EFp is
additive, then ap = 0. We also define, for each p an element ε(p) in {0, 1}
by setting ε(p) = 1 for p not dividing discr(E) and setting ε(p) = 0 for p
dividing discr(E). The Hasse-Weil L-function of E is then defined as:

LE(s) =
∏
p

LE,p(s), LE,p(s) = (1− app−s + ε(p)pp−2s)−1,

for s in C with <(s) > 3/2 (indeed, the fact that |ap| ≤ 2p1/2 implies that
the product converges for such s). To explain this function more conceptu-
ally, we note that for all p and for all l 6= p we have the identity:

1− apt+ ε(p)pt2 = det(1− tF∗p,H1(EF,et,Ql))

The reader should notice that now we use étale cohomology with coeffi-
cients inQl, the field of l-adic numbers, and not in Fl. The reason for this is
that we want the last identity above to be an identity between polynomials
with integer coefficients, and not with coefficients in Fl.

The function LE was conjectured to have a holomorphic continuation
over all of C, and to satisfy a certain precisely given functional equation
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relating the values at s and 2 − s. In that functional equation appears a
certain positive integer NE called the conductor of E, composed of the
primes p dividing discr(E) with exponents that depend on the behaviour of
E at p, i.e., onEZp . This conjecture on continuation and functional equation
was proved for semistable E (i.e., E such that there is no p where E has
additive reduction) by Wiles and Taylor-Wiles, and in the general case by
Breuil, Conrad, Diamond and Taylor; see [Edi2] for an overview of this. In
fact, the continuation and functional equation are direct consequences of the
modularity of E that was proved by Wiles, Taylor-Wiles etc. (see below).
The weak Birch and Swinnerton-Dyer conjecture says that the dimension of
the Q-vector space Q⊗E(Q) is equal to the order of vanishing of LE at 1.
Anyway, the function LE gives us integers an for all n ≥ 1 as follows:

LE(s) =
∑
n≥1

ann
−s, for <(s) > 3/2.

From these an one can then consider the following function:

fE : H = {τ ∈ C | =(τ) > 0} → C, τ 7→
∑
n≥1

ane
2πinτ .

Equivalently, we have:

fE =
∑
n≥1

anq
n, with q : H→ C, τ 7→ e2πiτ .

A more conceptual way to state the relation between LE and fE is to say
that LE is obtained, up to elementary factors, as the Mellin transform of fE :∫ ∞

0
fE(it)ts

dt

t
= (2π)−sΓ(s)LE(s), for <(s) > 3/2.

After all these preparations, one can finally state what the modularity of E
means:

fE is a modular form of weight two for the congruence sub-
group Γ0(NE) of SL2(Z).

For some more details on the concept of modular forms see Section 2.2. At
this moment, I just want to say that the last statement means that fE has, as
Mazur says in Singh’s BBC documentary on Wiles’s proof of Fermat’s Last
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Theorem, an enormous amount of symmetry. This symmetry is with respect
to the action of GL2(Q)+, the group of invertible 2 by 2 matrices with coef-
ficients in Q whose determinant is positive, on the upper half plane H. This
symmetry gives, by Mellin transformation, the functional equation of LE .
Conversely, it had been proved in [Wei1] by Weil that if sufficiently many
twists of LE by Dirichlet characters satisfy the conjectured holomorphic
continuation and functional equation, then fE is a modular form of the type
mentioned.

We now remark that Schoof’s algorithm implies that, for p prime, the
coefficient ap in the q-expansion of fE =

∑
n≥1 anq

n can be computed in
time polynomial in log p. One of the aims of the research project described
in this report is to generalise this last fact to certain modular forms of higher
weight. Before giving precise definitions in Section 2.2, I will discuss a
typical case in the next section.

1.5 MORE HISTORICAL CONTEXT: CONGRUENCES FOR RAMANU-
JAN’S τ -FUNCTION

References for this section are the articles [Ser2], [Swi] and [Del1] by Serre,
Swinnerton-Dyer and Deligne.

A typical example of a modular form of weight higher than two is the
discriminant modular form, usually denoted ∆. One way to view ∆ is as
the holomorphic function on the upper half plane H given by:

(1.5.1) ∆ = q
∏
n≥1

(1− qn)24,

where q is the function from H to C given by z 7→ exp(2πiz). The coeffi-
cients in the power series expansion:

(1.5.2) ∆ =
∑
n≥1

τ(n)qn

define the famous Ramanujan τ -function.
To say that ∆ is a modular form of weight 12 for the group SL2(Z) means

that for all elements ( a bc d ) of SL2(Z) the following identity holds for all z
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in H:

(1.5.3) ∆
(
az + b

cz + d

)
= (cz + d)12∆(z),

which is equivalent to saying that the multi-differential form ∆(z)(dz)⊗6

is invariant under the action of SL2(Z). As SL2(Z) is generated by the
elements ( 1 1

0 1 ) and ( 0 −1
1 0 ), it suffices to check the identity in (1.5.3) for

these two elements. The fact that ∆ is q times a power series in q means
that ∆ is a cusp form: it vanishes at “q = 0”. It is a fact that ∆ is the
first example of a non-zero cusp form for SL2(Z): there is no non-zero
cusp form for SL2(Z) of weight smaller than 12, i.e., there are no non-zero
holomorphic functions onH satisfying (1.5.3) with the exponent 12 replaced
by a smaller integer, whose Laurent series expansion in q is q times a power
series. Moreover, the C-vector space of such functions of weight 12 is one-
dimensional, and hence ∆ is a basis of it.

The one-dimensionality of this space has as a consequence that ∆ is an
eigenform for certain operators on this space, called Hecke operators, that
arise from the action on H of GL2(Q)+, the subgroup of GL2(Q) of ele-
ments whose determinant is positive. This fact explains that the coefficients
τ(n) satisfy certain relations which are summarised by the following iden-
tity of Dirichlet series (converging for <(s) � 0, for the moment, or just
formal series, if one prefers that):

(1.5.4) L∆(s) :=
∑
n≥1

τ(n)n−s =
∏
p

(1− τ(p)p−s + p11p−2s)−1.

These relations:

(1.5.5)
τ(mn) = τ(m)τ(n) if gcd(m,n) = 1

τ(pn) = τ(pn−1)τ(p)− p11τ(pn−2) if p is prime and n ≥ 2

were conjectured by Ramanujan, and proved by Mordell. Using these iden-
tities, τ(n) can be expressed in terms of the τ(p) for p dividing n.

As L∆ is the Mellin transform of ∆, L∆ is holomorphic on C, and satis-
fies the functional equation (Hecke):

(2π)−(12−s)Γ(12− s)L∆(12− s) = (2π)−sΓ(s)L∆(s).
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The famous Ramanujan conjecture states that for all primes p one has the
inequality:

(1.5.6) |τ(p)| < 2p11/2,

or, equivalently, that the complex roots of the polynomial x2 − τ(p)x+ p11

are complex conjugates of each other, and hence are of absolute value p11/2.
This conjecture was proved by Deligne as a consequence of his arti-
cle [Del1] and his proof of the analog of the Riemann hypothesis in the
Weil conjectures in [Del2].

Finally, Ramanujan conjectured congruences for the integers τ(p) with p
prime, modulo certain powers of certain small prime numbers. In order to
state these congruences we set, for n ≥ 1 and r ≥ 0:

σr(n) :=
∑

1≤d|n

dr,

i.e., σr(n) is the sum of the rth powers of the positive divisors of n. I now
list the congruences that are given in the first pages of [Swi]:

τ(n) ≡ σ11(n) mod 211 if n ≡ 1 mod 8

τ(n) ≡ 1217σ11(n) mod 213 if n ≡ 3 mod 8

τ(n) ≡ 1537σ11(n) mod 212 if n ≡ 5 mod 8

τ(n) ≡ 705σ11(n) mod 214 if n ≡ 7 mod 8

τ(n) ≡ n−610σ1231(n) mod 36 if n ≡ 1 mod 3

τ(n) ≡ n−610σ1231(n) mod 37 if n ≡ 2 mod 3

τ(n) ≡ n−30σ71(n) mod 53 if n is prime to 5

τ(n) ≡ nσ9(n) mod 7 if n ≡ 0, 1, 2 or 4 mod 7

τ(n) ≡ nσ9(n) mod 72 if n ≡ 3, 5 or 6 mod 7
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τ(p) ≡ 0 mod 23 if p is prime and not a square mod 23

τ(p) ≡ 2 mod 23 if p 6= 23 is a prime of the form u2 + 23v2

τ(p) ≡ −1 mod 23 for other primes p 6= 23

τ(n) ≡ σ11(n) mod 691

The reader is referred to [Swi] for the origin and for proofs of these con-
gruences. There, Swinnerton-Dyer remarks that the proofs do little explain
why such congruences occur. Serre conjectured an explanation in [Ser2].
First of all, Serre conjectured the existence, for each prime number l, of a
continuous representation:

(1.5.7) ρl : Gal(Q/Q) −→ Aut(Vl),

with Vl a two-dimensional Ql-vector space, such that ρl is unramified at all
primes p 6= l, and such that for all p 6= l the characteristic polynomial of
ρl(Frobp) is given by:

(1.5.8) det(1− xFrobp, Vl) = 1− τ(p)x+ p11x2.

To help the reader, let I explain what unramified at p means, and what the
Frobenius elements Frobp are. For p prime, let Qp denote the topologi-
cal field of p-adic numbers, and Qp → Qp an algebraic closure. The ac-
tion of Gal(Q/Q) on the set Hom(Q,Qp) of embeddings of Q into Qp
is transitive, and each embedding induces an injection from Gal(Qp/Qp)
into Gal(Q/Q), the image of which is called a decomposition group of
Gal(Q/Q) at p. The injections from Gal(Qp/Qp) into Gal(Q/Q) and the
corresponding decomposition groups at p obtained like this are all conju-
gated by the action of Gal(Q/Q). In order to go further we need to say a bit
about the structure of Gal(Qp/Qp). Let Qunr

p be the maximal unramified
extension ofQp inQp, i.e., the composite of all finite extensionsK ofQp in
Qp such that p is a uniformiser for the integral closure OK of Zp in K. Let
Zunr
p be the integral closure of Zp in Qunr

p ; it is a local ring, and its residue
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field is an algebraic closure Fp of Fp. The sub-extension Qunr
p gives a short

exact sequence:

(1.5.9) Ip↪→Gal(Qp/Qp) � Gal(Fp/Fp).

The subgroup Ip of Gal(Qp/Qp) is called the inertia subgroup. The quotient
Gal(Fp/Fp) is canonically isomorphic to Ẑ, the profinite completion of Z,
by demanding that the element 1 of Ẑ corresponds to the Frobenius element
Frobp of Gal(Fp/Fp) that sends x to xp for each x in Fp.

Let now ρl be a continuous representation from Gal(Q/Q) to GL(Vl)
with Vl a finite dimensional Ql-vector space. Each embedding of Q into
Qp then gives a representation of Gal(Qp/Qp) on Vl. Different embed-
dings give isomorphic representations because they are conjugated by an
element in the image of Gal(Q/Q) under ρl. We now choose one embed-
ding, and call the representation ρl,p of Gal(Qp/Qp) on Vl obtained like
this the local representation at p attached to ρl. This being defined, ρl is
then said to be unramified at a prime p if ρl,p factors through the quotient
Gal(Qp/Qp) → Gal(Fp/Fp), i.e., if Ip acts trivially on Vl. If ρl is un-
ramified at p, then we get an element ρl(Frobp) in GL(Vl). This element
depends on our chosen embedding of Q into Qp, but its conjugacy class un-
der ρl(Gal(Q/Q)) does not. In particular, we get a well-defined conjugacy
class in GL(Vl), and so the characteristic polynomial of ρl(Frobp) is now
defined if ρl is unramified at p.

Continuous representations such as ρl can be reduced modulo powers of
l as follows. The compactness of Gal(Q/Q) implies that with respect to a
suitable basis of Vl the representation ρl lands in GL2(Zl), and hence gives
representations to GL2(Z/lnZ) for all n ≥ 0. This reduction of ρl modulo
powers of l is not unique, but the semi-simplification of the reduction mod-
ulo l is well-defined, i.e., two reductions lead to the same Jordan-Hölder
constituents. According to Serre, the congruences above would then be ex-
plained by properties of the image of ρl.

For example, if the image of the reduction modulo l of ρl is reducible, say
an extension of two characters α and β from Gal(Q/Q) to F×l , then one has
the identity in Fl, for all p 6= l:

(1.5.10) τ(p) ≡ α(Frobp) + β(Frobp).
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The characters α and β are unramified outside l. By the Kronecker-Weber
theorem, the maximal Abelian subextension of Q → Q that is unramified
outside l is the cyclotomic extension generated by all l-power roots of unity,
with Galois group Z×l . It then follows that α = χnl and β = χml for suitable
n and m, where χl is the character giving the action on the lth roots of
unity in Q: for all σ in Gal(Q/Q) and for all ζ in Q× with ζ l = 1 one has
σ(ζ) = ζχl(σ). The identity (1.5.10) in Fl above then takes the form:

(1.5.11) τ(p) = pn + pm mod l, for all p 6= l,

which indeed is of the same form as the congruences mod l for τ(p) listed
above. For example, the congruence mod 691 corresponds to the statement
that the reduction modulo l of ρl contains the two characters 1 and χ11

l .
Deligne, in [Del1], proved the existence of the ρl, as conjectured by Serre,

by showing that they occur in the degree one l-adic étale cohomology of cer-
tain sheaves on certain curves, and in the degree 11 étale cohomology with
Ql-coefficients of a variety of dimension 11. This last variety is, loosely
speaking, the 10-fold fibred product of the universal elliptic curve. Deligne’s
constructions will be discussed in detail in Sections 2.2 and 2.4. It should
be said that Shimura had already shown how to construct Galois representa-
tions in the case of modular forms of weight two; in that case one does not
need étale cohomology, but torsion points of Jacobians of modular curves
suffice, see [Shi1].

At this point I give the following precise statement, relating Ramanujan’s
τ -function to point counting on an algebraic variety C10 (more precisely, a
quasi-projective scheme over Z), for which one easily writes down a system
of equations. Moreover, the statement relates the weight of ∆ to the classi-
cal question in geometry on cubic plane curves passing through a given set
of points: up to 9 points the situation is easy and the count is given by a
polynomial.

1.5.12 Proposition For n ∈ Z≥0, q a prime power and Fq a finite field with
q elements, let Cn(Fq) be the set of (C,P1, . . . , Pn), where C is a smooth
cubic in P2

Fq , and Pi ∈ C(Fq). Then there are f0, . . . , f10 ∈ Z[x] such that
for all Fq and n ≤ 9 one has #Cn(Fq)/#PGL3(Fq) = fn(q), and for all
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prime numbers p:

#C10(Fp) /#PGL3(Fp) = −τ(p) + f10(p).

Proof For n in Z≥0 and Fq a field with q elements, let En(Fq) denote the
category, and also its set of objects, of (E/Fq, P1, . . . , Pn), where E/Fq
is an elliptic curve, and Pi ∈ E(Fq); the morphisms are the isomorphisms
φ : E → E′ such that φ(Pi) = P ′i . For each n, the category En(Fq) has
only finitely many objects up to isomorphism, and one defines:

#En(Fq) =
∑

x∈En(Fq)

1
# Aut(x)

,

where, in the sum, one takes one x per isomorphism class. It is well known
(see [Del1], [Beh]) that for n ≤ 9 the functions q 7→ #En(Fq) are given by
certain elements fn in Z[x], and that there is an f10 in Z[x] such that for all
prime numbers p one has #E10(Fp) = −τ(p) + f10(p). In view of this, the
claims in Proposition 1.5.12 are a consequence of the following equality, for
all n ∈ Z≥0 and all prime powers q:
(1.5.13)

for all n ∈ Z≥0 and all Fq: #Cn(Fq) = #PGL3(Fq) ·#En(Fq).

We prove (1.5.13) by comparing the subsets on both sides in which the un-
derlying curves are fixed.

Let n ∈ Z≥0 and q a prime power. Let F be a nonsingular projective
geometrically irreducible curve of genus one over Fq, and let E0 be its Ja-
cobian. Then F is an E0-torsor. By Lang’s theorem, Theorem 2 of [Lan2],
F (Fq) is not empty.

Let Cn(Fq)F be the subset of Cn(Fq) consisting of the (C,P1, . . . , Pn)
with C isomorphic to F . The number of C in P2

Fq that are isomorphic
to F is the number of embeddings i : F → P2

Fq , divided by # Aut(F ).
Such embeddings are obtained from line bundles L of degree 3 on F , to-
gether with a basis, up to F×q , of L(F ). Hence the number of embeddings
is #PGL3(Fq) ·#E0(Fq). The group Aut(F ) has the subgroup of transla-
tions, E0(Fq), with quotient Aut(E0). So we find:

#Cn(Fq)F = #PGL3(Fq) · (#E0(Fq))n/# Aut(E0).
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On the other hand, let En(Fq)E0 be the full subcategory of En(Fq) with
objects the (E0, P1, . . . , Pn), with Pi in E0(Fq). The group Aut(E0) acts
on the set of objects of En(Fq)E0 , and this action is the set of morphisms in
En(Fq)E0 . This means that:

#En(Fq)E0 = (#E0(Fq))n/# Aut(E0).

Summing over the isomorphism classes of F gives (1.5.13). �

1.5.14 Remark The polynomials fn mentioned in Proposition 1.5.12 have
been computed by Carel Faber and Gerard van der Geer. Their result is:

f0 = x,

f1 = x2 + x,

f2 = x3 + 3x2 + x− 1,

f3 = x4 + 6x3 + 6x2 − 2x− 3,

f4 = x5 + 10x4 + 20x3 + 4x2 − 14x− 7,

f5 = x6 + 15x5 + 50x4 + 40x3 − 30x2 − 49x− 15,

f6 = x7 + 21x6 + 105x5 + 160x4 − 183x2 − 139x− 31,

f7 = x8 + 28x7 + 196x6 + 469x5 + 280x4 − 427x3 − 700x2

− 356x− 63,

f8 = x9 + 36x8 + 336x7 + 1148x6 + 1386x5 − 406x4 − 2436x3

− 2224x2 − 860x− 127,

f9 = x10 + 45x9 + 540x8 + 2484x7 + 4662x6 + 1764x5 − 6090x4

− 9804x3 − 6372x2 − 2003x− 255,

f10 = x11 + 55x10 + 825x9 + 4905x8 + 12870x7 + 12264x6

− 9240x5 − 33210x4 − 33495x3 − 17095x2 − 4553x− 511.

We refer to Birch [Bir] for results on the distribution of the number of ratio-
nal points on elliptic curves over finite fields, that also make τ(p) appear.

In [Swi], Swinnerton-Dyer gives results, partly resulting from his corre-
spondence with Serre, in which the consequences of the existence of the ρl
for congruences of τ(p) modulo l are explored. A natural question to ask is
if there are primes l other than 2, 3, 5, 7, 23 and 691 modulo which there
are similar congruences for τ(p).
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For each p 6= l, τ(p) is the trace of ρl(Frobp), and the determinant of
ρl(Frobp) equals p11. Hence, a polynomial relation between τ(p) and p11,
valid modulo some ln for all p 6= l, is a relation between the determinant
and the trace of all ρl(Frobp) in GL2(Z/lnZ). But Chebotarev’s theorem
(see [Lan6], or [Ca-Fr], for example) implies that every element of the image
of Gal(Q/Q) in GL2(Z/lnZ) is of the form Frobp for infinitely many p.
Hence, such a polynomial relation is then valid for all elements in the image
of Gal(Q/Q) in GL2(Z/lnZ). For this reason, the existence of non-trivial
congruences modulo ln as above for τ(p) depends on this image.

The image of Gal(Q/Q) in Z×l under det ◦ρl is equal to the subgroup
of 11th powers in Z×l . To explain this, I note that det ◦ρl is a continuous
character from Gal(Q/Q) to Z×l , unramified outside l, and such that Frobp
is mapped to p11 for all p 6= l; this implies that det ◦ρl is the 11th power of
the l-adic cyclotomic character χl : Gal(Q/Q) → Z×l , giving the action of
Gal(Q/Q) on the l-power roots of unity.

In order to state the results in [Swi], one calls a prime number l excep-
tional (for ∆) if the image of ρl, taking values in GL2(Zl), does not con-
tain SL2(Zl). For l not exceptional, i.e., such that the image of ρl contains
SL2(Zl), the image of Gal(Q/Q) in GL2(Zl) × Z×l , under (ρl, χl), is the
subgroup H of elements (g, t) such that det(g) = t11. This subgroup H
maps surjectively to Fl × F×l under (g, t) 7→ (trace(g), t), and therefore
there can be no congruence for τ(p) modulo l as above.

The Corollary to Theorem 4 in [Swi] states, among others, that the list of
primes that are exceptional for ∆ is {2, 3, 5, 7, 23, 691}. The main tool that
is used and that I have not discussed is the theory of modular forms mod-
ulo l, or, equivalently, the theory of congruences modulo l between modular
forms. As a consequence, there are no similar congruences for τ(p) modulo
primes other than the ones listed above. The special form of the congruences
modulo 23 is explained by the fact that in that case the image of Gal(Q/Q)
in GL2(F23) is dihedral; in the other cases the residual representation, i.e.,
the representation to GL2(Fl), is reducible. In the case l = 2, Swinnerton-
Dyer has determined the image of Gal(Q/Q) in GL2(Z2) exactly: see the
appendix in [Swi].

The direction in which we generalise Schoof’s algorithm is to give an
algorithm that computes for prime numbers l that are not exceptional for
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∆ the field extension Q → Kl that corresponds to the representation of
Gal(Q/Q) to GL2(Fl) that comes from ∆. The field Kl is given in the
form Q[x]/(fl). The computation has a running time that is polynomial
in l. It is fair to say that this algorithm makes the mod l Galois represen-
tations attached to ∆ accessible to computation, at least theoretically. As
the field extensions that are involved are non-solvable, this should be seen
as a step beyond computational class field theory, and beyond the case of
elliptic curves, in the direction to make the results of Langlands’s program
accessible to computations.

As a consequence, one can compute τ(p) mod l in time polynomial in
log p and l, by reducing fl as above mod p and some more computations
that will be described later (see Section 15.1). By doing this for sufficiently
many l, just as in Schoof’s algorithm, one then gets an algorithm that com-
putes τ(p) in time polynomial in log p.

In Section 15.2 the method used here is generalised to the case of mod-
ular forms for SL2(Z) of arbitrary weight. The main result there is Theo-
rem 15.2.1.

1.6 COMPARISON WITH p-ADIC METHODS

Before we start seriously with the theory of modular forms and the Galois
representations attached to them in the next chapters, I make a comparison
between our generalisation of Schoof’s algorithm and the so-called p-adic
methods that have been developed since 2000 by Satoh [Sat], Kedlaya [Ked]
(see also [Edi3]), Hubrechts, [Hub]), Lauder and Wan [La-Wa1], [La-Wa2],
[Lau1] and [Lau2], Fouquet, Gaudry, Gürel and Harley [Fo-Ga-Ha],
[Ga-Gu], Denef and Vercauteren and Castryk [De-Ve], [Ca-De-Ve], Mestre,
Lercier and Lubicz [Le-Lu], Carls, Kohel and Lubicz, [Ca-Ko-Lu], [Ca-Lu],
and Gerkmann, [Ger1] and [Ger2]. Actually, I should notice that such a
method was already introduced in [Ka-Lu] in 1982, but that this article
seems to have been forgotten (we thank Fre Vercauteren for having drawn
my attention to this article).

In all these methods, one works with fields of small characteristic p, hence
of the form Fq with q = pm and p fixed. All articles cited in the previous
paragraph have the common property that they give algorithms for comput-
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ing the number of Fq-rational points on certain varieties X over Fq, using,
sometimes indirectly, cohomology groups with p-adic coefficients, whence
the terminology “p-adic methods”.

For example, Satoh [Sat] uses the canonical lift of ordinary elliptic curves
and the action of the lifted Frobenius endomorphism on the tangent space,
which can be interpreted in terms of the algebraic de Rham cohomology of
the lifted curve. Kedlaya [Ked] uses Monsky-Washnitzer cohomology of
certain affine pieces of hyperelliptic curves. In fact, all cohomology groups
used here are de Rham type cohomology groups, given by complexes of
differential forms on certain p-adic lifts of the varieties in question. Just as
an example, let us mention that Kedlaya [Ked] gives an algorithm that for
fixed p 6= 2 computes the zeta functions of hyperelliptic curves given by
equations:

y2 = f(x),

where f has arbitrary degree, in time m3 deg(f)4. The running times of
the other algorithms are all similar, but all have in common that the running
time grows at least linearly in p (or linear in O(p1/2), in [Harv]), hence
exponentially in log p. The explanation for this is that somehow in each case
non-sparse polynomials of degree at least linear in p have to be manipulated.

Summarising this recent progress, one can say that, at least from a the-
oretical point of view, the problem of counting the solutions of systems of
polynomial equations over finite fields of a fixed characteristic p and in a
fixed number of variables has been solved. If p is not bounded, then almost
nothing is known about the existence of polynomial time algorithms.

A very important difference between the project described here, using
étale cohomology with coefficients in Fl, and the p-adic methods, is that the
Galois representations on Fl-vector spaces that we obtain are global in the
sense that they are representations of the absolute Galois group of the global
field Q. The field extensions such as the Kl = Q[x]/(fl) arising from ∆
discussed in the previous section have the advantage that one can choose to
do the required computations over the complex numbers, approximating fl,
or p-adically at some suitable prime p, or in Fp for sufficiently many small p.
Also, as I have said already, being able to compute such field extensionsKl,
that give mod l information on the Frobenius elements at all primes p 6= l,
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is very interesting. On the other hand, the p-adic methods force one to
compute with p-adic numbers, or, actually, modulo some sufficiently high
power of p, and it gives information only on the Frobenius at p. The main
drawback of the étale cohomology with Fl-coefficients seems to be that the
degree of the field extensions as Kl to be dealt with grows exponentially in
the dimension of the cohomology groups; for that reason, we do not know
how to use étale cohomology to compute #X(Fq) forX a curve of arbitrary
genus in a time polynomial in log q and the genus of X . Nevertheless, for
modular curves, see the end of Section 15.3.
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Chapter Two

Modular curves, modular forms, lattices, Galois

representations

B. Edixhoven

2.1 MODULAR CURVES

As a good reference for getting an overview of the theory of modular curves
and modular forms we recommend the article [Di-Im] by Fred Diamond
and John Im. This reference is quite complete as results are concerned,
and gives good references for the proofs of those results. Moreover, it is
one of the few references that treats the various approaches to the theory of
modular forms, from the classical analytic theory on the upper half plane to
the more modern representation theory of adelic groups. Another good first
introduction could be the book [Di-Sh]. Let us also mention that there is a
forthcoming book [Conr] by Brian Conrad, and also the information in the
wikipedia is getting more and more detailed.

In this section our aim is just to give the necessary definitions and results
for what we need later (and we need at least to fix our notation). Readers
who want more details, or more conceptual explanations are encouraged to
consult [Di-Im].

2.1.1 Definition For n an integer greater than or equal to one we let Γ(n)
be the kernel of the surjective morphism of groups SL2(Z) → SL2(Z/nZ)
given by reduction of the coefficients modulo n, and we let Γ1(n) be the
inverse image of the subgroup of SL2(Z/nZ) that fixes the element (1, 0)
of (Z/nZ)2. Similarly, we let Γ0(n) be the inverse image of the subgroup
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of SL2(Z/nZ) that fixes the subgroup Z/nZ·(1, 0) of (Z/nZ)2. Hence the
elements of Γ0(n) are the ( a bc d ) of SL2(Z) such that c ≡ 0 mod n, those
of Γ1(n) are the ones that satisfy the extra conditions a ≡ 1 mod n and
d ≡ 1 mod n and those of Γ(n) are the ones that satisfy the extra condition
b ≡ 0 mod n.

The group SL2(R) acts on the upper half plane H by fractional linear trans-
formations: (

a b

c d

)
· z =

az + b

cz + d
.

The subgroup SL2(Z) of SL2(R) acts discontinuously in the sense that for
each z in H the stabiliser SL2(Z)z is finite and there is an open neighbour-
hood U of z such that each translate γU with γ in SL2(Z) contains exactly
one element of the orbit SL2(Z)·z and any two translates γU and γ′U with
γ and γ′ in SL2(Z) are either equal or disjoint. This property implies that
the quotient SL2(Z)\H, equipped with the quotient topology and with, on
each open subset U , the SL2(Z)-invariant holomorphic functions on the in-
verse image of U , is a complex analytic manifold of dimension one, i.e.,
each point of the quotient has an open neighbourhood that is isomorphic to
the complex unit disk. Globally, the well-known j-function from H to C is
in fact the quotient map for this action. One way to see this is to associate to
each z in H the elliptic curve Ez := C/(Z+Zz), and to note that for z and
z′ in H the elliptic curves Ez and Ez′ are isomorphic if and only if z and z′

are in the same SL2(Z)-orbit, and to use the fact that two complex elliptic
curves are isomorphic if and only if their j-invariants are equal.

The quotient set Γ(n)\H can be identified with the set of isomor-
phism classes of pairs (E, φ), where E is a complex elliptic curve and
φ : (Z/nZ)2 → E[n] is an isomorphism of groups, compatible with the
Weil pairing E[n] × E[n] → µn(C) and the µn(C)-valued pairing on
(Z/nZ)2 that sends ((a1, a2), (b1, b2)) to ζa1b2−a2b1

n , where ζn = e2πi/n.
The quotient Γ0(n)\H is then identified with the set of pairs (E,G) where

E is a complex elliptic curve, and G ⊂ E a subgroup that is isomorphic
to Z/nZ. Equivalently, we may view Γ0(n)\H as the set of isomorphism

classes of E1
φ→ E2, where φ is a morphism of complex elliptic curves, and

ker(φ) is isomorphic to Z/nZ.
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Finally, the quotient Γ1(n)\H is then identified with the set of pairs
(E,P ) where E is a complex elliptic curve, and P is a point of order n
of E. Explicitly: to each z in H corresponds the pair (C/(Zz + Z), [1/n]),
where [1/n] denotes the image of 1/n in C/(Zz + Z).

In order to understand that the quotients considered above are in fact the
complex analytic varieties associated with affine complex algebraic curves,
it is necessary (and sufficient!) to show that these quotients can be com-
pactified to compact Riemann surfaces by adding a finite number of points,
called the cusps. As the quotient by SL2(Z) is given by j : H → C, it can
be compactified easily by embedding C into P1(C); the point∞ of P1(C)
is called the cusp. Another way to view this is to note that the equivalence
relation on H given by the action of SL2(Z) identifies two elements z and
z′ with =(z) > 1 and =(z′) > 1 if and only if z′ = z + n for some n in Z;
this follows from the identity, for all ( a bc d ) in SL2(R) and z in H:

(2.1.2) =
(
az + b

cz + d

)
=
=(z)
|cz + d|2

.

Indeed, if moreover c 6= 0, then:

(2.1.3)
=(z)
|cz + d|2

≤ =(z)
(=(cz))2

=
1

c2=(z)
.

Hence on the part “=(z) > 1” of H the equivalence relation given by
SL2(Z) is given by the action of Z by translation. As the quotient for
that action is given by the map q : H → D(0, e−2π)∗, z 7→ exp(2πiz),
where D(0, e−2π)∗ is the open disk of radius e−2π, centred at 0, and with
0 removed, we get an open immersion of D(0, e−2π)∗ into SL2(Z)\H.
The compactification is then obtained by replacing D(0, e−2π)∗ with
D(0, e−2π), i.e., by adding the centre back into the punctured disk.

Let us now consider the problem of compactifying the other quo-
tients above. Let Γ be one of the groups considered above, or, in fact,
any subgroup of finite index in SL2(Z). We consider the morphism
f : Γ\H → SL2(Z)\H = C, and our compactification P1(C) of C. By
construction, f is proper (i.e., the inverse image of a compact subset of C
is compact). Also, we know that ramification can only occur at points with
j-invariant 0 or 1728. Let D∗ be the punctured disk described above. Then
f : f−1D∗ → D∗ is an unramified covering of degree #SL2(Z)/Γ if Γ does
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not contain −1, and of degree (#SL2(Z)/Γ)/2 if −1 is in Γ. Up to isomor-
phism, the only connected unramified covering of degree n, with n ≥ 1, of
D∗ is the map D∗n → D∗, with D∗n = {z ∈ C | 0 < |z| < e−2π/n}, sending
z 7→ zn. It follows that f−1D∗ is, as a covering of D∗, a disjoint union
of copies of such D∗n → D∗. Each D∗n has the natural compactification
Dn := {z ∈ C | |z| < e−2π/n}. We compactify Γ\H by adding the origin
to each punctured disk in f−1D∗. The points that we have added are called
the cusps. By construction, the morphism f : Γ\H → SL2(Z)\H extends
to the compactifications. It is a fact that a compact Riemann surface can be
embedded into some projective space, using the theorem of Riemann-Roch,
and that the image of such an embedding is a complex algebraic curve. This
means that our quotients are, canonically, the Riemann surfaces associated
with smooth complex algebraic curves.

2.1.4 Definition For n ≥ 1 we define X(n), X1(n) and X0(n) to be the
proper smooth complex algebraic curves obtained via the compactifications
of Γ(n)\H, Γ1(n)\H, and Γ0(n)\H, respectively. The affine parts obtained
by removing the cusps are denoted Y (n), Y1(n) and Y0(n).

The next step in the theory is to show that these complex algebraic curves
are naturally defined over certain number fields. Let us start with the X0(n)
and X1(n), which are defined over Q. A simple way to produce a model of
X0(n) over Q, i.e., an algebraic curve X0(n)Q over Q that gives X0(n) via
extension of scalars via Q→ C, is to use the map:

(j, j′) : H −→ C× C, z 7→ (j(z), j(nz)).

This map factors through the action of Γ0(n), and induces a map from
X0(n) to P1 × P1 that is birational to its image. This image is a curve
in P1 × P1, hence the zero locus of a bi-homogeneous polynomial often
denoted Φn, the minimal polynomial of j′ over C(j). One can then check,
using some properties of the j-function, that Φn has integer coefficients.
The normalisation of the curve in P1

Q × P1
Q defined by Φn is then the de-

sired curve X0(n)Q. As Φn has coefficients in Z, it even defines a curve in
P1

Z×P1
Z (here, one has to work with schemes), whose normalisationX0(n)Z

can be characterised as a so-called coarse moduli space. For this notion, and
for the necessary proofs, the reader is referred to [Di-Im, II.8], to [De-Ra]
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and to [Ka-Ma]. One consequence of this statement is that for any alge-
braically closed field k in which n is invertible, the k-points of Y0(n)Z (the
complement of the cusps) correspond bijectively to isomorphism classes of

E1
φ→ E2 where φ is a morphism of elliptic curves over k of which the

kernel is cyclic of order n.
The notion of moduli space also gives natural models over Z[1/n] of

X1(n) and Y1(n). For n ≥ 4 the defining property of Y1(n)Z[1/n] is not
hard to state. There is an elliptic curve E over Y1(n)Z[1/n] with a point P in
E(Y1(n)Z[1/n]) that has order n in every fibre, such that any pair (E/S, P )
with S a Z[1/n]-scheme and P in E(S) of order n in all fibres arises by a
unique base change:

E //

��

E

��
S // Y1(n)Z[1/n]

that is compatible with the sections P and P. The pair (E/Y1(n)Z[1/n],P)
is therefore called universal.

The moduli interpretation of X(n) is a bit more complicated, because
of the occurrence of the Weil pairing on E[n] that we have seen above.
The curve X(n) has a natural model X(n)Z[1/n,ζn] over Z[1/n, ζn]. The
complement of the cusps Y (n)Z[1/n,ζn] then has an elliptic curve E over it,
and an isomorphism φ between the constant group scheme (Z/nZ)2 and
E[n] that respects the pairings on each side. The pair (E/Y (n)Z[1/n,ζn], φ)
is universal in the same sense as above. We warn the reader that the notation
X(n) is also used sometimes for the moduli scheme for pairs (E, φ) where
φ does not necessarily respect the pairings on the two sides.

For n and m in Z>1 that are relatively prime we will sometimes view
Y1(nm)Z[1/nm] as the moduli space of triples (E/S, Pn, Pm), where S is
a scheme over Z[1/nm], E/S an elliptic curve, Pn and Pm in E(S) that
are everywhere (i.e., in every geometric fibre of E/S) of orders n and m,
respectively. Indeed, for such a triple, Pn +Pm is everywhere of order nm,
and the inverse construction starting with a point Pnm that is everywhere
of order nm is given by multiplying with the two idempotents of Z/nmZ
corresponding to the isomorphism of rings Z/nmZ→ Z/nZ× Z/mZ.
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2.2 MODULAR FORMS

Let us now turn our attention to modular forms. It will be enough for us to
work with modular forms for the congruence subgroups Γ1(n). Therefore,
we restrict ourselves to that case.

2.2.1 Definition Let n ≥ 1 and k an integer. A (holomorphic) modular
form for Γ1(n) is a holomorphic function f : H → C that satisfies the fol-
lowing properties:

1. for all ( a bc d ) ∈ Γ1(n) and for all z ∈ H:

f((az + b)/(cz + d)) = (cz + d)kf(z);

2. f is holomorphic at the cusps (see below for an explanation).

A modular form is called a cuspform if it vanishes at the cusps.

We still need to explain the condition that f is holomorphic at the cusps.
In order to do that, we first explain what this means at the cusp ∞. That
cusp is the point that was added to the punctured disk obtained by taking
the quotient of H by the unipotent subgroup ( 1 ∗

0 1 ), which acts on H by
translations by integers. The coordinate of that disk is q, the map that sends
z to exp(2πiz). Therefore, f admits a Laurent series expansion in q:

(2.2.2) f =
∑
n∈Z

an(f)qn, called the q-expansion at∞.

With this notation, f is called holomorphic at ∞ if an(f) is zero for all
n < 0, and f is said to vanish at∞ if an(f) is zero for all n ≤ 0.

To state this condition at the other cusps, we need some description of the
set of cusps. First, we note that P1(C) − P1(R) is the same as C − R, and
therefore the disjoint union ofH and its complex conjugate (which explains,
by the way, that GL2(R)+ acts by fractional linear transformations on H).
We can then consider H ∪ P1(Q) inside P1(C), with the SL2(Z) action on
it. Then the subgroup ( 1 ∗

0 1 ) stabilises the point ∞ = (1 : 0) of P1(Q),
and∞ can be naturally identified with the origin that we added to the disk
D∗ above, because ∞ is the unique element of P1(Q) that lies in the clo-
sure of the inverse image “=(z) > 1” of D∗ in H. Then, the images of
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the region “=(z) > 1” under the action of elements of SL2(Z) correspond
bijectively to the elements of P1(Q) (note that SL2(Z) acts transitively on
P1(Q) = P1(Z)), and also to the maximal unipotent subgroups of SL2(Z)
(i.e., the subgroups that consist of elements whose eigenvalues are 1). It
follows that we can identify the set of cusps of X1(n) with Γ1(n)\P1(Q),
and that the images of the region “=(z) > 1” under SL2(Z) give us punc-
tured disks around the other cusps. Let γ = ( a bc d ) be an element of SL2(Z).
The conditions of holomorphy and vanishing at the cusp γ∞ = (a : c)
are then given in terms of the q-expansion of z 7→ (cz + d)−kf(γz) at∞.
The group γ−1Γ1(n)γ contains the group ( 1 n∗

0 1 ) (indeed, Γ1(n) contains
Γ(n) and that one is normal in SL2(Z)). Therefore, putting qn : H → C,
z 7→ exp(2πiz/n), the function z 7→ (cz + d)−kf(γz) then has a Laurent
series expansion in qn, and one asks that this Laurent series is a power series
(for holomorphy) or a power series with constant term zero (for vanishing).

The space of modular forms of weight k on Γ1(n) will be denoted
Mk(Γ1(n)), and the subspace of cuspforms by Sk(Γ1(n)). We define
M(Γ1(n)) to be the direct sum over the k in Z of the Mk(Γ1(n)); it is a
Z-graded commutative C-algebra under pointwise multiplication.

2.2.3 Example Some simple examples of modular forms for SL2(Z) are
given by Eisenstein series. For each even k ≥ 4 one has the function Ek:

Ek : H→ C, z 7→ 1
2ζ(k)

∑
(n,m)∈Z2

(n,m) 6=(0,0)

1
(n+mz)k

.

The q-expansions of these Ek are given by:

Ek = 1− 2k
Bk

∑
n≥1

σk−1(n)qn,

where the Bk are the Bernoulli numbers defined by:

tet

et − 1
=
∑
k≥0

Bk
tk

k!
,

and where, as before, σr(n) denotes the sum of the rth powers of the positive
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divisors of n. In particular, one has the formulas:

E4 = 1 + 240
∑
n≥1

σ3(n)qn, E6 = 1− 504
∑
n≥1

σ5(n)qn,

∆ =
E3

4 − E2
6

1728
.

2.2.4 Remark We note that, from a computational point of view, the coef-
ficients of qp with p prime of the Ek are very easy to compute, namely, up
to a constant factor they are 1 + pk−1, but that computing the σk−1(n) for
composite n is equivalent to factoring n. This is a strong indication that, for
computing coefficients an(f) of a modular form f , there is a real difference
between the case where n is prime and the case where n is composite.

Indeed, Denis Charles and Eric Bach have shown that for n = pq a prod-
uct of two distinct primes such that τ(n) 6= 0, one can compute p and q
from n, τ(n) and τ(n2) in time polynomial in log n; see [Ba-Ch].

The argument is very simple: one uses the identities in (1.5.5) to compute
the rational number τ(p)2/q11 and notes that the denominator is of the form
qr with r odd. According to a conjecture by Lehmer, τ(n) 6= 0 for all
n ∈ Z≥1. See Corollary 7.1.4.

The Eisenstein seriesE4 andE6 generate the C-algebraM(SL2(Z)), and
are algebraically independent:

M(SL2(Z)) = C[E4, E6].

In particular, we have:

dimCMk(SL2(Z)) = #{(a, b) ∈ Z2
≥0 | 4a+ 6b = k}.

The space Sk(Γ1(n)) can be interpreted as the space of sections of some
holomorphic line bundle ω⊗k(−Cusps) on X1(n), if n ≥ 5 (for n < 4
the action of Γ1(n) on H is not free, and for n = 4 there is a cusp whose
stabiliser is not unipotent):

(2.2.5) Sk(Γ1(n)) = H0(X1(n), ω⊗k(−Cusps)), if n ≥ 5.

This implies that the spaces Sk(Γ1(n)) are finite dimensional, and in fact
zero if k ≤ 0 because the line bundle in question then has negative degree.
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The restriction to Y1(n) of the line bundle giving the weight k forms is given
by dividing out the action of Γ1(n) on C×H given by:

(2.2.6) ( a bc d ) : (x, z) 7→
(

(cz + d)kx,
az + b

cz + d

)
.

The extension of this line bundle over the cusps is then given by decreeing
that, at the cusp∞, the constant section 1 (which is indeed invariant under
the translations z 7→ z + n) is a generator for the bundle of holomorphic
forms, and q times 1 is a generator for the bundle of cusp forms.

The moduli interpretation for Y1(n) can be extended to the holomorphic
line bundles giving the modular forms as follows. Recall that a point on
Y1(n) is an isomorphism class of a pair (E,P ) with E a complex ellip-
tic curve and P a point of order n of E. The complex line at (E,P ) of
the bundle of forms of weight k is then ω⊗kE , the kth tensor power of the
dual of the tangent space at 0 of E. In this way, a modular form f of
weight k for Γ1(n) can be described as follows: it is a function that as-
signs to each (E,P ) an element f(E,P ) of ω⊗kE , varying holomorphically
with (E,P ), and such that it has the right property at the cusps (being holo-
morphic or vanishing). The function f has to be compatible with isomor-
phisms: if φ : E → E′ is an isomorphism, and φ(P ) = P ′, then f(E,P )
has to be equal to (φ∗)⊗kf(E′, P ′). In what follows we will simply write
φ∗ for (φ∗)⊗k.

The fact that f should be holomorphic can be stated by evaluating it on
the family of elliptic curves that we have over H. Recall that to z in H we
attached the pair (C/(Zz+Z), [1/n]). Let us denote x the coordinate of C,
then dx is a generator of the cotangent space at 0 of this elliptic curve. Then
for f a function as above, we can write:

(2.2.7) f((C/(Zz + Z), [1/n])) = Ff (z)·(dx)⊗k, Ff : H→ C.

The function Ff is then required to be holomorphic. The requirement that
f is compatible with isomorphisms means precisely that Ff transforms
under Γ1(n) as in Definition 2.2.1 above. The requirement that f van-
ishes at the cusps is equivalent to the statement that the Laurent expan-
sions in q1/n : z 7→ exp(2πiz/n) obtained by evaluating f on all pairs
(C/(Zz + Z), (az + b)/n), with a and b in Z such that (az + b)/n is of
order n are in fact power series with constant term zero.
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The spaces Sk(Γ1(n)) are equipped with certain operators, called Hecke
operators and diamond operators. These operators arise from the fact that
for every element γ of GL2(Q)+ the subgroups Γ1(n) and γΓ1(n)γ−1 are
commensurable, i.e., their intersection has finite index in each of them. The
diamond operators are then the simplest to describe. For each a in (Z/nZ)×,
Y1(n) has the automorphism 〈a〉 given by the property that it sends (E,P )
to (E, aP ). This action is then extended on modular forms by:

(2.2.8) (〈a〉f)(E,P ) = f(E, aP ).

Similarly, there are Hecke operators Tm on Sk(Γ1(n)) for all integers
m ≥ 1, defined by:

(2.2.9) (Tmf)(E,P ) =
1
m

∑
φ

φ∗f(Eφ, φ(P )),

where the sum runs over all quotients φ : E → Eφ of degree m such that
φ(P ) is of order n. Intuitively, the operator Tm is to be understood as a kind
of averaging operator over all possible isogenies of degree m. However,
the normalising factor 1/m is not equal to the inverse of the number of
such isogenies. Instead, this factor is there to make the Eichler-Shimura
isomorphism (see (2.4.5)) Tm-equivariant.

Of course, each element f of Sk(Γ1(n)) is determined by its q-expansion∑
m≥1 am(f)qm at the cusp∞. The action of the Hecke operators can be

expressed in terms of these q-expansions (see [Di-Im, (12.4.1)]):

(2.2.10) am(Trf) =
∑

0<d|(r,m)
(d,n)=1

dk−1arm/d2(〈d〉f),

for f in Sk(Γ1(n)), r and m positive integers.
From this formula, a lot can be deduced. It can be seen that the Tr com-

mute with each other (but there are better ways to understand this). The
Z-algebra generated by the Tm for m ≥ 1 and the 〈a〉 for a in (Z/nZ)× is
in fact generated by the Tm withm ≥ 1, i.e., one does not need the diamond
operators, and also by the Tp for p prime and the 〈a〉with a in (Z/nZ)× (see
[Di-Im, §3.5]). The multiplication rules for the Tm acting on Sk(Γ1(n)) can



bookarxiv March 18, 2010

MODULAR CURVES, MODULAR FORMS, LATTICES, GALOIS REPRESENTATIONS 39

be read off from the formal identity ([Di-Im, §3.4]):

(2.2.11)
∑
m≥1

Tmm
−s =

∏
p

(1− Tpp−s + pk−1〈p〉p−2s)−1,

where 〈p〉 is to be interpreted as zero when p divides n. The fact that
the Hecke and diamond operators commute means that they have common
eigenspaces. Taking m = 1 in (2.2.10) gives:

(2.2.12) a1(Trf) = ar(f).

It follows that if f is a non-zero eigenvector for all Tr, then a1(f) 6= 0,
so that we can assume that a1(f) = 1. Then, for all r ≥ 1, ar(f) is the
eigenvalue for Tr. In particular, this means that the common eigenspaces for
the Tr are one-dimensional, and automatically eigenspaces for the diamond
operators. Eigenforms with a1(f) = 1 are called normalised eigenforms.

From (2.2.11) above it follows that for a normalised eigenform f one
has:

(2.2.13)

Lf (s) :=
∑
m≥1

am(f)m−s

=
∏
p

(1− ap(f)p−s + pk−1εf (p)p−2s)−1,

where εf : (Z/nZ)× → C× is the character via which the diamond opera-
tors act on f , with the convention that εf (p) = 0 if p divides n. In particular,
theL-function of a modular form has such an Euler product expansion if and
only if the modular form is an eigenform for all Hecke operators.

An element of Sk(Γ1(n)) that is a normalised eigenform for all Hecke
operators is called a newform if the system of eigenvalues ap(f), with p not
dividing n, does not occur in a level strictly smaller than n, i.e., in some
Sk(Γ1(m)) with m < n (actually, we will see in a moment that one only
needs to consider the m’s dividing n). The set of newforms in Sk(Γ1(n))
will be denoted Sk(Γ1(n))new.

Now we want to recall briefly how one obtains a basis of Sk(Γ1(n))
in terms of the sets of newforms Sk(Γ1(m))new for m dividing n. For
details and references to proofs, see [Di-Im, I.6]. First of all, for each
n, Sk(Γ1(n))new is a linearly independent subset of Sk(Γ1(n)), hence
finite. For m dividing n and for d dividing n/m, we have a map
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Bn,m,d : X1(n) → X1(m), whose moduli interpretation is that it maps
(E,P ) to (E/〈(n/d)P 〉, d′P ), where dd′ = n/m. For example, this
means:

(2.2.14) Bn,m,d : (C/(Zz + Z), 1/n) 7→ (C/(Zzd+ Z), 1/m),

which means that the cusp∞ of X1(n) is mapped to the cusp∞ of X1(m).
Each such map Bn,m,d induces by pullback a map:

(2.2.15) B∗n,m,d : Sk(Γ1(m))→ Sk(Γ1(n)).

In terms of q-expansions at the cusp∞ we have, for f in Sk(Γ1(m)):

(2.2.16) B∗n,m,df =
∑
r≥1

ar(f)qdr,

i.e., the effect is just substitution of q by qd. With these definitions, we can
describe a basis for Sk(Γ1(n)):

(2.2.17)
∐
m|n

∐
d|(n/m)

B∗n,m,dSk(Γ1(m))new is a basis of Sk(Γ1(n)).

In the case where Γ1(n) is replaced by Γ0(n), this kind of basis is due to
Atkin and Lehner.

In the sequel, we will also make use of a (hermitian) inner product on the
Sk(Γ1(n)): the Petersson scalar product. It is defined as follows. For f and
g in Sk(Γ1(n)), viewed as functions on H as in Definition 2.2.1 one has:

(2.2.18) 〈f, g〉 =
∫

Γ1(n)\H
f(z)g(z) yk

dxdy

y2
,

where the integral over Γ1(n)\H means that one can perform it over
any fundamental domain. Indeed, formula 2.1.2 shows that the function
z 7→ f(z)g(z)yk is invariant under Γ1(n).

We also want to explain the definition of 〈f, g〉 in terms of the moduli
interpretation of Sk(Γ1(n)), if k ≥ 2. For simplicity, let us suppose n ≥ 5
now. Then Sk(Γ1(n)) is the space of global sections of ω⊗k(−Cusps)
onX1(n). Now we let Ω1 := Ω1

X1(n) denote the line bundle of holomorphic
differentials on X1(n). Then there is an isomorphism, named after Kodaira
and Spencer:

(2.2.19) KS: ω⊗2(−Cusps) ∼−→ Ω1, Kodaira-Spencer isomorphism.
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Explicitly, for f in S2(Γ1(n)), viewed as a Γ1(n)-invariant section of ω⊗2

for the family of elliptic curves over H whose fibre at z is C/(Zz + Z) we
have:

(2.2.20) KS: f(dx)⊗2 7→ (2πi)−2f
dq

q
.

Equivalently, for this family of elliptic curves, the Kodaira-Spencer isomor-
phism sends (dx)⊗2 to (2πi)−2(dq)/q. Note that indeed (dx)⊗2 and (dq)/q
transform in the same way under the action of SL2(R). We note that with-
out f being required to vanish at the cusps, KS(f) could have poles of order
one at the cusps. The factor (2πi)−2 is to make the isomorphism compatible
with the coordinates t = exp(2πix) on C×/〈exp(2πiz)〉 (which is another
way to write C/(Zz + Z)), and the coordinate q = exp(2πiz) on the unit
disk. In those coordinates, that have a meaning “over Z”, which means
that formulas relating them are power series (or Laurent series) with integer
coefficients, KS sends ((dt)/t)⊗2 to (dq)/q.

For every complex elliptic curve, the one dimensional complex vector
space ωE has the inner product given by:

(2.2.21) 〈α, β〉 =
i

2

∫
E
αβ,

where we interpret α and β as translation invariant differential forms
on E. The factor i/2 is explained by the fact that, for z = x + iy, one
has dx dy = (i/2)dz dz. Applying this to the family of elliptic curves
C/(Zz + Z) over H gives an inner product on the line bundle ω on H,
and also on the line bundle ω on Y1(n) (recall that we are supposing that
n ≥ 5). Taking tensor powers and duals, this induces inner products on ω⊗k

for all k. The Kodaira-Spencer isomorphism (2.2.20) gives isomorphisms:

(2.2.22) KS: ω⊗k(−Cusps) ∼−→ Ω1 ⊗ ω⊗(k−2).

For f and g in Sk(Γ1(n)), now viewed as sections of ω⊗k(−Cusps) over
X1(n), one has:

(2.2.23) 〈f, g〉 =
i

2

∫
X1(n)

〈KS(f),KS(g)〉,

where the inner product on the left hand side is the Petersson scalar prod-
uct (2.2.18), and where for two local sections ω1⊗α⊗(k−2)

1 and ω2⊗α⊗(k−2)
2
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of Ω1 ⊗ ω⊗(k−2) we have defined:

(2.2.24) 〈ω1 ⊗ α⊗(k−2)
1 , ω2 ⊗ α⊗(k−2)

2 〉 = 〈α1, α2〉k−2ω1ω2.

The operators Tm on Sk(Γ1(n)) with m relatively prime to n are nor-
mal: they commute with their adjoint. As a consequence, distinct new-
forms in Sk(Γ1(n)) are orthogonal to each other. On the other hand, the
basis (2.2.17) above of Sk(Γ1(n)) is not orthogonal if it consists of more
than only newforms.

2.3 LATTICES AND MODULAR FORMS

Before we move on to Galois representations attached to modular forms, we
briefly discuss the relation between modular forms and lattices.

Let us consider a free Z-module L of finite rank n, equipped with a pos-
itive definite symmetric bilinear form b : L × L → Z. Then LR := R ⊗ L
is an R-vector space of dimension n on which b gives an inner product, and
hence L is a lattice in the euclidean space LR. Form in Z the representation
numbers of (L, b) are defined as:

(2.3.1) rL(m) = rL,b(m) := #{x ∈ L | b(x, x) = m}.

In this situation, one considers the theta-function attached to (L, b):

(2.3.2) θL = θL,b =
∑
x∈L

qb(x,x)/2 =
∑
m≥0

rL(m)qm/2, H→ C,

where q1/2 : H→ C is the function q1/2 : z 7→ exp(πiz).
If (L, b) is the orthogonal direct sum of (L1, b1) and (L2, b2) then we

have:
(2.3.3)
θL =

∑
x∈L

qb(x,x)/2 =
∑

(x1,x2)∈L1×L2

qb1(x1,x1)/2+b2(x2,x2)/2 = θL1 · θL2 .

The discriminant of b is det(B), where B is the matrix of b with respect
to some basis of L (indeed, this determinant does not depend on the choice
of basis); we denote it by discr(b).

We define the positive integer NL to be the exponent of the cokernel of
the map φb : L → L∨ given by b, or, equivalently, to be the denominator



bookarxiv March 18, 2010

MODULAR CURVES, MODULAR FORMS, LATTICES, GALOIS REPRESENTATIONS 43

of B−1, where B is the matrix of b with respect to some basis e of L. The
map NLφ

−1
b : L∨Q → LQ restricts to a map NLφ

−1
b : L∨ → L. Viewing L

as (L∨)∨ in the usual way, this gives a positive definite symmetric bilinear
form b′ : L∨ × L∨ → Z. The matrix of this form with respect to the ba-
sis e∨ dual to e is NLB

−1. Applying this same construction to b′ gives a
b′′ : L × L → Z that is not necessarily equal to b: one has b = mb′′, with
m ∈ Z>0 and b′′ primitive (i.e., the Z-linear map L⊗L→ Z induced by b′′

is surjective). Poisson’s summation formula gives the following functional
equation; see [Ser5, VII, §6, Prop. 16].

2.3.4 Theorem Let L be a free Z-module, of finite rank n, equipped with a
positive definite symmetric bilinear form b : L×L→ Z. We have, with the
notation as above, for all z ∈ H:

θL,b(−1/NLz) =
(−NLiz)n/2

discr(b)1/2
θL∨,b′(z),

where the square root of−NLiz is holomorphic in z and positive for z ∈ Ri.

The form b is called even if b(x, x) is even for all x in L. Equivalently, b
is even if and only if the matrix B of b with respect to some basis of L has
only even numbers on the diagonal.

The form b is called unimodular if φb : L → L∨ is an isomorphism, or,
equivalently, if NL = 1. In this case, φb is an isomorphism from (L, b) to
(L∨, b′).

With this terminology, one has the following result, see [Miy, Cor. 4.9.5],
the proof of which has as main ingredient the functional equation of Theo-
rem 2.3.4.

2.3.5 Theorem Let L be a free Z-module of finite rank n, equipped with a
positive definite symmetric bilinear form b : L × L → Z. Assume that n is
even. Let NL be as defined above, and let χL be the character given by:

χL : (Z/NLZ)× → C×, (a mod NL) 7→

(
(−1)n/2discr(b)

a

)
,

where the fraction denotes the Kronecker symbol.

1. The function z 7→ θL(2z) is a (non-cuspidal) modular form on
Γ1(4NL) of weight n/2 and with character χL.
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2. If b is even then the function θL is a modular form on Γ1(2NL) of
weight n/2 and with character χL.

3. If both b and b′ (see above for its definition) are even, then the function
θL is a modular form on Γ1(NL) of weight n/2 and with character χL.

This theorem says nothing about the case where n is odd. In that case, θL is
a modular form of half-integral weight n/2; see [Miy, Cor. 4.9.7]. For even
unimodular forms, we have the following corollary of Theorem 2.3.5.

2.3.6 Corollary Let L be a free Z-module of finite rank n, and let
b : L× L→ Z be bilinear, symmetric, positive definite, even and unimodu-
lar. Then n is even, and θL is a modular form on SL2(Z) of weight n/2.

Proof As b is unimodular, we haveNL = 1. The fact that n is even follows
from the fact that b induces a non-degenerate alternating bilinear form on
F2 ⊗ L. As φb : L → L∨ is an isomorphism between (L, b) and (L∨, b′),
we have that b′ is even as well. Theorem 2.3.5 gives the conclusion. �

2.3.7 Remark In fact, the rank of an even unimodular lattice is a multi-
ple of 8. This follows directly from Theorems 2.3.4 and 2.3.5 (see [Miy,
Cor. 4.9.6], or [Ser5, VII, §6, Thm. 8]).

Let us consider some examples.

2.3.8 Example For n ∈ Z≥0 we consider Zn with its standard inner prod-
uct. For m in Z we have:

rZn(m) = #{x ∈ Zn |x2
1 + · · ·+ x2

n = m},

the number of ways in whichm can be written as a sum of n squares of inte-
gers. Theorem 2.3.5 tells us that for even n the theta function z 7→ θZn(2z)
is a modular form on Γ1(4) of weight n/2. According to (2.3.3) we have
θZn = θnZ, and so all the functions z 7→ θZn(2z) are powers of the modular
form

∑
m∈Z q

m2
of weight 1/2 on Γ1(4).



bookarxiv March 18, 2010

MODULAR CURVES, MODULAR FORMS, LATTICES, GALOIS REPRESENTATIONS 45

2.3.9 Example We consider the E8-lattice, i.e., E8 := Z8 equipped with
the inner product given by the Dynkin diagram E8 with numbered vertices:

1 2 3

4

5 6 7 8

that is, whose matrix with respect to the standard basis is:

2 −1
−1 2 −1

−1 2 −1 −1
−1 2
−1 2 −1

−1 2 −1
−1 2 −1

−1 2


.

The lattice E8 is unimodular and even, hence, by Corollary 2.3.6, θE8

is a modular form on SL2(Z) of weight 4, i.e., θE8 is an element
of M4(SL2(Z)). The dimension space of M4(SL2(Z)) is one, with the
Eisenstein series E4 = 1 + 240

∑
n≥1 σ3(n)qn as basis. Therefore, θE8

is a constant times E4. Comparing constant terms, we get:

θE8 = E4 = 1 + 240
∑
n≥1

σ3(n)qn.

2.3.10 Example Let L be the Leech lattice. This lattice, which is of
rank 24, even and unimodular, is named after John Leech, see [Lee2]
and [Lee1]. Apparently, it had already been discovered by Ernst Witt in
1940 (unpublished, see [Wit]). John Horton Conway showed in [Conw]
that L is the only non-zero even unimodular lattice of rank less than 32 with
rL(2) = 0; this also follows from Hans-Volker Niemeier’s classification of
even unimodular lattices of rank 24 in [Nie]. According to Henry Cohn and
Abhinav Kumar [Co-Ku], the Leech lattice gives the densest lattice sphere
packing in dimension 24.

Theorem 2.3.5 above shows that the theta function θL of the Leech lattice
is a modular form of level 1 and weight 12. The space of such modular
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forms is two-dimensional, with basis the Eisenstein series E12 and the dis-
criminant form ∆, where:

E12 = 1 +
65520
691

∑
m≥1

σ11(m)qm.

Hence θL is a linear combination of E12 and ∆. Comparing the coefficients
of qm for m = 0 and m = 1 gives:

θL = E12 −
65520
691

∆.

2.4 GALOIS REPRESENTATIONS ATTACHED TO EIGENFORMS

The aim of this section is to describe the construction of the Galois rep-
resentations attached to modular forms, that came up in the case of ∆ in
Section 1.5. Before giving the construction, let us state the result, which is
due, for k = 2, to Eichler and Shimura [Shi1], to Deligne [Del1] for k > 2,
and to Deligne and Serre [De-Se] for k = 1. See Section 12.5 in [Di-Im].
A long account of the construction in the case k ≥ 2 will be given in the
book [Conr].

2.4.1 Theorem Let f be a normalised newform, let n be its level, let k be its
weight, and let ε : (Z/nZ)× → C× be its character. Then the subfield K of
C generated overQ by the an(f), n ≥ 1, and the image of ε is finite overQ.
For every prime number l and for any embedding λ of K into Ql, there is
a continuous two-dimensional representation Vλ over Ql of Gal(Q/Q) that
is unramified outside nl and such that for each prime number p not dividing
nl the characteristic polynomial of the Frobenius at p acting on Vλ equals:

det(1− xFrobp, Vλ) = 1− ap(f)x+ ε(p)pk−1x2.

For k ≥ 2 the representations Vλ can be found in the l-adic étale coho-
mology in degree k − 1 of some variety of dimension k − 1, or in the
cohomology in degree one of some sheaf on a curve, as we will describe
below. The determinant of the action of Gal(Q/Q) on Vλ is easily de-
scribed. We let χl : Gal(Q/Q) → Z×l be the l-adic cyclotomic charac-
ter defined by σ(z) = zχl(σ), for all σ in Gal(Q/Q) and all z in Q×

of l-power order. We let ε : Gal(Q/Q) → K× be the composition of
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the character ε : (Z/nZ)× → K× with the mod n cyclotomic character
Gal(Q/Q)→ (Z/nZ)× given by the action of Gal(Q/Q) on µn(Q). With
these definitions, the determinant of the action of Gal(Q/Q) on Vλ is given
by the character εχk−1

l . As the image of Gal(Q/Q) under the determinant
of Vλ is infinite, its image in GL(Vλ) is infinite.

On the other hand, for k = 1, the image of Gal(Q/Q) in GL(Vλ) is fi-
nite, and in fact all these representations when λ varies can be realised over
some fixed finite extension of Q. The proof of Theorem 2.4.1 by Deligne
and Serre in the case k = 1 is quite different from the case k ≥ 2: the
reductions to finite coefficient fields (see Section 2.5) can be constructed
via congruences to forms of weight 2, and then it is shown that these repre-
sentations can be lifted to characteristic zero. No direct construction of the
characteristic zero Galois representations for forms of weight one is known.
We remark that in the case k = 2 the Vλ occur in the first degree étale co-
homology with constant coefficients Ql of modular curves, hence can be
constructed from l-power torsion points of Jacobians of modular curves (in
fact, of the modular curve X1(n)).

The representation Vλ is irreducible by a theorem of Ribet, see Theo-
rem 2.3 of [Rib2], and hence it is characterised by its trace. As the Frobenius
conjugacy classes at the primes not dividing nl are dense by Chebotarev’s
theorem, the representation Vλ is unique up to isomorphism. Non-cuspidal
eigenforms lead to Galois representations that are reducible; as our interest
lies in going beyond class field theory, we do not discuss this case.

Let us now start the description of the construction, by Deligne, of the
representation Vλ as in Theorem 2.4.1 above in the case where k ≥ 2. First,
if n < 5, we replace n by say 5n and f by a normalised Hecke eigenform in
the 2-dimensional C-vector space generated by f(q) and f(q5). Then f is
no longer a newform, but it is an eigenform, which will be good enough, and
as n ≥ 5 we can view it as a section of the line bundle ω⊗k(−Cusps) on the
smooth complex projective curve X1(n). The eigenvalues at primes other
than 5 have not been changed by this operation. As one can compute from
the formulas in the previous section, the two possible eigenvalues for T5 on
the space generated by f(q) and f(q5) are the two roots of the polynomial
x2− a5(f)x+ ε(5)5k−1, i.e., the two eigenvalues of the Frobenius element
at 5 attached to f if λ does not divide 5. For a detailed computation for this,
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see Section 4 of [Co-Ed]; that article also explains why one should expect
the two eigenvalues always to be distinct, and that this is a theorem if k = 2.

On Y1(n), we have a universal family (E/Y1(n),P) of elliptic curves
with a given point of order n. Taking fibre-wise the cohomology H1(Es,Z)
gives us a locally constant sheaf on Y1(n), denoted R1p∗ZE because it is
the first higher direct image of the constant sheaf ZE on E via the morphism
p : E → Y1(n). The stalks of the locally constant sheaf R1p∗ZE on Y1(n)
are free Z-modules of rank 2. More concretely, the sheaf R1p∗ZE is ob-
tained from the constant sheaf Z2 on H by dividing out the Γ1(n)-action
given by:

(2.4.2) γ·
((

n

m

)
, τ

)
=
(
γ·
(
n

m

)
, γ·τ

)
=
((

an+ bm

cn+ dm

)
,
aτ + b

cτ + d

)
,

where γ = ( a bc d ).
We will also use other locally constant sheaves on Y1(n) that are obtained

from R1p∗ZE by tensor constructions. The classification of the irreducible
representations of the algebraic group GL2 over Q implies that these ten-
sor constructions are finite direct sums in which each term is a symmetric
power of R1p∗ZE, tensored with a power of the determinant of R1p∗ZE. We
define:

(2.4.3) Fk := Symk−2(R1p∗ZE),

where Symk−2 denotes the operation of taking the (k − 2)th symmetric
power. The sheaf Fk is then obtained by dividing out the Γ1(n)-action
on the constant sheaf Symk−2(Z2) on H. It is useful to view Z2 as
the Z-submodule Zx ⊕ Zy of the polynomial ring Z[x, y]. The grading
Z[x, y] = ⊕iZ[x, y]i by the degree then gives the symmetric powers of
Zx⊕ Zy:

(2.4.4) Symk−2(Z2) = Z[x, y]k−2 =
⊕

i+j=k−2

Zxiyj .

We extend the sheaf Fk to X1(n) by taking the direct image via the open
immersion j : Y1(n) → X1(n); this gives us j∗Fk on X1(n), again de-
noted Fk. Outside the cusps, Fk is locally constant, with stalks free of rank
k − 1 as Z-modules. At the cusps, the stalks of Fk are free of rank one.
At the cusp ∞ this follows from the fact that the subring of invariants of
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Z[x, y] for the action of ( 1 ∗
0 1 ) is Z[x]. At the other cusps it then follows by

conjugating with a suitable element of SL2(Z). We note that for k = 2 the
sheaf Fk is the constant sheaf Z on X1(n).

The Eichler-Shimura isomorphism gives a relation between modular
forms and the cohomology of Fk. One way to view this, due to Deligne,
is in terms of Hodge structures. More precisely, the C-vector space
C⊗H1(X1(n),Fk) carries a Hodge decomposition:

(2.4.5) C⊗H1(X1(n),Fk) −̃→ Sk(Γ1(n))⊕ Sk(Γ1(n)),

where the two terms on the right are of type (k−1, 0) and (0, k−1), respec-
tively. The complex conjugation on the second term on the right comes from
the complex conjugation on the tensor factorC on the left. A good reference
for this decomposition and its properties is [Ba-Ne]; we will not go into de-
tails here. For an account using group cohomology we refer to Section 12.2
of [Di-Im]. For k = 2 all of this is quite easy. Via the Kodaira-Spencer
isomorphism (2.2.20) it then is the decomposition:

(2.4.6) H1(X1(n),C) = H0(X1(n),Ω1)⊕H0(X1(n),Ω1).

We should mention that instead of working with the sheaf Fk on the curve
X1(n), one can also work with a constant sheaf on a k − 1-dimensional va-
riety. As before, we let (E,P) denote the universal object over Y1(n). Then
we let Ek−2 denote the k−2-fold fibre power of E over Y1(n); these are the
simplest cases of so-called Kuga-Sato varieties. The graded commutative
algebra structure on cohomology gives, for s in Y1(n), a map, equivariant
for the action of the symmetric group Sk−2:

Z(ε)⊗H1(Es,Z)⊗ · · · ⊗H1(Es,Z) −→ Hk−2(Ek−2
s ,Z),

where Z(ε) denotes the sign representation. Twisting this map by Z(ε) and
taking co-invariants gives a map:

(2.4.7) Fk,s = Symk−2(H1(Es,Z)) −→ Hk−2(Ek−2
s ,Z)ε,

where the subscript ε means the largest quotient on which Sk−2 acts via
the sign representation. In view of the Leray spectral sequence for the co-
homology H(Ek−2,Z) of Ek−2 in terms of the cohomology of the higher
derived direct images H(Y1(n),Rp∗ZEk−2) it is then not so surprising that
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Sk(Γ1(n)) can be identified with a piece of Hk−1(Ek−2,C), where Ek−2 is
a certain smooth projective model of Ek−2 over X1(n). Some details for
this can be found in [Del1], and more of them in [Sch1], and probably still
more in [Conr]. A very explicit way to describe this identification is the
map:

(2.4.8)
Sk(Γ1(n)) −→ Hk−1(Ek−2,C),

f 7→ (2πi)k−1fdτ dz1 · · · dzk−2,

where τ is the coordinate on H, and the zj are the coordinates on the copies
of C using Eτ = C/(Zτ +Z). It is indeed easy to verify that the differential
form on the right is invariant under the actions of Z2(k−2) and SL2(Z), pre-
cisely because f is a modular form of weight k for Γ1(n). The claim (proved
in the references above) is that it extends without poles over Ek−2. As it is
a holomorphic form of top-degree, it is automatically closed, and hence de-
fines a class in the de Rham cohomology of Ek−2, hence in Hk−1(Ek−2,C).

There are natural Hecke correspondences on C ⊗ H1(X1(n),Fk) and
on Hk−1(Ek−2,C), and the identification of Sk(Γ1(n)) as a piece of these
cohomology groups is compatible with these correspondences. Let now
f be our eigenform in Sk(Γ1(n)) as above. Then the Hecke eigenspace in
C⊗H1(X1(n),Fk) with the eigenvalues am(f) for Tm is two-dimensional:
the sum of the one-dimensional subspace Cf in Sk(Γ1(n)) and the one-
dimensional subspace Cf ′ in Sk(Γ1(n)), where f ′ =

∑
m≥1 am(f)qm, the

Galois conjugate of f obtained by letting complex conjugation act on the
coefficients of f . This element f ′ has eigenvalue am(f) for Tm, hence
f ′ has eigenvalue am(f) again. The (k − 1)-form corresponding to f ′ is
f ′dτ dz1 · · · dzk−2, indeed a form of type (0, k − 1).

We let T(n, k) or just T denote the Z-algebra in EndC(Sk(Γ1(n))) gen-
erated by the Tm (m ≥ 1) and the 〈a〉 (a in (Z/nZ)×). The fact that
the Eichler-Shimura isomorphism (2.4.5) is equivariant for the Hecke cor-
respondences acting on both sides implies that the image of H1(X1(n),Fk)
in C⊗H1(X1(n),Fk) is a faithful T(n, k)-module. As this image is free of
finite rank as Z-module, T(n, k) is free of finite rank as Z-module.

Let us for a moment drop the assumption that n ≥ 5. For A a sub-
ring of C and for n ≥ 1, we let Mk(Γ1(n), A) be the sub-A-module of
Mk(Γ1(n)) consisting of elements g such that am(g) ∈ A for all m ≥ 0.
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In particular, Mk(Γ1(n),Z) is the submodule of forms whose q-expansion
has all its coefficients in Z. Similarly, for A a subring of C and for n ≥ 1,
we let Sk(Γ1(n), A) be the sub-A-module of Sk(Γ1(n)) consisting of ele-
ments g such that am(g) ∈ A for all m ≥ 1. For example, ∆ belongs to
S12(SL2(Z),Z). The Sk(Γ1(n), A) are T(n, k)-submodules of Sk(Γ1(n));
see Propositions 12.3.11 and 12.4.1 of [Di-Im].

We have the following pairing between T(n, k) and Sk(Γ1(n),Z):

(2.4.9) Sk(Γ1(n),Z)× T(n, k) −→ Z, (g, t) 7→ a1(tg).

This pairing is perfect, in the sense that it identifies each side with the Z-
linear dual of the other; this follows easily from the identity (2.2.12). It
follows that the Z-dual Sk(Γ1(n),Z)∨ of Sk(Γ1(n),Z) is free of rank one
as T(n, k)-module. See [Di-Im, 12.4.13].

For any Z-algebra A we let TA = T(n, k)A denote A ⊗ T(n, k), and
T∨A will denote the A-linear dual of TA. It can be proved that T∨Q is free
of rank one as TQ-module, i.e., that TQ is Gorenstein. One proof is by ex-
plicit computation, see Theorem 3.5 and Corollary 3.6 of [Par]. Another,
more conceptual proof, uses the Petersson inner product, and a so-called
Atkin-Lehner pseudo-involution wζn , to show that Sk(Γ1(n))∨ is isomor-
phic as TC-module to Sk(Γ1(n)) itself; see [Di-Im, 12.4.14]. It follows
that Sk(Γ1(n)) is free of rank one as TC-module, and, if n ≥ 5, that
Q ⊗ H1(X1(n),Fk) and its dual Q ⊗ H1(X1(n),Fk)∨ are free of rank
two as TQ-module. It is this freeness result that will lead to the fact that the
Galois representations we get are two-dimensional.

We assume again that n ≥ 5. The step from the cohomological interpre-
tation of modular forms, given, over the complex numbers, by the Eichler-
Shimura isomorphism (2.4.5), to two-dimensional l-adic Galois represen-
tations is made by comparing the cohomology groups above to their l-adic
counterparts for the étale topology, and noting that p : E → X1(n) is natu-
rally defined over Z[1/n] as we have seen at the end of Section 2.1. From
now on we will denote by X1(n) this model over Z[1/n], and by X1(n)(C)
the Riemann surface given by X1(n). For any Z[1/n]-algebra A, X1(n)A
will denote the A-scheme obtained from X1(n) by extending scalars via
Z[1/n]→ A.
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We let Fk,l denote the sheaf ofQl-vector spacesQl⊗Fk onX1(n). Then
we have a canonical isomorphism:

(2.4.10) H1(X1(n)(C),Fk,l) = Ql ⊗H1(X1(n)(C),Fk).

The sheaves Fk,l can also be constructed on the étale site X1(n)et, by tak-
ing the first derived direct image of the constant sheaf Ql on Eet under
p : E → Y1(n), then the (k − 2)th symmetric power of that and finally
the pushforward from Y1(n) to X1(n).

The usual comparison theorems (comparing cohomology for étale and
Archimedean topology, and étale cohomology over various algebraically
closed fields) give:

(2.4.11)
H1(X1(n)(C),Fk,l) = H1(X1(n)C,et,Fk,l)

= H1(X1(n)Q,et,Fk,l).

We put:

(2.4.12) Wl := H1(X1(n)Q,et,Fk,l)
∨.

By the results and the comparisons above, Wl is, as TQl-module, free of
rank 2, and Gal(Q/Q) acts continuously on it. To be precise: an element
σ of Gal(Q/Q) acts as ((id × Spec(σ−1))∗)∨, which is indeed covariant
in σ. The fact that the Hecke correspondences exist over Q makes that the
Gal(Q/Q)-action on Wl commutes with the Hecke operators. The choice
of a TQl-basis of Wl gives us a representation:

(2.4.13) ρl : Gal(Q/Q) −→ GL2(TQl).

Recall that we have fixed an eigenform f in Sk(Γ1(n),C). Sending a Hecke
operator to its eigenvalue for f then gives us a morphism of rings:

(2.4.14) φf : T −→ C.

We let K(f) be the image of TQ under φf ; it is the finite extension of
Q obtained by adjoining all coefficients am(f) of the q-expansion of f . We
now view φf as a morphism from T toK(f). The tensor productQl⊗K(f)
is the product of the completions K(f)λ, with λ ranging through the finite
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places of K(f) that divide l. For each such λ we then get a morphism
φf,λ : TQl → K(f)λ, and a representation:

(2.4.15) ρf,λ : Gal(Q/Q) −→ GL2(K(f)λ).

These are the representations mentioned in Theorem 2.4.1. It may be useful
to note that the space on which the representation is realised is:

(2.4.16) Vf,λ := K(f)λ ⊗TQl
Wl.

The representations ρf,λ are continuous by construction. The sheaves Fk,l
on X1(n)Z[1/nl] are “lisse” away from the cusps, and tamely ramified at the
cusps, hence, by Proposition 2.1.9 of [SGA7, XIII, §2], ρf,λ is unramified
at all p not dividing nl.

In the case where k = 2 the construction of the ρf,λ is much simpler,
because then the sheaf Fk is the constant sheaf Z on X1(n)(C). The use
of étale cohomology can then be replaced by Tate modules of the Jacobian
variety of X1(n). We let J := J1(n) be this Jacobian variety, actually an
Abelian scheme over Z[1/n]. Then we have:

(2.4.17) Wl = Q⊗ lim←−
m

J(Q)[lm].

The fact that for p a prime not dividing nl the characteristic polynomial of
ρf,λ(Frobp) is as stated in Theorem 2.4.1 is obtained by studying the reduc-
tion modulo p of the Hecke correspondence Tp, i.e., as a correspondence
on X1(nl)Fp , compatibly with the sheaf Fk,l. For details we refer to Con-
rad’s book [Conr] and Deligne’s article [Del1]. In the case k = 2 this result
is known as the Eichler-Shimura congruence relation, expressing the endo-
morphism Tp of JFp as F + 〈p〉V , where F denotes the Frobenius endomor-
phism, and V its dual, i.e, the endomorphism satisfying FV = p = V F in
End(JFp). For details in the case k = 2 we refer to Section 12.5 of [Di-Im].

Now that we have sketched the construction of the l-adic Galois repre-
sentations attached to modular forms, we mention some more of their prop-
erties, that are not mentioned in Theorem 2.4.1 and in the remarks directly
following that theorem.

The fact that Deligne proved the Riemann hypothesis part of Weil’s
conjectures in [Del2] implies very precise bounds on the coefficients of
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modular forms. The reason for that is that the roots of the equation
x2−ap(f)x+ εf (p)pk−1 are eigenvalues of the Frobenius at p on the space
Hk−1(Ek−2

Fp,et,Ql). We state these bounds, called Ramanujan bounds, in
a theorem, due to Deligne in the case k ≥ 2, and to Deligne-Serre ([De-Se])
in the case k = 1.

2.4.18 Theorem Let f be a normalised newform, let n be its level and k its
weight. Then for p not dividing n, we have:

(2.4.19) |ap(f)| ≤ 2·p(k−1)/2.

A slightly weaker result than in the theorem above, stating that, for a given
f as above, |am(f)| = O(mk/2), can be obtained in a very elementary way;
see [Miy, Cor. 2.1.6] (the idea is to use that the function z 7→ |f(z)|(=(z))k

is bounded on H and to view am(f) as a residue).
Theorem 2.4.1 gives us information on the restriction ρf,λ,p of ρf,λ to

decomposition groups Gal(Qp/Qp) for p not dividing nl. Namely, the the-
orem says that such restrictions ρf,λ,p are unramified, and it gives the eigen-
values of ρf,λ,p(Frobp). Unfortunately, it is not known if ρf,λ,p(Frobp) is
semi-simple; see [Co-Ed] for information on this.

We should note that also in the case that p divides nl almost everything
is known about ρf,λ,p. For p not dividing l, this is the very general state-
ment that the “Frobenius semi-simplification” of ρf,λ,p corresponds, via a
suitably normalised local Langlands correspondence, to a certain represen-
tation πf,p of GL2(Qp) attached to f . This result is due, in increasing order
of generality, to Langlands, Deligne, and Carayol. For details on this the
reader is referred to [Car], which gives this result in the more general con-
text of Hilbert modular forms (i.e., Q is replaced by a totally real number
field). The result for p = l uses Fontaine’s p-adic Hodge theory, and is due
to Saito ([Sai1] for the case of modular forms, and [Sai2] for the case of
Hilbert modular forms).
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2.5 GALOIS REPRESENTATIONS OVER FINITE FIELDS, AND REDUC-
TION TO TORSION IN JACOBIANS

We start this section by explaining how to pass from l-adic Galois represen-
tations to Galois representations over finite fields.

Let f =
∑
amq

m be a (complex) normalised cuspidal eigenform for all
Hecke operators Tm, m ≥ 1, of some level n ≥ 1 and of some weight
k ≥ 2. As in Theorem 2.4.1 we have the Galois representations ρf,λ, from
Gal(Q/Q) to GL2(Ql). It follows from the construction of those represen-
tations that there is a finite subextensionQl → E ofQl → Ql such that ρf,λ
takes its values in GL2(E). (Actually, this can also be deduced from the
continuity alone; see the proof of Corollary 5 in [Dic1] for an argument.)
The question as to what the smallest possible E is can be easily answered.
Such an E must contain the traces ap(f) of the ρf,λ(Frobp) for all p not di-
viding nl. So let K be the extension of Q generated by the ap(f) with p not
dividing n, i.e., K is the field of definition of the newform corresponding
to f . Then E can be taken to be Kλ, the l-adic completion of K specified
by the embedding λ of K into Ql (see Section 12.5 in [Di-Im]).

Let now ρf,λ : Gal(Q/Q) → GL2(E) be a realisation of ρf,λ over E
as above. As ρf,λ is semisimple (it is even irreducible), such a realisa-
tion is unique up to isomorphism (because it is determined by the traces).
Let OE be the ring of integers in E, i.e., the integral closure of Zl in E.
As Gal(Q/Q) is compact, it stabilises some OE lattice in E2 (in the set
of lattices, the orbits under Gal(Q/Q) are finite, take the intersection, or
the sum, of the lattices in one orbit). This means that, after suitable con-
jugation (choose such a lattice, and an OE-basis of it), ρf,λ takes values
in GL2(OE). We let OE → Fl denote the morphism induced by the given
embedding of E into Ql (we view Fl as the residue field of the subring
of integers Zl of Ql). We can then define the residual Galois represen-
tation ρf,λ to be the semi-simplification of the composed representation
Gal(Q/Q) → GL2(OE) → GL2(Fl). Another choice of E or of lattice
or basis leads to an isomorphic ρf,λ, but we note that without the operation
of semi-simplification this would not be true (see Chapter III of [Ser7]).

Given f , all but finitely many of the ρf,λ are irreducible. This was proved
for f of level one and with coefficients in Z in Theorem 4 of [Swi]. The
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general case follows easily from Theorem 2.3 of [Fa-Jo], which says that
if ρf,λ is reducible with l > k not dividing n, then ρf,λ = α ⊕ βχk−1

l

with α and β unramified outside n, and χl : Gal(Q/Q) → F×l the mod l
cyclotomic character. Moreover, the proof shows that the set of l such that
some ρf,λ is reducible can be bounded explicitly.

The next question that we want to answer is the following: what is the
smallest subfield of Fl over which ρf,λ can be realised? Just as for ρf,λ
itself, that subfield must contain the traces of the ρf,λ(Frobp) for all p not
dividing nl. That condition turns out to be sufficient, as we will now show.
So we let, in this paragraph, F be the subfield of Fl that is generated by the
images ap(f) in Fl of the ap(f) in Zl. Then for any σ in Gal(Fl/F) the
conjugate ρσf,λ of ρf,λ and ρf,λ itself are both semisimple and give the same
characteristic polynomials as functions on Gal(Q/Q). Therefore, by a the-
orem of Brauer-Nesbitt (see Theorem 30.16 of [Cu-Re]), ρf,λ is isomorphic
to all its conjugates over F. (A more general statement of this kind is given
in Exercise 1 of Section 18.2 of [Ser7].) The fact that Gal(Fl/F) is equal to
Ẑ then implies that ρf,λ can be realised over F. Let us give an argument for
that in terms of matrices, although a much more conceptual argument would
be to say that a “gerbe over a finite field is trivial”. Let σ be the Frobenius
element of Gal(Fl/F), and let s be an element of GL2(Fl) such that for all
g in the image of ρf,λ we have σ(g) = sgs−1. Then take a t in GL2(Fl)
such that s = σ(t)−1t. Then all tgt−1 are in GL2(F). By Brauer-Nesbitt,
the realisation over F is unique.

For a discussion on possible images of ρf,λ we refer the reader to the in-
troduction of [Ki-Ve] (we note however that for f a “CM-form”, i.e., a form
for which all l-adic Galois representations have dihedral image) infinitely
many of the ρf,λ can have dihedral image in PGL2(Fl)). In particular, The-
orem 2.1 of [Rib3] states that for f not a CM-form only finitely many of
the images of the ρf,λ are exceptional in the sense that they are of order
prime to l. See also Theorem 2.5.18 for the case where n = 1. For l > 3
such that ρf,λ is irreducible and not exceptional, a result of Dickson, see
Chapter XII of [Dic2], or the proof of Theorem 2.5 of [Rib4], says that the
image of ρf,λ in PGL2(Fl) is, after suitable conjugation, equal to PGL2(F)
or SL2(F)/{1,−1} for some finite extension F of Fl. We note that this
field F can be smaller than the extension Fl generated by the traces of ρf,λ
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(indeed, twisting does not change the projective image, but it can make the
field generated by the traces bigger).

We will use later on the following lemma.

2.5.1 Lemma Let l be a prime number, let V be a two-dimensional Fl-
vector space, and let G be a subgroup of Aut(V ) of order a multiple of l,
and such that V is irreducible as a representation of G. Then G contains
SL(V ), and acts transitively on V − {0}.

Proof Let g1 be an element ofG of order l. Then the kernel L1 of g1− idV
is a line. As V is irreducible, L1 is not G-invariant, hence we can take an
element h in G such that L2 := hL1 is not L1. Then g2 := hg1h

−1 is of
order l and fixes L2. Let e1 and e2 be non-zero elements of L1 and L2,
respectively. Then with respect to the basis e = (e1, e2) of V , g1 and g2

are given by elementary matrices of the form ( 1 a
0 1 ) and ( 1 0

b 1 ), respectively,
with a and b non-zero, and hence generate SL(V ). �

It follows that if ρf,λ takes values in GL2(Fl), and is irreducible and not
exceptional, then imρf,λ contains SL2(Fl), and therefore is the subgroup
of elements of GL2(Fl) whose determinant is in the image of the charac-
ter εf ·χk−1

l . In that case, imρλ acts transitively on F2
l − {0}.

The properties of residual Galois representations that we have seen above
show that we do not need to define them via l-adic Galois representations,
but that we can start from maximal ideals in Hecke algebras.

2.5.2 Theorem Let n and k be positive integers. Let F be a finite field, and
f : T(n, k)→ F a surjective morphism of rings. Then there is a continuous
semi-simple representation:

ρf : Gal(Q/Q) −→ GL2(F)

that is unramified outside nl, where l is the characteristic of F, such that for
all p not dividing nl we have, in F:

trace(ρ(Frobp)) = f(Tp) and det(ρ(Frobp)) = f(〈p〉)pk−1.

Such a ρf is unique up to isomorphism (i.e., up to conjugation).
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Proof Let n, k, F and f be given. As T := T(n, k) is free of finite rank as
Z-module, Spec(T) has only finitely many irreducible components, each of
which is one-dimensional and finite over Spec(Z). Therefore, the maximal
ideal ker(f) of TFl is the specialisation of a maximal ideal m of TQ. Let
K be the quotient TQ/m. Then the quotient morphism TQ → K is a nor-
malised eigenform f̃ in Sk(Γ1(n))K , and ρf is the realisation over F of the
reduction of some ρf̃ ,λ. �

Let now f be as in Theorem 2.5.2, and let us suppose now that ρf is irre-
ducible. The construction of l-adic Galois representations that we recalled
in Section 2.4 implies that the dual of ρf occurs in Hk−1(Ek−2

Q,et,Fl), as
well as in H1(X1(n)Q,et,Fk,l), where Fk,l is defined as Fk,l but with Ql
replaced by Fl. Let us now assume that k > 2. Then both these realisa-
tions are difficult to deal with computationally. In the first representation
the difficulty arises from the degree k − 1 étale cohomology; it seems to be
unknown how to deal explicitly with elements of such cohomology groups.
In the second representation, the elements of the cohomology group are
isomorphism classes of Fk,l-torsors, on X1(n)Q,et. Such torsors can be de-
scribed explicitly, as certain covers of X1(n)Q with certain extra data. The
set of such torsors can probably be described by a system of polynomial
equations that can be written down in time polynomial in nl (think of the
variables as coefficients of certain equations for the torsors). But the prob-
lem is that, apparently, there are no good methods known to solve these
systems of equations (the number of variables grows too fast with l and
the equations are not linear). In fact, the satisfiability problem SAT, which
is known to be NP-complete (Cook’s theorem, see for example [Mor1], or
wikipedia), is a special case of the problem of deciding whether or not a
polynomial system of equations over F2 has a solution over F2. We note
that the description of the set of torsors by a system of polynomial equa-
tions should also work over suitable finite extensions of finite fields Fp, in
time polynomial in l log p.

Another place where ρf occurs is in J1(nl)(Q)[l], i.e., in the l-torsion of
the Jacobian of the modular curve with level nl, if l+ 1 ≥ k and l 6 |n. This
means that at the cost of increasing the level by a factor l, we are reduced
to dealing with torsion points on Abelian varieties. Of course, the l-adic
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representations ρf̃ ,λ attached to lifts of f do not occur in the Jacobian of
any curve, simply because the Frobenius eigenvalues are Weil numbers of
the wrong weight. What happens here for ρf is a “mod l phenomenon”
having to do with “congruences” between modular forms. Before we give a
detailed statement, let us explain why this happens (such explanations date
back at least to the 1960’s; Shimura, Igusa, Serre,. . . ).

For simplicity, and only during this explanation, we assume that n ≥ 5.
Then we have a universal elliptic curve with a given point of order n over
Z[1/nl]-schemes: (E/Y1(n),P). We let p : E→ Y1(n) denote the structure
morphism. By definition, we have:

(2.5.3) Fk,l = Symk−2 R1p∗Fl.

As explained at the end of Section 1.3, we have a natural isomorphism:

(2.5.4) R1p∗Fl = E[l]∨.

And by the definition of Y1(nl), and the Weil pairing, we have an exact
sequence on Y1(nl)et:

(2.5.5) 0 −→ Fl −→ E[l] −→ µl −→ 0,

where Fl and µl denote the corresponding constant sheaves. It follows that
the pullback of R1p∗Fl to Y1(nl)et has a 2-step filtration with successive
quotients Fl and µ∨l . Therefore, Fk,l has a filtration in k − 1 steps, with
successive quotients F⊗il ⊗ (µ∨l )⊗j = µ⊗−jl , with i + j = k − 2, i ≥ 0,
j ≥ 0. In particular, we get a map:

(2.5.6)
H1(X1(n)Q,et,Fk,l) −→ H1(X1(nl)Q,et,Fk,l) −→

−→ H1(X1(nl)Q,et,Fl) = J1(nl)(Q)[l]∨.

This map explains that ρf is likely to occur in J1(nl)(Q)[l]. A better way
to analyse this map is in fact by studying the direct image of the constant
sheaf Fl via the map X1(nl) → X1(n). A recent detailed treatment of this
method, and precise results can be found in [Wie1].

Another way to show that ρf occurs in J1(nl)(Q)[l] is to study modular
forms mod l of level nl and of weight 2. This is more complicated than the
modular forms that we have seen before, as it uses the study of the reduction
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mod l of the modular curve X1(nl), which is not smooth. The study of
these reductions has its roots in Kronecker’s congruence relation. The most
complete modern accounts of such material are given in the article [De-Ra]
by Deligne and Rapoport and in the book [Ka-Ma] by Katz and Mazur. A
construction of ρf in J1(nl)(Q)[l], following suggestions from Serre, was
given by Gross in [Gro].

We are now in a position to state the following theorem, that, combining
Gross’s result with a so-called multiplicity one theorem, gives us a useful
realisation of ρf . As it is nowadays customary to say, it is a result due to
“many people” (mainly Mazur, Ribet, Gross (and Edixhoven for the multi-
plicity one part)).

2.5.7 Theorem Let n and k be positive integers, F a finite field and l its
characteristic, and f : T(n, k) → F a surjective ring morphism. Assume
that 2 < k ≤ l+1 and that the associated Galois representation ρf from
Gal(Q/Q) to GL2(F) is absolutely irreducible. Then there is a unique ring
morphism f2 : T(nl, 2)→ F such that for all i ≥ 1 one has f2(Ti) = f(Ti).
The morphism f2 is surjective. Let mf = ker(f2), and let Vf ⊂ J1(nl)(Q)
denote the kernel of mf , i.e., the F-vector space of elements x in J1(nl)(Q)
such that tx = 0 for all t in mf . Then Vf is a finite, non-zero, direct sum
of copies of ρf . If k < l then the multiplicity of ρf in Vf is one, i.e., Vf
realises ρf . For all a ∈ (Z/nlZ)×, one has f2(〈a〉) = f(〈a〉)ak−2, where
we still denote by a its images in Z/nZ and in Fl.

Proof The existence of f2 and the statement that Vf is a successive ex-
tenstion of copies of ρf are given in [Gro] (see his Proposition 11.8). In
Section 6 of [Edi1] it is proved, applying results from [Bo-Le-Ri], that Vf
is a direct sum of copies of ρf . Case 1 of Theorem 9.2 of [Edi1] gives the
multiplicity one result. �

2.5.8 Remark See [Wie2], Corollary 4.5, for a complete result on the mul-
tiplicity one question for weights k with 2 ≤ k ≤ l+1. In particular, if k = l

and ρf is unramified at l and ρf (Frobl) is scalar, then this multiplicity is not
one.

As we want to describe Vf explicitly, we will need a bound on the amount
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of Hecke operators needed to describe T(nl, 2) and its ideal mf . We start
by quoting a result of Jacob Sturm (see [Stu]).

2.5.9 Theorem (Sturm) Let N ≥ 1 be an integer, Γ a subgroup of SL2(Z)
containing Γ(N). Let N ′ be the “width” of the cusp ∞ for Γ, i.e., the
positive integer defined by Γ∩( 1 Z

0 1 ) = ( 1 N ′Z
0 1 ). Let f be a modular form on

Γ of weight k, with coefficients in a discrete valuation ringR contained inC.
Let F be the residue field of R, and suppose that the image

∑
anq

n/N ′ in
F [[q1/N ′ ]] of the q-expansion of f has an = 0 for all n ≤ k[SL2(Z) : Γ]/12.
Then an = 0 for all n, i.e., f is congruent to 0 modulo the maximal ideal
of R.

This result of Sturm gives as a direct consequence a bound for up to where
one has to take Ti so that one gets a system of generators of the Hecke alge-
bra as Z-module, for a given level and weight. See Section 9.4 of [Ste2] for
a detailed proof of Sturm’s result, and of this consequence. For convenience
we also state and prove this result in the precise context where we use it.

2.5.10 Theorem Let N ≥ 1 and k ≥ 1 be integers, and let T(N, k) be
the Hecke algebra attached to Sk(Γ1(N)), i.e., T(N, k) is the Z-submodule
of EndC(Sk(Γ1(N))) generated by the Tn, for n ≥ 1, and the 〈a〉, for
a in (Z/NZ)×. Then T(N, k) is generated, as Z-module, by the Ti with
1 ≤ i ≤ k[SL2(Z) : Γ1(N)]/12.

Proof Let S be the Z-module Sk(Γ1(N),Z). Then by (2.4.9) we have iso-
morphisms of T(N, k)-modules: S = T(N, k)∨, and T(N, k) = S∨. Now
the result of Sturm above says that for each prime number p, the elements Ti,
1 ≤ i ≤ k[SL2(Z) : Γ1(N)]/12, generate the Fp-vector space Fp⊗S∨, and
hence they generate Fp⊗T(N, k). So, indeed, these Ti generate T(N, k) as
a Z-module. �

We can now state a complement to Theorem 2.5.7.

2.5.11 Proposition In the situation of Theorem 2.5.7, the Hecke alge-
bra T(nl, 2) is generated, as Z-module, by the Hecke operators Ti with
1 ≤ i ≤ [SL2(Z) : Γ1(nl)]/6.
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We remark that, still in the same situation, giving generators of mf is then a
matter of simple linear algebra over Fl in a vector space of suitably bounded
dimension.

We consider the particular case of a mod l eigenform of level one and of
weight k, viewed as a ring morphism f from T(1, k) to a finite extension
of Fl. Then we have the following result, that states explicitly how the
Galois representation attached to f is realised in the Jacobian J1(l)(Q).
Recall that T(l, 2), the Hecke algebra acting on weight two cusp forms on
Γ1(l), is generated as Z-module by the Tj with 1 ≤ j ≤ (l2−1)/6.

2.5.12 Theorem Let l be a prime number, let k be an integer such that
2 < k ≤ l+1, and f : Fl⊗T(1, k)→ F a surjective ring morphism with F a
finite field of characteristic l, such that the associated Galois representation
ρ : Gal(Q/Q) → GL2(F) is irreducible. Let f2 : Fl ⊗ T(l, 2) → F be the
morphism of rings such that for all m ∈ Z≥1 we have f2(Tm) = f(Tm)
(see Theorem 2.5.7). Let (t1, . . . , tr) be a system of generators for ker(f2).
Let:

Vf :=
⋂

1≤i≤r
ker(ti, J1(l)(Q)[l]).

Then Vf is a 2-dimensional F-vector space realising ρ. For p 6= l prime, 〈p〉
acts on Vf as multiplication by pk−2.

One can obtain a system of generators of ker(f2) as follows. For i in
{1, . . . , (l2 − 1)/6}, either f(Ti) is an Fl-linear combination of the f(Tj)
with j<i, or it is not. If it is not, then let ti = 0. If it is, then pick one:
f(Ti) =

∑
j<i ai,jf(Tj), and let ti = Ti −

∑
j<i ai,jTj .

Proof Just as in the proof of Theorem 2.5.7, we use Theorem 9.2 of [Edi1],
but this time in the case of level one. Case 1 of that theorem deals with the
k that satisfy 2 < k < l. Case 3 deals with the case k = l, because ρ, being
unramified outside {l}, and being irreducible of dimension two, is ramified
at l. Case 4 deals with the case k = l+1, because there are no nonzero cusp
forms of weight two and level one. �

We also state the following definition and theorem here, because the result,
to be used later, is directly related to Theorem 2.5.7. The theorem is due,
again, to “many people”, just as Theorem 2.5.7 itself.
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2.5.13 Definition Let N ≥ 1, and let Z[ζN ] be the subring of C generated
by a root of unity of order N . To a pair (E/S/Z[1/N, ζN ], P ) consisting
of an elliptic curve E over a Z[1/N, ζN ]-scheme S, together with a point
P in E(S) that is of order N everywhere on S, we associate another such
pair (E′/S′/Z[1/N, ζN ], P ′) as follows. Let β : E → E′ be the isogeny
whose kernel is the subgroup of E generated by P . Let β∨ : E′ → E

be the dual of β (see Section 2.5 of [Ka-Ma]). Let P ′ be the unique el-
ement of ker(β∨)(S) such that eβ(P, P ′) = ζN , where eβ is the perfect
µN -valued pairing between ker(β) and ker(β∨) as described in Section 2.8
of [Ka-Ma]. This construction induces an automorphism wζN of the modu-
lar curve X1(N)Z[1/N,ζN ], called an “Atkin-Lehner pseudo-involution”.

2.5.14 Theorem In the situation of Theorem 2.5.7 the completion Tmf,λ
of T at mf,λ is Gorenstein, i.e., the Zl-linear dual of Tmf,λ is free of
rank one as Tmf,λ-module. For all r ≥ 1, the (Z/lrZ) ⊗ Tmf,λ-module
J1(nl)(Q)[lr]mf,λ is free of rank 2.

For any t in T we have t∨ = wtw−1, where t∨ is the dual of t as en-
domorphism of the self-dual Abelian variety J1(nl)Q(ζnl), and where w is
the endomorphism of J1(nl)Q(ζnl) induced via Picard functoriality by the
automorphism wζnl of X1(nl)Q(ζnl).

For r ≥ 0, let (·, ·)r denote the Weil pairing on J1(nl)(Q)[lr], and let
〈·, ·〉r denote the pairing defined by:

〈x, y〉r = (x,w(y))r.

Then 〈·, ·〉r is a perfect pairing on J1(nl)(Q)[lr] for which the action
of T is self-adjoint. As a consequence, 〈·, ·〉r induces a perfect pairing
on J1(nl)(Q)[lr]mf,λ .

Proof See Sections 6.4 and 6.8 of [Edi1]. �

2.5.15 Remark See Corollary 4.2 of [Wie2] for a proof that Tmf,λ is not
Gorenstein if the multiplicity of ρf in Vf is not one.

The next result gives an effective criterion whether two modular forms give
isomorphic residual Galois representations.
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2.5.16 Proposition Let l be a prime number, F a finite extension of Fl, k1

and k2 in Z≥0, and f1 : T(1, k1)→ F and f2 : T(1, k2)→ F two morphisms
of rings, and i in {0, . . . , l−2}. Then ρf1 and ρf2 ⊗ χil are isomorphic
if and only if k1 = k2+2i in Z/(l−1)Z and for all primes p 6= l with
p ≤ (l2−1)/12 we have f1(Tp) = pif2(Tp).

Proof Assume first that ρf1 and ρf2 ⊗ χil are isomorphic. Then we have
det ρf1 = det(ρf2 ⊗ χil), hence χk1−1

l = χk2−1+2i
l , hence k1 = k2+2i in

Z/(l−1)Z. For all primes p 6= l, we have f1(Tp) = pif2(Tp) because they
are the traces of the images under ρf1 and ρf2 ⊗ χil of the Frobenius at p.

Assume now that k1 = k2+2i in Z/(l−1)Z and that for all primes
p 6= l with p ≤ (l2−1)/12 we have f1(Tp) = pif2(Tp). Then det ρf1
and det(ρf2 ⊗ χil) are equal, hence it suffices to prove that for all primes
p 6= l we have: f1(Tp) = pif2(Tp).

We will use some theory on “Katz modular forms”; see Sections 2 and 3
of [Edi1] for a short account. For a in Z, we denote by Ma(1,Fl) the space
of Katz modular forms of level one and weight a over Fl, and by Sa(1,Fl) its
subspace of cuspidal forms. Our reason to use Katz modular forms over Fl
is that this gives us the Hasse invariant A in Ml−1(1,Fl) and the operators
θ : Ma(1,Fl) → Sa+l+1(1,Fl), for all a ∈ Z≥0, that, on q-expansions, act
as the differential operator q·d/dq. See [Edi1, §3] for the properties of θ that
we will use.

The idea in what follows is to use θ to pass to eigenforms that are anni-
hilated by Tl, and to pass to eigenforms of weight at most l2−1 by dividing
by A as many times as possible. Recall that the q-expansion of A is the
constant 1.

We write θl−1f1 = An1f ′1, with n1 maximal, and we let k′1 be the
weight of f ′1. Then k′1 ≤ l2−1 by Theorem 3.4 of [Edi1] and the def-
inition of θ-cycles; note that l+1 + (l−2)(l+1) = l2−1. Similarly, we
write θl−1−if2 = An2f ′2, with n2 maximal, and we let k′2 be the weight
of f ′2. Then k′1 = k′2 in Z/(l−1)Z, f ′1 and f ′2 are eigenforms, annihilated
by Tl, and with the same eigenvalues for all Tp with p ≤ (l2−1)/12 prime.
This implies that for all m ≤ (l2−1)/12 we have f ′1(Tm) = f ′2(Tm). If
k′1 ≥ k′2, then f ′1 = A(k′1−k′2)/(l−1)f ′2 by Sturm’s bound in this case: if
the difference were non-zero, then the order of vanishing at∞ contradicts
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the degree of the line bundle of which it is a section. If k′2 ≥ k′1, then
f ′2 = A(k′2−k′1)/(l−1)f ′1 for the same reason. We conclude that for all primes
p 6= l we have f1(Tp) = pif2(Tp). �

2.5.17 Remark Proposition 2.5.16 can be generalised to forms of higher
level, by the similar trick of passing to a higher level n at which one has
forms that gave the same Galois representation, but with eigenvalue 0 for all
Tp with p dividing n.

The next result gives some conditions under which the Galois representation
ρ attached to a surjective ring morphism f : T(1, k)→ F has large image in
the sense that is contains SL2(F). It is an effective version of Theorem 5.1
of [Rib1]. We will need such a result later on.

2.5.18 Theorem Let k be a positive integer, l a prime number with
l > 6(k − 1), F a finite field and l its characteristic, and f : T(1, k) → F
a surjective morphism of rings such that the associated Galois representa-
tion ρ : Gal(Q/Q) → GL2(F) is irreducible. Then the image of ρ con-
tains SL2(F), and is equal to the subgroup of GL2(F) of elements g whose
determinant is in the subgroup of k−1th powers in F×l .

Proof As T(1, k) = 0 for k < 12, we have k ≥ 12, and hence l > 66. As
l > 2 and ρ is odd, ρ is absolutely irreducible. We also have k ≤ l + 1.

We apply what is known about the restriction of ρ to an inertia subgroup
I at l. We denote by ψ and ψ′ := ψl the two fundamental characters from
I to F×

l2
of level 2 (the tame quotient of I is the projective limit of the F×ln

and the fundamental characters of level n to F×l are those that are induced
by ring morphisms Fln → Fl). By Theorems 2.5 (due to Deligne) and 2.6
(due to Fontaine) in [Edi1], we have:

ρ|I =

(
χk−1
l ∗
0 1

)
if f(Tl) 6= 0, and

Fl ⊗F ρ|I =

(
ψk−1 0

0 ψ′k−1

)
if f(Tl) = 0.

The classification of subgroups of GL2(F) of order prime to l (see for ex-
ample [Ser3, §2.5, Prop. 16]) says that the image in PGL2(F) of such a
subgroup is either cyclic, dihedral or isomorphic to A4, S4 or A5.
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As ρ is absolutely irreducible, its image in PGL2(F) cannot be cyclic
(note that the kernel of GL2(F)→ PGL2(F) is the center of GL2(F)).

Let us show that the projective image of ρ cannot be A4, S4 or A5. As-
sume that it is. Then the image of ρ(I) in PGL2(F) is cyclic and has order
at least (l − 1)/(k − 1) (the order of ψ/ψ′ is l + 1). As we assume that
l − 1 is at least 6(k − 1), this image has an element of order at least 6, a
contradiction.

Let us show that the projective image of ρ is not dihedral. Assume that it
is. Then the image of ρ is contained in the normaliser of a Cartan subgroup
(i.e., the group of points of a split or non-split maximal torus), and there is
a quadratic extension K of Q such that ρ is the induction from Gal(Q/K)
to Gal(Q/Q) of a character of Gal(Q/K) that is not equal to its conjugate
under Gal(K/Q). As ρ is unramified outside l, K must be the quadratic
extension of Q that is ramified precisely at l. As l − 1 > 2(k − 1) the
description above of ρ|I shows that there are precisely two lines in F2

l whose
orbit under ρ in P1(Fl) has order at most 2: these are the coordinate axes (in
the first case, the extension must be split). But in the first case the characters
on these two lines are not conjugate under Gal(K/Q), and in the second
case the action of ρ on the set of these two lines is not ramified. These
contradictions show that the image of ρ cannot be dihedral.

We conclude that the order of the image of ρ is divisible by l. As l > 3
a result of Dickson, see [Dic2], Chapter XII, or rather the proof of Theo-
rem 2.5 in [Rib4], says that the image of ρ in PGL2(F) is, after suitable
conjugation, equal to PGL2(F′) or SL2(F′)/{1,−1} for some subfield F′

of F.
We claim that F′ = F. Assume that it is not. We let f ′ and ρ′ be the con-

jugates of f and ρ by the Frobenius automorphism of F over F′. Then ρ and
ρ′ are not isomorphic because the traces of the image of ρ generate F (use
that T(1, k) is generated as Z-module by the Ti with i ≤ k/12 < l). But
their projective representations to PGL2(F) are equal. Hence ρ′ is a twist
of ρ by some character χ : Gal(Q/Q) → F×. As ρ and ρ′ are unramified
outside l, χ is unramified outside l and hence a power of χl. But then we
have θi+1f = θf ′, with θ as in the proof of Proposition 2.5.16. A look at
the theta cycles in Section 3 of [Edi1] or Section 7 of [Joc] shows that then
k = (l+3)/2 if f(Tl) = 0, and k = (l+1)/2 if f(Tl) 6= 0. This contradicts
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our assumption that l > 6(k − 1).
So the imageG of ρ in PGL2(F) contains the image of SL2(F). Then, for

each a ∈ F,G contains elements of the form ( t a0 t ) and ( s 0
a s ), for some t and

s in F×. Taking suitable powers, we conclude that G contains all ( 1 a
0 1 ) and

( 1 0
a 1 ), where a ranges through F. These generate SL2(F). As det ρ = χk−1

l

the last claim in the theorem follows. �

2.5.19 Remark Eigenforms f : T(1, k)→ F such that the projective image
of ρ is A4, S4 or A5 are related to complex modular forms of weight one
and level l or l2, see [Kh-Wi1], Theorem 10.1. There are tables of these.
For example, in [Ba-Ki], page 110, one finds anA5-example with l = 2083,
and an S4-example with l = 751. See also Section 4.3 of [Ki-Wi]. We note
that for f = ∆ the prime 23 with 23− 1 = 2(12− 1) nicely illustrates one
of the arguments that is used in the proof above: ρ is then dihedral. More
generally, f with ρ dihedral come from class groups of imaginary quadratic
orders that are unramified outside l.
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Chapter Three

First description of the algorithms

B. Edixhoven and J.-M. Couveignes

We put ourselves in the situation of Theorem 2.5.7, and we ask how we
can compute the Galois representation. More explicitly, let n and k be pos-
itive integers, F a finite field and l its characteristic, and f : T(n, k) → F
a surjective ring morphism. Assume that 2 < k ≤ l+1, and that the asso-
ciated Galois representation ρ : Gal(Q/Q) → GL2(F) is absolutely irre-
ducible. Let f2 : T(nl, 2) → F be the weight two eigenform as in The-
orem 2.5.7 and let m = ker(f2). Assume that the multiplicity of ρ in
V := J1(nl)(Q)[m] is one, i.e., that ρ is realised by V .

We let K ⊂ Q be the field “cut out by ρ”, i.e., the finite Galois extension
of Q contained in Q consisting of the elements of Q that are fixed by all
elements in ker(ρ). Then we have, by definition, the following factorisation
of ρ:

ρ : Gal(Q/Q) � Gal(K/Q) ↪→ GL2(F).

Our aim is then to compute such residual representations ρ, in time poly-
nomial in n, k and #F. By computing ρ we mean giving K as a Q-algebra,
in the form of a monic polynomial in Q[T ] that is the minimal polynomial
of some generator t of K, and giving the elements σ of Gal(K/Q) by giv-
ing their matrices with respect to the Q-basis of K consisting of the first so
many powers of t, together with the element ρ(σ) of GL2(F). Once given
such an explicit description of ρ it becomes possible to compute f(Tp) ∈ F
in deterministic polynomial time in log p. Indeed this boils down to comput-
ing the Frobenius endomorphism at p for the algebraA. Chapter 15 explains
how to do this.



bookarxiv March 18, 2010

70 CHAPTER 3

It will be convenient for us to use the modern version of Galois theory
that says that the functor A 7→ HomQ(A,Q) is an anti-equivalence from
the category of finite separable Q-algebras to that of finite discrete (con-
tinuous) Gal(Q/Q)-sets. An inverse is given by the functor that sends X
to HomGal(Q/Q)(X,Q), the Q-algebra of functions f from X to Q such
that f(gx) = g(f(x)) for all g in Gal(Q/Q) and all x in X . Under this
correspondence, fields correspond to transitive Gal(Q/Q)-sets.

As a first step towards the computation of ρ we let A be the Q-algebra
corresponding to the Gal(Q/Q)-set V . Before we explain our strategy to
compute A, we sketch how one gets from A to K and ρ. The Q-algebra
corresponding to V × V is A ⊗ A. The addition map V × V → V corre-
sponds to a morphism A → A ⊗ A, the co-addition. The F×-action on V
corresponds to an F×-action on A. We will see later that the co-addition
and the F×-action on A can be computed by the same method by which A
will be computed. Viewing V × V as HomF(F2, V ) gives a right-action
by GL2(F) on V × V , hence a left-action on A ⊗ A. This action can be
expressed in the co-addition and the F×-action. Let B be the Q-algebra
corresponding to the subset IsomF(F2, V ) of HomF(F2, V ). This factor B
of A ⊗ A can be computed by linear algebra over Q, using the GL2(F)-
action on A ⊗ A. In terms of V × V , one removes the subset of (v1, v2)
that are linearly dependent, i.e., the point (0, 0) and the GL2(F)-orbit of
(V − {0}) × {0}. The field K then corresponds to a Gal(Q/Q)-orbit in
Isom(F2, V ), hence is obtained by factoring B as a product of fields, us-
ing factoring algorithms, and choosing one of the factors. See [Le-Le-Lo],
[Len1] and [Lan1] for the fact that such factoring can be done in polynomial
time. The equivalence between factoring algebras and polynomials is given
in [Len2]. Let G ⊂ GL2(F) be the stabiliser of the chosen factor K. Then
G = Gal(K/Q) and the inclusion is a representation from G to GL2(F).
Let φ be in the chosen Gal(Q/Q)-orbit in IsomF(F2, V ). As this orbit is a
right G-torsor on which Gal(Q/Q) acts, there is, for every σ in Gal(Q/Q),
a unique g(σ) in G such that ρ(σ) ◦ φ = φ ◦ g(σ). Note also that evaluation
at φ is an embedding of K in Q, such that σ in Gal(Q/Q) induces g(σ)
on K. It follows that φ is an isomorphism between ρ and the representation
g : Gal(Q/Q) � Gal(K/Q) = G ⊂ GL2(F).

We now turn to the question of how to compute the Q-algebra A cor-
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responding to V . We wish to produce a generator of A, and its minimal
polynomial over Q. This means that we must produce a Q-valued function
a on V such that a(σx) = σ(k(x)) for all x in V and all σ in Gal(Q/Q).
Such a function is a generator of A if and only if it does not arise from a
strictly smaller quotient of V as Gal(Q/Q)-set (such quotients correspond
to subalgebras), hence, equivalently, if and only if a is injective. The mini-
mal polynomial over Q of such a generator a is given as follows:

(3.1) P (T ) =
∏
x∈V

(T − a(x)).

The question is now how to produce such a generator? A direct way
would be to compute the elements of V in J1(nl)(Q), by writing down
polynomial equations in a suitable coordinate system that is defined overQ,
and solving them, using computer algebra. This is essentially how Schoof’s
algorithm deals with elliptic curves. However, the dimension of J1(nl) is
quadratic in l. Writing down equations in polynomial time still seems pos-
sible. But we do not know of a way of solving the equations in a time that
is not exponential in the dimension.

The decisive idea is to use numerical computations to approximate the
coefficients of a minimal polynomial P as above, in combination with a
bound on the height of those coefficients. We recall that the (standard, log-
arithmic) height of a rational number a/b, with a and b integers that are
relatively prime, is log max{|a|, |b|} (a variant would be log(a2 +b2)). This
rational number x = a/b is known if we know an upper bound h for its
height, and an approximation y of it (in R, say), with |x − y| < e−2h/2.
Indeed, if x′ = a′/b′ also has height at most h, and x′ 6= x, then:

|x− x′| =
∣∣∣∣ab − a′

b′

∣∣∣∣ =
∣∣∣∣ab′ − ba′bb′

∣∣∣∣ ≥ 1
|bb′|

≥ e−2h.

We also note that there are good algorithms to deduce x from such a pair
of an approximation y and a bound h, for example by using continued frac-
tions, as we will now explain.

In practice we will use rational approximations y of x. Every rational
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number y can be written uniquely as:

[a0, a1, . . . , an] = a0 +
1

a1 +
1

. . .
an−1 +

1
an

where n ∈ Z≥0, a0 ∈ Z, ai ∈ Z>0 for all i > 0, and an > 1 if n > 0. To
find these ai, one defines a0 := byc and puts n = 0 if y = a0; otherwise,
one puts y1 := 1/(y − a0) and a1 = by1c and n = 1 if y1 = a1, and so
on. The rational numbers [a0, a1, . . . , ai] with 0 ≤ i ≤ n are called the
convergents of the continued fraction of y. Then one has the following well
known result, see Theorem 184 from [Ha-Wr].

3.2 Proposition Let y be in Q, a and b in Z with b 6= 0 and:∣∣∣a
b
− y
∣∣∣ < 1

2b2
.

Then a/b is a convergent of the continued fraction of y.

The question is now: how we are going to implement this method?
The basic idea in doing this is to not work on the Abelian variety J1(nl)
but rather on the product X1(nl)g of copies of X1(nl), where g is the
genus of X1(nl). To compare the two, we first choose an effective divi-
sor D0 = P1 + · · · + Pg on X1(nl)Q, and we consider the well-known
map:

(3.3)
X1(nl)g −→ J1(nl),

(Q1, . . . , Qg) 7→ [Q1 + · · ·+Qg −D0].

To understand the definition of this map rigorously, one must use the
interpretation of X1(nl) as its functor of points with values in Z[1/nl]-
schemes, and that of J1(nl) as the degree zero part of the relative Picard
functor Pic0

X1(nl)/Z[1/nl]. For the necessary background on this, see Chap-
ters 8 and 9 of [Bo-Lu-Ra]. The divisor D0 lives on X1(nl)Q, and it ex-
tends uniquely over Z[1/nl] to an effective relative Cartier divisor of degree
g on X1(nl). The points Pi of which D0 is the sum need not be rational
over Q.
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The inverse image of a point x in J1(nl)(Q) under the map (3.3) can be
described as follows. LetLx denote a line bundle of degree zero onX1(nl)Q
that corresponds to x (x is an isomorphism class of such line bundles). Then
the inverse image of x is the set of (Q1, . . . , Qg) such that Lx has a rational
section whose divisor is Q1 + · · · + Qg − D0, or, equivalently, the set of
(Q1, . . . , Qg) such that there is a non-zero section of Lx(D0) with divisor
Q1 + · · ·+Qg.

When x ranges over J1(nl)(Q), the class of the Lx(D0) ranges over the
set Picg(X1(nl)Q). The function on J1(nl)(Q) that assigns to x the di-
mension h0(Lx(D0)) of the space of global sections of Lx(D0) is semi-
continuous in the sense that for each i the locus of x where h0(Lx(D0)) ≥ i
is closed (the condition h0(Lx(D0)) ≤ i need not be closed). On a non-
empty open subset of J1(nl)(Q) this value is one, as can be seen using the
theorem of Riemann-Roch, and Serre duality. This means that for x outside
a proper closed subset of J1(nl)(Q), the inverse image in X1(nl)g(Q) of
x consists of the g-tuples obtained by permutation of coordinates of a sin-
gle (Q1, . . . , Qg). Another way to express this is to say that the map (3.3)
above factors through the symmetric product X1(nl)(g) and that the map
fromX1(nl)(g) to J1(nl) is birational (i.e., an isomorphism on suitable non-
empty open parts).

It is then reasonable to assume that we can takeD0 such that for all x in V
there is, up to permutation of the coordinates, a unique Q = (Q1, . . . , Qg)
in X1(nl)g(Q) that is mapped to x via the map (3.3). On the other hand,
on a curve of high genus such as X1(nl) it is not clear how to make a large
supply of inequivalent effective divisors D0 on X1(nl)Q. We will see later,
in Theorem 8.1.7, that we can indeed find a suitable divisor, supported on
the cusps, and defined over Q(ζl), on the X1(5l), which will suffice for
treating almost all modular forms of level one.

Remark. In situations where such a cuspidal divisor cannot be found, one
could try at random P1, . . . , Pg in X1(nl)(L), corresponding to elliptic
curves lying in one isogeny class, with complex multiplications, for exam-
ple by Q(i). Then L is a solvable Galois extension of Q, so that K can be
reconstructed from the compositum KL. If one chooses the Pi reasonably,
the degree of L and the logarithm of the discriminant of L are polynomial
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in l. Another possibility is to try to work with a divisorD0 of degree smaller
than g, for example a multiple of a rational cusp.

Let us now assume that we have a divisor D0 as described above. Then
we choose a non-constant function:

f : X1(nl)Q � P1
Q,

that will have to satisfy some conditions that will be given in a moment.
With these two choices, D0 and f , and a choice of an integer m, we get

an element aD0,f,m of the Q-algebra A corresponding to V as follows. For
x in V we let Dx = Qx,1 + · · · + Qx,g be the unique effective divisor of
degree g such that:

(3.4) x = [Dx −D0].

Note that indeed for x = 0 we have Dx = D0. We assume that for all
x ∈ V the divisor Dx is disjoint from the poles of f . Then, for each x in V ,
we define:

PD0,f,x =
g∏
i=1

(
t− f(Qx,i)

)
in Q[t].

We then get an element aD0,f,m of A by evaluating the PD0,f,x at m:

(3.5) aD0,f,m : V −→ Q, x 7→ PD0,f,x(m) =
g∏
i=1

(
m− f(Qx,i)

)
.

The condition that all the Dx are disjoint from the locus of poles of f will
not be guaranteed to hold later when we treat forms of level one, but then it
will be possible to omit the Qx,i at which f has a pole from the sum in (3.5)
(f will have its poles at certain cusps). For the moment, let us just assume
that this condition is satisfied. Then the f∗Dx, for x in V , are effective
divisors of degree g on A1

Q.
We will choose f in such a way that the f∗Dx are distinct; we assume now

that this is so. Then there is an integer m ≥ 0 with m ≤ g·(#F)4 such that
aD0,f,m is injective, and hence a generator of A: the polynomials PD0,f,x

are distinct when x varies, and m must not be a root of any difference of
two of them.
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Finally, we want to have control on the heights of the coefficients of the
minimal polynomial of aD0,f,m, because these heights determine the re-
quired precision of the approximations of those coefficients that we must
compute. The whole strategy depends on the possibility to choose a divi-
sor D0 and a function f , such that, when n, k and F vary, those heights
grow at most polynomially in n, k and #F. Using a great deal of machinery
from Arakelov theory, we will show (at least in the case n = 1) that any
reasonable choices of D0 and f will lead to an at most polynomial growth
of those heights. Intuitively, and completely non-rigorously, one can believe
that this should work, because of the following argument. Our x are torsion
points, so that their Néron-Tate height is zero. As x and D0 determine Dx,
the height of Dx should be not much bigger than the height of D0. As we
choose D0 ourselves, it should have small height. Finally, the height of
aD0,f,m should be not much bigger than the sum of those of f and m and
theDx. Turning these optimistic arguments into rigorous statements implies
a lot of work that will be done in Chapters 9–11. An important problem here
is that in Arakelov theory many results are available that deal with a single
curve over Q, but in our situation we are dealing with the infinitely many
curves X1(nl) as l varies.

A few words about the numerical computations involved. What we need
is that these can be done in a time that is polynomial in n and #F and
the number of significant digits that one wants for the coefficients of the
minimal polynomial PD0,f,m of aD0,f,m. It is not at all obvious that this
can be done, as the genus of X1(nl) and hence the dimension of J1(nl) are
quadratic in l.

One way to do the computations is to use the complex uniformisations
of X1(nl)(C) and J1(nl)(C). The Riemann surface X1(nl)(C) can be ob-
tained by adding finitely many cusps (the set Γ1(nl)\P1(Z)) to the quotient
Γ1(nl)\H (see Section 2.1). This means thatX1(nl)(C) is covered by disks
around the cusps, which are well suited for computations (functions have
q-expansions, for example). In order to describe J1(nl)(C) as Cg modulo
a lattice, we need a basis of the space of holomorphic differential forms
H0(X1(nl)(C),Ω1). The basis that we work with is the one provided by
Atkin-Lehner theory, as given in (2.2.17); we write it as ω = (ω1, . . . , ωg).
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Then we have the following complex description of the map (3.3):

(3.6) X1(nl)(C)g // // J1(nl)(C) Cg/Λ

(Q1, . . . , Qg) � // [
∑g

i=1Qi −
∑g

i=1 Pi]
g∑
i=1

Qi∫
Pi

ω,

where Λ is the period lattice with respect to this basis, i.e., the image of
H1(X1(nl)(C),Z) under integration of the ωi. This map can be computed
up to any desired precision by formal integration of power series on the
disks mentioned above. The coefficients needed from the power series ex-
pansions of the ωi can be computed using the method of modular symbols,
as has been implemented by William Stein in Magma (see his book [Ste2]).
We note that modular symbols algorithms can be used very well to locate
V inside l−1Λ/Λ, hence in J1(nl)(C). A strategy to approximate a point
Qx = (Qx,1, . . . , Qx,g) as above for a non-zero x in V is to lift the straight
line that one can draw in Cg/Λ from 0 to x (within a suitable fundamental
domain for Λ) to a path in X1(nl)(C)g starting at (P1, . . . , Pg). In practice
this seems to work reasonably well, see Bosman’s Chapters 6 and 7. A the-
oretical difficulty with this approach is that one needs to bound from below
the distance to the ramification locus of X1(nl)(g) → J1(nl). Chapter 12
gets around this difficulty and provides a proven algorithm for inverting the
Jacobi map (3.3). The starting idea is to set y = x/N for N a large enough
integer. This y is no longer an l-torsion point but it is close to the origin in
the torus J1(nl)(C), and this helps finding a preimage Qy of y, because the
behaviour of the Jacobi map (3.3) is well understood at least in the neighbor-
hood of the origin. The divisor Qx we are looking for is such that Qx −D0

and N(Qy −D0) are linearly equivalent. So Qx can be computed from Qy

by repeated application of an explicit form of the Riemann-Roch theorem.
The resulting algorithm reduces to computing approximations of the com-
plex zeros of a great number of modular forms with level 5l and weight 4.
Chapter 5 explains how to approximate the complex zeros of entire series. It
also contains a reminder of the necessary notions from computational com-
plexity theory.

Another way to do the “approximation” is to compute the minimal poly-
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nomial PD0,f,m of aD0,f,m modulo many small primes p. Indeed, the
map (3.3) can be reduced mod p. In this case one has no analytic description
of the curve and its Jacobian, but one can make random points in J1(nl)(Fq)
for a suitable finite extension Fp → Fq. Such random points can then be
projected, using Hecke operators, into V . Elements of J1(nl)(Fq) can be
represented by divisors on X1(nl)Fq , and all necessary operations can be
done in polynomial time. This approach is explained in detail in Chap-
ter 13. In order to deduce a rational number x = a/b from the knowledge
sufficiently many of its reductions modulo primes p not dividing b we have
the following well-known result.

3.7 Proposition Let x = a/b be in Q, with a and b in Z, relatively prime.
Let M = max{|a|, |b|}. Let S be a finite set of prime numbers p with p
not dividing b, such that

∏
p∈S p > 2M2. For each p in S, let xp in Fp be

the reduction of x, and let L ⊂ Z2 be the submodule of (n,m) with the
property that for all p in S: n − xpm = 0 in Fp. Then (a, b) and (−a,−b)
are the shortest non-zero elements of L with respect to the standard inner
product on R2, and the lattice reduction algorithm in dimension two, Algo-
rithm 1.3.14 in [Coh], finds these in time polynomial in logM .

Proof The lattice reduction gives a shortest non-zero element, so it suffices
to show that, under the assumptions in the Proposition, the two shortest non-
zero elements of L are precisely ±(a, b). The volume of R2/L is the index
of L in Z2, hence equals

∏
p∈S p. Let l1 be a shortest non-zero element of L.

Then ‖l1‖ ≤ ‖(a, b)‖ ≤
√

2M . Let l2 in L be linearly independent of l1.
Then:

2M2 < Vol(R2/L) ≤ Vol(R2/(Z·l1 + Z·l2)) ≤ ‖l1‖·‖l2‖ ≤
√

2M‖l2‖.

Hence ‖l2‖ >
√

2M ≥ ‖(a, b)‖. It follows that (a, b) and l1 are linearly
dependent, and hence l1 = ±(a, b). �

Remark. In case one has a natural rigid analytic uniformisation at some
prime p, one may want to use that. For the modular curves that we are
dealing with this is not the case, but the closely related Shimura curves
attached to quaternion algebras overQ do admit such uniformisations at the
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primes where the quaternion algebra is ramified (as was proved by Cerednik,
Drinfeld, see [Bo-Ca]).
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Chapter Four

Short introduction to heights and Arakelov theory

B. Edixhoven and R. de Jong

In Chapter 3 it has been explained how the computation of the Galois rep-
resentations V attached to modular forms over finite fields should proceed.
The essential step is to approximate the minimal polynomial P of (3.1) with
sufficient precision so that P itself can be obtained. The topic to be ad-
dressed now is to bound from above the precision that is needed for this.
This means that we must bound the heights of the coefficients of P . As was
hinted to in Chapter 3, we get such bounds using Arakelov theory, a tool
that we discuss in this section. It is not at all excluded that a direct approach
to bound the coefficients of P exists, thus avoiding the complicated theory
that we use. On the other hand, it is clear that the use of Arakelov theory
provides a way to split the work to be done in smaller steps, and that the
quantities occurring in each step are intrinsic in the sense that they do not
depend on coordinate systems or other choices that one could make. We
also want to point out that our method does not depend on cancellations of
terms in the estimates that we will do; all contributions encountered can be
bounded appropriately.

A good reference for a more detailed introduction to heights is Chap-
ter 6 of [Co-Si]. Good references for the Arakelov theory that we will use
are [Fal1] and [Mor2]. A general reference for heights in the context of
Diophantine geometry is [Bo-Gu].

4.1 HEIGHTS ON Q AND Q

The definition of the height of an element of Q has already been given in
Chapter 3; for x = a/b with a and b 6= 0 relatively prime integers, we
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have h(x) = log max{|a|, |b|}. We will now give an equivalent definition
in terms of absolute values |·|v on Q attached to all places v of Q, the finite
places, indexed by the prime numbers, and the infinite place denoted∞.

The absolute value |·|∞ is just the usual absolute value on R, restricted
to Q. We note that R is the completion of Q for |·|∞. For p prime, we let vp
be the p-adic valuation:

(4.1.1) vp : Z −→ Z ∪ {∞},

sending an integer to the maximal number of times that it can be divided
by p. This valuation vp extends uniquely to Q subject to the condition that
vp(xy) = vp(x) + vp(y); we have vp(a/b) = vp(a) − vp(b) for integers a
and b 6= 0. We let |·|p denote the absolute value on Q defined by:

(4.1.2) |x|p = p−vp(x), |0|p = 0.

The completion of Q with respect to |·|p is the locally compact topological
field Qp. An important property of these absolute values is that all together
they satisfy the product formula:

(4.1.3)
∏
v

|x|v = 1, for all x in Q×.

With these definitions, we have:

(4.1.4) h(x) =
∑
v

log max{1, |x|v}, for all x ∈ Q,

where v ranges over the set of all places of Q (note that almost all terms in
the sum are equal to 0).

The height function on Q generalises as follows to number fields. First
of all, for a local field F we define the natural absolute value |·| on it by
letting, for x in F×, |x|F be the factor by which all Haar measures on F are
scaled by the homothecy y 7→ xy on F . For example, for F = C we have
|z|C = zz = |z|2, the square of the usual absolute value. Let now K be a
number field. By a finite place of K we mean a maximal ideal of OK . An
infinite place ofK is an embedding ofK intoC, up to complex conjugation.
For each place v of K, let Kv be its completion at v; as Kv is a local field,
we have the natural absolute value |·|v := |·|Kv on Kv and on K. In this
case, the product formula is true (this can be shown easily by considering the
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adèles of K, see Chapter IV, Section 4, Theorem 5 of [Wei2]). The height
function on Q also generalises to K. For all for all x in K we define:

(4.1.5)

hK(x) :=
∑
v

log max{1, |x|v} =

=
∑
v finite

log max{1, |x|v}+
∑

σ : K→C
log max{1, |σ(x)|}.

This function hK is called the height function of K. For K → K ′ an
extension of number fields, and for x in K, we have

hK′(x) = (dimK K
′)·hK(x).

Therefore one has the absolute height function h on Q defined by:

(4.1.6) h : Q→ R, h(x) =
hK(x)

dimQK
,

where K ⊂ Q is any number field that contains x.

4.2 HEIGHTS ON PROJECTIVE SPACES AND ON VARIETIES

For n ≥ 0 and for K a number field, we define a height function on the
projective space Pn(K) by:

(4.2.1)

hK((x0 : · · · : xn)) :=
∑
v

log max{|x0|, . . . , |xn|},

h(x) :=
hK(x)

dimQK
,

where v ranges through the set of all places of K. We note that it is because
of the product formula that hK(x) is well-defined, and that this definition is
compatible with our earlier definition of the height and absolute height onK
if we viewK as the complement of∞ in P1(K). The functions h on Pn(K)
for varying K naturally induce the absolute height function on Pn(Q).

A fundamental result, not difficult to prove, but too important to omit here
(even though we will not use it), is Northcott’s finiteness theorem.

4.2.2 Theorem (Northcott) Let n, d and C be integers. Then:

{x ∈ Pn(Q) | h(x) ≤ C and dimQ(Q(x)) ≤ d}

is a finite set.
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For a proof the reader is referred to Chapter 6 of [Co-Si], or to Section 2.4
of [Ser10].

For any algebraic variety X embedded in a projective space PnK over
some number fieldK, we get height functions hK onX(K) and h onX(Q)
by restricting those from Pn to X .

For later use, we include here some simple facts. The height functions on
the projective spaces Pn(Q) are compatible with embeddings as coordinate
planes, for example by sending (x0 : · · · : xn) to (x0 : · · · : xn : 0), or to
(0 : x0 : · · · : xn).

For all n ∈ N, we view An(Q) as a subvariety of Pn(Q), embedded in
one of the n+1 standard ways by sticking in a 1 at the extra coordinate. For
example, by sending (x1, . . . , xn) to (1 : x1 : · · · : xn). This gives us, for
each n, a height function h : An(Q) → R. These height functions are also
compatible with embeddings as coordinate planes. For n = 1 the height
function on A1(Q) = Q is the function in (4.1.6).

4.2.3 Lemma Let n ∈ Z≥1, and x1, . . . , xn in Q. Then:

h(x1 · · ·xn) ≤
n∑
i=1

h(xi) , h(x1 + · · ·+ xn) ≤ log n+
n∑
i=1

h(xi)

h(xi) ≤ h((x1, . . . , xn)) ≤ h(x1) + · · ·+ h(xn) for each i.

Proof Let n ∈ Z≥1, and x1, . . . , xn in Q. Let K ⊂ Q be a finite extension
of Q containing the xi. For the first inequality, we have:

hK(x1 · · ·xn) =
∑
v

log max{1, |x1 · · ·xn|v}

≤
∑
v

log(max{1, |x1|v} · · ·max{1, |xn|v})

= hK(x1) + · · ·+ hK(xn) .
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For the second inequality, let x = x1 + · · ·+ xn. Then we have:

hK(x) =
∑
v finite

log max{1, |
∑
i

xi|v}+
∑

σ : K→Q

log max{1, |σ
∑
i

xi|}

≤
∑
v finite

log max{1,max
i
|xi|v}+

∑
σ

log max{1,
∑
i

|σ(xi)|}

≤
∑
v finite

∑
i

log max{1, |xi|v}+
∑
σ

max{0, log(n·max
i
|σ(xi)|)}

≤
∑

v finite,i

log max{1, |xi|v}+
∑
σ

log n+
∑
σ,i

max{0, log |σ(xi)|}

= (dimQK)· log n+
∑
i

hK(xi) .

For the third inequality, let i be in {1, . . . , n}. We have:

hK(x1, . . . , xn) =hK(1 : x1 : · · · : xn)

=
∑
v

log max{1, |x1|v, . . . , |xn|v}

≥
∑
v

log max{1, |xi|v} = hK(xi) .

Finally, for the last inequality:

hK(x1, . . . , xn) =hK(1 : x1 : · · · : xn)

=
∑
v

log max{1, |x1|v, . . . , |xn|v}

≤
∑
v

∑
i

log max{1, |xi|v} = hK(x1) + · · ·+ hK(xn) .

�

4.2.4 Lemma Let d ≥ 1 and n ≥ d be integers. Let Σd denote the ele-
mentary symmetric polynomial of degree d in n variables. Let y1, . . . , yn

be in Q. Then we have:

h (Σd(y1, . . . , yn)) ≤ n log 2 +
∑

1≤i≤n
h(yi).

Proof Let K be the compositum of the fields Q(yi) for i = 1, . . . , n. For
each place v of K, we let | · |v be the natural absolute value on Kv and on K
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as at the end of Section 4.1. By the triangle inequality we obtain, for each
place v of K:

|Σd(y1, . . . , yn)|v ≤ c(v, n) max
1≤i1<···<id≤n

|yi1 · · · yid |v ≤

≤ c(v, n)
∏

1≤i≤n
max{1, |yi|v} ,

where c(v, n) = 2n if v is Archimedean, and c(v, n) = 1 if v is non-
Archimedean. It follows that:

max{1, |Σd(y1, . . . , yn)|v} ≤ c(v, n)
n∏
i=1

max{1, |yi|v} .

The proof of the lemma is finished by taking logarithms, summing over the
places v, and dividing by dimQK. �

4.2.5 Lemma Let x 6= 0 be in Q, let K = Q(x), and let σ : K → C. Then:

|σ(x)| ≥ e−(dimQ K)·h(x).

Proof We have:

− log |σ(x)| = log
(
|σ(x)|−1

)
≤ log max{1, |σ(x)|−1}

≤
∑
v

log max{1, |x|−1
v } = (dimQK)·h(x−1)

= (dimQK)·h(x),

where the sum is over all places of K. �

4.2.6 Lemma Let K be a number field, let n be in Z≥1, and let a be in
Mn(K). Then:

h(det(a)) ≤
∑
i,j

h(ai.j) +
1
2
n log n.

Proof Let v be a finite place of K. Then we have:

| det(a)|v =

∣∣∣∣∣∑
s∈Sn

a1,s(1) · · · an,s(n)

∣∣∣∣∣
v

≤ max
s
|a1,s(1)|v · · · |an,s(n)|v

≤
∏
i,j

max{1, |ai,j |v}.
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For σ : K → C we have, by Hadamard’s inequality and the comparison
‖·‖ ≤ n1/2‖·‖max in Cn of the euclidean norm and the max-norm:

| detσ(a)| ≤
∏
j

‖σ(aj)‖ =
∏
j

(
n1/2‖σ(aj)‖max

)
≤ nn/2

∏
i,j

max{1, |σ(ai,j)|},

where aj is the jth column of a. Then we have:

hK(det(a)) =
∑
v

log max{1, |det(a)|v}+
∑
σ

log max{1, | detσ(a)|}

≤
∑
v

∑
i,j

log max{1, |ai,j |v}

+
∑
σ

n
2

log n+
∑
i,j

log max{1, |σ(ai,j)|}


=

1
2

(dimQK)·n log n+
∑
i,j

hK(ai,j).

Dividing by dimQK gives the result. �

4.2.7 Lemma LetK be a number field, let n be inZ≥1, let a be in GLn(K),
and y in Kn. Let x be the unique element in Kn such that ax = y. Let b be
the maximum of all h(ai,j) and h(yi). Then we have, for all i:

h(xi) ≤ 2n2b+ n log n.

Proof We apply Cramer’s rule: xi = det(a(i))/det(a), where a(i) in
Mn(K) is obtained by replacing the ith column by y. Lemma 4.2.6 gives
us:

h(det(a)) ≤ n2b+
1
2
n log n, h(det(a(i))) ≤ n2b+

1
2
n log n.

Therefore: h(xi) = h(det(a(i))/det(a)) ≤ 2n2b+ n log n. �

4.3 THE ARAKELOV PERSPECTIVE ON HEIGHT FUNCTIONS

We have just defined height functions hK and h on a variety X over a num-
ber field K, embedded into some projective space PnK . Such an embedding
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determines a line bundle L on X: the restriction of the line bundle O(1)
of PnK that corresponds to homogeneous forms of degree 1, in the variables
x0, . . . , xn, say. The embedding ofX into PnK is given by the global sections
s0, . . . , sn of L obtained by restricting the global sections x0, . . . , xn to X .
Now any finite set of generating global sections t0, . . . , tm of L determines
a morphism f : X → PmK , inducing height functions hK,f and hf via pull-
back along f . For f and f ′ two such morphisms, the difference |hf − hf ′ |
is bounded on X(Q) (see Theorem 3.1 of Chapter 6 of [Co-Si]). For this
reason, one usually associates to a line bundle L on a variety X a class of
height functions fL, i.e., an element in the set of functionsX(Q)→ Rmod-
ulo bounded functions; this map is then a morphism of groups on Pic(X):
fL1⊗L2 ≡ fL1 +fL2 . However, in our situation, we cannot permit ourselves
to work just modulo bounded functions on each variety, as we have infinitely
many curves X1(l) to deal with.

There is a geometric way to associate to a line bundle a specific height
function, not just a class of functions modulo bounded functions. For this,
the contributions from the finite as well as the infinite places must be pro-
vided. Those from the finite places come from a model of X over the ring
of integersOK ofK, i.e., anOK-schemeXOK whose fibre overK isX , to-
gether with a line bundleL onXOK whose restriction toX is the line bundle
that we had. The OK-scheme XOK is required to be proper (e.g., projec-
tive). The contributions from the infinite places are provided by a hermitian
metric (or inner product) on L, a notion that we will briefly explain.

A hermitian metric on a locally free OX -module of finite rank E con-
sists of a hermitian metric 〈·, ·〉x on all C-vector spaces x∗E , where x runs
through X(C), the set of x : Spec(C) → X . Each x in X(C) induces a
morphism Spec(C) → Spec(K), i.e., an embedding of K into C. There-
fore, X(C) is the disjoint union of the complex analytic varieties Xσ, in-
dexed by the σ : K → C. A hermitian metric on E consists of hermitian
metrics on all the holomorphic vector bundles Eσ that E induces on the Xσ.
The metrics to be used are required to be continuous, i.e., for U open in X
and s and t in E(U), the function x 7→ 〈s(x), t(x)〉x on U(C) must be con-
tinuous. Actually, the metrics that we will use will live on non-singular X ,
and will be required to be smooth (infinitely differentiable). Another con-
dition that is usually imposed is a certain compatibility between the metrics
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at a point x in X(C) and its complex conjugate x. We do not give this con-
dition in detail, but note that it will be fulfilled by the metrics that we will
use. It is also customary to denote a hermitian metric 〈·, ·〉 by its norm ‖·‖,
given by ‖s‖2 = 〈s, s〉. Indeed, a suitable polarisation identity expresses
the hermitian metric in terms of its norm. A pair (E , ‖·‖) of a locally free
OXOK -module with a hermitian metric ‖·‖ is called a metrised vector bun-
dle on XOK . Metrised vector bundles can be pulled back via morphisms
f : WOK → XOK between OK-schemes of the type considered.

An important example of the above is the case where X = Spec(K),
just a point, and XOK = Spec(OK). A metrised line bundle (L, ‖·‖) then
corresponds to an invertible OK-module, L, say, with hermitian metrics on
the Lσ := C ⊗σ,OK L. The Arakelov degree of (L, ‖·‖) is the real number
defined by:

(4.3.1) deg(L, ‖·‖) = log #(L/OKs)−
∑

σ : K→C
log ‖s‖σ,

where s is any non-zero element of L (independence of the choice of s
follows from the product formula). This definition should be compared to
that of the degree of a line bundle on a smooth projective curve over a field:
there one takes a rational section, and counts zeros and poles. The first term
in (4.3.1) counts the zeros of s at the finite places. Interpreting this term
in terms of valuations, and then norms, at the finite places, then leads to
the second term which “counts” the “zeros” (or minus the “poles”, for that
matter) at the infinite places. For a finite extension K → K ′, and (L, ‖·‖)
on Spec(OK) as above, the pullback (L′, ‖·‖) to Spec(OK′) has degree
dimK K

′ times that on Spec(OK).
We can now give the definition of the height given by a proper OK-

schemeX together with a hermitian line bundle (L, ‖·‖). Let x be inX(K).
Then, by the properness ofX overOK , x extends uniquely to anOK-valued
point, also denoted x, and one defines:

(4.3.2) hK(x) := deg x∗(L, ‖·‖).

The same method as the one use above can be applied to get an absolute
height h : X(Q) → R. For K → K ′ a finite extension, each x in X(K ′)
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extends uniquely to an x in X(OK′), and one defines:

(4.3.3) h(x) :=
deg x∗(L, ‖·‖)

dimQK ′
.

It is not hard to verify that this height function h is in the class (mod-
ulo bounded functions) that is attached to XK and LK (without metric);
see Proposition 7.2 of Chapter 6 of [Co-Si], or Theorem 4.5 of Chapter V
in [Ed-Ev]. In fact, for X = PnOK , and L = O(1) with a suitable metric, the
height h just defined is equal to the one defined in (4.2.1).

4.4 ARITHMETIC RIEMANN-ROCH AND INTERSECTION THEORY
ON ARITHMETIC SURFACES

The context in which we are going to apply Arakelov theory is that of
smooth projective curves X over number fields K. In [Ara] Arakelov
defined an intersection theory on the arithmetic surfaces attached to such
curves, with the aim of proving certain results, known in the case of func-
tions fields, in the case of number fields. The idea is to take a regular projec-
tive model X over B := Spec(OK) of X , and try to develop an intersection
theory on the surface X , analogous to the theory that one has when K is a
function field. If K is a function field over a finite field k, say, one gets a
projective surface X over k, fibred over the nonsingular projective curve B
over k that corresponds toK. On such a projective surface, intersecting with
principal divisors gives zero, hence the intersection pairing factors through
the Picard group of X , the group of isomorphism classes of invertible OX -
modules. In the number field case one “compactifies”B by formally adding
the infinite places of K; the product formula then means that principal di-
visors have degree zero. Instead of the Picard group of X , one considers
the group of isomorphism classes of certain metrised line bundles on X , as
defined above. In [Fal1], see also Chapters II, III and I of [Szp], Faltings
extended Arakelov’s work by establishing results such as a Grothendieck-
Riemann-Roch theorem in this context. Since then, Arakelov theory has
been generalised by Gillet and Soulé (see [Sou] and [Fal2]). Below, we will
use the theory as given in [Fal1] and Chapter II of [Szp]. We start with some
preparations concerning Riemann surfaces. The aim of this subsection is to
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give the arithmetic Riemann-Roch theorem as stated and proved by Faltings.
Let X be a compact Riemann surface of genus g > 0. The space of holo-

morphic differentials H0(X,Ω1
X) carries a natural hermitian inner product:

(4.4.1) (ω, η) 7→ i

2

∫
X
ω ∧ η.

Let (ω1, . . . , ωg) be an orthonormal basis with respect to this inner product.
This leads to a positive (1, 1)-form µ on X given by:

(4.4.2) µ =
i

2g

g∑
k=1

ωk ∧ ωk,

independent of the choice of orthonormal basis. Note that
∫
X µ = 1. We

refer to [Ara] for a proof of the following proposition. Denote by C∞ the
sheaf of complex valued C∞-functions on X , and by A1 the sheaf of com-
plex C∞ 1-forms on X . Recall that we have a tautological differential op-
erator d : C∞ → A1. It decomposes as d = ∂ + ∂ where, for any local C∞

function f and any holomorphic local coordinate z, with real and imaginary
parts x and y, one has ∂f = 1

2(∂f∂x − i
∂f
∂y ) · dz and ∂f = 1

2(∂f∂x + i∂f∂y ) · dz.

4.4.3 Proposition For each a in X , there exists a unique real-valued ga,µ in
C∞(X − {a}) such that the following properties hold:

1. we can write ga,µ = log |z − z(a)| + h in an open neighbourhood
of a, where z is a local holomorphic coordinate and where h is a C∞-
function;

2. ∂∂ga,µ = πiµ on X − {a};

3.
∫
X ga,µµ = 0.

We refer to µ and the ga,µ as the Arakelov (1, 1)-form and the Arakelov-
Green function, respectively. A fundamental property of the functions ga,µ
is that they give an inverse to the map C∞ → A2, f 7→ (−1/πi)∂∂f , with
A2 the sheaf of complex C∞ 2-forms on X , up to constants. For all f in
C∞(X) we have:

(4.4.4) f(x) =
∫
y∈X

g(x, y)
−1
πi

(∂∂f)y +
∫
X
f µX .
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For a proof of this see [Fal1, pp. 393–394], or [Elk, Lemme 4].
We note that Stokes’ theorem implies ga,µ(b) = gb,µ(a) for all a and b

in X . The Arakelov-Green functions determine certain metrics, called ad-
missible metrics, on all line bundles OX(D), where D is a divisor on X ,
as well as on the holomorphic cotangent bundle Ω1

X . To start, consider
line bundles of the form OX(a) with a a point in X (the general case
with D follows by taking tensor products). Let s be the tautological sec-
tion of OX(a), i.e. the constant function 1. We define a smooth hermi-
tian metric ‖·‖OX(a) on OX(a) by putting log ‖s‖OX(a)(b) = ga,µ(b) for
any b in X . By property 2 of the Arakelov-Green function, the curvature
form (2πi)−1∂∂ log(‖s‖2) of OX(a) is equal to µ. To continue, it is clear
that the functions ga,µ can be used to put a hermitian metric on the line
bundle OX×X(∆X), where ∆X is the diagonal on X × X , by putting
log ‖s‖(a, b) = ga,µ(b) for the tautological section s of OX×X(∆X).
Restricting to the diagonal we have a canonical adjunction isomorphism
OX×X(−∆X)|∆X

−̃→ Ω1
X . We define a hermitian metric ‖·‖Ar on Ω1

X

by insisting that this adjunction isomorphism be an isometry. It is proved
in [Ara] that this gives a smooth hermitian metric on Ω1

X , and that its curva-
ture form is a multiple of µ. From now on we will work with these metrics
onOX(P ) and Ω1

X (as well as on tensor product combinations of them) and
refer to them as Arakelov metrics. Explicitly: for D =

∑
P nPP a divisor

on X , we define gD,µ :=
∑

P nP gP,µ, and equip OX(D) with the metric
‖·‖ for which log ‖1‖(Q) = gD,µ(Q), for allQ away from the support ofD.
A metrised line bundle L in general is called admissible if, up to a constant
scaling factor, it is isomorphic to one of the admissible bundles OX(D), or,
equivalently, if its curvature form curv(L) is a multiple of µ. Note that then
necessarily we have curv(L) = (degL) · µ by Stokes’ theorem.

For any admissible line bundle L, Faltings defines a certain metric on
the determinant of cohomology λ(L) = det H0(X,L) ⊗ det H1(X,L)∨

of the underlying line bundle. This metric is the unique metric satisfy-
ing a set of axioms. We recall these axioms (cf. [Fal1], Theorem 1):
(i) any isometric isomorphism L1 −̃→ L2 of admissible line bundles
induces an isometric isomorphism λ(L1) −̃→ λ(L2); (ii) if we scale
the metric on L by a factor α, the metric on λ(L) is scaled by a fac-
tor αχ(L), where χ(L) = degL − g + 1 is the Euler-Poincaré character-
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istic of L; (iii) for any divisor D and any point P on X , the exact sequence
0 → OX(D − P ) → OX(D) → P∗P

∗OX(D) → 0 induces an isome-
try λ(OX(D)) −̃→ λ(OX(D − P )) ⊗ P ∗OX(D); (iv) for L = Ω1

X , the
metric on λ(L) ∼= det H0(X,Ω1

X) is defined by the hermitian inner product
(ω, η) 7→ (i/2)

∫
X ω ∧ η on H0(X,Ω1

X). In particular, for an admissible
line bundle L of degree g− 1, the metric on the determinant of cohomology
λ(L) is independent of scaling.

It was proved by Faltings that we can relate the metric on the determi-
nant of cohomology to theta functions on the Jacobian of X . Let Hg be
the Siegel upper half space of complex symmetric g-by-g-matrices with
positive definite imaginary part. Let τ in Hg be the period matrix at-
tached to a symplectic basis of H1(X,Z) and consider the analytic Jacobian
Jτ (X) = Cg/(Zg + τZg) attached to τ . On Cg one has a theta function
ϑ(z; τ) =

∑
n∈Zg exp(πi tnτn + 2πi tnz), giving rise to a reduced effec-

tive divisor Θ0 and a line bundle O(Θ0) on Jτ (X). Now consider on the
other hand the set Picg−1(X) of divisor classes of degree g − 1 on X . It
comes with a canonical subset Θ given by the classes of effective divisors.
A fundamental theorem of Abel-Jacobi-Riemann says that there is a canon-
ical bijection Picg−1(X) −̃→ Jτ (X) mapping Θ onto Θ0. As a result, we
can equip Picg−1(X) with the structure of a compact complex manifold,
together with a divisor Θ and a line bundle O(Θ).

The function ϑ is not well-defined on Picg−1(X) or Jτ (X). We can
remedy this by putting

(4.4.5) ‖ϑ‖(z; τ) = (det=(τ))1/4 exp(−π ty(=(τ))−1y)|ϑ(z; τ)|,

with y = =(z). One can check that ‖ϑ‖ descends to a function on Jτ (X).
By our identification Picg−1(X) −̃→ Jτ (X) we obtain ‖ϑ‖ as a function
on Picg−1(X). It can be checked that this function is independent of the
choice of τ . Note that ‖ϑ‖ gives a canonical way to put a metric on the line
bundle O(Θ) on Picg−1(X). For any line bundle L of degree g − 1 there
is a canonical isomorphism from λ(L) toO(−Θ)[L], the fibre ofO(−Θ) at
the point [L] in Picg−1(X) determined by L. Faltings proves that when we
give both sides the metrics discussed above, the norm of this isomorphism
is a constant independent of L; he writes it as exp(δ(X)/8). In more ex-
plicit terms, this means that for any line bundle L of degree g−1 on X with
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h0(L) = 0 (and hence h1(L) = 0) we have:

(4.4.6) λ(L) = C, ‖1‖−1
λ(L) = exp(δ(X)/8)·‖θ‖([L]).

The invariant δ(X) of X appears in the Noether formula, see below.
We will now turn to intersections on an arithmetic surface. For us, an

arithmetic surface is a proper, flat morphism p : X → B with X a regular
scheme, withB the spectrum of the ring of integersOK in a number fieldK,
and with generic fibre a geometrically connected and smooth curve X/K.
We say that X is of genus g if the generic fibre is of genus g. We will always
assume that p is a semi-stable curve, unless explicitly stated otherwise. After
extending the base field if necessary, any geometrically connected, smooth
proper curve X/K of positive genus with K a number field is the generic
fibre of a unique semi-stable arithmetic surface.

An Arakelov divisor on X is a finite formal integral linear combination
of integral closed subschemes of codimension 1 of X plus a contribution∑

σ ασ · Fσ running over the complex embeddings of K. Here ασ is a
real number, and the symbols Fσ correspond to the compact Riemann sur-
faces Xσ obtained by base changing X/K to C via σ. We have an R-valued
intersection product (·, ·) for such divisors, respecting linear equivalence.
When we want to indicate which model X is used for this intersection
product, we will use the notation (·, ·)X . The notion of principal divisor
is given as follows: let f be a non-zero rational function in K(X), then
(f) = (f)fin + (f)inf with (f)fin the usual Weil divisor of f on X , and
with (f)inf =

∑
σ vσ(f) · Fσ with vσ(f) = −

∫
Xσ

log |f |σµσ. For a list of
properties of this intersection product we refer to [Ara], [Fal1] or Chapter II
of [Szp].

It is proved in [Ara] that the group of linear equivalence classes of
Arakelov divisors is canonically isomorphic to the group P̂ic(X ) of isome-
try classes of admissible line bundles on X . By an admissible line bundle
on X we mean the datum of a line bundle L on X , together with admis-
sible metrics on the restrictions Lσ of L to the Xσ. In particular we have
a canonical admissible line bundle ωX/B whose underlying line bundle is
the relative dualising sheaf of p. In many situations it is convenient to treat
intersection numbers from the point of view of admissible line bundles.

For example, if P : B → X is a section of p, andD is an Arakelov divisor
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onX , the pull-back P ∗OX (D) is a metrised line bundle onB, and we have:

(4.4.7) (D,P ) = degP ∗OX (D),

where the degree deg of a metrised line bundle is as defined in (4.3.1). As
a second example, we mention that by definition of the metric on ωX/B , we
have for each section P : B → X of p an adjunction formula:

(4.4.8) (P, P + ωX/B) = 0 .

For an admissible line bundle L on X , we have the notion of determinant
of cohomology on B, in this context denoted by det Rp∗L (see Chapter II
of [Szp]). By using the description above for its metrisation over the com-
plex numbers, we obtain the determinant of cohomology on B as a metrised
line bundle. One of its most important features is a metrised Riemann-Roch
formula (cf. [Fal1], Theorem 3), also called arithmetic Riemann-Roch for-
mula:

(4.4.9) deg det Rp∗L =
1
2

(L,L ⊗ ω−1
X/B) + deg det p∗ωX/B

for any admissible line bundle L on X .
The term deg det p∗ωX/B is also known as the Faltings height of X , the

definition of which we will now recall. We let JK be the Jacobian vari-
ety of X , and J its Néron model over B. Then we have the locally free
OK-module Cot0(J) := 0∗Ω1

J/OK
of rank g, and hence the invertible OK-

module of rank one:

ωJ :=
g∧

0∗Cot0(J).

For each σ : K → C we have the scalar product on C⊗OK ωJ given by:

〈ω|η〉σ = (i/2)g(−1)g(g−1)/2

∫
Jσ(C)

ω ∧ η.

The Faltings height hK(X) is then defined to be the Arakelov degree of this
metrised line bundle:

(4.4.10) hK(X) = deg(ωJ),

and the absolute Faltings height (also called stable Faltings height) habs(X)
of X is defined as:

(4.4.11) habs(X) = [K : Q]−1 deg(ωJ).
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We remark that the stable Faltings height of X does not change after base
change to larger number fields; that is why it is called stable. Therefore,
habs(X) can be computed from any model of X over a number field as long
as that model has stable reduction over the ring of integers of that number
field.

As X → B is semi-stable, a result of Raynaud gives that the connected
component of 0 of J is the Picard scheme Pic0

X/B , whose tangent space
at 0 is R1p∗OX . Therefore, Cot0(J) is the same as p∗ω, as locally free
OK-modules. A simple calculation (see lemme 3.2.1 in Chapter I of [Szp])
shows that, with these scalar products, ωJ and det p∗ω are the same as
metrised OK-modules. Therefore we have:

(4.4.12) hK(X) = deg(ωJ) = deg det p∗ω.

One may derive from (4.4.9) the following projection formula: let E be a
metrised line bundle on B, and L an admissible line bundle on X . Then the
formula:

(4.4.13) deg det Rp∗(L ⊗ p∗E) = deg det Rp∗L+ χ(L) · degE

holds. Here again χ(L) is the Euler-Poincaré characteristic of L on the
fibres of p.
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Chapter Five

Computing complex zeros of polynomials and

series

J.-M. Couveignes

The purpose of this chapter is twofold. We first want to prove Theo-
rems 5.3.1 and 5.4.3 below about the complexity of computing complex
roots of polynomials and zeros of power series. The existence of a deter-
ministic polynomial time algorithm for these purposes plays an important
role in this book. More importantly, we want to explain what it means for us
to compute with real or complex data in polynomial time. All the necessary
concepts and algorithms already exist and are provided partly by numer-
ical analysis and partly by algorithmic complexity theory. However, the
computational model of numerical analysis is not quite a Turing machine,
but rather a real computer with floating point arithmetic. Such a computer
makes rounding errors at almost every step in the computation. In this con-
text, it is good enough to estimate the conditioning of the problem and the
stability of the used algorithm. Statements about conditioning and stability
tend to be local and qualitative. And this suffices to identify and overcome
most difficulties and design optimal methods.

Our situation however is quite different. We don’t really care about effi-
ciency. Being polynomial time is enough to us. On the other hand, we want
a rigorous, unconditional and fully general proof that the algorithms we use
are polynomial time and return a result that is correct up to a small error
that must be bounded rigorously in any case. For this reason, we shall not
use floating point registers: we don’t want to worry about the accumulation
of rounding errors. We rather decompose the computation in big blocks.
Inside every block we only allow exact computations (e.g. using integers or
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rational numbers). We also check that the function computed by every such
block is well conditioned and we make a precise statement for that. Finally,
we need to control the accumulation of errors in a chain of big blocks. But
this shall not be too difficult because, since the blocks are big and efficient
enough, the general organization of the algorithm is simple and involves few
blocks.

In Section 5.1 we recall basic definitions in computational complexity
theory. Section 5.2 deals with the problem of computing square roots. We
illustrate on this simple example what is expected from an algorithm in our
context. The more general problem of computing complex roots of polyno-
mials is treated in Section 5.3. Finally, we study in Section 5.4 the problem
of finding zeros of a converging power series.

Notation: The symbol Θ in this chapter stands for a positive effective
absolute constant. So any statement containing this symbol becomes true
if the symbol is replaced in every occurrence by some large enough real
number.

5.1 POLYNOMIAL TIME COMPLEXITY CLASSES

In this section we briefly recall classical definitions from computational
complexity theory. Since we only need to define the polynomial time com-
plexity classes, we shall not go into the details. We refer the reader to Pa-
padimitriou’s book [Pap] for a complete treatment of these matters.

Turing machines are a theoretical model for computers. They are finite
automata (they have finitely many inner states) but they can write or read
on an infinite tape with a tape head. A Turing machine can be defined by
a transition table. For a given inner state and current character read by the
head, the transition table provides the next inner state, which character to
write on the tape in place of the current one, and how the head should move
on the tape (one step left, one step right, or no move at all). See [Pap,
Chapter 2] for a formal definition.

A decision problem is a question that must be answered by yes or no.
For example deciding if an integer is prime. The answer of a functional
problem is a more general function of the question. For example factoring
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an integer is a functional problem. If we want to solve a problem with a
Turing machine, we write the input on the tape, we run the Turing machine,
and we wait until it stops. We then read the output on the tape. If the
machine always stops and returns the correct answer, we say that it solves
the problem in question. The time complexity is the number of steps before
the Turing machine has solved a given problem. Such a Turing machine is
said to be deterministic because its behaviour only depends on the input.
The size of the input is the number of bits required to encode it. This is
the space used on the tape to write this input. For example, the size of an
integer is the number of bits in its binary expansion. A problem is said to be
deterministic polynomial time if there exists a deterministic Turing machine
that solves it in time polynomial in the size of the input. The class of all
functional problems that can be solved in deterministic polynomial time is
denoted FP or FPTIME. The class of deterministic polynomial time
decision problems is denoted P or PTIME.

There exist other models for complexity theory. For example one may de-
fine multitape Turing machines. There also exist random access machines.
All these models lead to equivalent definitions of the polynomial complex-
ity classes. An algorithm is a sequence of elementary operations and in-
structions. Any algorithm can be turned into a Turing machine, but this is
fastidious and rather useless since conceptual description of the algorithm
suffices to decide if the number of elementary operations performed by the
algorithm is polynomial in the size of the input. If this is the case, we say
that the algorithm is deterministic polynomial time and we know that the
corresponding problem is in PTIME or FPTIME.

For example, if we want to multiply two positive integers N1 and N2,
then the size of the input (N1, N2) is the number of digits in N1 and N2

and this is dlog10(N1 + 1)e+ dlog10(N2 + 1)e. The number of elementary
operations required by the elementary school algorithm for multiplication is
Θ×dlog10(N1 + 1)e× dlog10(N2 + 1)e. The constant here depends on the
(reasonable) definition we have chosen for what an elementary operation is.
We don’t care about constants anyway. We say that the elementary school
algorithm is deterministic polynomial time. There also exists a determinis-
tic polynomial time algorithm for Euclidean division (e.g. the elementary
school one). The extended Euclidean algorithm computes coefficients in
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Bézout’s identity in deterministic polynomial time also. So addition, sub-
traction, multiplication and inversion in the ring Z/NZ can be performed in
time polynomial in logN . The class a mod N in Z/NZ is represented by
its smallest non-negative element. We denote it a%N . This is the remainder
in the Euclidean division of a by N .

A very important problem is exponentiation: given a mod N with
0 ≤ a ≤ N − 1 and an integer e ≥ 1, compute ae mod N .

Computing ae then reducing modulo N is not a good idea because ae

might be very large. Another option would be to set a1 = a and compute
ak = (ak−1 × a) %N for 2 ≤ k ≤ e. This requires e−1 multiplications and
e− 1 Euclidean divisions. And we never deal with integers bigger than N2.
The complexity of this method is thus Θ × e × (logN)2 using elementary
school algorithms. It is well known however that we can do much better.
We write the expansion of e in base 2

e =
∑

0≤k≤K
εk2k

and we set b0 = a and bk = b2k−1%N for 1 ≤ k ≤ K. We then notice that

ae ≡
∏

0≤k≤K
bεkk mod N.

So we can compute (ae)%N at the expense of Θ × log e multiplications
and Euclidean divisions between integers ≤ N2. The total number of el-
ementary operations is thus Θ × log e × (logN)2 with this method. So
exponentiation in Z/NZ lies in FPTIME. This is an elementary but deci-
sive result in algorithmic number theory. The algorithm above is called fast
exponentiation and it makes sense in any group. We shall use it many times
and in many different contexts.

A first interesting consequence is that for p an odd prime and a an integer
such that 1 ≤ a ≤ p− 1, we can compute the Legendre symbol(

a

p

)
≡ a

p−1
2 mod p

at the expense of Θ(log p)3 elementary operations. So testing quadratic
residues is achieved in polynomial deterministic time. Assume now that we
are interested in the following problem
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Given an odd prime integer p, find an integer a such that
1 ≤ a ≤ p− 1 and a is not a square modulo p. (?)

This looks like a very easy problem because half of the non-zero residues
modulo p are not squares. So we may just pick a random integer a between
1 and p− 1 and compute the Legendre symbol

(
a
p

)
= a

p−1
2 . If the symbol

is −1 we output a. Otherwise we output FAIL. The probability of suc-
cess is 1/2 and failing is not such a big problem because we can rerun the
algorithm: we just pick another random integer a.

This is a typical example of a randomized Las Vegas algorithm. The
behavior of the algorithm depends on the input of course, but also on the
result of some random choices. One has to flip coins. A nice model for such
an algorithm would be a Turing machine that receives besides the input, a
long enough (say infinite) one-dimensional array R consisting of 0’s and
1’s. Whenever the machine needs to flip a coin, she looks at the next entry
in the array R. So the Turing machine does not need to flip coins: we
provide her with enough random data at the beginning. We assume that the
running time of the algorithm is bounded from above in terms of the size of
the input only (this upper bound should not depend on the random data R).
For each input, we ask that the probability (on R) that the Turing machine
provides the correct answer is ≥ 1/2. The random data R takes values in
{0, 1}N. The measure on this latter set is the limit of the uniform measures
on {0, 1}k when k tends to infinity. If the Turing machine fails to return the
correct answer, she should return FAIL instead.

We just proved that finding a non-quadratic residue modulo p can be done
in Las Vegas probabilistic polynomial time. There is no known algorithm
that can be proven to solve this problem in deterministic polynomial time.
The class of Las Vegas probabilistic polynomial time decision problems is
denoted ZPP.

We now consider another slightly more difficult problem

Given an odd prime integer p, find a generating set (gi)1≤i≤I for
the cyclic group (Z/pZ)∗. (??)

We have a simple probabilistic algorithm for this problem. We compute
an integer I such that

log2(3 log2(p− 1)) ≤ I ≤ log2(3 log2(p− 1)) + 2



bookarxiv March 18, 2010

100 CHAPTER 5

and we pick I random integers (ai)1≤i≤I in the interval [1, p− 1]. The ai
are uniformly distributed and pairwise independent. We set gi = ai mod p
and we show that the (gi)1≤i≤I generate the group (Z/pZ)∗ with probability
≥ 2/3. Indeed, if they don’t, they must all lye in a maximal subgroup of
(Z/pZ)∗. The maximal subgroups of (Z/pZ)∗ correspond to prime divisors
of p − 1. Let q be such a prime divisor. The probability that the (gi)1≤i≤I

all lye in the subgroup of index q is bounded from above by

1
qI
≤ 1

2I

so the probability that the (gi)1≤i≤I don’t generate (Z/pZ)∗ is bounded
from above by 2−I times the number of prime divisors of q − 1. Since the
latter is ≤ log2(p− 1), the probability of failure is

≤ log2(p− 1)
2I

and this ≤ 1/3 by definition of I .

Note that here we have a new kind of probabilistic algorithm: the answer
is correct with probability ≥ 2/3 but when the algorith fails, he may return
a false answer. Such an algorithm (a Turing machine) is called Monte Carlo
probabilistic. This is weaker than a Las Vegas algorithm. We just proved
that problem (??) can be solved in Monte Carlo probabilistic polynomial
time. We don’t know of any Las Vegas probabilistic polynomial time al-
gorithm for this problem. The class of Las Vegas probabilistic polynomial
time decision problems is denoted BPP.

In general, a Monte Carlo algorithm can be turned into a Las Vegas one
provided the answer can be checked efficiently, because we then can force
the algorithm to admit that he has failed. Note also that if we set

I = f + dlog2(log2(p− 1))e

where f is a positive integer; then the probability of failure in the algorithm
above is bounded from above by 2−f . So we can make this probability
arbitrarily small at almost no cost.

The main purpose of this book is to prove statements about the complexity
of computing coefficients of modular forms. For example, Theorem 15.1.1
states that on input a prime integer p, computing the Ramanujan function
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τ(p) can be done in deterministic polynomial time in log p. An important
intermediate result is to prove that one can compute some Galois represen-
tations modulo l in time polynomial in l. We shall present two methods for
computing such representations. Both methods rely on computing approxi-
mations. The first method computes complex approximations and leads to a
deterministic algorithm. This is explained in Chapter 12 using the main re-
sults in this Chapter 5. We also present in Chapter 13 a probabilistic method
that relies on computations modulo small auxiliary primes. The main reason
why the latter methods are probabilistic is that they require to find generat-
ing sets for the Picard group of curves over finite fields. This is a general-
ization of problem (??) and solving it in deterministic polynomial time is
out of reach at the moment.

5.2 COMPUTING THE SQUARE ROOT OF A POSITIVE REAL NUMBER

In this section, we consider the following problem:

Given a positive real number a,
compute the positive square root b =

√
a of a. (???)

We need an algorithm that runs in deterministic polynomial time. This
raises a few simple minded but important questions about what should be
called an algorithm in this context. In Section 5.2.1 we try to formulate
problem (???) in a more precise way. We explain what is meant by an al-
gorithm in this context, and which properties one would expect from such
an algorithm. In Section 5.2.2 we present the classical dichotomy algorithm
and check that it has polynomial time complexity. The notions presented
in this section are classical and elementary and come from computational
complexity theory [Pap] and numerical analysis [Hig, Hen]. The algorithms
and methods we present are not original either, and they are far from opti-
mal. We stress that our unique goal here is to prove that a polynomial time
algorithm (in a sense that can be made rigorous) exists for some classical
computational problem regarding real numbers.
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5.2.1 Turing machines and real numbers

We shall use deterministic Turing machines; as defined in [Pap, Chapter 2]
for example. There is something annoying with problem (???) however:
both the input and the output are real numbers. Both existing computing
devices and Turing machines only deal with discrete data. So they can’t
deal with real numbers. We may imagine a Turing machine or a computer
handling registers with real numbers as in [Bl-Sh-Sm]. However, this would
not be of great use to us, because we plan to perform computations on real
numbers as an intermediate step in the computation of a discrete quantity:
our basic idea is to compute an integer (having some arithmetic significance)
from a good enough real approximation of it. In the end, we want a rigorous
proof that the discrete information we are interested in can be computed by a
deterministic Turing machine. We need to prove that a standard determinis-
tic Turing machine can efficiently and safely compute with real and complex
numbers, or at least with approximations of them. One possible approach to
this classical problem is interval arithmetic as presented in [Hay]. We shall
follow a slightly different track, which is better adapted to our situation. Our
goal is to prove that a certain number of more or less elementary calcula-
tions on complex numbers can be safely and efficiently performed (in a way
that will be made more precise soon) by an ordinary Turing machine. These
calculations include root finding of polynomials and power series, computa-
tion with divisors on modular curves, direct and inverse Jacobi problems on
these curves. In this section, the problem (???) will be used to illustrate a
few simple ideas that will be applied more systematically in the sequel. The
first question to be addressed concerns the input.

What is the input of problem (???) ?

Well, if a classical Turing machine is supposed to solve problem (???) it
cannot be given the real number a all at a time. That would be too big for
her. Instead of that, we assume that the Turing machine is given a black box
BOXa. On input a positive integerm, the black box BOXa returns a decimal
fraction Na × 10−ma such that |a−Na × 10−ma | ≤ 10−ma . If the black
box answers immediately, we will call it an oracle for a. A more realistic
situation is that the black box answers in polynomial time. This means that
on input a positive integerma, the black box outputs the expected numerator
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Na in time ≤ Aama
da where Aa and da are positive integers depending on

a but not onma. We assume that a Turing machine calling to a black box (or
an oracle) must take the time to read and copy the integrality of the oracle’s
answer. For example, a Turing machine with an oracle for π cannot access
the 10100-th digit without reading the previous ones.

In all the situations we shall be facing, there will be a Turing machine in
the black box. However, not every real number can be associated with such
a Turing machine: the set of Turing machines is countable and the set of real
numbers is not. This is the theoretical reason for introducing black boxes
there.

What should be the output of a Turing machine solving problem (???) ?

Again, we don’t expect the Turing machine to provide us with the real
b =

√
a all at a time. We would be a bit embarrassed with it anyway.

We rather expect the Turing machine, on input a positive integer mb and
a black box for a, will return a decimal fraction Nb × 10−mb such that
|b −Nb × 10−mb | ≤ 10−mb . The square root Turing machine may call the
black box for a once or several times.

Altogether, the input of the square root Turing machine should consist of
a black box BOXa for a and a positive integer mb telling her the desired
absolute accuracy of the expected result. And the output will be a decimal
fraction approximating b.

How do we define the complexity of a square root Turing machine ? What
does it mean for such a Turing machine to be polynomial time ?

Assume that we have a Turing machine SQRT that computes square roots.
Assume that the input of the square root machine SQRT consists of a black
box BOXa for a and a positive integer mb (the required absolute accuracy
of the result). We look for an upper bound for the number of elementary op-
erations performed by SQRT, as a function of log max(a, 1) and mb. Such
a bound will be called a complexity estimate for SQRT. Notice that a call to
the black box BOXa will be counted as a single operation.

We assume that there exist two positive integers ASQRT and dSQRT

such that the complexity of SQRT is bounded above by a polynomial
ASQRT(mb + log max(a, 1))dSQRT . Then the number of calls to BOXa is
certainly bounded by this number. And the absolute accuracy required
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from BOXa cannot exceed this number either, otherwise the machine SQRT
would not even find the time to read the digits provided to her by BOXa.
So by combining a black box BOXa for the input and the Turing machine
SQRT, we obtain a black box BOXb for the output b. And if both SQRT
and BOXa have polynomial time complexity, so is the resulting black box
BOXb.

Is problem (???) well conditioned ?

We have seen that the Turing machine SQRT cannot always access the
exact value of the input a. Instead of that SQRT is provided with a black
box that sends to her approximations of a. We want to make sure that a good
approximation of b =

√
a can be deduced from a good approximation of a.

Since the function a 7→
√
a is 1

2 -Lipschitz on the interval [1,∞], we have

|∆b| = |
√
a+ ∆a−

√
a| ≤ 1

2
|∆a| (5.1)

as soon as a ≥ 2 and |∆a| ≤ 1. So a small perturbation of the input results
in a small perturbation of the expected output in that case. One says that the
problem is well conditioned.

Not every computational problem is well conditioned. For example, com-
puting the rounding function a 7→ dac is not well conditioned if one gets
close to 1

2 because the function is not even continuous there.
We shall not need to formalize a definition of conditioning, but we shall

check in several occasions that the function we want to evaluate is A-
Lipschitz for a reasonable constant A. A weaker condition may suffice
in some cases: for example, assume that we want to compute a func-
tion a 7→ b and assume that − log min(1, |∆b|) is lower bounded by
(− log min(1, |∆a|))

1
e for some fixed positive integer e. Then the loss of

accuracy is polynomial in some sense: one can obtain m digits of b from
Θme digits of a.

For example, if we consider the problem of computing the square root of a
positive real number a, we notice that the function a 7→

√
a is not Lipschitz

on [0,+∞[ but we have
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|∆b| = |
√
a+ ∆a−

√
a|=
√
a×

∣∣∣∣∣
√

1 +
∆a
a
− 1

∣∣∣∣∣
≤
√
a×

√
|∆a| (5.2)

whenever |∆a| ≤ min(a, a2).
So for small values of a, we loose (no more than) half the absolute ac-

curacy when taking the square root. This is enough for us to say that the
problem is well conditioned.

5.2.2 The dichotomy algorithm

Given a real interval [M1,M2] and a continuous function

f : [M1,M2]→ R

such that f(M1)f(M2) < 0, the dichotomy algorithm finds an approxi-
mation of a real zero of f in [M1,M2]. We use the dichotomy algorithm
to compute the positive square root b =

√
a of a positive decimal number

a = Na × 10−ma where Na ≥ 1 and ma ≥ 0 are integers. So we call
f : [0,∞[→ [0,∞[ the map x 7→ x2 − a. The algorithm below only han-
dles integers and decimal fractions. Let h be the smallest integer such that
10h ≥ Na. If h − ma is even we set M2 = 10

h−ma
2 , otherwise we take

M2 = 10
h−ma+1

2 . We set M1 = M2/10. We assume that we are given also
a positive integer mb (the required absolute accuracy of the result).

We use two registers R1 and R2 containing decimal fractions. The initial
value of R1 is M1 and the initial value of R2 is M2.

The algorithm then goes as follows:

1. If f(R1+R2
2 ) is zero or if |R1−R2| ≤ 10−mb , output R1+R2

2 and stop.

2. If f(R1)f(R1+R2
2 ) > 0, set R1 := R1+R2

2 and go to step 1.

3. If f(R1)f(R1+R2
2 ) < 0, set R2 := R1+R2

2 and go to step 1.

The algorithm ouputs a decimal fraction b̃ such that |b − b̃| ≤ 10−mb .
The loop is not executed more than Θ(mb + h − ma + 1) times. So the
denominator of b̃ is bounded above by 10Θ(ma+mb+h+1) and the same holds
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for any intermediate result in the course of the algorithm. So the complexity
of the algorithm is polynomial in ma, logN and mb. And so is the size of
the output.

We now consider a few questions raised by this algorithm.

What to do if the input a is a real number rather than a decimal one ?

In that case, we assume that we are given a black box BOXa for a and a
positive integer mb (the required absolute accuracy of the result). Our first
task is to obtain from BOXa a positive lower bound for a. So we first ask
her for a decimal approximation of a within 10−10. If the answer is zero,
we ask her for a decimal approximation of a within 10−20. If the answer is
zero again, we ask her for a decimal approximation of a within 10−40. After
a few steps, either we obtain a positive lower bound for a or we prove that
a is smaller than 10−2mb . In the later case, we output b̂ = 0 which is a good
enough approximation for b =

√
a.

The above shows that we can assume that we know the smallest positive
integer s such that a is bigger than 10−s.

Inequalities (5.2) and (5.1) show that if l ≥ 2s and |â− a| ≤ 10−Θl then
|
√
â −
√
a| ≤ 10−l for some absolute constant Θ. So we ask BOXa for a

decimal approximation â of a within 10−Θ(mb+2s+1). We set b =
√
a and

b̂ =
√
â and we check that |b̂ − b| ≤ 10−mb−2s−1. We send the decimal

number â to the dichotomy algorithm above and ask it for an approximation
of b̂ =

√
â within 10−mb−1.

We obtain a decimal number ˜̂b such that |̃b̂− b̂| ≤ 10−mb−1. We output ˜̂b
and check that

|̃b̂− b| ≤ |̃b̂− b̂|+ |b̂− b| ≤ 2× 10−mb−1 ≤ 10−mb . (5.3)

So we have designed an algorithm (a Turing machine) that computes the
positive square root of a positive number a in time polynomial in log(a+ 1)
and the required accuracy.

Is the above algorithm stable ?

People in numerical analysis say that an algorithm is stable when the
value output by the algorithm is not too far from the exact value. As we
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just proved, the dichotomy algorithm can compute b =
√
a within 10−mb in

time polynomial in log(a + 1) and mb ≥ 1. So it can be said to be stable.
We shall allow ourselves to use this terminology; but we prefer to state and
prove clear and accurate complexity estimates like the one above.

It is important to make a distinction between stability and conditioning.
A problem can be said to be well conditioned. An algorithm can be said to
be stable. In the above proof that the dichotomy algorithm for computing
square roots is stable, we have used the fact that the problem itself is well
conditioned. This is illustrated by inequality (5.3).

5.3 COMPUTING THE COMPLEX ROOTS OF A POLYNOMIAL

In this section, we consider the following problem:

Given a degree d ≥ 2 unitary polynomial with complex coeffi-
cients

P (x) = xd +
∑

0≤k≤d−1

akx
k,

compute the complex roots of P (x). (????)

The input of problem (????) consists of an integer d ≥ 2 and a black box
BOXP for the coefficients of P (x). On input a positive integer m and an
index k such that 0 ≤ k ≤ d − 1, the black box BOXP returns a decimal
fraction

(N1 +N2i)× 10−m−1 such that |ak − (N1 +N2i)× 10−m−1| ≤ 10−m

where i =
√
−1 ∈ C.

A Turing machine ROOTS solving problem (????) should be given also
a positive integer mZ telling her the required accuracy of the result. Let
Z = [z1] + [z2] + · · · + [zd] be the divisor of P . This is the formal sum
of complex roots, counted with multiplicities. This is an effective divisor
of degree d. On input a positive integer mZ and a black box for the coeffi-
cients of P (x), the machine ROOTS is expected to return an approximation
Ẑ = [ẑ1]+[ẑ2]+· · ·+[ẑd] of Z within 10−mZ . This means that there should
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exist a permutation of the indices τ ∈ Sd such that |zτ(k) − ẑk| ≤ 10−mZ

for every 1 ≤ k ≤ d.
The rest of this section is devoted to proving the following theorem.

5.3.1 Theorem (Computing roots of polynomials) There exists a deter-
ministic algorithm that on input a degree d unitary polynomial

P (x) = xd +
∑

0≤k≤d−1

akx
k

in C[x] and a positive integer mZ , computes an approximation

Ẑ = [ẑ1] + [ẑ2] + · · ·+ [ẑd]

of the divisor

Z = [z1] + [z2] + · · ·+ [zd]

of P , within 10−mZ . This means that there exists a permutation of the in-
dices τ ∈ Sd such that |zτ(k) − ẑk| ≤ 10−mZ for every 1 ≤ k ≤ d. The
running time is polynomial in d, logH and the required accuracy mZ ≥ 1.
Here H is the smallest integer bigger than the absolute value of all coeffi-
cients in P (x).

In Section 5.3.2 we prove that the problem is well conditioned in some
sense. In Section 5.3.4 we recall the principles of Weyl’s Quadtree algo-
rithm. We recall in Section 5.3.5 that there exists an exclusion function
that is sharp enough and easy to compute. This finishes the proof of Theo-
rem 5.3.1.

5.3.2 Conditioning

Our first concern is to check that the problem of finding roots is well con-
ditioned in some sense. We first need to define clusterings of roots. Let ε
be a positive real number. An ε-clustering for P (x) consists of a positive
integer K and a pair (ck, nk) for every 1 ≤ k ≤ K such that the following
conditions are satisfied:

• ck is a complex number and nk is a positive integer for every
1 ≤ k ≤ K.
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• if k1 6= k2 then |ck1 − ck2 | > 2ε.

• There are nk roots of P (x), counting multiplicities, in the open disk
D(ck, ε/2) of center ck and radius ε/2.

• There are nk roots of P (x) in the open disk D(ck, ε), counting multi-
plicities.

•
∑

1≤k≤K nk = d.

So we want to squeeze the complex roots of P (x) into small disks that are
distant enough from each other. Note that there may not exist an ε-clustering
for every ε. Problems may occur when the distance between two roots of P
is close to ε. However, for every positive ε, there exists an ε′ such that

2−d
2
ε ≤ ε′ ≤ ε (5.4)

and an ε′-clustering for P (x). Indeed, we consider the interval

S = [−d2 log 2 + log ε, log ε]

and for every pair (z, z′) of distinct roots of P (x) we remove the interval

[log |z − z′| − log 2, log |z − z′|+ log 2]

to S. The resulting set T is not empty because there are at most d(d− 1)/2
pairs of distinct roots. Any ε′ such that log ε′ belongs to T is fine.

Now, call Z = [z1] + [z2] + · · · + [zd] the divisor of P . We call A the
smallest integer bigger than the absolute values of the coefficients of P (x).
Let ∆(x) be a polynomial of degree ≤ d− 1. Let δ be the maximum of the
absolute values of the coefficients of ∆(x). We want to compare the roots of
P and the roots of P + ∆. The absolute values of the roots of P are ≤ dA.
We fix an ε ≤ 1. We know that there exists an ε′-clustering (ck, nk)1≤k≤K

of the roots of P for some 2−d
2
ε ≤ ε′ ≤ ε. Let z be a complex number

such that |z − ck| = ε′ for some 1 ≤ k ≤ K. The absolute value of P (z) is
lower bounded by (ε′)d2−d. On the other hand, the absolute value of ∆(z)
is upper bounded by dδ(dA+ 2ε′)d−1. So if
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δ <

(
ε′

2(dA+ 2)

)d
(5.5)

we deduce from Rouché’s theorem that P +∆ has nk roots insideD(ck, ε′).
As a consequence, the roots ẑ1, ẑ2, . . . , ẑd of P + ∆ can be indexed in such
a way that |zj − ẑj | ≤ 2ε′ ≤ 2ε for every 1 ≤ j ≤ d. Roughly speaking, the
meaning of inequality (5.5) is that when passing from coefficients to roots,
the accuracy is divided by (no significantly more than) the degree d of the
polynomial P . We thus have proven the following lemma.

5.3.3 Lemma (Conditioning of the roots) There exists a positive constant
Θ such that the following is true. Let d ≥ 1 be an integer and let P (x)
be a degree d unitary polynomial with complex coefficients. Let A be the
smallest integer bigger than the absolute values of the coefficients of P . Let
∆(x) be a degree d− 1 polynomial with coefficients bounded above by δ in
absolute value. Let ε be the unique positive real such that

log δ = d log ε− d logA−Θd3. (5.6)

Assume that ε ≤ 1. Let Z = [z1] + [z2] + · · · + [zd] be the divisor of P
and let Ẑ = [ẑ1] + [ẑ2] + · · · + [ẑd] be the divisor of P (x) + ∆(x). There
exists a permutation of the indices τ ∈ Sd such that |zτ(k) − ẑk| ≤ ε for
every 1 ≤ k ≤ d.

This lemma tells us that if we are looking for an approximation within
10−mZ of the divisor Z = [z1] + [z2] + · · · + [zd] of a unitary polyno-
mial P (x) ∈ C[x] given by a blackbox BOXP , we may replace P by a good
enough approximation of it having e.g. decimal coefficients. Indeed, we first
compute the smallest integer A bigger than the absolute values of all coeffi-
cients of P (x). We set ε = 10−mZ−1 and let δ be the real number given by
Equation (5.6). Let mP be the smallest integer such that 10−mP ≤ δ/d. We
call the black box BOXP and obtain for every 0 ≤ k ≤ d−1 a decimal frac-
tion âk with denominator 10mP+1 such that |âk−ak| ≤ 10−mP ≤ δ/d. Let
P̂ = xd+

∑
0≤k≤d−1 âkx

k. We compute the discriminant of P̂ . If it is zero,
we replace P̂ by P̂ + 10−mP (we increase the constant term by 10−mP .) If
the discriminant is zero again, we add 10−mP to the constant term again. We
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go on like that until the discriminant of P̂ is non-zero. This process stops
after d steps at most (seen as a polynomial in the indeterminate a0 the dis-
criminant has degree d−1, so it cannot cancel d times.) In the end we obtain
a unitary polynomial P̂ with decimal coefficients âk such that |âk−ak| ≤ δ
and the discriminant of P̂ is non zero. If Ẑ = [ẑ1] + [ẑ2] + · · · + [ẑd] is
the divisor of P̂ , there exists a permutation of the indices τ ∈ Sd such that
|zτ(k) − ẑk| ≤ ε for every 1 ≤ k ≤ d. The coefficients of P̂ are decimal
fractions with denominator 10mP+1 where mP is an integer such that

mP ≤ Θd(mZ + d2 + logA). (5.7)

In order to approximate the roots of P within 10−mZ it suffices to approx-
imate the roots of P̂ within 10−mZ−1. So in the sequel we shall assume
that we are given a unitary polynomial with coefficients in Z[i, 1

10 ] having
no multiple root.

5.3.4 Weyl’s Quadtree algorithm

We now describe a simple-minded variant of the celebrated Weyl’s Quadtree
algorithm to compute complex roots of polynomials. Let

P (x) = xd +
∑

0≤k≤d−1

akx
k

be a degree d ≥ 1 unitary polynomial with coefficients in Z[i, 1
10 ]. So every

coefficient ak is a fractionNk×10−mP−1 withNk = N1,k+N2,ki andN1,k,
N2,k are in Z. We assume that a0 is not zero. Let g be the smallest positive
integer such that the distance between any two distinct roots of P is at least
10−g. For every complex number z we denote by r(z) the distance between
z and the closest root of P . We denote by R(z) the distance between z and
the furthest root of P . Computing r(z) seems difficult unless one already
knows the roots of P . However, we assume that we can compute for every
z in Z[i, 1

10 ] a decimal ρ(z) such that ρ(z) ≤ r(z) ≤ 1.01 × ρ(z). Such a
ρ is called an exclusion function. We shall give in Section 5.3.5 an example
of such an exclusion function that can be computed efficiently.

We first construct a squareQ in the complex plane C that is large enough
to contain all roots of P . We take for Q a square with center the origin and
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side length

s = 2dA

where A is the smallest integer bigger than the absolute values of all coeffi-
cients in P .

Now we divideQ into four squares of side lenght s/2: the top left square
Q1, the top right square Q2, the bottom left square Q3 and the bottom right
square Q4. For each 1 ≤ k ≤ 4 we evaluate the exclusion function ρ at the
center ck of Qk. If ρ(ck) is bigger than the half diagonal s/(2

√
2) of Qk

then we know that there is no root of P in Qk. So we erase this square.
Next we consider all those squares that have not been erased and we di-

vide each of them into four smaller squares with side length s/4. We eval-
uate the exclusion function at the center of every such square. If the value
of the exclusion function if bigger than the half diagonal s/(4

√
2) of the

square in question, we erase it.
We go on like that, dividing all remaining squares into four smaller ones

at each step. The number of remaining squares is never bigger than 4d. The
reason is that a given root of P cannot compromise more than 4 squares at
a time (such a situation would occur if the root in question were very close
to the intersection of four contiguous squares).

After n steps, the side length of the remaining squares is s/2n. If s/2n

is much smaller than the minimum distance between two roots of P , then
there remains exactly d groups of contiguous squares, and they each contain
a single root of P . So the number of steps is bounded by a constant times

log(dA) +mZ + g (5.8)

where A is the smallest integer bigger than the absolute values of all coef-
ficients in P , and mZ is the required accuracy of the result, and 10−g is a
lower bound for the distance between any two roots of P .

We illustrate this process on Figure 5.1. The two roots are represented by
two bullets.

Note that if the discriminant of P is non-zero, its absolute value is a least
10−(mP+1)(2d−1) so the distance between any two distinct roots is at least
10−(mP+1)(2d−1)(2dA)−d(d−1). We deduce
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g ≤ Θd(mP + d2 + d logA).

Combining this with the estimates in Equations (5.8) and (5.7) we deduce
that the number of steps in Weyl’s Quadtree algorithm is

≤ Θd2(log(A) + d2 +mZ) (5.9)

where d is the degree of the polynomial, A the smallest integer bigger than
the coefficients and mZ the required accuracy for the roots of P (x).

t

t

Figure 5.1 Weyl’s Quadtree method

To finish the proof of Theorem 5.3.1 it remains to prove that there exists
an exclusion function ρ that can be evaluated quickly enough. This is done
in the next Section 5.3.5.

5.3.5 Buckholtz inequalities

In this section we recall useful inequalities due to Buckholtz [Buc1, Buc2]
and we explain how to deduce a nice exclusion function following Pan
[Pan]. Let P (x) = xd +

∑
0≤k≤d−1 akx

k be a degree d ≥ 2 unitary
polynomial with complex coefficients. Assume that a0 is not zero. Let
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Z = [z1]+ [z2]+ · · ·+[zd] be the divisor of P . For every integer v (positive
or negative) we call

νv = zv1 + · · ·+ zvd

the v-th power sum. Buckholtz has shown the following inequality

1
5

max
1≤v≤d

|zv| ≤ max
1≤v≤d

(
|νv|
d

) 1
v

≤ max
1≤v≤d

|zv|. (5.10)

One can easily deduce a more general and sharper statement. If M ≥ 1
is an integer then

5−
1
M max

1≤v≤d
|zv| ≤ max

1≤v≤d

(
|νMv|
d

) 1
Mv

≤ max
1≤v≤d

|zv|. (5.11)

Recall that for any z ∈ C we call r(z) the distance between z and the
closest root of P and R(z) the distance between z and the furthest root of
P . From Equation (5.11) we deduce an estimate for R(0).

max
1≤v≤d

(
|νMv|
d

) 1
Mv

≤ R(0) ≤ 5
1
M max

1≤v≤d

(
|νMv|
d

) 1
Mv

. (5.12)

If we apply inequality (5.12) to the reciprocal polynomial of P (x) we
obtain

5−
1
M

max1≤v≤d

(
|ν−Mv |

d

) 1
Mv

≤ r(0) ≤ 1

max1≤v≤d

(
|ν−Mv |

d

) 1
Mv

. (5.13)

The power sum νv can be computed using Newton formulae. Assume
that P (x) has coefficients ak = Nk × 10−mP with Nk = Nk,1 +Nk,2i and
Nk,1, Nk,2 are in Z. Let A be the smallest integer bigger than the absolute
values of the coefficients ak. Then computing νv takes time polynomial in
v, mP and logA.
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Extracting the v-th power of a decimal fraction N × 10−m can be done
in time polynomial in v, logN , m and the required accuracy, using a di-
chotomy algorithm as in Section 5.2. If M ≥ 200 then the approximation
factor 5

1
N is smaller than 1.01. So we obtain a very sharp estimate for r(0).

For any z ∈ C we can apply inequality (5.13) to the polynomial P (x+z)
and obtain a good approximation of r(z). Assume that P (x) has co-
efficients ai = Ni × 10−mP with Ni = Ni,1 + Ni,2i. Assume that
z = (z1 +z2i)×10−mz and z1, z2 are in Z. LetA be smallest integer bigger
than the absolute values |ai|. Then, using Equation (5.13) for N = 200 and
the change of variable x 7→ x+ z, we can compute a decimal number ρ(z)
such that

ρ(z) ≤ r(z) ≤ 1.01× ρ(z)

and this takes time polynomial in d, mP , logA, mz , and

log max(|z1|, |z2|, 1).

In the course Weyl’s Quadtree algorithm,mz is the number of steps which
is bounded in (5.9). Both |z1| and |z2| are bounded by dA10mz . An upper
bound for mP is given in (5.7).

So the calculation of any value of the exclusion function that is required
in the course of Weyl’s algorithm takes polynomial time in d, logA and the
required accuracy mZ . This finishes the proof of Theorem 5.3.1.

5.4 COMPUTING THE ZEROS OF A POWER SERIES

Given a power series f(x) = f0 +
∑

k≥1 fkx
k ∈ C[[x]] with positive radius

of convergence R, we may want to compute the zeros of f inside the open
diskD(0, R). However, the number of such zeros may very well be infinite.
So we should restrict to a smaller disc D(0, r) with 0 < r < R. Then it
makes sense to wonder how many zeros there are in the diskD(0, r) and try
to compute approximations of these zeros. However, the problem of count-
ing zeros in such a disk is not a well conditioned problem, because if f has
a zero z of absolute value exactly r, then an infinitesimal perturbation of f
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may push this zero inside or outside D(0, r). So we should allow the algo-
rithm to choose a r′ that is very close to r and compute the number of zeros
inside D(0, r′). Then it makes sense to ask for approximations of these ze-
ros. The input of a Turing machine ZERO computing zeros of power series
would consist of a black box BOXf for the coefficients of f(x). On input
an integer K ≥ 0 and an integer m ≥ 1, the black box BOXf returns for
every 0 ≤ k ≤ K a decimal fraction (N1,k + N2,ki) × 10−m−1 such that
|fk − (N1,k + N2,ki) × 10−m−1| ≤ 10−m. Note that the Turing machine
ZERO is not allowed to ask about one coefficient individually. In particu-
lar, she needs at least time Θk to receive any information about coefficient
fk from the black box BOXf . Unfortunately this is not enough for her to
compute an approximation of the zeros, because there may appear a huge
coefficient fk very far away in the development of f . If we want ZERO to
be able to compute zeros without knowing all coefficients of the power se-
ries, we should at least provide her with an upper bound for the coefficients
in f(x). We introduce the following definition.

5.4.1 Definition (Type of a power series) Let A ≥ 1 be a real and n ≥ 1
an integer. A power series f(x) = f0 +

∑
k≥1 fkx

k is said to be of type
(A,n) if for every k ≥ 0 we have

|fk| ≤ A(k + 1)n.

The radius of convergence of a power series of type (A,n) is at least 1. El-
ementary results about series of type (A,n) are collected in Section 5.4.17.
The reader is advised to read quickly the results in this section before going
further. We shall assume that the Turing machine ZERO is given two inte-
gers a ≥ 1 and n ≥ 1 such that the power series f(x) is of type (exp(a), n).

There is still one difficulty to overcome. For any finite set F ⊂ C we
may consider the polynomial PF (x) =

∏
z∈F (x − z). If we divide PF (x)

by its L∞ norm we obtain a polynomial QF (x) having all its coefficient
bounded by 1 in absolute value. We may regard QF as a power series of
type (1, 1). Since F can be arbitrarily large, we deduce that we cannot
bound the complexity of finding zeros of a power series in a given disk
D(0, r) just in terms of the type (A,n) of the series. However, we guess that



bookarxiv March 18, 2010

COMPUTING COMPLEX ZEROS OF POLYNOMIALS AND SERIES 117

a power series of type (1, 1) having too many zeros inside a small compact
set contained in its disk of convergence, must be small everywhere on this
compact set. Also we shall assume that the Turing machine ZERO is given a
lower bound for the maximum of f on D(0, r). More precisely, we assume
that 1/2 ≤ r < 1 and provide the Turing machine with a positive integer µ
such that |f(z)| > exp(−µ) for at least one z in D(0, 1/2).

In this section, we shall prove the following theorem.

5.4.2 Theorem (Counting zeros of a power series) Let

f(x) = f0 +
∑
k≥1

fkx
k ∈ C[[x]]

be a power series. Let a ≥ 1 be an integer and set A = exp(a). Let n ≥ 1
be an integer such that f is of type (A,n). Let r be a real number such that
1/2 ≤ r < 1. Let µ be a positive integer such that there exists at least one z
in D(0, 1/2) such that |f(z)| > exp(−µ).

The number of zeros of f in the closed disk D̄(0, r) is bounded by a
polynomial in n, a, µ and (1−r)−1. More precisely, there exists an absolute
constant Θ such that the number of zeros of f in the closed disk D̄(0, r) is
bounded above by

Θ(n2 + µ+ a)2

(1− r)13
.

We shall prove also the existence of an algorithm that computes approxi-
mations of these zeros.

5.4.3 Theorem (Approximating the zeros of a power series) There is a
deterministic algorithm that on input an integer m ≥ 1, an integer a ≥ 1,
an integer n ≥ 1, an integer µ ≥ 1, a rational number r = 1 − 1/o where
o ≥ 2 is an integer, and a power series

f(x) = f0 +
∑
k≥1

fkx
k ∈ C[[x]]

of type (exp(a), n), such that |f(z)| > exp(−µ) for at least one z in
D(0, 1/2) returns
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• A rational number r′ such that |r − r′| ≤ 10−m,

• The number J of the zeros of f(x) in the closed disk D̄(0, r′), or
equivalently the degree J of the divisor Z = [z1] + [z2] + · · · + [zJ ]
of f restricted to the closed disk D̄(0, r′),

• Assuming J ≥ 1, for every 1 ≤ j ≤ J , a decimal

ẑj = (M1,j +M2,ji)× 10−m−1

where M1,j and M2,j are integers, such that

Ẑ = [ẑ1] + [ẑ2] + · · ·+ [ẑJ ]

approximates the divisor Z = [z1] + [z2] + · · · + [zJ ] within 10−m.
More precisely, there exists a permutation of the indices τ ∈ SJ such
that |zτ(j) − ẑj | ≤ 10−m for every 1 ≤ j ≤ J .

The algorithm runs in time polynomial in a, n, µ, o = (1− r)−1, and m.

Here is the main idea in the proof of these theorems. For every positive
integer uwe write f(x) = Pu(x)+Ru(x) where Pu(x) =

∑
0≤k≤u−1 fkx

k

is the principal part andRu(x) =
∑

k≥u fkx
k is the remainder term of order

u. We expect that if u is large enough, the roots of Pu(x) in D(0, r) sharply
approximate the zeros of f(x) in D(0, r). It would then suffice to apply the
algorithm and theorem in Section 5.3.

Our first concern will be to prove that the problem of finding zeros of a
power series is well conditioned in some sense: a small perturbation does
not affect too much the zeros. We cannot use Lemma 5.3.3 about the con-
ditioning of roots of polynomials, and we cannot adapt its proof either, be-
cause both the statement and the proof involve the degree of the polynomial.
Instead of that, we shall first study the conditioning of every zero indepen-
dently. In Section 5.4.4 we introduce the Newton polynomial of a power
series and we show how it can help locating the zeros in the neighborhood
of the origin. In Section 5.4.6 we deduce that if f(0) is very small, then f(x)
has a zero in a small neighborhood of 0. This proves that a zero at the origin
is well conditioned. In Section 5.4.8 we state and prove a simple effective
version of the analytic continuation theorem. In the next Section 5.4.11, we
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deduce that any zero of f(x) is well conditioned in some sense. A global
statement about the conditioning of all zeros is stated and proved in Sec-
tion 5.4.13. In the next Section 5.4.15 we use this result to finish the proof
of Theorem 5.4.2. We give the proof of Theorem 5.4.3 and the correspond-
ing algorithm in Section 5.4.16. Section 5.4.17 is devoted to the proof of a
few elementary results about power series of type (A,n).

5.4.4 The Newton polygon of a power series

Let f(x) = 1 +
∑

k≥1 fkx
k ∈ C[[x]] be a power series such that f(0) = 1.

We assume that the radiusR of convergence is positive (it might be infinite).
Let r be a real such that 0 < r < R. We try to mimic non-archimedean
analysis and relate the modulus of zeros of f(x) and the slopes of its Newton
polygon. Let d be the degree of f(x) in the indeterminate x. So 0 ≤ d ≤ ∞
and most of the time d = ∞. The Newton cloud of f(x) is the subset of
R × R consisting of couples (k,− log |fk|) for all k ≥ 0 such that fk 6= 0.
Let Φ be the set of all affine functions φ : [0, d] → R whose graph stays
below the Newton cloud: for every k ≥ 0 one has φ(k) ≤ − log |fk|. The
Newton function is a function N : [0, d] → R defined as the sup of all φ in
Φ. For every t ∈ [0, d]

N (t) = sup
φ∈Φ

φ(t).

This is a convex function on [0, d]. It is continuous and piecewise affine.
Indeed, it is affine on the interval [k, k + 1] for every 0 ≤ k ≤ d − 1. The
Newton polygon is the set P = {(x, y) ∈ [0, d] × R | N (x) ≤ y}. The
vertices of the Newton polygon are the points (k,N (k)) for all k where N
is not differentiable (such a k must be an integer). This includes the point
(0, 0), and the point (d,N (d)) also when d is finite. The Newton polygon
has a vertical edge ](0,+∞), (0, 0)]. If d is finite and non-zero, there is
another vertical edge [(d,N (d)), (d,+∞)[. The remaining edges connect
successive vertices of P . A slope of the Newton polygon is a slope of one
of its edges. A supporting line is a line L such that P is entirely contained
in one of the two closed half planes determined by L, and L contains at
least one point of P . For every element α in [−∞, logR[ there is a single
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supporting line Lα with slope α. If the Newton polygon has finitely many
edges, then there also exists a supporting line with slope logR. If α is a
slope of the Newton polygon, then Lα contains the corresponding edge of
P .

Assume that α ∈ R is not a slope of the Newton polygon. The supporting
line Lα contains a single vertex v = (k,N (k)) of P . Let α− ∈ [−∞,+∞[
be the slope of the edge just before v. Let α+ ∈] − ∞,+∞] be
the slope of the edge just after v. The vector (−α, 1) is orthogonal
to Lα. The Newton polygon P is contained in the closed half plane
H = {(x, y)|(−α, 1).(x, y) ≥ (−α, 1).(k,N (k))}. We deduce that for
z a complex number such that log |z| = α, the term fkz

k dominates the
power series in some sense. Indeed, for every j ≥ 0 we have

− log |fjzj | = − log |fj | − jα= (−α, 1).(j,− log |fj |)
≥ (−α, 1).(k,− log |fk|)

so fkzk has a bigger absolute value than any other term in the power series.
Assume now that j > k. The point (j,− log |fj |) is above the support-

ing line Lα+ with slope α+. So |fj | ≤ |fk| exp(−(j − k)α+). Since
log |z| = α, the term fjz

j has absolute value bounded above by |fk||z|k

times exp(−(j − k)(α+ − α)). The sum
∑

j>k |fj ||z|j is thus bounded
above by |fk||z|k times a

1−a where a = exp(−(α+ − α)).
If j < k, then the point (j,− log |fj |) is above the supporting

line Lα− with slope α−. So |fj | ≤ |fk| exp(−(k − j)α−). Since
log |z| = α, the term fjz

j has absolute value bounded above by |fk||z|k

times exp(−(k − j)(α − α−)). The sum
∑

j<k |fj ||z|j is thus bounded
above by |fk||z|k times b

1−b where b = exp(−(α− α−)).
If a

1−a + b
1−b < 1 then the power series f(x) is dominated by the term

fkz
k for |z| = exp(α). We deduce from Rouché’s theorem that f(x) has

exactly k zeros insideD(0, exp(α)) counting multiplicities. This is the case
in particular if both a and b are smaller than 1

3 . We deduce the following
lemma.

5.4.5 Lemma (Newton polygon) Let f(x) = 1 +
∑

k≥1 fkx
k be a power

series. Let R > 0 be its radius of convergence. Let z ∈ D(0, R) be
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a zero of f(x). There exists a slope σ of the Newton polygon such that
| log |z| − σ| ≤ log 3.

Let P3 be the set obtained by removing to ] −∞, logR[ all the intervals
[σ − log 3, σ + log 3] where σ is any slope of the Newton polygon.

If a real α belongs to P3, then there is a unique vertex (k,N (k)) lying on
the supporting line with slope α. The power series f(x) has exactly k zeros,
counting multiplicities, inside the open disk D(0, exp(α)); and none on its
boundary.

Let P4 be the set obtained by removing to ] −∞, logR[ all the intervals
[σ − log 4, σ + log 4] where σ is any slope of the Newton polygon.

If a real α belongs to P4, then there is a unique vertex (k,N (k)) lying
on the supporting line with slope α. For any complex number z such that
|z| = exp(α), one has |f(z)| ≥ 1

3 × |fk| × |z|
k.

5.4.6 Conditioning of a zero at the origin

In this section, we prove that a power series taking a very small value at the
origin must have a very small zero. More precisely we prove the following
lemma.

5.4.7 Lemma (The smaller zero of a power series) Consider a power se-
ries F (x) = F0 +

∑
k≥1 Fkx

k ∈ C[[x]] of type (A,n) where A ≥ 1 is a
real and n ≥ 1 is an integer. Assume that |F0| < 1 and√

− log |F0| ≥ Θ(n2 + logA).

Then at least one of the following two statements holds true

• F (x) has a zero ξ such that − log |ξ| ≥
√
− log |F0|,

• for every z in D(0, 1/2) the absolute value of F (z) is upper bounded
by exp(−0.031

√
− log |F0|).

Before giving the proof of this lemma, let us sketch the main idea in
this proof: if F is not small everywhere, there must be a coefficient in this
series that is not too small. Since F0 is very small, the first finite slope
in the Newton polygon must be very negative. But the lack of roots in
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the neighborhood of 0 and Lemma (5.4.5) force the Newton polygon to be
smooth at the beginning: the many first slopes must keep very small. So
the series has many huge coefficients, and it cannot be of type (A,n). A
contradiction.

So let F (x) be a power series of type (A,n) where A ≥ 1 is a real and
n ≥ 1 is an integer. If F0 = 0 then the first condition in the conclusion
of the lemma is met and we are done. So we assume that F0 6= 0 and we
set f(x) = F (x)/F0. If F (x) is constant, then the second condition in the
conclusion of the lemma is met and we are done. So we assume that f(x) is
not constant. The Newton polygon of f(x) has at least one finite slope. We
call σ0 = −∞, σ1, σ2, . . . the successive slopes of the Newton polygon.
If σ1 ≥ 0 then all coefficients fi are upper bounded by 1 in absolute value
and the second condition in the conclusion of the lemma is met. So we may
assume that σ1 is negative. Recall the definition of P3 in Lemma 5.4.5 and
consider the intersection P3∩]σ1, 0[. If this intersection is not empty, we
call ρ its infimum and set r = exp(ρ). If the intersection is empty, we set
ρ = 0 and r = 1.

We assume that the first condition in the conclusion of Lemma 5.4.7 is
not met, and we show that in that case the second condition holds true.

Since the first condition in the conclusion of Lemma 5.4.7 is not
met, we know that all zeros of f(x) have absolute value bigger than
exp(−

√
− log |F0|). Using Lemma 5.4.5 we deduce that

−ρ = − log r ≤
√
− log |F0|. (5.14)

The interval ]σ1, log r[ does not meetP3. So it is contained in the union of
the intervals [σ1, σ1 +log 3], [σ2− log 3, σ2 +log 3], [σ3− log 3, σ3 +log 3],
[σ4 − log 3, σ4 + log 3], . . .

We deduce that all these intervals should adjust to tile all of [σ1, log r].
So σ2 ≤ σ1 + 2 log 3, σ3 ≤ σ2 + 2 log 3, . . . , σk ≤ σk−1 + 2 log 3 as long
as σk−1 < log r− log 3. So σk ≤ σ1 + 2(k− 1) log 3 for every k from 1 to
` where

` =
⌊

log r − σ1

2 log 3

⌋
. (5.15)
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We deduce by summation that

N (`) ≤ σ1 + σ2 + · · ·+ σ` ≤ `σ1 + `(`− 1) log 3. (5.16)

where N is the Newton function of the power series f(x).
From (5.15) we deduce that ` ≤ log r−σ1

2 log 3 and σ1 ≤ log r − 2` log 3.
Reporting in (5.16) we obtain

N (`) ≤ ` log r − `2 log 3. (5.17)

On the other hand, the power series F (x) is of type (A,n), so f(x) is of
type (A/|F0|, n). So the Newton function k 7→ N (k) is lower bounded by
the convex function k 7→ − logA+ log |F0| − n log(k + 1). We deduce

N (`) ≥ − logA+log |F0|−n log(`+1) ≥ − logA+log |F0|−n`. (5.18)

From (5.17) and (5.18) we deduce

`2 log 3− (n+ log r)`+ log |F0| − logA ≤ 0.

In case ` ≥ n + log r we deduce from the inequality above that
`2(log 3− 1) ≤ logA− log |F0|. So

`≤max(n+ log r,

√
logA− log |F0|

log 3− 1
)

≤max(n,

√
logA− log |F0|

log 3− 1
). (5.19)

We have made the assumption that

√
− log |F0| ≥ Θ(logA+ n2). (5.20)

From (5.19) and (5.20) we deduce
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` ≤ 3.2
√
− log |F0|. (5.21)

From (5.15) we know that ` ≥ log r−σ1

2 log 3 − 1 so

σ1 ≥ −2` log 3− 2 log 3 + log r. (5.22)

From (5.21) and (5.22) and (5.14) we deduce

σ1 ≥ −9
√
− log |F0|. (5.23)

So for every k ≥ 0 we have

|Fk| ≤ |F0| exp(−kσ1) ≤ |F0| exp(9k
√
− log |F0|). (5.24)

This estimate will show very useful for small values of k. For bigger
values of k, we use the fact that the power series F (x) is of type (A,n).

Now we take some z ∈ D(0, 1/2) and we try to bound |F (z)|. We set

u =

⌊√
− log |F0|

10

⌋
(5.25)

and we check that u ≥ 4n2

(log 2)2
because of (5.20).

We write F (x) = Pu(x) + Ru(x) where Pu(x) =
∑

0≤k≤u−1 Fkx
k is

the principal part and Ru(x) =
∑

k≥u Fkx
k is the remainder term of order

u. We now bound |Pu(z)| and |Ru(z)| separately.
On the one hand, using Equation (5.24)

|Pu(z)| ≤
∑

0≤k≤u−1

2−k exp(log |F0|+ 9(u− 1)
√
− log |F0|)

≤ exp(
log |F0|

10
). (5.26)

On the other hand, using Lemma 5.4.18
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|Ru(z)| ≤ n!A2−
u
2

+n+1 ≤ 2−
√
− log |F0|

21 (5.27)

because of (5.20).
Altogether we have

|F (z)| ≤ |Pu(z)|+ |Ru(z)| ≤ exp(
log |F0|

10
)+2−

√
− log |F0|

21 ≤ 2−
√
− log |F0|

22

using (5.26) and (5.27), then (5.20). This proves that the second condition
in the conclusion of Lemma 5.4.7 is met. So the proof of this lemma is
finished. 2

5.4.8 Analytic continuation of a power series of type (A,n)

In this section we consider a power series f(x) =
∑

k≥0 fkx
k of type (A,n)

withA ≥ 1 a real and n ≥ 1 an integer. Let c be a complex number with ab-
solute value smaller than 1 and let r be a real such that 0 < r < 1−|c|. The
disk D(c, r) is contained in D(0, 1). We want to prove that if |f(z)| is very
small for every z ∈ D(c, r) then |f(z)| is small for every z ∈ D(0, 1/2).
We shall need the following definition.

5.4.9 Definition (Balanced disk) Let D(c, r) be a disk contained in the
unit disk D(0, 1). We say that D(c, r) is balanced if r = 1−|c|

2 . The mean-
ing of this condition is that the distance between D(c, r) and the unit circle
is equal to the radius of D(c, r). If this condition is met, the circle D(c, r)
is denoted Dc.

Assume further that |c| > 1
5 and set c′ = (|c| − r

2) × c
|c| . Let Dc′

be the balanced disk with center c′. The radius of Dc′ is r′ = 5
4r and

1− |c′| = 5
4(1− |c|). We say that Dc′ is the son of Dc.

If |c| ≤ 1
5 , then the son of Dc is defined to be D(0, 1/2).

The following lemma states that a power series of type (A,n) that is very
small on a balanced disk, must be small also on the son of this disk.

5.4.10 Lemma (Analytic continuation) Let f(x) =
∑

k≥0 fkx
k be a

power series of type (A,n) where A ≥ 1 is a real and n ≥ 1 is an in-
teger. Let c be a complex number with absolute value smaller than 1 and
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0 1cc′

Figure 5.2 Son of a balanced disk

let Dc be the balanced disk with center c. Call r = 1−|c|
2 the radius of

Dc. Let Dc′ be the son of Dc. Let ε be a real number in ]0, 1[ such that
− log ε ≥ Θ(logA + n(n + | log r|)). Assume that |f(z)| ≤ ε for every
z ∈ Dc. Then |f(z)| ≤ ε

1
3 for every z ∈ Dc′ .

In order to prove this lemma we observe that the disk D(c′, r/2) is con-
tained in Dc. So the absolute value of f is bounded by ε in D(c′, r/2).
Cauchy’s integral formula then gives an upper bound for the successive
derivatives of f at c′.

|f (k)(c′)| =

∣∣∣∣∣ k!
(2iπ)

∫
|ζ|=r/2

f(c′ + ζ)
ζk+1

dζ

∣∣∣∣∣ ≤ ε2kk!
rk

. (5.28)

In order to bound |f(z)| for z ∈ Dc′ we call T (x) =
∑

k≥0
f (k)(c′)
k! xk

the Taylor expansion of f at c′. We choose an integer u ≥ 0 and write
T (x) = Pc′,u(x) + Rc′,u(x) where Pc′,u(x) =

∑
0≤k≤u−1

f (k)(c′)
k! xk is the

principal part and Rc′,u(x) =
∑

k≥u
f (k)(c′)
k! xk is the remainder term of

order u. Any z in the son Dc′ can be written z = c′+ t whith |t| < r′ = 5r
4 .

We now bound |Pc′,u(t)| and |Rc′,u(t)| separately.
On the one hand, using Equation (5.28) we obtain
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|Pc′,u(t)| ≤
∑

0≤k≤u−1

∣∣∣∣∣f (k)(c′)
k!

tk

∣∣∣∣∣
≤

∑
0≤k≤u−1

(
5r
4

)k 2kε
rk
≤ ε

(
5
2

)u
. (5.29)

On the other hand, we set t = (1−|c′|)y and z = c′+ t = c′+(1−|c′|)y.
The remainder Rc′,u((1 − |c′|)y) is nothing but the remainder of order u
of the refocused1 power series y 7→ fc′(y) = f(c′ + (1 − |c′|)y). Since
z = c′ + y(1 − |c′|) belongs to the balanced disk Dc′ we know that y
belongs to D(0, 1/2), the balanced disk with center 0. So |y| < 1/2. We
now apply the refocusing Lemma 5.4.19 together with Lemma 5.4.18.

The refocusing Lemma 5.4.19 tells us that fc′ has type (A′, n+ 1) where

A′ ≤ n!A
(

2e
1−|c′|

)n+2
≤ n!A

(
e
r

)n+2. Lemma 5.4.18 applied to the refo-
cused series fc′ then says that

|Rc′,u(t)| ≤ A′′(u+ 1)n+12−u (5.30)

where

A′′ ≤ (n+ 1)!n!A
(

2e
r

)n+2

≤ A exp(Kn(n+ | log r|)) (5.31)

for some positive constant K.
We set u =

⌈
| log ε|
2 log 5

2

⌉
. From (5.29) we deduce

log |Pc′,u(t)| ≤ log ε+ u log
5
2
≤ log ε+

| log ε|
2

+ log
5
2

≤ 0.49 log ε (5.32)

using the hypothesis

− log ε ≥ Θ(logA+ n(n+ | log r|)). (5.33)

1The refocused series is defined in section 5.4.17
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As far as the remainder is concerned we obtain from (5.30) and (5.31)
that log |Rc′,u(t)| is

≤ logA+Kn(n+ | log r|) + (n+ 1) log(u+ 1)− u log 2. (5.34)

We show that the negative term −u log 2 dominates this sum. First of all,
from the definition of u and the hypothesis (5.33) we deduce that

logA+Kn(n+ | log r|) ≤ 0.01× u log 2.

The same hypothesis (5.33) implies that

u ≥
(

n+ 1
0.01× log 2

)2

so 0.01×u log 2 ≥ (n+1)
√
u ≥ (n+1) log(u+1). Inequality (5.34) then

implies

log |Rc′,u(t)| ≤ −u× 0.98 log 2 ≤ 0.98 log 2
2 log 5

2

log ε ≤ 0.37 log ε. (5.35)

From (5.32) and (5.35) we deduce that if z ∈ Dc′ and z = c′ + t then

log |f(z)|= log |Pc′,u(t) +Rc′,u(t)|
≤ log

(
2 max(|Pc′,u(t)|, |Rc′,u(t)|)

)
≤ log 2 + 0.37 log ε ≤ log ε

3
. (5.36)

This finishes the proof of Lemma 5.4.10. We notice that the exponent 1
3

in the conclusion of this lemma could be replaced by any real smaller than
log 2

log 5
2

. 2

5.4.11 Conditioning of any zero

In this section we combine Lemma 5.4.7 and Lemma 5.4.10 to prove that
any zero of a power series is well conditioned in some sense. In other words,
we prove that a power series taking a very small value at some point c inside
its disk of convergence, must have a zero that is very close to c. More
precisely we prove the following lemma.
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5.4.12 Lemma (Conditioning of a zero) Let

f(x) = f0 +
∑
k≥1

fkx
k ∈ C[[x]]

be a power series of type (A,n) where A ≥ 1 is a real and n ≥ 1 is an
integer. Let c ∈ D(0, 1) be a complex number with absolute value smaller
than 1. Assume that |f(c)| < 1 and

(1− |c|)6 ×
√
− log |f(c)| ≥ Θ(n2 + logA). (5.37)

Then at least one of the following two statements holds true

• f(x) has a zero ξ such that − log |ξ − c| ≥
√
− log |f(c)|,

• for every z in D(0, 1/2) the absolute value of f(z) is upper bounded
by

exp

(
−

(1− |c|)5 ×
√
− log |f(c)|

100

)
.

Indeed, let fc(y) = f(c + y(1 − |c|)) be the refocused series of f at c.
According to Lemma 5.4.19, it has type (A′, n+ 1) where

log(A′)≤ log

(
n!A

(
2e

1− |c|

)n+2
)
≤ K(n2 + logA+ n| log(1− |c|)|)

≤K(n2 + logA+
n

1− |c|
) (5.38)

where K is a positive constant.
We now apply Lemma 5.4.7 to fc. From inequality (5.38) and the hy-

pothesis (5.37) we deduce that fc satisfies the hypothesis in Lemma 5.4.7.
We deduce that one at least of the two following conditions is met:

• Either fc has a zero y0 such that log |y0| ≤ −
√
− log |f(c)|, in which

case we call ξ = c + y0(1 − |c|) the corresponding zero of f . And we are
done, because |ξ − c| ≤ |y0|.
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•Otherwise, |fc(y)| is bounded by exp(−0.031×
√
− log |f(c)| ) for any

y in D(0, 1/2). Equivalently, f(z) is bounded by

exp(−0.031×
√
− log |f(c)| )

for any z in the balanced disk Dc with center c and radius (1 − |c|)/2. In
that case, we apply Lemma 5.4.10 several times. Indeed, we set

w =

⌈
− log(1− |c|)

log 5
4

⌉

and apply w times Lemma 5.4.10.
We conclude that for every z ∈ D(0, 1/2), the absolute value of f(z) is

bounded by

exp(−0.031× 3−w ×
√
− log |f(c)| ).

Since

3w ≤ 3(1− |c|)
− log 3

log 5
4 ≤ 3(1− |c|)−5

we find that f is bounded in absolute value by

exp(−0.01× (1− |c|)5 ×
√
− log |f(c)| )

on D(0, 1/2).
Of course, we must check that the hypothesis of Lemma 5.4.10 are satis-

fied every time we apply it. This is the case if

(1− |c|)5 ×
√
− log |f(c)| ≥ Θ(logA+ n(n+ | log(1− |c|)|).

We conclude using the hypothesis (5.37) and the fact that

| log(1− |c|)| ≤ (1− |c|)−1.

2
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5.4.13 Global conditioning of zeros

In this section, we apply Lemma 5.4.12 to several zeros at a time and evalu-
ate the conditioning of the divisor of zeros of a power series. The following
lemma states that the zeros of a power series can be approximated by the
zeros of its principal part.

5.4.14 Lemma (Global conditioning of the zeros) Let

f(x) = f0 +
∑
k≥1

fkx
k ∈ C[[x]]

be a power series of type (A,n) where A ≥ 1 is a real and n ≥ 1 is an
integer. Let r and ρ be two real numbers such that 1/2 ≤ r < 1 and
0 < ρ < 1. Assume

(1− r)6 × | log ρ| ≥ Θ(n2 + logA). (5.39)

Let u be an integer such that

u ≥ 16(log ρ)2

| log r|

and u ≤ 16(log ρ)2

1−r . Let v be an integer such that the two following conditions
hold true

• 1 ≤ v ≤ u,

• For any integer w such that v ≤ w and w ≤ u− 1, the coefficient fw
is bounded in absolute value by exp(−6(log ρ)2).

Note in particular that v = u is fine.
Then for every z in D(0, r), the remainder Rv(z) of order v is bounded

in absolute value by exp(−4(log ρ)2)

|Rv(z)| ≤ exp(−4(log ρ)2), (5.40)

and at least one of the following two statements holds true
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• for every z in D(0, 1/2) the absolute value of f(z) is upper bounded
by

exp
(
0.01× (1− r)5 × log ρ

)
,

• there exists a positive real R such that r − ρ ≤ R ≤ r and such that,
inside the disk D(0, R), the zeros of f(x) are approximated within
ρ by the zeros of its principal part Pv(x) =

∑
0≤k≤v−1 fkx

k. In
particular, the number J of these zeros (counting multiplicities) is at
most v−1. More precisely, letZ = [z1]+[z2]+· · ·+[zJ ] be the divisor
of f(x) restricted to D(0, R), and let Ẑ = [ẑ1] + [ẑ2] + · · ·+ [ẑJ ] be
the divisor of Pv(x) restricted toD(0, R). Then, either J = 0 or there
exists a permutation of the indices τ ∈ SJ such that |zτ(j) − ẑj | ≤ ρ

for every 1 ≤ j ≤ J .

We can be a bit more explicit about the real R above. Any R such that
R ∈ [r − ρ, r] and |R− |z|| > 2ρ2 for every root z of Pv(x) is fine.

The meaning of this lemma is that the zeros of f(x) are well approxi-
mated by the zeros of a well chosen truncation of f(x). The lemma tells
us where the series should be truncated, depending on the required absolute
accuracy: if we want m digits of accuracy, we need to consider the m2 first
terms in the series. One may wonder why we have introduced the integer v.
The point is that if for the given integer u, the coefficient fu is very small,
then we can ignore it and truncate a bit earlier. This freedom will be used to
ensure that the leading coefficient in Pv(z) is not too small. Then, we can
normalize Pv(z) and apply Theorem 5.3.1 of Section 5.3. It is important to
normalize because Theorem 5.3.1 only applies to unitary polynomials.

Now let us prove Lemma 5.4.14.
Let ε = exp(−4(log ρ)2). Using Lemma 5.4.18 we prove that Ru(z) is

bounded in absolute value by ε/2 for any z in D(0, r). Indeed, the hypoth-
esis u ≥ 4n2

(log |z|)2 in Lemma 5.4.18 results from Equation (5.39) and the
definition of u. Equation (5.46) then gives
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log |Ru(z)| ≤n2 + logA+
u log r

2
− (n+ 1) log(1− r)

≤n2 + logA− 8(log ρ)2 − (n+ 1) log(1− r)

from the definition of u.
Using (5.39) we deduce

log |Ru(z)| ≤ −7(log ρ)2 ≤ − log 2 + log ε.

We check that

u≤ 16(log ρ)2

1− r
(5.41)

≤Θ(log ρ)2+ 1
6 because of (5.39).

Now, we prove that Rv(z) is bounded in absolute value by ε. Indeed

|Rv(z)| ≤ |Ru(z)|+ (u− v) exp(−6(log ρ)2)

≤ ε/2 + Θ(log ρ)2+ 1
6 exp(−6(log ρ)2) using equation (5.41),

≤ ε/2 + exp(−5(log ρ)2) because of (5.39),

≤ ε.

The principal part Pv(x) is a degree v−1 polynomial. It has no more than
u−1 zeros. From Equation (5.41) we deduce that uρ2 ≤ Θρ2(log ρ)2+ 1

6 . So
4uρ2 ≤ ρ using (5.39). In particular 4uρ2 is smaller than r and smaller than
ρ. The interval [r − ρ, r] then consists of positive reals and must contain at
least one real number R such that |R−|z|| > 2ρ2 for every root z of Pv(x).
We fix any such R.

Let U be the union of all open disks D(ξ, 2ρ2) where ξ is any root of
Pv(x) lying in D̄(0, R). We check that U is contained in D(0, R). Let
D = D̄(0, R)− U . It is clear that Pv(x) has no root in D.

•We first assume that |Pv(z)| > ε for every z on the boundary of D. We
apply Rouché’s theorem to D̄(0, R) and deduce that f(x) and Pv(x) have
the same number of zeros with absolute value ≤ R.
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Now let V be any connected component of U . The boundary of V is
contained in the boundary of D. Applying Rouché’s theorem to V̄ we de-
duce that f(x) and Pv(x) have the same number of zeros in V̄ . Since V̄
is the union of a number < v of closed disks of radius 2ρ2, we know that
its diameter is ≤ 4uρ2. We deduce that the zeros of Pv(x) inside D̄(0, R)
approximate the zeros of f(x) inside D̄(0, R) within 4uρ2 ≤ ρ. More pre-
cisely, let Z = [z1] + [z2] + · · · + [zJ ] be the divisor of f(x) restricted to
D(0, R). Then the divisor Ẑ of Pv(x) restricted to D(0, R) has degree J
also. Assume that J ≥ 1 and let Ẑ = [ẑ1]+[ẑ2]+ · · ·+[ẑJ ] be the divisor of
Pv(x) restricted to D(0, R). Then there exists a permutation of the indices
τ ∈ SJ such that |zτ(j) − ẑj | ≤ ρ for every 1 ≤ j ≤ J . So the lemma is
proven in that case.

• We now assume that |Pv(ζ)| ≤ ε for some ζ on the boundary of
D. Since |ζ| ≤ r and Pv(x) has no zero in D̄(ζ, ρ2), we deduce, using
Lemma 5.4.12, that Pv(z) is bounded by

exp(−0.01× (1− r)5 × | log ρ2|) = exp(0.02× (1− r)5 × log ρ)

for every z ∈ D(0, 1/2). So for every such z we have

|f(z)| ≤ |Pv(z)|+ |Rv(z)| ≤ exp(0.02× (1− r)5 × log ρ) + ε

≤ exp(0.01× (1− r)5 × log ρ)

and the lemma is proven in that case. 2

In the next two Sections 5.4.15 and 5.4.16 we use Lemma 5.4.14 to prove
Theorem 5.4.2 and Theorem 5.4.3.

5.4.15 Counting zeros of power series

We now can give a proof of Theorem 5.4.2.
Let K be a large enough positive constant and let 0 < ρ < 1 be the

unique real number such that

| log ρ| × (1− r)6 = K(µ+ n2 + logA). (5.42)
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We set r′ = (1 + r)/2 and check that 1 − r′ = (1 − r)/2. We apply
Lemma 5.4.14 to the series f(x) over the disk D(0, r′).

It is clear that condition (5.39) is satisfied provided K is large enough.
We note also that

u ≤ 16(log ρ)2

1− r′
=

16K2(µ+ n2 + logA)2

(1− r′)13
.

We set v = u and observe that, provided K is large enough, the first
conclusion in Lemma 5.4.14 is not compatible with the definition of ρ given
by Equation (5.42). Therefore, the second conclusion in Lemma 5.4.14 must
hold true: there exists an R such that r′ − ρ ≤ R ≤ r′ and the number of
zeros of f(x) inside D(0, R) is bounded by u. If K is large enough then ρ
is smaller than r′ − r = (1− r)/2. So D(0, r) ⊂ D(0, R) and the number
of zeros in D(0, r) is bounded by u. 2

5.4.16 An algorithm for finding zeros of power series

In this section we describe the algorithm announced by Theorem 5.4.3 for
computing the zeros of a power series f(x). The input of the algorithm is
described in the statement of Theorem 5.4.3 and at the beginning of Sec-
tion 5.4. We are given a black box BOXf for the coefficients of f(x). We
are given two integers a ≥ 1 and n ≥ 1 such that f(x) is of type (A,n)
where A = exp(a). We are given also an integer µ ≥ 1 such that there ex-
ists at least one z in D(0, 1/2) such that |f(z)| > exp(−µ). We don’t need
the value of this z. Knowing its existence suffices. Finally, we are given
two integers m ≥ 1 and o ≥ 2 and we are supposed to compute approx-
imations within 10−m for the zeros of f(x) in some disk D(0, r′) where
|r′ − r| ≤ 10−m and r = 1− 1/o.

Let K be a large enough constant. We assume that K is an integer. We
set

m′ = K(m+ (µ+ n2 + a)o6) and ρ′ = exp(−m′). (5.43)

We apply Lemma 5.4.14 to the series f(x) over the disk D(0, r) with
the accuracy ρ′. It is clear that condition (5.39) is satisfied provided K is
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large enough. It is clear also that the first conclusion in this lemma is not
compatible with the definitions of µ and m′. So the second conclusion must
hold true. We take for u the value

u =
16(log ρ′)2

1− r
= 16oK2(m+ (µ+ n2 + a)o6)2.

We first show that there exists at least one integer w such that 1 ≤ w ≤ u
and |fw−1| ≥ 10−6(m′)2 . Otherwise, for any z ∈ D(0, 1/2) we would have

|f(z)| ≤ |Pu(z)|+ |Ru(z)|
≤u10−6(m′)2 + exp(−4(log ρ′)2) using equation (5.40)

≤ exp(−µ)

using the definition of ρ′ in (5.43) and assuming K is large enough. But the
later inequality contradicts the hypothesis on µ in Theorem 5.4.3.

So let v be an integer such that 1 ≤ v ≤ u and |fv−1| ≥ 0.5× 10−6(m′)2

and |fw| ≤ 10−6(m′)2 for all w such that w ≥ v and w ≤ u − 1. Let R be
any real such that R ∈ [r − ρ′, r] and |R− |z|| > 2(ρ′)2 for every root z of
Pv(x). Then, inside the disk D(0, R), the zeros of Pv(x) approximate the
zeros of f(x) within ρ′. If K is large enough then ρ′ < 0.5× 10−m.

We call P (x) = Pv(x)/fv−1 the unitary polynomial associated with
Pv(x). Its coefficients are bounded above by 2Avn106(m′)2 . So we can
compute approximations (αj)1≤j≤v−1 of the roots of P (x) within (ρ′)2 us-
ing the algorithm provided by Theorem 5.3.1 of Section 5.3. We assume
that the αj are sorted by increasing absolute value. We consider the interval
[r − ρ′, r] and we remove to it all intervals [|αj | − 3(ρ′)2, |αj | + 3(ρ′)2].
Let r′ be a rational number in this set. We count the αj that belong to
the disk D(0, r′). Assume that there are J of them. We output the divisor
[α1] + [α2] + · · ·+ [αJ ].

This leads to the following algorithm:

1. Set
m′ = K(m+o6(µ+n2 +a)) and u = 16K2o(m+o6(µ+n2 +a))2

and look for an integer v such that
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1 ≤ v ≤ u and |fv−1| ≥ 0.5 × 10−6(m′)2 and |fw| ≤ 10−6(m′)2 for
all w such that w ≥ v and w ≤ u− 1.

2. Using the algorithm provided by Theorem 5.3.1, compute approx-
imations (αj)1≤j≤v−1 of the roots of P (x) = Pv(x)/fv−1 within
exp(−2m′).

3. Pick a rational number r′ in the set
[r − exp(−m′), r]−

⋃
j [|αj | − 3 exp(−2m′), |αj |+ 3 exp(−2m′)].

4. Output r′ and those αj that have absolute value ≤ r′.

5.4.17 Power series of type (A,n)

In this section, we review simple elementary results about power series in
one variable. Recall Definition 5.4.1 of the type of a power series in one
variable and let f(x) =

∑
k≥0 fkx

k be a power series of type (A,n) with
A ≥ 1 a real number and n ≥ 1 an integer. Let u ≥ 0 be an integer.
We write f(x) = Pu(x) + Ru(x) where Pu(x) =

∑
0≤k≤u−1 fkx

k is the
principal part and Ru(x) =

∑
k≥u fkx

k is the remainder term of order u.
We first want to bound |Ru(z)| for z ∈ D(0, 1).

|Ru(z)|=

∣∣∣∣∣∣
∑
k≥u

fkz
k

∣∣∣∣∣∣ ≤
∑
k≥u
|fk||z|k

≤A
∑
k≥u

(k + 1)n|z|k

≤A|z|u
∑
k≥0

(k + u+ 1)n|z|k

≤A|z|u(u+ 1)n
∑
k≥0

(k + 1)n|z|k

≤A|z|u(u+ 1)n
n!

(1− |z|)n+1
(5.44)

We set

κ =
n!A|z|

u
2

(1− |z|)n+1
(5.45)
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and we show that |Ru(z)| ≤ κ provided u ≥ 4n2

(log |z|)2 . Indeed, if

u ≥ 4n2

(log |z|)2 then n log(u+ 1) ≤ n
√
u ≤ u|log |z||

2 so

u log |z|+ n log(u+ 1) ≤ u log |z|
2

.

Using (5.44) we deduce

log |Ru(z)| ≤ logA+
u log |z|

2
+ log

n!
(1− |z|)n+1

= log κ.

We thus have proven the following lemma.

5.4.18 Lemma (Bounding the remainder of a power series) Let f(x) be
a power series of type (A,n) where A ≥ 1 is a real number and n ≥ 1 is
an integer. Let z be a complex number such that |z| < 1. Let u ≥ 0 be an
integer and let Ru(x) =

∑
k≥u fkx

k be the remainder of order u of f(x).
We have

|Ru(z)| ≤ A|z|u(u+ 1)n
n!

(1− |z|)n+1

and if u ≥ 4n2

(log |z|)2 then

|Ru(z)| ≤ n!A|z|
u
2

(1− |z|)n+1
(5.46)

Note that if we set u = 0 in (5.44) we obtain

|f(z)| ≤ n!A
(1− |z|)n+1

(5.47)

Now let f(x) be a series of type (A,n) and let c be a complex number
such that |c| < 1. We set fc(x) = f(c+x(1−|c|)) and call fc the refocused
series of f(x) at c. We want to bound the coefficients of the power series
fc(x). These coefficients are related to the successive derivatives of f at c.
Let k ≥ 0 be an integer. We set
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ρ =
(k + 1) + (n+ 1)|c|

k + n+ 2
.

From Cauchy’s integral formula

|f (k)(c)|=

∣∣∣∣∣ k!
2iπ

∫
|ζ|=ρ

f(ζ)
(ζ − c)k+1

dζ

∣∣∣∣∣
≤n!k!A

(k + n+ 2)k+n+2

(k + 1)k+1(n+ 1)n+1

1
(1− |c|)n+k+2

(5.48)

using (5.47).
We notice that

(k + n+ 2)k+n+2

(k + 1)k+1(n+ 1)n+1
≤
(

1 +
n+ 1
k + 1

)k+1(
1 +

k + 1
n+ 1

)n+1

≤ exp(n+ 1)2n+1(k + 1)n+1. (5.49)

From (5.47) and (5.49) we deduce that the refocused power series fc(x)
has type

(n!A(1− |c|)−n−2 exp(n+ 1)2n+1, n+ 1).

We thus have proven the following lemma.

5.4.19 Lemma (Refocusing a power series in one variable) Let

f(x) ∈ C[[x]]

be a power series of type (A,n) where A ≥ 1 is a real and n ≥ 1 is an
integer. Let c be a complex number with absolute value smaller than 1. The
refocused series fc(x) is defined as fc(x) = f(c+x(1− |c|)). It is a power
series of type (n!A(1− |c|)−n−2 exp(n+ 1)2n+1, n+ 1).
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Chapter Six

Computations with modular forms and Galois

representations

J. Bosman

In this chapter we will discuss several aspects of the practical side of com-
putating with modular forms and Galois representations. We start by dis-
cussing computations with modular forms and from there on work towards
the computation of polynomials associated with modular Galois representa-
tions. Throughout this chapter, we will denote the space of cusp forms of
weight k, group Γ1(N) and character ε by Sk(N, ε).

6.1 MODULAR SYMBOLS

Modular symbols provide a way of doing symbolic calculations with mod-
ular forms, as well as the homology of modular curves. In this section our
intention is to give the reader an idea of what is going on rather than a
complete and detailed account of the material. For more details and further
reading on the subject of modular symbols, the reader could take a look
at [Man1], [Sho] and [Mer]. A computational approach to the material can
be found in [Ste1] and [Ste2].

6.1.1 Definitions

Let A be the free abelian group on the symbols {α, β} with α, β ∈ P1(Q).
Consider the subgroup I ⊂ A generated by all elements of the forms:

{α, β}+ {β, γ}+ {γ, α}, {α, β}+ {β, α}, and {α, α}.
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We define the group:

M2 := (A/I)/torsion

as the quotient ofA/I by its torsion subgroup. By a slight abuse of notation,
we will denote the class of {α, β} in this quotient also by {α, β}. We have
an action GL+

2 (Q) onM2 by:

γ{α, β} := {γα, γβ},

where γ acts on P1(Q) by fractional linear transformations.
For k ≥ 2, we consider also the abelian group Z[x, y]k−2 ⊂ Z[x, y] of

homogeneous polynomials of degree k − 2 and we let matrices in GL+
2 (Q)

with integer coefficients act on it on the left by:(
a

c

b

d

)
P (x, y) := P (dx− by,−cx+ ay).

We define:

Mk := Z[x, y]k−2 ⊗M2,

and we equip Mk with the component-wise action of integral matrices in
GL+

2 (Q) (that is γ(P ⊗ α) = γ(P )⊗ γ(α)).

6.1.2 Definition Let k ≥ 2 be an integer. Let Γ ⊂ SL2(Z) be a subgroup
of finite index and let I ⊂ Mk be the subgroup generated by all elements
of the form γx − x with γ ∈ Γ and x ∈ Mk. Then we define the space of
modular symbols of weight k for Γ to be the quotient ofMk/I by its torsion
subgroup and we denote this space byMk(Γ):

Mk(Γ) := (Mk/I)/torsion.

In the special case Γ = Γ1(N), which we will mostly be interested in,
Mk(Γ) is called the space of modular symbols of weight k and level N .
The class of {α, β} inMk(Γ) will be denoted by {α, β}Γ or, if no confusion
exists, by {α, β}.

The group Γ0(N) acts naturally on Mk(Γ1(N)) and induces an action
of (Z/NZ)× on Mk(Γ1(N)). We denote this action by the diamond sym-
bol 〈d〉. The operator 〈d〉 onMk(Γ1(N)) is called a diamond operator. This
leads to the notion of modular symbols with character.
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6.1.3 Definition Let ε : (Z/NZ)× → C× be a Dirichlet character. Denote
by Z[ε] ⊂ C the subring generated by all values of ε. Let I be the Z[ε]-
submodule of Mk(Γ1(N)) ⊗ Z[ε] generated by all elements of the form
〈d〉x − ε(d)x with d ∈ (Z/NZ)× and x ∈ Mk(Γ1(N)). Then we define
the spaceMk(N, ε) of modular symbols of weight k, level N and character
ε as the Z[ε]-module:

Mk(N, ε) :=
(
Mk(Γ1(N))⊗ Z[ε]/I

)
/torsion.

We denote the elements of Mk(N, ε) by {α, β}N,ε or simply by {α, β}. If
ε is trivial, then we haveMk(N, ε) ∼= Mk(Γ0(N)).

Let B2 be the free abelian group on the symbols {α} with α ∈ P1(Q),
equipped with action of SL2(Z) by γ{α} = {γα} and define Bk as
Z[x, y]k−2 ⊗ B2 with component-wise SL2(Z)-action. Elements of Bk are
called boundary modular symbols. For a subgroup Γ < SL2(Z) of finite
index, we define Bk(Γ) as:

Bk(Γ) := (Bk/I)/torsion

where I is the subgroup of Bk generated by all elements γx− x with γ ∈ Γ
and x ∈ Bk. We define:

Bk(N, ε) := ((Bk(Γ1(N))⊗ Z[ε]) /I) /torsion,

where I is the Z[ε]-submodule of Bk(Γ1(N)) ⊗ Z[ε] generated by the ele-
ments γx− ε(γ)x with γ ∈ Γ0(N).

We have boundary homomorphisms:

δ : Mk(Γ)→ Bk(Γ) and δ : Mk(N, ε)→ Bk(N, ε)

defined by:

δ (P ⊗ {α, β}) = P ⊗ {β} − P ⊗ {α}.

The spaces of cuspidal modular symbols, denoted by Sk(Γ) and Sk(N, ε)
respectively are defined as the kernel of δ.

6.1.4 Properties

One can interpret the symbol {α, β} as a smooth path in H ∪ P1(Q) from
the cusp α to the cusp β, lying in H except for the endpoints α and β. It can
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be shown that this interpretation induces an isomorphism:

M2(Γ) ∼= H1(XΓ, cusps,Z).

Here the homology is taken of the topological pair (X1(N), cusps). We also
get an isomorphism:

S2(Γ) ∼= H1(XΓ,Z).

So we immediately see that there is a perfect pairing:

(S2(Γ(N))⊗ C)×
(
S2(Γ(N))⊕ S2(Γ(N))

)
→ C

defined by:

({α, β}, f ⊕ g) 7→
∫ β

α

(
f
dq

q
+ g

dq

q

)
.

More generally, there is a pairing

(6.1.5) Mk(Γ1(N))×
(
Sk(Γ1(N))⊕ Sk(Γ1(N))

)
→ C

defined by:

(P ⊗ {α, β}, f ⊕ g) 7→ 2πi
∫ β

α
(f(z)P (z, 1)dz − g(z)P (z, 1)dz) ,

which becomes perfect if we restrict and then tensor the left factor to
Sk(Γ(N))⊗ C. This pairing induces a pairing:

(Mk(N, ε))×
(
Sk(N, ε)⊕ Sk(N, ε)

)
→ C

which becomes perfect when the left factor is restricted and then tensored to
Sk(N, ε)⊗Z[ε] C. From now on we will denote all these pairings with the
notation:

(x, f) 7→ 〈x, f〉.

6.1.6 The star involution

On the spacesMk(Γ1(N)) andMk(N, ε) we have an involution ι∗:

ι∗(P (x, y)⊗ {α, β}) := −P (x,−y)⊗ {−α,−β},
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which is called the star involution. It preserves cuspidal subspaces. We de-
fine Sk(Γ1(N))+ and Sk(Γ1(N))− subspaces of Sk(Γ1(N)) where ι∗ acts
as +1 and −1 respectively and we use similar definitions for Sk(N, ε)±. It
can be shown that the pairing (6.1.5) induces perfect pairings:

(Sk(Γ1(N))+ ⊗ C)× Sk(Γ1(N))→ C

and:

(Sk(Γ1(N))− ⊗ C)× Sk(Γ1(N))→ C

and similarly for the spaces with character. This allows us to work some-
times in modular symbols spaces of half the dimension of the full cuspidal
space.

6.1.7 Hecke operators

Let k≥2 and N≥1 be given. Then for γ ∈ GL+
2 (Q) ∩M2(Z) we define an

operator Tγ on Mk(Γ1(N)) by letting γ1, . . . , γr be double coset represen-
tatives for Γ1(N) \ Γ1(N)γΓ1(N) and putting

(6.1.8) Tγ(x) :=
r∑
i=1

γix for x ∈Mk(Γ1(N)).

It follows from [Sho, Theorem 4.3] that this operator is well-defined. For a
prime number p we put Tp = Tγ for γ =

(
1
0

0
p

)
and for positive integers n

we define Tn by means of the formal identity (2.2.11). The operators Tn are
called Hecke operators.

The Hecke operators preserve the subspace Sk(Γ1(N)) and induce an
action on the spacesMk(N, ε) and Sk(N, ε). Furthermore, from [Sho, The-
orem 4.3] one can conclude that the diamond and Hecke operators are self-
adjoint with respect to the pairings defined in the previous subsection: one
has

(6.1.9) 〈Tx, f〉 = 〈x, Tf〉

for any modular symbol x, cusp form f and diamond or Hecke operator
T for which this relation is well-defined. Here, for anti-holomorphic cusp
forms we define the Hecke action by Tf = Tf . Also, the Hecke operators
commute with the star involution ι∗.
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In conclusion, we have seen how we can write cusp forms spaces as
the dual of modular symbols spaces. The computation of Hecke oper-
ators on these modular symbols spaces would enable us to compute q-
expansions of cusp forms: q-coefficients of newforms can be computed
once we can compute the eigenvalues of Hecke operators. But because
of (6.1.9) this reduces to the computation of the eigenvalues of Hecke op-
erators on modular symbols spaces. In computations one often works with
the spaces Sk(N, ε)+⊗Z[ε]Q(ε) because these have smaller dimension than
Sk(Γ1(N)) ⊗ Q. Since we also know how all cusp forms arise from new-
forms of possibly lower level (see (2.2.17)), this allows us to compute the
q-expansions of a basis for the spaces Sk(Γ1(N)) and Sk(N, ε). For precise
details on how these computations work, please read [Ste2, Chapter 9].

6.1.10 Manin symbols

If we want to do symbolic calculations with modular symbols, then the
above definitions are not quite applicable since the groups of which we take
quotients are not finitely generated. The Manin symbols enable us to give
finite presentations for the spaces of modular symbols.

First we need some definitions and lemmas. For a positive integer N we
define a set:

EN :=
{

(c, d) ∈ (Z/NZ)2 : gcd(N, c, d) = 1
}
.

Define the following equivalence relation on EN :

(c, d) ∼ (c′, d′) def⇐⇒ there is an a ∈ (Z/NZ)× with (c, d) = (ac′, ad′)

and the denote the quotient by PN :

(6.1.11) PN := EN/ ∼ .

The following lemma is easily verified:

6.1.12 Lemma Let N be a positive integer. Then the maps

Γ1(N) \ SL2(Z)→ EN :
(
a

c

b

d

)
7→ (c, d) and

Γ0(N) \ SL2(Z)→ PN :
(
a

c

b

d

)
7→ (c, d)
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are well-defined and bijective.

This lemma enables us to write down an explicit set of coset representatives
for the orbit spaces Γ1(N) \ SL2(Z) and Γ0(N) \ SL2(Z). The following
lemma provides us a first step in reducing the set of generators for the spaces
of modular symbols:

6.1.13 Lemma Each space M2(Γ1(N)) or M2(N, ε) is generated by the
symbols {a/c, b/d} with a, b, c, d ∈ Z and ad− bc = 1, where in this nota-
tion a fraction with denominator equal to zero denotes the cusp at infinity.

Calculating the continued fraction expansion at each cusp in Q gives us
immediately an algorithm to write a given element of M2 in terms of the
generators in the lemma. Furthermore, note that:{

a

c
,
b

d

}
=
(
a

c

b

d

)
{∞, 0},

so that we can write each element of M2 as a sum of γ{∞, 0} with
γ ∈ SL2(Z).

Let’s consider the space M2(Γ1(N)). As we saw, it is generated by the
elements γ{∞, 0} where γ runs through SL2(Z). Now, two matrices γ
define the same element this way if they are in the same coset of the quotient
Γ1(N) \ SL2(Z). According to Lemma 6.1.12 such a coset can be uniquely
identified with a pair (c, d) ∈ (Z/NZ)2. The corresponding element in
M2(Γ1(N)) is also denoted by (c, d). This element (c, d) is called a Manin
symbol. Clearly, there are only a finite number of Manin symbols so we now
know a finite set of generators forM2(Γ1(N)).

For arbitrary k we define the Manin symbols in Mk(Γ1(N)) as the sym-
bols of the form P ⊗ (c, d) where P is a monomial in Z[x, y]k−2 and (c, d)
a Manin symbol inM2(Γ1(N)). In this case as well there are finitely many
Manin symbols and they generate the whole space.

In the modular symbols spaces with a given character ε we have, for all
γ ∈ Γ0(N), that γ(α) = ε(α). Now for each element of PN we choose ac-
cording to Lemma 6.1.12 a corresponding element γ ∈ SL2(Z) and hence
an element in M2(N, ε), which we call again a Manin symbol. Note that
this Manin symbol depends on the choice of γ, but because of the relation
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γ(x) = ε(x) these chosen Manin symbols always form a finite set of gener-
ators for M2(N, ε) as a Z[ε]-module. Likewise, Mk(N, ε) is generated by
elements P ⊗ (c, d) with P a monomial in Z[x, y]k−2 and (c, d) a Manin
symbol inM2(N, ε).

If we want to do symbolic calculations, then besides generators we also
need to know the relations between the Manin symbols. For Mk(Γ1(N))
one can do the following.

6.1.14 Proposition LetN be a positive integer and letA be the free abelian
group on the Manin symbols of the space Mk(Γ1(N)). Let I ⊂ A be the
subgroup generated by the following elements:

P (x, y)⊗ (c, d) + P (−y, x)⊗ (−d,−c),
P (x, y)⊗ (c, d) + P (−y, x− y)⊗ (−d,−c− d)

+ P (−x+ y,−x)⊗ (−c− d,−c),
P (x, y)⊗ (c, d) − P (−x,−y)⊗ (c, d),

where P (x, y)⊗ (c, d) runs through all Manin symbols. Then Mk(Γ1(N))
is naturally isomorphic to the quotient of A/I by its torsion subgroup.

For the modular symbols spacesMk(N, ε) we have a similar proposition.

6.1.15 Proposition Let N and ε be given. Let A be the free Z[ε]-module
on the Manin symbols ofMk(N, ε). Let I ⊂ A be the submodule generated
by the elements given in Proposition 6.1.14 plus for each n ∈ (Z/NZ)× the
elements:

P (x, y)⊗ (nc, nd) − ε(n)P (x, y)⊗ (c, d).

ThenMk(N, ε) is naturally isomorphic to the quotient of A/I by its torsion
submodule.

These presentations enable us to perform symbolic calculations very effi-
ciently.

A remark on the computation of Hecke operators is in order here. The
formula (6.1.8) does not express the Hecke action on Manin symbols in
terms of Manin symbols. However, one can use other formulas to compute
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Hecke operators. The following theorem, due to Merel, allows us to express
Hecke operators more directly in terms of Manin symbols:

6.1.16 Theorem (see [Mer, Theorem 2]) On the spaces Mk(Γ1(N)) and
Mk(N, ε) the Hecke operator Tn satisfies the following relation:

Tn(P (x, y)⊗ (u, v)) =
∑′

a>b≥0
d>c≥0
ad−bc=n

P (ax+ by, cx+dy)⊗ (au+ cv, bu+dv),

where the prime in the notation for the sum means that terms with
gcd(N, au+ cv, bu+ dv) 6= 1 have to be omitted.

One would also like to express Sk(Γ1(N)) and Sk(N, ε) in terms of the
Manin symbols. The following proposition will help us.

6.1.17 Proposition (see [Mer, Proposition 4]) Let integers N ≥ 1 and
k ≥ 2 be given. Define an equivalence relation on the vector space
Q[Γ1(N) \Q2] by:

[λx] ∼ sign(λ)k[x] for λ ∈ Q× and x ∈ Q2.

Then the map:

µ : Bk(Γ1(N))→ Q[Γ1(N) \Q2] /∼

given by:

µ : P ⊗
{a
b

}
7→ P (a, b)

[(a
b

)]
(a, b coprime integers)

is well-defined and injective.

The vector spaceQ[Γ1(N)\Q2] /∼ is finite dimensional. The above propo-
sition shows that Sk(Γ1(N)) is the kernel of µδ, which is a map that can be
computed in terms of Manin symbols. The computation of Sk(N, ε) can be
done in a similar way, see [Ste2, Section 8.4].

6.2 INTERMEZZO: ATKIN-LEHNER OPERATORS

In the rest of this chapter, we will be using the Atkin-Lehner operators on
Sk(Γ1(N)) from time to time. This section provides a brief treatment of the
properties that we need. The main reference for this material is [At-Li].
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Let Q be a positive divisor of N such that gcd(Q,N/Q) = 1. Let
wQ ∈ GL+

2 (Q) be any matrix of the form:

(6.2.1) wQ =
(
Qa

Nc

b

Qd

)
with a, b, c, d ∈ Z and det(wQ) = Q. The assumption gcd(Q,N/Q) = 1
ensures that such a wQ exists. A straightforward verification shows
f |kwQ ∈ Sk(Γ1(N)). Now, givenQ, this f |kwQ still depends on the choice
of a, b, c, d. However, we can use a normalisation in our choice of a, b, c, d
which will ensure that f |kwQ only depends on Q. Be aware of the fact that
different authors use different normalisations here. The one we will be using
is:

(6.2.2) a ≡ 1 mod N/Q, b ≡ 1 mod Q,

which is the normalisation used in [At-Li]. We define:

(6.2.3)
WQ(f) : = Q1−k/2f |kwQ

=
Qk/2

(Ncz +Qd)k
f

(
Qaz + b

Ncz +Qd

)
,

which is now independent of the choice of wQ and callWQ an Atkin-Lehner
operator. In particular we have:

WN (f) =
1

Nk/2zk
f

(
−1
Nz

)
.

An unfortunate thing about these Atkin-Lehner operators is that they do
not preserve the spaces Sk(N, ε). But we can say something about it. Let
ε : (Z/NZ)× → C× be a character and suppose that f is in Sk(N, ε).
By the Chinese Remainder Theorem, one can write ε in a unique way as
ε = εQεN/Q such that εQ is a character on (Z/QZ)× and εN/Q is a charac-
ter on (Z/(N/Q)Z)×. It is a fact that:

WQ(f) ∈ Sk(N, εQεN/Q).

Also, there is a relation between the q-expansions of f and WQ(f):

6.2.4 Theorem Let f be a newform in Sk(N, ε). Take Q dividing N with
gcd(Q,N/Q) = 1. Then:

WQ(f) = λQ(f)g
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with λQ(f) an algebraic number in C of absolute value 1 and g a new-
form in Sk(N, εQεN/Q). Suppose now that n is a positive integer and write
n = n1n2 where n1 consists only of prime factors dividing Q and n2 con-
sists only of prime factors not dividing Q. Then we have:

an(g) = εN/Q(n1)εQ(n2)an1(f)an2(f).

The number λQ(f) in the above theorem is called a pseudo-eigenvalue for
the Atkin-Lehner operator. In some cases there exists a closed expression
for it. In the notation of the following theorem, g(χ) denotes the Gauss sum
of a Dirichlet character χ of conductor N(χ):

(6.2.5) g(χ) :=
∑

ν∈(Z/N(χ)Z)×

χ(ν) exp
(

2πiν
N(χ)

)
.

6.2.6 Theorem Let f ∈ Sk(N, ε) be a newform and suppose q is a prime
that divides N exactly once. Then we have:

λq(f) =

{
g(εq)q−k/2aq(f) if εq is non-trivial,
−q1−k/2aq(f) if εq is trivial.

6.2.7 Theorem (see [Asa, Theorem 2]) Let f ∈ Sk(N, ε) be a newform
with N square-free. For Q | N we have:

λQ(f) = ε(Qd− N

Q
a)
∏
q|Q

ε(Q/q)λq(f).

Here, a and d are defined by (6.2.1). Moreover, this identity holds without
any normalisation assumptions on the entries of wQ, as long as we define
λq(f) by the formula given in Theorem 6.2.6.

6.3 BASIC NUMERICAL EVALUATIONS

In this section we will describe how to perform basic numerical evaluations,
such as the evaluation of a cusp form at a point in H and the evaluation of
an integral of a cusp form between to points inH∪P1(Q). Again, the focus
will be on performing actual computations.
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6.3.1 Period integrals: the direct method

In this subsection we will stick to the case k = 2, referring to [Ste2, Chap-
ter 10] for a more general approach (see also [Cre, Section 2.10] for a treat-
ment of Γ0(N)). So fix a positive integer N and an f ∈ S2(Γ1(N)). Our
goal is to efficiently evaluate the integral pairing 〈x, f〉 for x ∈ S2(Γ1(N)).

Let us indicate why it suffices to look at newforms f . Because of (2.2.17),
it suffices to look at f = αd(f ′) with f ′ ∈ Sk(Γ1(M)) a newform for some
M | N and d | N/M . By [Sho, Theorem 4.3] we have:

〈x, f〉 = 〈x, αd(f ′)〉 = d1−k
〈(

d

0
0
1

)
x, f ′

〉
so that computing period integrals for f reduces to computing period inte-
grals of the newform f ′.

Let us now make the important remark that for each z ∈ H we can nu-
merically compute

∫ z
∞ fdq/q by formally integrating the q-expansion of f :

(6.3.2)
∫ z

∞
f
dq

q
=
∑
n≥1

an(f)
n

qn where q = exp(2πiz).

The radius of convergence of this series is 1 and the coefficients are small
(that is, estimated by Õ(n(k−3)/2)). So if =z � 0 then we have |q| � 1
and the series converges rapidly. To be more concrete, for =z > M we have
|qn| < exp(−2πMn) so if we want to compute

∫ z
∞ fdq/q to a precision of

p decimals, we need to compute about p log 10
2πM ≈ 0.37 p

M terms of the series.
To compute a period integral we remark that for any γ ∈ Γ1(N) and any

z ∈ H∪P1(Q) any continuous, piecewise smooth path δ inH∪P1(Q) from
z to γz, the homology class of δ pushed forward toX1(N)(C) depends only
on γ [Man1, Proposition 1.4]. Let us denote this homology class by:

{∞, γ∞} ∈ S2(Γ1(N)) ∼= H1(X1(N)(C),Z)

and remark that all elements of H1(X1(N)(C),Z) can be written in this
way. As we also have S2(Γ1(N)) ∼= H0(X1(N)C,Ω1), this means we can
calculate

∫
{∞,γ∞} f

dq
q by choosing a smart path in H ∪ P1(Q):∫ γ∞

∞
f
dq

q
=
∫ γz

z
f
dq

q
=
∫ γz

∞
f
dq

q
−
∫ z

∞
f
dq

q
.
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If we write γ =
(
a
c
b
d

)
then a good choice for z is:

z = −d
c

+
i

|c|
.

In this case we have =z = =γz = 1/|c| so in view of (6.3.2), to compute
the integral to a precision of p decimals we need about pc log 10

2π ≈ 0.37pc
terms of the series.

Another thing we can use is the Hecke compatibility from (6.1.9). Put:

Wf := (S2(Γ1(N))/IfS2(Γ1(N)))⊗Q,

where If is the Hecke ideal belonging to f , i.e. the kernel of the mapT→ C
that sends Tn to an for all n (here, as usual, T denotes the Hecke algebra
attached to S2(Γ1(N))). The space Wf has the structure of a vector space
over (T/If ) ⊗ Q ∼= Kf of dimension 2. This means that computing any
period integral of f , we only need to precompute 2 period integrals. So
one tries to find a Kf -basis of Wf consisting of elements {∞, γ∞} where
γ ∈ Γ1(N) has a very small c-entry. In practice it turns out that we do not
need to search very far.

6.3.3 Period integrals: the twisted method

In this subsection we have the same set-up as in the previous subsection.
There is another way of computing period integrals for f ∈ S2(Γ1(N))
which sometimes beats the method described in the previous subsection.
The method described in this subsection is similar to [Cre, Section 2.11]
and makes use of winding elements and twists.

The winding element of M2(Γ1(N)) is simply defined as the element
{∞, 0} (some authors define it as {0,∞}, this is just a matter of sign con-
vention). Integration over this element is easy to perform because we can
break up the path in a very neat way:

∫ 0

∞
f
dq

q
=
∫ i/

√
N

∞
f
dq

q
+
∫ 0

i/
√
N
f
dq

q
=

=
∫ i/

√
N

∞
f
dq

q
+
∫ ∞
i/
√
N
WN (f)

dq

q
=
∫ i/

√
N

∞
(f −WN (f))

dq

q
.
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Now, choose an odd prime ` not dividing N and a primitive Dirichlet char-
acter χ : Z→ C of conductor `. If f ∈ Sk(Γ1(N)) is a newform then f ⊗χ
is a newform in Sk(Γ1(N`2)), where:

f ⊗ χ =
∑
n≥1

an(f)χ(n)qn.

The following formula to express χ as a linear combination of additive char-
acters is well-known:

χ(n) =
g(χ)
`

`−1∑
ν=1

χ(−ν) exp
(

2πiνn
`

)
,

where g(χ) is the Gauss sum of χ (see (6.2.5)). It follows now immediately
that:

f ⊗ χ =
g(χ)
`

`−1∑
ν=1

χ(−ν)f
(
z +

ν

`

)
=

g(χ)
`

`−1∑
ν=1

χ(−ν) f
∣∣∣∣( `0 ν

`

)
.

For f ∈ S2(Γ1(N)) we now get the following useful formula for free:

(6.3.4) 〈{∞, 0}, f ⊗ χ〉 =
g(χ)
`

〈
l−1∑
ν=0

χ(−ν)
{
∞, ν

`

}
, f

〉
.

The element
∑l−1

ν=0 χ(−ν)
{
∞, ν`

}
ofMk(Γ1(N))⊗Z[χ] or of some other

modular symbols space where it is well-defined is called a twisted winding
element or, more precisely the χ-twisted winding element. Because of for-
mula (6.3.4), we can calculate the pairings of newforms in S2(Γ1(N)) with
twisted winding elements quite efficiently as well.

We can describe the action of the Atkin-Lehner operator WN`2 on f ⊗χ:

WN`2(f ⊗ χ) =
g(χ)
g(χ)

ε(`)χ(−N)λN (f)f̃ ⊗ χ,

where f̃ =
∑

n≥1 an(f)qn (see for example [At-Li, Section 3]). So in par-
ticular we have the following integral formula for a newform f ∈ S2(N, ε):

(6.3.5)

∫ 0

∞
f ⊗ χdq

q
=
∫ i/(`

√
N)

∞
(f ⊗ χ−WN`2(f ⊗ χ))

dq

q
=

=
∫ i/(`

√
N)

∞

(
f ⊗ χ− g(χ)

g(χ)
χ(−N)ε(`)λN (f)f̃ ⊗ χ

)
dq

q
.
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So to calculate: 〈
l−1∑
ν=0

χ(−ν)
{
∞, ν

`

}
, f

〉

we need to evaluate the series (6.3.2) at z in H with =z = 1/(`
√
N)

which means that for a precision of p decimals we need to sum about
p`
√
N log 10
2π ≈ 0.37p`

√
N terms of the series. In the spirit of the previous

subsection, we try several ` and χ, as well as the untwisted winding element
{∞, 0}, until we can make a Kf -basis for Wf . It follows from [Shi2, The-
orems 1 and 3] that we can always find such a basis. Also here, it turns out
that in practice we do not need to search very far. The method that requires
the least amount of of q-expansion terms is preferred.

6.3.6 Computation of q-expansions at various cusps

The upper half plane H is covered by neighbourhoods of the cusps. If we
want to evaluate a cusp form f ∈ Sk(Γ1(N)) or an integral of a cusp form
at a point in such a neighbourhood then it is useful to be able to calculate
the q-expansion of f at the corresponding cusp. We shall mean by this the
following: A cusp a/c can be written as γ∞ with γ =

(
a
c
b
d

)
∈ SL2(Z).

Then a q-expansion of f at a/c is simply the q-expansion of f |kγ. This
notation is abusive, since it depends on the choice of γ. The q-expansion
will be an element of the power series ring C[[q1/w]] where w is the width
of the cusp a/c and q1/w = exp(2πiz/w).

If the level N is square-free this can be done symbolically. However, for
general N it is not known how to do this, but we shall give some attempts
that do at least give numerical computations of q-expansions. We use that
we can compute the q-expansions of newforms in Sk(Γ1(N)) at ∞ using
modular symbols methods.

The case of square-free N

The method we present here is due to Asai [Asa]. Let N be square-free and
let f ∈ Sk(Γ1(N)) be a newform of character ε. The main reason for being
able to compute q-expansions at all cusps in this case is because the group
generated by Γ0(N) and all wQ (see (6.2.1)) acts transitively on the cusps,
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something that is not true when N is not square-free.
So let γ =

(
a
c
b
d

)
∈ SL2(Z) be given. Put:

c′ =
c

gcd(N, c)
, and Q =

N

gcd(N, c)
.

Let r ∈ Z be such that d ≡ cr mod Q and define b′, d′ ∈ Z by:

Qd′ = d− cr and b′ = b− ar.

Then we have: (
a

c

b

d

)
=
(
Qa

Nc′
b′

Qd′

)(
Q−1

0
rQ−1

1

)
.

Theorems 6.2.4 and 6.2.7 tell us how
(
Qa
Nc′

b′

Qd′

)
acts on q-expansions. The

action of
(
Q−1

0
rQ−1

1

)
on q-expansions is simply:∑

n≥1

anq
n 7→ Q1−k

∑
n≥1

anζ
rn
Q qn/Q with ζQ = exp(2πi

Q ).

This shows how the q-expansion of f |kγ can be derived from the q-
expansion of f .

Let us now explain how to do it for oldforms as well. By induc-
tion and (2.2.17) we may suppose f = αp(f ′) with p | N prime,
f ′ ∈ Sk(Γ1(N/p)) and that we know how to compute the q-expansions
of f ′ at all the cusps. Let γ =

(
a
c
b
d

)
be given. Then we have:

f |kγ = p1−kf ′
∣∣
k

(
p

0
0
1

)
γ = p1−kf ′

∣∣
k

(
pa

c

pb

d

)
.

We will now distinguish on two cases: p | c and p - c. If p | c then we have
a decomposition: (

pa

c

pb

d

)
=
(
a

c/p

pb

d

)(
p

0
0
1

)
and we know how both matrices on the right hand side act on q-expansions.
If p - c, choose b′, d′ with pad′ − b′c = 1. Then we have:(

pa

c

pb

d

)
=
(
pa

c

b′

d′

)
β

with β ∈ GL+
2 (Q) upper triangular, so also in this case we know how both

matrices on the right hand side act on q-expansions.
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The general case

In a discussion with Peter Bruin, the author figured out an attempt to drop
the assumption that N be square-free and compute q-expansions of cusp
forms numerically in this case. The idea is to generalise the WQ operators
from Section 6.2.

So let N be given. Let Q be a divisor of N and put R = gcd(Q,N/Q).
Let wQ be any matrix of the form:

wQ =
(
RQa

RNc

b

Qd

)
with a, b, c, d ∈ Z

such that detwQ = QR2 (the conditions guarantee us that such matrices do
exist). One can then verify:

Γ1(NR2) < w−1
Q Γ1(N)wQ,

so that slashing with wQ defines a linear map:

Sk(Γ1(N))⊕ Sk(Γ1(N))
|wQ−→ Sk(Γ1(NR2))⊕ Sk(Γ1(NR2))

which is injective since the slash operator defines a group action on the space
of all functions H→ C.

On the other hand, wQ defines an operation on Mk which can be shown
to induce a linear map:

wQ : Sk(Γ1(NR2))⊗Q→ Sk(Γ1(N))⊗Q

that satisfies the following compatibility with respect to the integration pair-
ing between modular symbols and cusp forms (see [Sho, Theorem 4.3]):

(6.3.7) 〈wQx, f〉 = 〈x, f |kwQ〉.

Let (x1, . . . , xr) and (y1, . . . , ys) be bases of Sk(Γ1(N)) ⊗ Q and of
Sk(Γ1(NR2))⊗Q respectively. Then one can write down a matrix A in
terms of these basis that describes the map wQ since we can express any
symbol P ⊗{α, β} in terms of Manin symbols. The matrix At then defines
the action of wQ in terms of the bases of the cusp forms spaces that are dual
to (x1, . . . xr) and (y1, . . . , ys).

Now, let (f1, . . . , fr) be a basis of Sk(Γ1(N)) ⊕ Sk(Γ1(N)) and let
(g1, . . . , gs) be a basis of Sk(Γ1(NR2)) ⊕ Sk(Γ1(NR2)) (for instance we
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could take bases consisting of eigenforms for the Hecke operators away
from N ). Define matrices:

B := (〈xi, fj〉)i,j and C := (〈yi, gj〉)i,j .

These can be computed numerically as the entries are period integrals.
Then the matrix C−1AtB describes the map ·|kwQ in terms of the bases
(f1, . . . , fr) and (g1, . . . , gs). Hence if we can invert C efficiently, then we
can numerically compute the q-expansion of f |kwQ with f ∈ Sk(Γ1(N)).

Let now a matrix γ =
(
a
c
b
d

)
∈ SL2(Z) be given. Put:

c′ := gcd(N, c) and Q := N/c′.

Because of gcd(c/c′, Q) = 1 we can find α ∈ (Z/QZ)× with αc/c′ ≡ 1
mod Q. If we lift α to (Z/NZ)× then we have αc ≡ c′ mod N . Let now
d′ ∈ Z be a lift of αd ∈ (Z/NZ)×. Because αc and αd together generate
Z/NZ we have gcd(c′, d′) = 1 and so we can find a′, b′ ∈ Z that satisfy
a′d′ − b′c′ = 1. According to Lemma 6.1.12, we have:

γ = γ0

(
a′

c′
b′

d′

)
with γ0 ∈ Γ0(N).

Put R = gcd(c′, Q). Then we have gcd(NR,Q2Ra′) = QR gcd(c′, Qa′)
and hence gcd(NR,Q2Ra′) = QR2, so there exist b′′, d′′ ∈ Z with:

wQ :=
(
QRa′

NR

b′′

Qd′′

)

having determinant QR2. One can now verify that we have
(
a′

c′
b′

d′

)
= wQβ

with β ∈ GL+
2 (Q) upper triangular. So in the decomposition:

γ = γ0wQβ

we can compute the slash action of all three matrices on the right hand side
in terms of q-expansions, hence also of γ.

In conclusion we see that in this method we have to increase the level
and go to Sk(Γ1(NR2)) for the square divisors R2 of N to compute q-
expansions of cusp forms in Sk(Γ1(N)) at arbitrary cusps.
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6.3.8 Numerical evaluation of cusp forms

For f ∈ Sk(Γ1(N)) and a point P ∈ H we wish to compute f(P ) to a
high numerical precision. Before we do this let us say some words on how
P should be represented. The transformation property of modular forms
implies that representing P as x + iy with x, y ∈ R is not a good idea, as
this would be numerically very unstable when P is close to the real line.
Instead, we represent P as:

(6.3.9) P = γz with γ ∈ SL2(Z), z = x+ iy, x�∞ and y � 0.

For instance, one could demand that z be in the standard fundamental do-
main:

F := {z ∈ H : |<z| ≤ 1/2 and |z| ≥ 1}

for SL2(Z) acting on H, although this is not strictly necessary.
So let P = γz be given, with γ =

(
a
c
b
d

)
∈ SL2(Z) and =z > M , say.

Let w = w(γ) be the width of the cusp γ∞ with respect to Γ1(N). To
compute f(P ) we make use of a q-expansion of f at γ∞:

f(P ) = (cz + d)k(f |kγ)(z) = (cz + d)k
∑
n≥1

anq
n/w

The radius of convergence is 1 and the coefficients are small (estimated by
Õ(n(k−1)/2)). So to compute f(P ) to a precision of p decimals we need
about pw log 10

2πM ≈ 0.37pwM terms of the q-expansion of f |kγ.
Of course, we have some freedom in choosing γ and z to write down P .

We want to find γ such that P = γz with =z/w(γ) as large as possible. In
general, one can always write P = γz with z ∈ F so one obtains:

(6.3.10) max
γ∈SL2(Z)

=γ−1P

w(γ)
≥
√

3
2N

.

We see that in order to calculate f(P ) to a precision of p decimals it suffices
to use about pN log 10√

3π
≈ 0.42pN terms of the q-expansions at each cusp.

Although for many points P there is a better way of writing it as γz in
this respect than taking z ∈ F , it seems hard to improve the bound

√
3

2N in
general.
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We wish to adjust the representation sometimes from P = γz to P = γ′z′

where γ′ ∈ SL2(Z) is another matrix, for instance because during our cal-
culations <z has become too large or =z has become too small (but still
within reasonable bounds). We can make <z smaller by putting z′ := z−n
for appropriate n ∈ Z and putting γ′ := γ

(
1
0
n
1

)
. Making=z larger is rather

easy as well. We want to find γ′′ =
(
a
c
b
d

)
∈ SL2(Z) such that:

=γ′′z =
=z

|cz + d|2

is large. This simply means that we have to find a small vector cz+ d in the
latticeZz+Z, something which can be done easily if<z �∞ and=z � 0.
If c and d are not coprime we can divide both by their greatest common
divisor to obtain a smaller vector. The matrix γ′′ can now be completed and
we put z′ := γ′′z and γ′ := (γ′′)−1.

6.3.11 Numerical evaluation of integrals of cusp forms

In this subsection we will describe for f ∈ S2(Γ1(N)) and P ∈ H how to
evaluate the integral

∫ P
∞ fdq/q. As in the previous subsection, we assume

P to be given by means of (6.3.9). The path of integration will be broken
into two parts: first we go from∞ to a cusp α near P and then we go from
α to P .

Integrals over paths between cusps

The pairing (6.1.5) gives a map:

Θ: M2(Γ1(N))→ HomC (S2(Γ1(N)),C) ,

which is injective when restricted to S2(Γ1(N)). The image of Θ is a lattice
of full rank, hence the induced map:

S2(Γ1(N))⊗ R→ HomC (S2(Γ1(N)),C)

is an isomorphism. In particular we obtain a map:

Φ: M2(Γ1(N))→ S2(Γ1(N))⊗ R,
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which is an interesting map to compute if we want to calculate integrals
of cusp forms along paths between cusps. The map Φ is called a period
mapping.

The Manin-Drinfel’d theorem (see [Man1, Corollary 3.6] and [Dri, The-
orem 1]) tells us that im(Φ) ⊂ S2(Γ1(N))⊗Q. This is equivalent to saying
that each degree 0 divisor of X1(N) which is supported on cusps defines a
torsion point of J1(N). The proof given in [Dri] already indicates how to
compute Φ with symbolic methods: let p be a prime that is 1 mod N . Then
the operator p + 1 − Tp on M2(Γ1(N)) has its image in S2(Γ1(N)). The
same operator is invertible on S2(Γ1(N))⊗Q. So we simply have:

Φ = (p+ 1− Tp)−1(p+ 1− Tp),

where the rightmost p+1−Tp denotes the map from M2(Γ1(N)) to
S2(Γ1(N)) and the leftmost p+1−Tp denotes the invertible operator on
S2(Γ1(N))⊗Q. For other methods to compute Φ, see [Ste2, Section 10.6].
So we can express the integral of fdq/q between any two cusps α and β in
terms of period integrals, which we have already seen how to compute:∫ β

α
f
dq

q
= 〈Φ({α, β}), f〉.

Integrals over general paths

We can imitate the previous subsection pretty much. Write P ∈ H as
P = γz with γ ∈ SL2(Z) such that =z/w(γ∞) is as large as possible.
Then we have

(6.3.12)

∫ P

∞
f
dq

q
=
∫ γ∞

∞
f
dq

q
+
∫ γz

γ∞
f
dq

q

=
∫ γ∞

∞
f
dq

q
+
∫ z

∞
(f |2γ)

dq

q
.

The integral
∫ γ∞
∞ f dqq is over a path between two cusps so we can compute

it by the above discussion and the integral
∫ z
∞(f |2γ)dqq can be computed

using the q-expansion of f |2γ:∫ z

∞
(f |2γ)

dq

q
= w

∑
n≥1

an
n
qn/w,
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where w = w(γ), q1/w = exp(2πiz/w) and f |2γ =
∑
anq

n/w. Because
of (6.3.10), computing about pN log 10√

3π
≈ 0.42pN terms of the series should

suffice to compute
∫ P
∞ f

dq
q for any P ∈ H.

Note also that we can use formula (6.3.12) to compute the pseudo-
eigenvalue λQ(f) by plugging in γ = wQ and a z for which both =z and
=wQz are high and for which

∫ z
∞Wq(f)dq/q is not too close to zero.

6.4 APPLYING NUMERICAL CALCULATIONS TO GALOIS REPRE-
SENTATIONS

Let f be a newform (of some level and weight) and let λ | ` be a prime
of its coefficient field. From Section 2.5 we know that a residual Galois
representation ρ = ρf,λ is attached to the pair (f, λ). The fixed field Kλ of
ker(ρ) inQ is a number field. The results from Chapter 14 point out that we
know that computing ρ essentially boils down to computing a polynomial
that has Kλ as splitting field. In this section we describe how numerical
calculations can be used to compute such a polynomial. We will follow
ideas from Chapter 3.

Theorem 2.5.7 shows that we can reduce this problem to the case of a
form of weight 2 in most interesting cases. Hence we will assume that f is
a newform in S2(Γ1(N)). Assume that the representation ρf,λ is absolutely
irreducible and let T be the Hecke algebra acting on J1(N). There is a
subspace Vλ of J1(N)(Q)[`] on which both T and Gal(Q/Q) act, such that
the action of Gal(Q/Q) defines ρf,λ.

6.4.1 Approximation of torsion points

The Jacobian J1(N)C can be described as follows. Pick a basis f1, . . . , fg

of S2(Γ1(N)). Put:

Λ :=
{∫

γ
(f1, . . . , fg)

dq

q
: [γ] ∈ H1(X1(N)(C),Z)

}
⊂ Cg.
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This is a lattice in Cg of full rank. By the Abel-Jacobi theorem we have an
isomorphism:

J1(N)(C) ∼−→ Cg/Λ,[∑
i

([Qi]− [Ri])
]
7→
∑
i

∫ Qi

Ri

(f1, . . . , fg)
dq

q
.

Let now a divisor
∑g

i=1[Ri] on X1(N) be given. Identifying J1(N)(C)
with Cg/Λ in this way, we get a birational morphism

φ : SymgX1(N)(C)→ Cg/Λ,

(Q1, . . . , Qg) 7→
g∑
i=1

∫ Qi

Ri

(f1, . . . , fg)
dq

q
.

The homology group H1(X1(N)(C),Z) is canonically isomorphic to the
modular symbols space S2(Γ1(N)). The period lattice Λ can thus be com-
puted numerically using the methods from Subsections 6.3.1 and 6.3.3.
Since we can compute the action of T on S2(Γ1(N)) ∼= Λ, we can write
down the points in 1

`Λ/Λ ⊂ C
g/Λ that correspond to the points of Vλ. The

aim is now to compute the divisors on X1(N)C that map to these points
along φ. In our computations, we assume without proof that Vλ lies beneath
the good locus of φ, i.e. the map X1(N)g → Cg/Λ induced by φ is étale
above Vλ.

We start calculating with a small precision. Let a non-zero P in
Vλ(C) ⊂ Cg/Λ be given. First we try out a lot of random points
Q=(Q1, . . . , Qg) in X1(N)(C)g. Here, each Qi will be written as
Qi = γiwi, with γi in a set of representatives for Γ1(N) \ SL2(Z) and
wi ∈ F . We can compute φ(Q) using methods from Subsection 6.3.11. We
work with the point Q for which φ(Q) is closest to P . If we in fact already
know some points Q with φ(Q) approximately equal to a point in Vλ(C),
then we could also take one of those points as a starting point Q to work
with.

The next thing to do is adjust Q so that φ(Q) comes closer to P .
We’ll make use of the Newton-Raphson approximation method. Let
φ′ : Hg → Cg/Λ be the function defined by:

φ′(z1, . . . zg) = φ(γ1z1, . . . γgzg).
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We observe that for a small vector h = (h1, . . . hg) ∈ Cg we have:

φ′(w1 + h1, . . . , wg + hg) = φ(Q) + hD +O(‖h‖2)

with:

D =


∂φ′1
∂z1

· · · ∂φ′g
∂z1

...
. . .

...
∂φ′1
∂zg

· · · ∂φ′g
∂zg


∣∣∣∣∣∣∣∣
(w1,...,wg)

.

From the definition of φ we can immediately deduce:

∂φ′i
∂zj

(w1, . . . , wg) = 2πi · (fi|2γj)(wj),

where we apologise for the ambiguous i. We can thus compute the ma-
trix D using the methods of Subsection 6.3.8. Now choose a small vector
v = (v1, . . . , vg) ∈ Cg such that φ(Q) + v is closer to P than φ(Q) is.
For example, v can be chosen among all vectors of a bounded length so that
φ(Q) + v is closest to P . If we write:

h = vD−1,

then we expect φ′(w1+h1, . . . , wg+hg) to be approximately equal to
φ(Q)+v. If this is not the case, then we try the same thing with a smaller v.
It could be that this still fails, for instance because we are too close to the
bad locus of the map φ. In that case, we start with a new random point Q.

We repeat the above adjustments until we are (almost) as close as we
can get considering our calculation precision. It might happen that the wi
become too wild, i.e. |<wi| becomes too large or =wi becomes too small.
If this is the case we adjust the way we write Qi as γiwi using the method
described in Subsection 6.3.8. We can always replace the γi then by a small
matrix in the same coset of Γ1(N) \ SL2(Z).

Once we have for each P ∈ Vλ − {0} a point Q such that φ(Q) is ap-
proximately equal to P , we can start increasing the precision. We double
our calculation precision and repeat the above adjustments (φ(Q)+v will in
this case be equal to P ). We repeat this a few times until we have very good
approximations.
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6.4.2 Computation of polynomials

Now, we will choose a function in h ∈ Q(X1(N)) and evaluate it at the
components of the points in φ−1(Vλ). With the discussion of Chapter 3 in
mind, we want h to take values of small height. Since h multiplies heights
of points roughly by deg(h), we want to find a function of small degree.
Take any k and a basis h1, . . . , hn of Sk(Γ1(N)) such that the q-expansions
of the hi lie in Z[[q]] and such that the exponents of the first non-zero terms
of these q-expansions form a strictly increasing sequence. We propose to
use h = WN (hn−1)/WN (hn) as a function to use (assuming n ≥ 2). Re-
member from Section 2.2 that Sk(Γ1(N)) is the space of global sections of
the line bundle L = ω⊗k(−cusps) on X1(N), base changed to C. Be aware
of the fact that the cusp ∞ of X1(N) is not defined over Q, but the cusp
0 is. Since we demand the q-expansions to have rational coefficients, the
sections WN (h1), . . . ,WN (hn), with WN an Atkin-Lehner operator, are
defined over Q and they have increasing order at 0. One can now verify that
for h = WN (hn−1)/WN (hn) we have:

deg(h) ≤ deg(L)− v∞(hn−1) ≤ deg(L)− dimH0(L) + 2 ≤ g + 1.

For k = 2 and g ≥ 2 we have L ∼= Ω1(X1(N)) and we get g as an upper
bound for deg(h). Using methods from Subsection 6.3.8, we can evaluate h
numerically. The author is not aware of a sophisticated method for finding a
function h ∈ Q(X1(N)) of minimal degree in general; this minimal degree
is called the gonality of the curveX1(N). Published results on these matters
seem to either be limited to X0(N) or to concern only lower bounds for
the gonality of modular curves, see for example [Abr], [Bak, Chapter 3]
or [Poo].

Now put, for P ∈ Vλ(C)− {0}:

αP =
g∑
i=1

h(Qi), where φ(Q1, . . . , Qg) = P .

We work out the product in:

Pλ(x) :=
∏

P∈Vλ(C)−{0}

(x− αP ) =
n∑
k=0

akx
k, where n = degPλ.
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The coefficients ak are rational numbers that we have computed numeri-
cally. Since the height of Pλ is expected to be not too large, the denom-
inators of the ak should have a relative small common denominator. The
LLL algorithm can be used to compute integers p0, . . . , pn−1, q such that
|pk − akq| is small for all k, see [Le-Le-Lo, Proposition 1.39]. If the
sequence (ak) is arbitrary, then we’ll be able to find pk and q such that
|pk − akq| is roughly of order q−1/n for each k, but not much better than
that. So if it happens that we find pk and q with |pk − akq| much smaller
than q−1/n for all k, then we guess that ak is equal to pk/q. If we can-
not find such pk and q then we will double the precision and repeat all the
calculations described above.

Heuristically, the calculation precision that is needed to find the true value
of ak is about (1 + 1/n) · height(Pλ)/ log(10) decimals. Another way of
finding rational approximations of the ak is by approximating them using
continued fractions. For this method, the precision needed to find the true
value of ak would be about 2 · height(Pλ)/ log(10) decimals.

Since the degree of Pλ will be quite large, we won’t be able to do many
further calculations with it. In particular it may be hard to verify whether
all the guesses we made were indeed correct. Instead, we will look at the
following variant. If m is the Hecke ideal of f mod λ, then Vλ is a vector
space over T/m. The representation ρf,λ induces an action ρ̃λ of Gal(Q/Q)
on the set P(Vλ) of lines in Vλ. We can attach a polynomial P̃λ to this
projectivised representation ρ̃λ, analogously to the way this was done for ρ.
This polynomial will have a smaller degree than Pλ. We put:

P̃λ(x) =
∏

L∈P(V`)

(
x −

∑
P∈L−{0}

αP
)

=
m∑
k=0

bkx
k, where m = deg P̃λ.

As above, if the calculation precision is sufficient we can use lattice reduc-
tion algorithms to compute the exact values of the bk.

6.4.3 Reduction of polynomials

Although the polynomial P̃λ will not have a very huge height, its height is
still too large to do any useful computations with it. The first step in making
a polynomial of smaller height defining the same number field is computing
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the maximal order of that number field. Let q be the common denominator
of the coefficients and put pk = bkq. Consider the polynomial:

Q(x) = q · P̃λ(x) = qxm + pm−1x
m−1 + · · ·+ p0.

We make ourselves confident that we correctly computed Q(x) (although
we won’t prove anything at this point yet). For instance, we verify that
Q(x) is irreducible and that its discriminant has the prime factors of N` in
it. We can also compute for several primes p not dividing Disc(Q(x)) the
decomposition type of Q(x) modulo p and verify that it could be equal to
the cycle type of ρ̃(Frobp). If not, we again double the precision and repeat
the above calculations.

Let now α be a root of P̃λ(x) and write down the order:

O := Z+
m−1∑
k=1

Z · k−1∑
j=0

am−jα
k−j

 ,

which is an order that is closer to the maximal order than Z[qα] (see [Len2,
Subsection 2.10]). Being confident in the correctness of Q(x), we know
where the number fieldK defined by it ramifies and thus we can compute its
maximal order (see [Bu-Le, Section 6 and Theorems 1.1 and 1.4]). Having
done this, we embed OK as a lattice into Cm in the usual way and we use
the LLL algorithm to compute a basis of small vectors in OK . We can then
search for an element of small length in OK that generates K over Q. Its
defining polynomial P̃ ′λ will have small coefficients. See also [Co-Di].

In the computation of the polynomials Pλ and P̃ ′λ we made several
guesses and assumptions that we cannot prove to be correct. In Chapter 7,
we work out in special cases how we can use established parts of Serre’s
conjecture to prove afterwards for polynomials of the style P̃ ′λ that they in-
deed belong to the modular Galois representations that we claim they belong
to. See [Bos1] for another example of this. In the unlikely case that such
tests may fail we can of course make adjustments like choosing another
function h or another divisor to construct φ.
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6.4.4 Further refinements

The Jacobian J1(N) has large dimension (for N prime this dimension is
(N−5)(N−7)/24). It could be that our newform f is an element of S2(Γ)
with Γ1(N) � Γ < Γ0(N). In that case we work with the curve XΓ, which
is given its Q-structure by defining it as a quotient of X1(N). The Jacobian
JΓ of XΓ is isogenous to an abelian subvariety of J1(N) that contains Vλ,
so this works perfectly well.

In the case Γ = Γ0(N) we can sometimes go a step further. The operator
WN on X0(N), sending z to −1/Nz, is defined over Q. If f is invariant
under WN , one can work with the curve X+

0 (N) := X0(N)/〈WN 〉. Its Ja-
cobian J+

0 (N) is isogenous to an abelian subvariety of J1(N) that contains
Vλ, so also here it works. Some words on the computation of the homology
of X+

0 (N) are in order. The action of WN on X0(N) induces an action on
H1(X0(N)(C),Z) and on H1(X0(N)(C), cusps,Z). Since paths between
cusps on X+

0 (N)(C) lift to paths between cusps on X0(N)(C) we have a
surjection:

H1(X0(N), cusps,Z) � H1(X+
0 (N)(C), cusps,Z).

The kernel of this map consists of the elements [γ] in H1(X0(N), cusps,Z)
satisfying WN ([γ]) = −[γ]. So modular symbols methods allow us to
compute H1(X+

0 (N)(C), cusps,Z) as a quotient of M2(Γ0(N)). Let
B+

2 (Γ0(N)) be the free abelian group on the cusps of X+
0 (N)(C) and de-

fine:

δ : H1(X+
0 (N)(C), cusps,Z)→ B+

2 (Γ0(N)), {α, β} 7→ {β} − {α}.

Then H1(X+
0 (N)(C)) = ker(δ).
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Chapter Seven

Polynomials for projective representations of level

one forms

J. Bosman

7.1 INTRODUCTION

In this chapter we explicitly compute mod-` Galois representations attached
to modular forms. To be precise, we look at cases with ` ≤ 23 and the
modular forms considered will be cusp forms of level 1 and weight up
to 22. We present the result in terms of polynomials associated with the
projectivised representations. As an application, we will improve a known
result on Lehmer’s non-vanishing conjecture for Ramanujan’s tau function
(see [Leh, p. 429]).

To fix a notation, for any k ∈ Z satisfying dimSk(SL2(Z)) = 1 we will
denote the unique normalised cusp form in Sk(SL2(Z)) by ∆k. We will
denote the coefficients of the q-expansion of ∆k by τk(n):

∆k(z) =
∑
n≥1

τk(n)qn ∈ Sk(SL2(Z)).

From dimSk(SL2(Z)) = 1 it follows that the numbers τk(n) are integers.
For every ∆k and every prime ` there is a continuous representation:

ρ∆k,`
: Gal(Q/Q)→ GL2(F`)

such that for every prime p 6= `we have that the characteristic polynomial of
ρ∆k,`

(Frobp) is congruent to X2 − τk(p)X + pk−1 mod `. For a summary
on the exceptional representations ρ∆k,`

and the corresponding congruences
for τk(n), see [Swi].
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7.1.1 Notational conventions

Throughout this chapter, for every field K we will fix an algebraic closure
K and all algebraic extension fields ofK will be regarded as subfields ofK.
Furthermore, for each prime number p we will fix an embedding Q ↪→ Qp
and hence an embedding Gal(Qp/Qp) ↪→ Gal(Q/Q), whose image we call
Dp. We will use Ip to denote the inertia subgroup of Gal(Qp/Qp).

All representations (either linear or projective) in this chapter will be
continuous. For any field K, a linear representation ρ : G→GLn(K) de-
fines a projective representation ρ̃ : G→PGLn(K) via the canonical map
GLn(K)→PGLn(K). We say that ρ̃ : G→PGLn(K) is irreducible if the
induced action of G on Pn−1(K) fixes no proper subspace. So for n = 2
this means that every point of P1(K) has its stabiliser subgroup not equal
to G.

7.1.2 Statement of results

7.1.3 Theorem For every pair (k, `) occurring the table in Section 7.5, let
the polynomial Pk,` be defined as in that same table. Then the splitting field
of each Pk,` is the fixed field of Ker(ρ̃∆k,`) and has Galois group PGL2(F`).
Furthermore, if α ∈ Q is a root of Pk,` then the subgroup of Gal(Q/Q)
fixing α corresponds via ρ̃∆k,` to a subgroup of PGL2(F`) fixing a point
of P1(F`).

For completeness we also included the pairs (k, `) for which ρk,` is isomor-
phic to the action of Gal(Q/Q) on the `-torsion of an elliptic curve. These
are the pairs in the table in Section 7.5 with ` = k − 1, as there the rep-
resentation is the `-torsion of J0(`), which happens to be an elliptic curve
for ` ∈ {11, 17, 19}. A simple calculation with division polynomials [Lan5,
Chapter II] can be used to treat these cases. In the general case, one has to
work in the more complicated Jacobian variety J1(`), which has dimension
12 for ` = 23 for instance.

We can apply Theorem 7.1.3 to verify the following result.

7.1.4 Corollary The non-vanishing of τ(n) holds for all n such that:

n < 22798241520242687999 ≈ 2 · 1019.
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In [Jo-Ke], the non-vanishing of τ(n) was verified for all n such that:

n < 22689242781695999 ≈ 2 · 1016.

To compute the polynomials, the author used the approach described in
Section 6.4. After the initial computations some of the polynomials had
coefficients of almost 2000 digits, so reduction techniques were absolutely
necessary. The used algorithms do not give a proven output, so we have to
concentrate on the verification. We will show how to verify the correctness
of the polynomials in Section 7.3 after setting up some preliminaries about
Galois representations in Section 7.2. In Section 7.4 we will point out how
to use Theorem 7.1.3 in a calculation that verifies Corollary 7.1.4. All the
calculations were perfomed using MAGMA (see [Magma]).

7.2 GALOIS REPRESENTATIONS

This section will be used to state some results on Galois representations that
we will need in the proof of Theorem 7.1.3.

7.2.1 Liftings of projective representations

Let G be a topological group, let K be a topological field and let
ρ̃ : G → PGLn(K) be a projective representation. Let L be an exten-
sion field of K. By a lifting of ρ̃ over L we shall mean a representation
ρ : G→ GLn(L) that makes the following diagram commute:

G
ρ̃

//

ρ

��

PGLn(K)� _

��

GLn(L) // // PGLn(L)

where the maps on the bottom and the right are the canonical ones. If the
field L is not specified then by a lifting of ρ̃ we shall mean a lifting over K.

An important theorem of Tate arises in the context of liftings. For the
proof we refer to [Ser6, Section 6]. Note that in the reference representations
overC are considered, but the proof works for representations over arbitrary
algebraically closed fields.
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7.2.2 Theorem (Tate) Let ρ̃ : Gal(Q/Q) → PGLn(K) be a projective
representation of Gal(Q/Q) over a field K. Then for each prime number p,
there exists a lifting ρ′p : Dp → GLn(K) of ρ̃|Dp . If these liftings ρ′p have
been chosen so that all but finitely many of them are unramified, then there
is a unique lifting ρ : Gal(Q/Q) → GLn(K) such that for all primes p we
have:

ρ|Ip = ρ′p|Ip .

7.2.3 Lemma Let p be a prime number and let K be a field. Suppose that
we are given a projective representation ρ̃p : Gal(Qp/Qp)→ PGLn(K)
that is unramified. Then there exists a lifting ρp : Gal(Qp/Qp)→ GLn(K)
of ρ̃p that is unramified as well.

Proof Since ρ̃ is an unramified representation of Gal(Qp/Qp), it factors
through Gal(Fp/Fp) ∼= Ẑ and is determined whenever we know the im-
age of Frobp ∈ Gal(Fp/Fp). By continuity, this image is an element of
PGLn(K) of finite order, say of order m. If we take any lift F of ρ̃(Frobp)
to GLn(K) then we have Fm = a for some a ∈ K×. So F ′ := α−1F ,
where α ∈ K is any m-th root of a, has order m in GLn(K). Hence the
homomorphism Gal(Qp/Qp)→ GLn(K) obtained by the composition:

Gal(Qp/Qp) // // Gal(Fp/Fp)
∼ // Ẑ // // Z/mZ 17→F ′// GLn(K)

lifts ρ̃ and is continuous as well as unramified. �

7.2.4 Serre invariants and Serre’s conjecture

Let ` be a prime. A Galois representation ρ : Gal(Q/Q) → GL2(F`)
has a level N(ρ) and a weight k(ρ). The definitions were introduced by
Serre (see [Ser9, Sections 1.2 & 2]). Later on, Edixhoven found an im-
proved definition for the weight, see [Edi1, Section 4]. The definitions
agree in the cases of our interest, but in the general formulation of The-
orem 7.2.7 later on, Edixhoven’s definition applies. The level N(ρ) is
defined as the prime-to-` part of the Artin conductor of ρ and equals 1
if ρ is unramified outside `. The weight is defined in terms of the local
representation ρ|D` ; its definition is rather lenghty so we will not write
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it out here. When we need results about the weight we will just state
them. Let us for now mention that one can consider the weights of the
twists ρ ⊗ χ of a representation ρ : Gal(Q/Q) → GL2(F`) by a character
χ : Gal(Q/Q) → F×` . If one chooses χ so that k(ρ ⊗ χ) is minimal, then
we always have 1 ≤ k(ρ ⊗ χ) ≤ ` + 1 and we can in fact choose our χ to
be a power of the mod ` cyclotomic character.

Serre conjectured [Ser9, Conjecture 3.2.4] that if ρ is irreducible and odd,
then ρ belongs to a modular form of level N(ρ) and weight k(ρ). Oddness
here means that the image of a complex conjugation has determinant −1. A
proof of this conjecture in the case N(ρ) = 1 has been published by Khare,
building on ideas of himself and Wintenberger:

7.2.5 Theorem (Khare & Wintenberger, [Kha, Theorem 1.1]) Let ` be a
prime number and let ρ : Gal(Q/Q) → GL2(F`) be an odd irreducible
representation of level N(ρ) = 1. Then there exists a modular form f of
level 1 and weight k(ρ) which is a normalised eigenform and a prime λ | `
of Kf such that ρ and ρf,λ become isomorphic after a suitable embedding
of Fλ into F`.

7.2.6 Weights and discriminants

If a representation ρ : Gal(Q/Q) → GL2(F`) is wildly ramified at ` it is
possible to relate the weight to discriminants of certain number fields. In
this subsection we will present a theorem of Moon and Taguchi, [Mo-Ta,
Theorem 3], on this matter and derive some results from it that are of use to
us.

7.2.7 Theorem (Moon & Taguchi) Consider a wildly ramified representa-
tion from ρ : Gal(Q`/Q`)→ GL2(F`). Let α ∈ Z be such that k(ρ⊗χ−α` )
is minimal where χ` : Gal(Q`/Q`) → F×` is the mod ` cyclotomic charac-
ter. Put k̃ = k(ρ⊗χ−α` ), put d = gcd(α, k̃− 1, `− 1) and define m in Z by

letting `m be the wild ramification degree of K := QKer(ρ)
` over Q`. Then

we have:

v`(DK/Q`) =

{
1 + k̃−1

`−1 −
k̃−1+d

(`−1)`m if 2 ≤ k̃ ≤ `,
2 + 1

(`−1)` −
2

(`−1)`m if k̃ = `+ 1,
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where DK/Q` denotes the different of K over Q` and v` is normalised by
v`(`) = 1.

We can simplify this formula to one which is useful in our case. In the
following corollaries v` denotes a valuation at a prime above ` that is nor-
malised by v`(`) = 1.

7.2.8 Corollary Let ρ̃ : Gal(Q/Q)→ PGL2(F`) be an irreducible projec-
tive representation that is wildly ramified at `. Take a point in P1(F`), let
H ⊂ PGL2(F`) be its stabiliser subgroup and let K be the number field
defined as:

K = Qρ̃
−1(H)

.

Then the `-primary part of Disc(K/Q) is related to the minimal weight k of
the liftings of ρ̃ by the following formula:

v`(Disc(K/Q)) = k + `− 2.

Proof Let ρ be a lifting of ρ̃ of minimal weight. Since ρ is wildly ramified,
after a suitable conjugation in GL2(F`) we may assume:

(7.2.9) ρ|I` =

(
χk−1
`

0
∗
1

)
,

where χ` : I` → F×` denotes the mod ` cyclotomic character; this follows
from the definition of weight. The canonical map GL2(F`) → PGL2(F`)
is injective on the subgroup

(∗
0
∗
1

)
, so the subfields of Q` cut out by ρ|I`

and ρ̃|I` are equal, call them K2. Also, let K1 ⊂ K2 be the fixed field of
the diagonal matrices in Im ρ|I` . We see from (7.2.9) that in the notation of
Theorem 7.2.7 we can put α = 0, m = 1 and d = gcd(`− 1, k− 1). So we
have the following diagram of field extensions:

K2(
χk−1
`

0
∗
1

)
K1

χk−1
`

{{{{{{{{

Qun
`

deg = `

CCCCCCCC
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The extensionK2/K1 is tamely ramified of degree (`−1)/d hence we have:

v`(DK2/K1
) =

(`− 1)/d− 1
(`− 1)`/d

=
`− 1− d
(`− 1)`

.

Consulting Theorem 7.2.7 for the case 2 ≤ k ≤ ` now yields

v`(DK1/Qun
`

) = v`(DK2/Qun
`

)− v`(DK2/K1
)

= 1 +
k − 1
`− 1

− k − 1 + d

(`− 1)`
− `− 1− d

(`− 1)`
=
k + `− 2

`

and also in the case k = `+ 1 we get:

v`(DK1/Qun
`

) = 2 +
1

(`− 1)`
− 2

(`− 1)`
− `− 2

(`− 1)`
=
k + `− 2

`
.

Let L be the number field QKer(ρ̃). From the irreducibility of ρ̃ and the
fact that Im ρ̃ has an element of order ` it follows that the induced action of
Gal(Q/Q) on P1(F`) is transitive and hence that L is the normal closure of
K in Q. This in particular implies that K/Q is wildly ramified. Now from
[K : Q] = ` + 1 it follows that there are two primes in K above `: one
is unramified and the other has inertia degree 1 and ramification degree `.
From the considerations above it now follows that any ramification subgroup
of Gal(L/Q) at ` is isomorphic to a subgroup of

(∗
0
∗
1

)
⊂ GL2(F`) of order

(`− 1)`/d with d | `− 1. Up to conjugacy, the only subgroup of index ` is
the subgroup of diagonal matrices. Hence K1 and Kun

λ2
are isomorphic field

extensions of Qun
` , from which:

v`(Disc(K/Q)) = v`(Disc(K1/Qun
` )) = ` · v`(DK1/Qun

`
) = k + `− 2.

follows. �

7.2.10 Corollary Let ρ̃ : Gal(Q/Q) → PGL2(F`) be an irreducible pro-
jective representation and let ρ be a lifting of ρ̃ of minimal weight. Let K
be the number field belonging to a point of P1(F`), as in the notation of
Corollary 7.2.8. If k ≥ 3 is such that:

v`(Disc(K/Q)) = k + `− 2

holds, then we have k(ρ) = k.

Proof From v`(Disc(K/Q)) = k+`−2 ≥ `+1 it follows that ρ̃ is wildly
ramified at ` so we can apply Corollary 7.2.8. �
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7.3 PROOF OF THE THEOREM

To prove Theorem 7.1.3 we need to do several verifications. We will de-
rive representations from the polynomials Pk,` and verify that they satisfy
the conditions of Theorem 7.2.5. Then we know there are modular forms
attached to them that have the right level and weight and uniqueness follows
then easily.

First we we will verify that the polynomials Pk,` from the table in
Section 7.5 have the right Galois group. The algorithm described in
[Ge-Kl, Algorithm 6.1] can be used perfectly to do this verification; proving
A`+1 6< Gal(Pk,`) is the most time-consuming part of the calculation here.
It turns out that in all cases we have:

(7.3.1) Gal(Pk,`) ∼= PGL2(F`).

That the action of Gal(Pk,`) on the roots of Pk,` is compatible with the
action of PGL2(F`) follows from the following lemma.

7.3.2 Lemma Let ` be a prime and let G be a subgroup of PGL2(F`) of
index `+1. Then G is the stabiliser subgroup of a point in P1(F`). In partic-
ular, any transitive permutation representation of PGL2(F`) of degree `+1
is isomorphic to the standard action on P1(F`).

Proof This follows from [Suz, Proof of Theorem 6.25]. �

So now we have shown that the second assertion in Theorem 7.1.3 follows
from the first one.

Next we will verify that we can obtain representations from this that
have the right Serre invariants. Let us first note that every automor-
phism of the group PGL2(F`) is an inner automorphism. This implies
that for every Pk,`, two isomorphisms (7.3.1) define isomorphic represen-
tations Gal(Q/Q)→PGL2(F`) via composition with the canonical map
Gal(Q/Q)� Gal(Pk,`). In other words, every Pk,` gives a projective rep-
resentation ρ̃ : Gal(Q/Q)→PGL2(F`) that is well-defined up to isomor-
phism.

Now, for each (k, `) in the table in Section 7.5, the polynomial Pk,` is
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irreducible and hence defines a number field:

Kk,` := Q[x]/(Pk,`),

whose ring of integers we will denote by Ok,`. It is possible to compute
Ok,` using the algorithm from [Bu-Le, Section 6] (see also [Bu-Le, The-
orems 1.1 & 1.4]), since we know what kind of ramification behaviour to
expect. In all cases it turns out that we have:

Disc(Kk,`/Q) = (−1)(`−1)/2`k+`−2.

We see that for each (k, `) the representation ρ̃k,` is unramified outside
`. From Lemma 7.2.3 it follows that for each p 6= `, the representation
ρ̃k,`|Gal(Qp/Qp) has an unramified lifting. Above we saw that via ρ̃k,` the

action of Gal(Q/Q) on the set of roots of Pk,` is compatible with the ac-
tion of PGL2(F`) on P1(F`), hence we can apply Corollary 7.2.10 to show
that the minimal weight of a lifting of ρ̃k,` equals k. Theorem 7.2.2 now
shows that every ρ̃k,` has a lifting ρk,` that has level 1 and weight k. From
Im ρ̃k,` = PGL2(F`) it follows that each ρk,` is absolutely irreducible.

To apply Theorem 7.2.5 we should still verify that ρk,` is odd in each
case. I thank Robin de Jong for pointing out that this is immediate: Since
the weight of ρk,` is k, we have det ρk,`|I` = χk−1

` |I` where χ` is the mod
` cyclotomic character. Now, det ρk,`|Dp is unramified for p 6= ` and hence
det ρk,` must equal χk−1

` on all of Gal(Q/Q) (apply Theorem 7.2.2 with
n = 1 for instance). But then, since k is even, we have that det ρk,` evalu-
ated at a complex conjugation equals −1 hence ρk,` is odd.

So now that we have verified all the conditions of Theorem 7.2.5 we re-
mark as a final step that all spaces of modular forms Sk(SL2(Z)) involved
here are 1-dimensional. So the modularity of each ρk,` implies immediately
the isomorphism ρk,` ∼= ρ∆k,`

, hence also ρ̃k,` ∼= ρ̃∆k,` , which completes
the proof of Theorem 7.1.3.

7.4 PROOF OF THE COROLLARY

If τ vanishes somewhere, then the smallest positive integer n for which τ(n)
is zero is a prime. This was observed by Lehmer [Leh, Theorem 2] and
can also be seen using the following argument: Suppose n is the smallest
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positive integer with τ(n) = 0. From the multiplicative property of τ it
follows that n is a power of a prime p. If τ(p) 6= 0 then from |τ(p)| < p6

and the recursion for τ(pr) it follows that vp(τ(pr)) = r · vp(τ(p)) for all
r, so τ(pr) would never be zero.

Using results on the exceptional representations for τ(p), Serre pointed
out [Ser8, Section 3.3] that if p is a prime number with τ(p) = 0 then p can
be written as:

p = hM − 1

with

M = 2143753691 = 3094972416000,(
h+ 1

23

)
= 1 and h ≡ 0, 30 or 48 mod 49.

In fact p is of this form if and only if τ(p) ≡ 0 mod 23 · 49 · M holds.
Knowing this, we will do a computer search on these primes p and verify
whether τ(p) ≡ 0 mod ` for ` ∈ {11, 13, 17, 19}. To do that we will use
the following lemma.

7.4.1 Lemma Let K be a field of characteristic not equal to 2. Then the
following conditions on M ∈ GL2(K) are equivalent:

(1) trM = 0.

(2) For the action of M on P1(K), there are 0 or 2 orbits of length 1 and
all other orbits have length 2.

(3) The action of M on P1(K) has an orbit of length 2.

Proof We begin with verifying (1)⇒ (2). Suppose trM = 0. Matrices of
trace 0 in GL2(K) have distinct eigenvalues in K because of char(K) 6= 2.
It follows that two such matrices are conjugate if and only if their character-
istic polynomials coincide. HenceM andM ′ :=

(
0

− detM
1
0

)
are conjugate

so without loss of generality we assumeM = M ′. SinceM2 is a scalar ma-
trix, all the orbits of M on P1(K) have length 1 or 2. If there are at least 3
orbits of length 1 then K2 itself is an eigenspace of M hence M is scalar,
which is not the case. If there is exactly one orbit of length 1 then M has a
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non-scalar Jordan block in its Jordan decomposition, which contradicts the
fact that the eigenvalues are distinct.

The implication (2)⇒ (3) is trivial so that leaves proving (3)⇒ (1). Sup-
pose that M has an orbit of length 2 in P1(K). After a suitable conjuga-
tion, we may assume that this orbit is {[

(
1
0

)
], [
(

0
1

)
]}. But this means that

M ∼
(

0
b
a
0

)
for certain a, b ∈ K hence trM = 0. �

In view of the above lemma it follows from Theorem 7.1.3 that for
` ∈ {11, 13, 17, 19} and p 6= ` we have τ(p) ≡ 0 mod ` if and only if the
prime p decomposes in the number fieldQ[x]/(P12,`) as a product of primes
of degree 1 and 2, with degree 2 occurring at least once. For p - Disc(P12,`),
which is a property that all primes p satisfying Serre’s criteria possess, we
can verify this condition by checking whether P12,` has an irreducible factor
of degree 2 over Fp. This can be easily checked by verifying:

xp
2

= x and xp 6= x in Fp[x]/(P 12,`).

Having done a computer search, it turns out that the first few primes satis-
fying Serre’s criteria as well as τ(p) ≡ 0 mod 11 · 13 · 17 · 19 are

22798241520242687999, 60707199950936063999,

93433753964906495999, 102797608484376575999.

Remark. The unpublished paper [Jo-Ke] in which Jordan and Kelly ob-
tained the previous bound for the verification of Lehmer’s conjecture seems
to be unfindable. Kevin Buzzard asked me the question what method they
could have used. If we weaken the above search to using only the prime
` = 11 we obtain the same bound as Jordan and Kelly did. So our specula-
tion is that they searched for primes p satisfying Serre’s criteria as well as
τ(p) ≡ 0 mod 11. This congruence can be verified using an elliptic curve
computation, as was already remarked in Subsection 7.1.2.

7.5 THE TABLE OF POLYNOMIALS

In this section we present the table of polynomials that is referred to through-
out this chapter.
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Polynomials belonging to projective modular representations

(k, `) Pk,`

(12, 11) x12 − 4x11 + 55x9 − 165x8 + 264x7 − 341x6 + 330x5

− 165x4 − 55x3 + 99x2 − 41x− 111
(12, 13) x14 + 7x13 + 26x12 + 78x11 + 169x10 + 52x9 − 702x8

− 1248x7 + 494x6 + 2561x5 + 312x4 − 2223x3

+ 169x2 + 506x− 215
(12, 17) x18 − 9x17 + 51x16 − 170x15 + 374x14 − 578x13

+ 493x12 − 901x11 + 578x10 − 51x9 + 986x8 + 1105x7

+ 476x6 + 510x5 + 119x4 + 68x3 + 306x2 + 273x+ 76
(12, 19) x20 − 7x19 + 76x17 − 38x16 − 380x15 + 114x14

+ 1121x13 − 798x12 − 1425x11 + 6517x10 + 152x9

− 19266x8 − 11096x7 + 16340x6 + 37240x5 + 30020x4

− 17841x3 − 47443x2 − 31323x− 8055
(16, 17) x18 − 2x17 − 17x15 + 204x14 − 1904x13 + 3655x12

+ 5950x11 − 3672x10 − 38794x9 + 19465x8 + 95982x7

− 280041x6 − 206074x5 + 455804x4 + 946288x3

− 1315239x2 + 606768x− 378241
(16, 19) x20 + x19 + 57x18 + 38x17 + 950x16 + 4389x15

+ 20444x14 + 84018x13 + 130359x12 − 4902x11

− 93252x10 + 75848x9 − 1041219x8 − 1219781x7

+ 3225611x6 + 1074203x5 − 3129300x4 − 2826364x3

+ 2406692x2 + 6555150x− 5271039
(16, 23) x24 + 9x23 + 46x22 + 115x21 − 138x20 − 1886x19

+ 1058x18 + 59639x17 + 255599x16 + 308798x15

− 1208328x14 − 6156732x13 − 10740931x12

+ 2669403x11 + 52203054x10 + 106722024x9

+ 60172945x8 − 158103380x7 − 397878081x6

− 357303183x5 + 41851168x4 + 438371490x3

+ 484510019x2 + 252536071x+ 55431347
Continued on next page
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Table continued from previous page

(k, `) Pk,`

(18, 17) x18 − 7x17 + 17x16 + 17x15 − 935x14 + 799x13

+ 9231x12 − 41463x11 + 192780x10 + 291686x9

− 390014x8 + 6132223x7 − 3955645x6 + 2916112x5

+ 45030739x4 − 94452714x3 + 184016925x2

− 141466230x+ 113422599
(18, 19) x20 + 10x19 + 57x18 + 228x17 − 361x16 − 3420x15

+ 23446x14 + 88749x13 − 333526x12 − 1138233x11

+ 1629212x10 + 13416014x9 + 7667184x8

− 208954438x7 + 95548948x6 + 593881632x5

− 1508120801x4 − 1823516526x3 + 2205335301x2

+ 1251488657x− 8632629109
(18, 23) x24 + 23x22 − 69x21 − 345x20 − 483x19 − 6739x18

+ 18262x17 + 96715x16 − 349853x15 + 2196684x14

− 7507476x13 + 59547x12 + 57434887x11

− 194471417x10 + 545807411x9 + 596464566x8

− 9923877597x7 + 33911401963x6 − 92316759105x5

+ 157585411007x4 − 171471034142x3

+ 237109280887x2 − 93742087853x+ 97228856961
(20, 19) x20 − 5x19 + 76x18 − 247x17 + 1197x16 − 8474x15

+ 15561x14 − 112347x13 + 325793x12 − 787322x11

+ 3851661x10 − 5756183x9 + 20865344x8

− 48001353x7 + 45895165x6 − 245996344x5

+ 8889264x4 − 588303992x3 − 54940704x2

− 538817408x+ 31141888
Continued on next page
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Table continued from previous page

(k, `) Pk,`

(20, 23) x24 − x23 − 23x22 − 184x21 − 667x20 − 5543x19

− 22448x18 + 96508x17 + 1855180x16

+ 13281488x15 + 66851616x14 + 282546237x13

+ 1087723107x12 + 3479009049x11 + 8319918708x10

+ 8576048755x9 − 19169464149x8 − 111605931055x7

− 227855922888x6 − 193255204370x5

+ 176888550627x4 + 1139040818642x3

+ 1055509532423x2 + 1500432519809x
+ 314072259618

(22, 23) x24 − 2x23 + 115x22 + 23x21 + 1909x20 + 22218x19

+ 9223x18 + 121141x17 + 1837654x16 − 800032x15

+ 9856374x14 + 52362168x13 − 32040725x12

+ 279370098x11 + 1464085056x10 + 1129229689x9

+ 3299556862x8 + 14586202192x7 + 29414918270x6

+ 45332850431x5 − 6437110763x4 − 111429920358x3

− 12449542097x2 + 93960798341x− 31890957224
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Chapter Eight

Description of X1(5l)

B. Edixhoven

8.1 CONSTRUCTION OF A SUITABLE CUSPIDAL DIVISOR ON X1(5l)

In this section we put ourselves in the situation of Theorem 2.5.12: l is a
prime number, k is an integer such that 2 < k ≤ l+1, and f is a surjective
ring morphism T(1, k) → F a with F a finite field of characteristic l, such
that the associated Galois representation ρ : Gal(Q/Q) → GL2(F) is irre-
ducible. We let V denote the two-dimensional F-vector space in J1(l)(Q)[l]
that realises ρ.

As explained in Chapter 3, we would like to have an effective divisor
D0 on X1(l)Q of degree the genus of X1(l) such that for all non-zero x in
the submodule V of J1(l)(Q) we have h0(Lx(D0)) = 1. It would be nice
to have a cuspidal divisor (i.e., a divisor supported on the cusps) with this
property. The first complication is that the cusps are not all rational over Q:
half of them have the maximal real subfield of Q(ζl) as field of definition.
Moreover, even working with all the cusps, we have not succeeded to find
a cuspidal divisor D0 with the desired properties. On the other hand, below
we will give explicitly a cuspidal divisor D0 on the curve X1(5l)Q(ζl) that
has the property that h0(Lx(D0)) = 1 for each x in J1(5l)(Q) that spe-
cialises to 0 at some place of Q over l. In particular, D0 has the required
property for V embedded in J1(5l)(Q) in an arbitrary way, provided that the
image of ρ contains SL2(F) (this will be shown in Section 8.2). We have
chosen to work with X1(5l), but the same method will work for modular
curves corresponding to some level structure if the prime to l part of the
level structure is fine, and of genus zero.
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For the rest of this section, our assumptions are the following: l is a prime
number, not equal to 5. We let X := X1(5l)Q(ζl) over Q(ζl). The genus
of X is (l − 2)2. References for facts about X that we use can be found
in [Gro], and also in [Edi1]; they are derived from results in [De-Ra] and
in [Ka-Ma].

The curve X0(5)Q has 2 cusps, both Q-rational, called 0 and ∞ (after
the points of P1(Q) of which they come). The cusp ∞ has as moduli in-
terpretation the degenerate elliptic curve (generalised elliptic curve in the
terminology of [De-Ra]): the 1-gon, equipped with the unique subgroup
of order 5 of Gm. The cusp 0 corresponds to the 5-gon, equipped with a
subgroup of order 5 that meets all 5 components. The group F×5 acts (as
diamond operators) on X1(5), with quotient X0(5); the subgroup {〈±1〉}
acts trivially, and the quotient F×5 /{〈±1〉} by this subgroup acts faithfully.
The inverse images of 0 and ∞ both consist of two cusps. Those over 0
are Q-rational (the subgroup of order 5 of the 5-gon is the constant group-
scheme Z/5Z), whereas those over∞ are conjugated over Q(

√
5). We fix

one Q-rational cusp c of X1(5).
The group F×l acts faithfully, and in fact, even freely, on X . The set of

cusps of X over the cusp c of X1(5) form two F×l -orbits, corresponding to
the type of degenerate elliptic curve that they correspond to: 5-gon or 5l-
gon. The orbit corresponding to the 5-gon consists of points rational over
Q(ζl), all conjugates of each other. The orbit corresponding to the 5l-gon
consists of Q-points.

We let J denote the Jacobian of X . What we want is an effective divisor
D0 of degree g onX (with g the genus ofX), supported on the cusps over c,
such that for all x in J(Q) that specialise to 0 at some place of Q over l we
have h0(XQ,Lx(D0)) = 1. For the notion of specialisation we use Néron
models; the reader is referred to [Bo-Lu-Ra] for this notion. For x in J(K)
with K ⊂ Q a finite extension of Q(ζl), and λ a place of Q over l, we say
that x specialises to 0 at λ if x, viewed as element of JOK (OK), with JOK
the Néron model of J over OK , specialises to 0 at the place of K given
by λ. For K ⊂ K ′ a finite extension we have J(K) ⊂ J(K ′), hence we
can also view x as element of J(K ′). The notion of x specialising to zero
is the same for K and K ′, because JZ[ζl] is semi-stable at l.

The moduli interpretation of X gives a semi-stable model XZ[ζl,1/5] over
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Z[ζl, 1/5], described in [Gro] for example. A result of Raynaud identifies
the connected component of the Néron model JOK with the connected com-
ponent of the Picard scheme of XOK (see Section 9.5 of [Bo-Lu-Ra]). This
means that for x in J(K) specialising to 0 at λ the line bundle Lx on XK

associated with x can be extended uniquely over the local ring OK,λ to a
line bundle Lx on XOK,λ such that the restriction Lx of Lx to the special
fibre XFλ is trivial. The divisor D0 on XK extends, by taking the Zariski
closure, to an effective Cartier divisor on XOK,λ .

We now note that h0(XK ,Lx(D0)) is at least one, by Riemann-Roch,
and that h0(XK ,Lx(D0)) is at most h0(XFλ ,Lx(D0)) by semi-continuity
of cohomology of coherent sheaves. As Lx(D0)) = O(D0), it now suffices
to take D0 such that h0(XFl ,O(D0)) = 1. We do this by looking at the
geometry of XFl . As Z[ζl] has a unique morphism to Fl, the curve XFl does
not depend on K. The scheme of cusps of XZl[ζl] is finite étale over Zl[ζl],
hence the cusps lying over c specialise injectively to XFl .

The curve XFl is the union of two irreducible components, X1 and X2,
say, both isomorphic to the Igusa curve of level l over X1(5) over Fl,
that meet transversally in the set Σ of supersingular points. We will take
D0 = D1 + D2, with D1 on X1 and D2 on X2; note that the cusps are
disjoint from Σ, so D0 lies in the smooth locus of XFl .

In order to simplify the notation, we let X and D0 denote XFl and D0,
from now on, in this section. We let ΩX be the dualising sheaf on X (see
Section 8 of [Gro], or [Ma-Ri]): it is the invertible OX -module obtained
by gluing Ω1

X1
(Σ) and Ω1

X2
(Σ) along Σ via the residue maps at the points

of Σ on X1 and minus the residues maps at the points of Σ on X2. By
Riemann-Roch, what we want is that h1(X,O(D0)) = 0, and hence, by
Serre duality, that h0(X,ΩX(−D0)) = 0. In other words, an element of
H0(X,ΩX) that vanishes on D0 must be zero. Restriction to X1 gives a
short exact sequence:

0→ H0(X2,Ω1
X2/Fl

(−D2))→ H0(X,ΩX(−D0))→

→ H0(X1,Ω1
X1/Fl

(Σ−D1))→ 0.

Hence, it suffices to takeD1 such that H0(X1,Ω1
X1/Fl

(Σ−D1)) = 0 andD2

such that H0(X2,Ω1
X2/Fl

(−D2)) = 0. Let us now first see of which degrees
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d1 and d2 we want to take D1 and D2. Let g1 and g2 be the genera of X1

and X2 (note: they are equal). Then we have that g = g1 + g2 + #Σ − 1,
and g = degD0 = d1 + d2. It can be shown in several ways that the
degree of the sheaf ω on X1(5)Fl is one. Either by explicit computation,
using the equations of Proposition 8.2.8, or by the following argument. The
curve X1(5)Fl over Fl has genus zero. The Kodaira-Spencer isomorphism
on X1(5)Fl , from ω⊗2 → Ω1(Cusps), plus the fact that the divisor of cusps
has degree 4, give that the degree of ω⊗2 is 2. Therefore, the Hasse invariant,
being a global section of ω⊗l−1, has exactly l−1 zeros onX1(5) over Fl and
therefore we have:

(8.1.1) #Σ = l − 1.

Applying Hurwitz’s formula to the coveringX1 → X1(5)Fl , which is totally
ramified over Σ and unramified outside it, gives:

2g1 − 2 = −2(l − 1) + (l − 1)(l − 2),

and hence:

(8.1.2) g1 =
1
2

(l − 2)(l − 3).

This implies that we want to take:

(8.1.3)
d1 = g1 + #Σ− 1 =

1
2

(l − 1)(l − 2),

d2 = g2 =
1
2

(l − 2)(l − 3).

Now we use equations to compute with. We choose a coordinate z on
X1(5)Fl , i.e., an isomorphism from X1(5)Fl to P1

Fl
, such that z(Σ) does

not contain 0 or∞ and such that z−10 is the (rational) cusp 0 of X1(5)Fl .
Let f be the monic polynomial in z whose zeros are the elements of Σ, each
with multiplicity one. Then X1 and X2 are both isomorphic to the cover of
X1(5)Fl given by the equation yl−1 = f , by the following argument. The
complete local rings of X1 at the points of Σ, with their F×l -actions, are
all isomorphic to each other because, by a theorem of Serre and Tate, these
can all be described in terms of the deformation theory of one l-divisible
group over Fl; see [Ka-Ma, §5.2–5.3]. There is a general theory of cyclic
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possibly ramified covers such as X1 → X1(5)Fl , based on the decomposi-
tion of OX1 as O-module on X1(5)Fl for the F×l -action. It shows that the
cover X1 → X1(5)Fl is the cover of l−1th roots of the global section 1 of
the invertible sheaf O(Σ) on X1(5)Fl , in an invertible O-module L with a
given isomorphism O(Σ) → L⊗(l−1), where the F×l -action may have been
changed by an automorphism of F×l . As X1(5)Fl has genus zero, we can
take L to be OX1(z−1∞). In fact, Section 12.8 of [Ka-Ma] shows that X1

is obtained fromX1(5)Fl by extracting the l−1th root of the Hasse invariant,
in ω.

We compute a basis of H0(X1,Ω1
X1/Fl

(Σ)). On X1 we have:

(8.1.4) −yl−2dy = f ′dz.

Hence (dz)/yl−2 = −(dy)/f ′ is a generating section of Ω1
X1/Fl

on the

affine part given by our equation. Hence (dz)/yl−1 is generating section of
Ω1
X1/Fl

(Σ) on the affine part, and it is F×l -invariant. At each point of X1

over the point where z has its pole, both z and y have a simple pole, and
(dz)/yl−1 has order −2 + l − 1 = l − 3. So we have a basis:

(8.1.5) H0(X1,Ω1
X1/Fl

(Σ)) =
⊕

i+j≤l−3

Flziyj · (dz)/yl−1.

Note that this agrees with the fact that d1 = 1
2(l − 1)(l − 2).

We can now say how to choose D1. At each of the l−1 points where z
has a zero we must give a multiplicity. In the coordinate system given by z
and y, these points are the ones of the form (0, b) with b ∈ F×l satisfying
bl−1 = f(0). Here is how we choose D1: just distribute the multiplicities
(0, 1, . . . , l−2) over these points. Then one sees that any linear combination
of our basis elements that vanishes on D1 is zero, as follows. At all points
of D1, z has a simple zero. Let ω be an element of H0(X1,Ω1

X1/Fl
(Σ)),

with coordinates λi,j in the basis (8.1.5). Assume that ω vanishes on D1

(taking multiplicities into account). As there are l−2 points in D1 with
multiplicity > 0, the polynomial

∑
j λ0,jy

j , being of degree ≤ l−3, must
be zero. As there are l−3 points inD1 with multiplicity> 1, the polynomial∑

j λ1,jzy
j , being of degree ≤ l−4, must be zero. And so on.
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Now we do D2. A basis is the following:

(8.1.6) H0(X2,Ω1
X2/Fl

) =
⊕

i+j≤l−4

Flziyj · (dz)/yl−2.

We note that this agrees with g2 = (l − 3)(l − 2)/2. So, for D2, just
distribute the multiplicities (0, 0, 1, . . . , l − 3) over the points where z has
a zero. The same argument as the one we used for D1 shows that any ω in
H0(X2,Ω1

X2/Fl
) that vanishes on D2 is zero.

We summarise our results. As the action of F×5 permutes the two Q-
rational cusps of X1(5), our arguments above work for both of them.

8.1.7 Theorem Let l be a prime number not equal to 5. Let c be one of
the two Q-rational cusps of X1(5). Then the cusps of X1(5l) over c are
Q(ζl)-rational, and consist of two F×l -orbits, on which F×l acts freely. Let
D1 be a divisor on X1(5l)Q(ζl) obtained by distributing the multiplicities
(0, 1, . . . , l−2) over one of these two orbits. Let D2 be the divisor obtained
by distributing the multiplicities (0, 0, 1, . . . , l−3) over the other orbit. Then
D0 := D1+D2 has degree equal to the genus ofX1(5l) and has the property
that for anyQ-point x of the Jacobian ofX1(5l) that specialises to 0 at some
place over l we have h0(X1(5l)Q,Lx(D0)) = 1.

8.2 THE EXACT SETUP FOR THE LEVEL ONE CASE

In Chapter 3 we described our strategy for computing the residual Galois
representations attached to a fixed newform. That strategy depends on prop-
erties of divisors D0 and functions f to be chosen, on modular curves of
varying level. These D0 and f must satisfy a number of conditions. In
general we do not know how to choose divisors D0 of which we can prove,
without a computer computation, that they have the required property. This
is the main reason for which we will now restrict ourselves to just the case
of modular forms of level one.

The aim of this section is to describe exactly our strategy for comput-
ing the residual representations V in the situation of Theorem 2.5.12: l is a
prime number, k is an integer such that 2 < k ≤ l+1, and f is a surjective
ring morphism T(1, k) → F a with F a finite field of characteristic l, such
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that the associated Galois representation ρ : Gal(Q/Q) → GL2(F) is irre-
ducible, under the extra hypothesis that the image of ρ contains SL2(F). By
Theorem 2.5.18, this hypothesis holds when ρ is irreducible and l ≥ 6k−5.
We let V denote the two-dimensional F-vector space in J1(l)(Q)[l] that re-
alises ρ.

Theorem 8.1.7 gives us a divisor D0 on X1(5l)Q(ζl) that we want to use.
Therefore, we want to embed V into J1(5l)(Q)[l].

Let π : X1(5l)→ X1(l) be the standard map (i.e., the one that forgets the
5-part of the level structure, the one denoted B5l,l,1 in Section 2.2). Then
the degree of π is 52 − 1 = 24, which is prime to l. This implies that π∗π∗

is multiplication by 24 on J1(l), and that π∗ is injective on J1(l)(Q)[l]. We
have a projector:

(8.2.1)
1
24
π∗π∗ : J1(5l)(Q)[l] � π∗J1(l)(Q)[l] ⊂ J1(5l)(Q)[l].

We will consider V embedded in J1(5l)(Q)[l] via its embedding into
J1(l)(Q)[l], followed by π∗.

8.2.2 Proposition Let l be a prime number, let k be an integer such that
2 < k ≤ l+1, and f a surjective ring morphism T(1, k) → F a with F a
finite field of characteristic l, such that the image of the associated Galois
representation ρ : Gal(Q/Q)→ GL2(F) contains SL2(F). We let V denote
the pullback as above of the two-dimensional F-vector space in J1(l)(Q)[l]
that realises ρ. LetD0 be a divisor onX1(5l)Q(ζl) as given in Theorem 8.1.7.
Then, for every x in Vl, we have h0(X1(5l)Q,Lx(D0)) = 1.

Proof In view of Theorem 8.1.7, it suffices to show that for each x in
V there is a place of Q over l at which x specialises to 0. The notion
of specialisation is explained in Section 8.1. Let JZ[ζl] denote the Néron
model of J := J1(5l) over Z[ζl]. Then V is the group of Q-points of an
F-vector space scheme VQ(ζl) in JQ(ζl). Let V be the Zariski closure of
VQ(ζl) in JZ[ζl]. Then it is shown in Section 12 of [Gro] and in Section 6
of [Edi1] that VZl[ζl] is finite locally free over Zl[ζl], and that the dimension
as F-vector space scheme of the local part of VZl[ζl] is 1 if f(Tl) 6= 0 and
2 if f(Tl) = 0. We note that it does not matter if we take Zariski closure
in J1(l) or in J1(5l), as π∗ gives a closed immersion of the l-torsion of J1(l)
over Zl into that of J1(5l).
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This means that at each place of Q over l there is a non-zero x in V

that specialises to 0. Under our assumptions, the image of Gal(Q/Q(ζl))
acting on V is SL(V ). Hence Gal(Q/Q(ζl)) acts transitively on V − {0}.
Hence for each x in V − {0} there is at least one place of Q over l where x
specialises to 0. �

The fact that our divisorD0 lives onX1(5l)Q(ζl), and not onX1(5l)Q, forces
us to work over Q(ζl), and not over Q, as in Chapter 3.

We let Xl denote X1(5l)Q and gl its genus, and we let Al,Q(ζl) denote the
Q(ζl)-algebra that corresponds to the Gal(Q/Q(ζl))-set V . In order to ex-
plain the notation Al,Q(ζl), we note that this Q(ζl)-algebra is obtained from
theQ-algebra Al (that corresponds to the Gal(Q/Q)-set V ) by extension of
scalars.

Proposition 8.2.2 gives that for each x in V there is a unique effective
divisor Dx =

∑gl
i=1Qx,i of degree gl on Xl,Q such that x = [Dx − D0]

in Jl(Q). Note that, for x = 0, it is indeed true that Dx = D0, hence
the two notations are consistent. The following observation will make the
exposition in Chapter 12 somewhat easier. As for each x in V specialises
to 0 at some place of Q above l, the divisor Dx specialises to the cuspidal
divisor D0 at such a place, and hence none of all Qx,i can be a CM-point, in
particular:

(8.2.3) for all x and i: j(Qx,i) 6∈ {0, 1728}.

The uniqueness of Dx implies that:

(8.2.4) Dgx = gDx, for all x in V and g in Gal(Q/Q(ζl)).

We write each Dx as:

(8.2.5) Dx = Dfin
x +Dcusp

x ,

where Dcusp
x is supported on the cusps of Xl,Q and where Dfin

x is disjoint
from the cusps. The next lemma shows that Dfin

x determines x, and its proof
uses only that ρ is absolutely irreducible, not that its image contains SL2(F).

8.2.6 Lemma In this situation, the map from V to the set of effective divi-
sors on Xl,Q that sends x to Dfin

x is injective.
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Proof Suppose that it is not. We take x1 and x2 in V , distinct, such that
Dfin
x1

= Dfin
x2

. Then the element x1 − x2 in V is nonzero and is repre-
sented by the cuspidal divisor Dx1 − Dx2 . The cusps of Xl are rational
over Q(ζ5l). Hence x1 − x2 gives an injection F→ V of representations of
Gal(Q/Q(ζ5l)), where F has trivial action. But that gives, by adjunction of
induction and restriction, a nonzero map from the regular representation of
Gal(Q(ζ5l)/Q) over F to V , necessarily surjective because V is irreducible.
But then the image of ρ : Gal(Q/Q) → GL2(F) is abelian. As ρ is odd,
the two eigenspaces in V of any complex conjugation then decompose V ,
in contradiction with the irreducibility of V . �

As the cusps of Xl,Q form a Gal(Q/Q)-stable subset of Xl,Q we have:

(8.2.7) for all g in Gal(Q/Q(ζl)): Dfin
gx = gDfin

x , Dcusp
gx = gDcusp

x .

Hence the map that sends x in V to Dfin
x is Gal(Q/Q(ζl))-equivariant.

We will now produce a suitable function fl : Xl → P1
Q, in order to push

the set of {Dfin
x | x ∈ V } injectively and Gal(Q/Q(ζl))-equivariantly to

the set {fl,∗Dfin
x | x ∈ V } of divisors on A1

Q.
We start by giving an explicit description of the curve Y1(5) over Z[1/5].

In order to do that, we determine a universal triple (E/S, P ) where E/S
is an elliptic curve over an arbitrary scheme, and P in E(S) is everywhere
of order 5, i.e., for every Spec(A) → S with A non-zero, the image of P
in E(A) has order 5. The base of this triple is the open part Y1(5)′ of the
model Y1(5) over Z (constructed in Chapter 8 of [Ka-Ma]) where the P
has order 5 (i.e., Y1(5)′ is the complement of the irreducible component of
Y1(5)F5 where the point P generates the kernel of Frobenius). The equation
of this universal triple can also be found on page 7 of Tom Fisher’s thesis,
see [Fis].

8.2.8 Proposition Let E/S be an elliptic curve, and P ∈ E(S) a point that
is everywhere of order 5. Then (E/S, P ) arises via a unique base change
from the following triple:

E : y2 + (b+ 1)xy + by = x3 + bx2

Y1(5)′ = Spec(Z[b, 1/discr(E)]), discr(E) = −b5(b2 + 11b− 1)

P = (0, 0).
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The j-invariant of E is given by:

j(E) = −(b4 + 12b3 + 14b2 − 12b+ 1)3/b5(b2 + 11b− 1).

Proof Our proof is modelled on Section 2.2 of [Ka-Ma]; basic properties of
Weierstrass equations for elliptic curves are used without being mentioned.

Let (E/S, P ) be given, with P everywhere of order 5. Choose a param-
eter t at 0, up to order 2, i.e., a trivialisation of ωE/S . Note: we are working
locally on S, here; in the end, as we will succeed in making things unique,
our construction will be global. Note: t is unique up to t′ = ut, with u ∈ R×

(S = Spec(R) now).
Choose x a global function on E − 0(S) such that x = t−2 + · · · . Then

x is unique up to x′ = x + a, a ∈ R. Make x unique by demanding that
x(P ) = 0 (this is alright because 0 and P are disjoint).

Choose y = t−3 + · · · regular on E − 0(S). Then y is unique up to
y′ = y + ax+ b. Make y unique by demanding that y(P ) = 0 and that the
tangent of E at P is the line given by the equation y = 0. (Indeed, use b
(uniquely) to get y(P ) = 0, then note that the tangent at P is nowhere the
line given by x = 0 because P is nowhere annihilated by 2).

The equation for E is of the form:

y2 + a1xy + a3y = x3 + a2x
2,

because the coefficients usually called a4 and a6 are zero. We also see that
a3 is a unit because E is smooth at (0, 0). The coefficient a2 is a unit,
because P is nowhere annihilated by 3.

Now we try to get rid of u (the ambiguity in the choice of t). If t′ = u−1t,
then a′i = tiai, hence we can make t unique by demanding that a2 = a3.
We do that, and then we have the following equations.

The elliptic curve E and the point P are given by:

y2 + axy + by = x3 + bx2, P = (0, 0).

We have 5·P ≡ 5·0, hence there is a unique f on E − 0(S) of the form:

f = xy + αy + βx2 + γx+ δ

such that the divisor of f is 5·P − 5·0. As x and y have order one and
two, respectively, at P , we have γ = δ = 0. The function f with divisor
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5·P − 5·0 is given by:

f = xy + αy + βx2.

Here we know that b, α and β are inR×, because vP (x) = 1 and vP (y) = 2
everywhere on S. Now we have to compute what it means that vP (f) = 5.
This means that the intersection multiplicity of the two curves E and V (f)
at (0, 0) is 5. A systematic way to compute that is to do successive blow-
ups; that works nicely, but we will not do that here. A much faster way to
do the computation is to take suitable linear combinations of the equations
for E and f directly. One finds the equations:

β = −α, a = α−1b+ 1, α = 1.

�

The reason we give such a detailed description of Y1(5) is that it gives us
functions on all the Y1(5l), at least over Z[1/5l], as stated in the following
proposition.

8.2.9 Proposition Let l 6= 5 be prime. Let E/Y1(5)′ be the elliptic curve
given in Proposition 8.2.8. Then Y1(5l) and E[l]− {0} agree over Z[1/5l]:
for S a Z[1/5l]-scheme and Q in (E[l]−{0})(S) we get, by pullback from
Y1(5)′, an elliptic curve over S with an S-valued point P5 that is everywhere
of order 5, and an S-valued point Pl that is everywhere of order l. In partic-
ular, the functions b, x and y on E[l] − {0} give functions bl, xl and yl on
Y1(5l) over Z[1/5l] that generate its coordinate ring.

Proof This is standard. The construction above gives a morphism, over
Z[1/5l], from E[l] − {0} to Y1(5l). Conversely, an elliptic curve over S
with such points P5 and Pl gives a point of E[l] − {0} by the universality
of Y1(5)′ and the fact that E[l] is finite étale over Y1(5)′ away from charac-
teristic l. The second statement follows from the fact that E[l] − {0} is a
closed subscheme of the affine scheme E − {0}. �

The functions bl, xl and yl on Y1(5l) over Z[1/5l] have the following moduli
interpretations. For any Z[1/5l]-algebra A, and any Q in Y1(5l)(A), a point
corresponding to a triple (E,P5, Pl) with E an elliptic curve over A, P5 in
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E(A) a point that is everywhere of order 5 and Pl in E(A) a point that is
everywhere of order l, there are unique elements bl(Q), xl(Q) and yl(Q)
in A such that (E/A,P5) is uniquely isomorphic to the pair given by:

y2 + (bl(Q) + 1)xy + bl(Q)y = x3 + bl(Q)x2, P5 = (0, 0).

Then, in these coordinates, we have:

Pl = (xl(Q), yl(Q)).

Similarly, we define regular functions x′l and y′l on Y1(5l)Z[1/5l] by the con-
dition that, in the coordinates above, we have:

l−1P5 + Pl = (x′l(Q), y′l(Q)),

where l−1P5 is the unique point Q in E[5](A) with lQ = P5.
We note that the pair of functions (bl, x′l) embeds Y1(5l)Z[1/5l] in the

affine plane A2
Z[1/5l]. Indeed, assume that Q and Q′ are in Y1(5l)(A),

corresponding to (E,P5, Pl) and (E′, P ′5, P
′
l ), with bl(Q) = bl(Q′) and

x′l(Q) = x′l(Q
′). Then, by Proposition 8.2.8, (E,P5) is uniquely iso-

morphic to (E′, P ′5), and so we simply consider them to be equal. Then,
l−1P5 + Pl and l−1P5 + P ′l have the same x-coordinate. Hence, locally on
Spec(A), l−1P5 + Pl = ±(l−1P5 + P ′l ). Multiplying by l we see that the
sign cannot be a minus.

Using the functions bl and x′l, we can now say how we will choose the
function fl. We return to the situation right after Lemma 8.2.6.

For x ∈ V , let dx be the degree of Dfin
x , and let us write Dx as a sum of

points in Xl(Q) as follows:

Dx =
g∑
i=1

Qx,i, with Dfin
x =

dx∑
i=1

Qx,i, Dcusp
x =

g∑
i=dx+1

Qx,i.

We note that d0 = 0, as D0 is a cuspidal divisor, and that for all non-zero x
in V the dx are equal, as they are permuted transitively by Gal(Q/Q(ζl)).

The set S of points in A2(Q) consisting of the (bl(Qx,i), x′l(Qx,i)), with
x in V and i in {1, . . . , dx} has at most g·(#F)2 elements. We want to
project S injectively into A1(Q) with a map of the form (a, b) 7→ a+nb for
a suitable integer n. As there are at most g2·(#F)4 pairs of distinct elements
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in S, at most that number of integers n is excluded. Hence there exists an
integer n with 0 ≤ n ≤ g2·(#F)4 such that the function fl := bl + nx′l has
the required property that the fl,∗Dfin

x , for x ∈ V , are all distinct.
Let fl be such a function. For each x in V , fl,∗Dfin

x gives us a polynomial
PD0,fl,x with coefficients in Q given by:

PD0,fl,x(t) =
dx∏
i=1

(t− fl(Qx,i)) in Q[t].

Vice versa, each PD0,fl,x gives us the divisor fl,∗Dfin
x by taking the roots,

with multiplicity. Therefore, the map that sends x to PD0,fl,x is injective,
and Gal(Q/Q(ζl))-equivariant.

The next step is to “encode” each PD0,fl,x in a single element of Q, re-
specting the action of Gal(Q/Q(ζl)). We do this by evaluating at a suitable
integer m, i.e., by sending PD0,fl,x to PD0,fl,x(m). For a given m, this map
is injective if and only if for any distinct x1 and x2 in V ,m is not a root of the
difference of PD0,fl,x1 and PD0,fl,x2 . Each of these differences has at most
g roots, and as there are less than (#F)4 such differences, there are at most
g·(#F)4 integers to avoid. So there is a suitable m with 0 ≤ m ≤ g·(#F)4.
Composing our maps, we obtain a generator for the Q(ζl)-algebra Al,Q(ζl)

associated with V :

aD0,fl,m : V → Q, x 7→ PD0,fl,x(m).

We let:

(8.2.10) PD0,fl,m :=
∏
x∈V

(T − aD0,fl,m(x)) in Q(ζl)[T ]

be the minimal polynomial over Q(ζl) of aD0,fl,m.
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Chapter Nine

Applying Arakelov theory

B. Edixhoven and R. de Jong

In this chapter we start applying Arakelov theory in order to derive a
bound for the height of the coefficients of the polynomials PD0,fl,m as
in (8.2.10). We proceed in a few steps. The first step, taken in Section 9.1, is
to relate the height of the bl(Qx,i) as in Section 8.2 to intersection numbers
on Xl. The second step, taken in Section 9.2, is to get some control on the
difference of the divisors D0 and Dx as in (3.4). Certain intersection num-
bers concerning this difference are bounded in Theorem 9.2.5, in terms of a
number of invariants in the Arakelov theory on modular curves Xl. These
invariants will then be bounded in terms of l in Sections 11.1, 11.2, and 11.3.
Finally, in Section 11.7, the height of the coefficients of the PD0,fl,m will
be bounded. In this chapter, we do our best to formulate the most important
results, Theorem 9.1.3, Theorem 9.2.1, and Theorem 9.2.5 in the context of
curves over number fields, i.e., outside the context of modular curves.

9.1 RELATING HEIGHTS TO INTERSECTION NUMBERS

We pick up the notation as at the end of Section 8.2, so we have a mod-
ular curve Xl = X1(5l)Q with l > 5, non-constant morphisms bl and
x′l : Xl → P1

Q, and certain divisors Dfin
x =

∑dx
i=1Qx,i on Xl,Q that have

support outside the cusps. It is our objective in this subsection to link the ab-
solute height h(bl(Qx,i)) of the algebraic numbers bl(Qx,i) to certain quan-
tities coming from Arakelov intersection theory. The height of x′l(Qx,i) will
be bounded in terms of h(bl(Qx,i)) in Section 11.5. The final estimates for
these heights, depending only on l, will be done in Section 11.7.
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9.1.1 Theorem Let x be in V , and let i be in {1, . . . , dx}. Let K be a
number field containing Q(ζ5l) and such that Qx,i is defined over K. Let X
be the minimal regular model of Xl over K. Then we have:

h(bl(Qx,i)) ≤
1

[K : Q]

(
(Qx,i, b∗l∞)X + l2

∑
σ

sup
Xσ

gσ

+
1
2

∑
σ

∫
Xσ

log(|bl|2 + 1)µXσ

)
+

1
2

log 2 .

Here σ runs through the embeddings of K into C and gσ is the Arakelov-
Green function on Xl,σ.

In the next chapters we shall derive bounds that are polynomial in l for all
terms in the above estimate.

Theorem 9.1.1 will be derived from Theorem 9.1.3 below, which states
a fairly general result. We start with a definition. Let K be a number field
and consider P1

OK
. Let ∞ denote the OK-point (1 : 0) of P1

OK
. For any

section P in P1
OK

(OK) we define by (P,∞)P1 the degree (see (4.3.1)) of
P ∗OP1(∞), where OP1(∞) has the Fubini-Study metric, i.e. the metric
‖ · ‖P1 given by:

(9.1.2) ‖1‖P1(x0 : x1) :=
|x1|

(|x0|2 + |x1|2)1/2

over P1
C. Here 1 is the tautological section of OP1(∞).

9.1.3 Theorem Let X be a geometrically irreducible, smooth and com-
plete curve of positive genus over a number field K and let X be a proper
semi-stable model of X over the ring of integers OK of K. Suppose that
we have a non-constant morphism f : X → P1

K and a K-rational point
Q of X with f(Q) 6= ∞. Assume the following: the Zariski closure of
Supp(div(f)+) ∪ Supp(div(f)−) in X is étale over OK . For any closed
point s of Spec(OK), denote by ms(f) the supremum of the multiplicities
of div(f)− on X along the irreducible components of the fibre at s of X .
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Then we have the inequality:

(f(Q),∞)P1 ≤ (Q, f∗∞)X + deg f
∑
σ

sup
Xσ

gσ

+ (1/2)
∑
σ

∫
Xσ

log(|f |2 + 1)µXσ +
∑
s

ms(f) log #k(s) .

Here the first sum runs over the embeddings of K into C, and the last sum
runs over the closed points of Spec(OK).

Proof Note that the locus of indeterminacy of f on X consists of finitely
many closed points. This implies that there exists a blow-up X̃ → X of X
such that f extends to a regular map f : X̃ → P1

OK
. For any such X̃ we

have by construction:

(f(Q),∞)P1 = deg f(Q)∗(OP1(∞), ‖ · ‖P1)

= degQ∗f∗(OP1(∞), ‖ · ‖P1)

= degQ∗(OX̃ (f∗∞), ‖ · ‖P1) ,

where we write∞ to emphasise that f∗∞ is the inverse image under f of
∞(Spec(OK)), and not the Zariski closure f∗∞ of the inverse image under
f of∞(Spec(K)). If we let ‖ · ‖X denote the canonical Arakelov metric on
OX(f∗∞) then we can write:

degQ∗(OX̃ (f∗∞), ‖ · ‖P1) = degQ∗(OX̃ (f∗∞), ‖ · ‖X ·
‖ · ‖P1

‖ · ‖X
)

= degQ∗(OX̃ (f∗∞), ‖ · ‖X)

−
∑
σ

log((
‖ · ‖P1

‖ · ‖X
)(Qσ))

= (Q, f∗∞)X̃ +
∑
σ

log((
‖ · ‖X
‖ · ‖P1

)(Qσ)) .

A bound for log((‖ ·‖X/‖ ·‖P1)(Qσ)) follows by testing on the tautological
section 1, giving:

log ‖1‖X(Qσ)− log ‖1‖P1(Qσ) = gσ(f∗∞, Qσ) +
1
2

log(|f(Qσ)|2 + 1) .
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Applying Proposition 9.1.4 below at this point shows that:

gσ(f∗∞, Qσ) +
1
2

log(|f(Qσ)|2 + 1) ≤ (deg f) sup
Xσ

gσ

+
1
2

∫
Xσ

log(|f |2 + 1)µXσ .

This accounts for the second and third terms in the bound of the theorem.
We are finished once we prove that (Q, f∗∞)X̃ − (Q, f∗∞)X is bounded
by
∑

sms(f) log #k(s) for a particular choice of X̃ . (The usual projec-
tion formula shows that in fact (Q, f∗∞)X̃ is independent of the choice
of X̃ .) On any X̃ we write f∗∞ as a sum f∗∞ = (f∗∞)hor + (f∗∞)vert

of a horizontal and a vertical part. Note that (f∗∞)hor = f∗∞, with
the Zariski closure now taken in X̃ . Since the local intersection mul-
tiplicities of Q and f∗∞ do not go up when passing from X to X̃ ,
we have (Q, (f∗∞)hor)X̃ = (Q, f∗∞)X̃ ≤ (Q, f∗∞)X and thus we
are reduced to proving that (Q, (f∗∞)vert)X̃ is bounded from above by∑

sms(f) log #k(s) for a particular choice of X̃ .
We exhibit a specific blow-up, and we calculate which multiplicities f ac-

quires along the irreducible components of the vertical fibres of this blow-
up. Note that the locus of indeterminacy of f on X consists precisely of
the closed points of X where an irreducible component C from the zero
divisor div(f)+ of f on X and an irreducible component C ′ from its po-
lar divisor div(f)− meet. Now since by assumption the Zariski closure of
Supp(div(f)+)∪Supp(div(f)−) in X is étale over OK , this can only hap-
pen when at least one of C, C ′ is vertical. In such points where this happens
we have to perform a sequence of successive blowings-up until a compo-
nent arises with multiplicity 0 for f , so that the components with positive
multiplicities and the components with negative multiplicities are separated
from each other.

We begin by observing that it will cause no harm if we pass to a finite
extension K → K ′. Indeed, both the left hand side and the right hand side
of the inequality that we wish to prove get multiplied by [K ′ : K] if we do
this. Here is why: for the terms (f(Q),∞)P1 and (Q, f∗∞) the scaling by
a factor [K ′ : K] follows from general properties of the Arakelov intersec-
tion product, cf. [Fal1], p. 404 for example. (Note that it is understood that
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over K ′, intersection products are taken on the minimal resolution of the
pullback of the model X .) That the term

∑
σ supXσ gσ scales by a factor

[K ′ : K] is obvious. Finally, fix a closed point s of Spec(OK) and let s′

be any closed point of Spec(OK′) above it. Denoting by es′ the ramifica-
tion index of s′ over s and by fs′ the degree of the residue field extension
of s′ over s, we see that for any s′ above s, the integer ms(f) gets multi-
plied by es′ , and the number log #k(s) gets multiplied by fs′ . Using that∑

s′ es′fs′ = [K ′ : K], the sum running over the closed points s′ above s,
we see finally that also the term

∑
sms(f) log #k(s) gets multiplied by

[K ′ : K].
Starting with X over OK , we first do the following. Let x be a closed

point on X that is the intersection of a vertical component C and a horizon-
tal component C ′ having non-zero multiplicities m and m′ for f that have
different sign. After blowing up in x, we obtain an exceptional divisor E
whose multiplicity for f ism+m′. We have two distinguished points on E,
one lying on the strict transform of C, and one lying on the strict transform
of C ′. At exactly one of them there is a sign change for the multiplicities,
or m + m′ = 0. If a sign change happens at the double point lying on the
strict transform of C ′, then we repeat the process. If a sign change happens
at the double point lying on the strict transform of C or if m+m′ = 0, we
stop, and continue with a new point x′, if available.

We end up with a blow-up X ′ → X such that an intersection of two ir-
reducible components C, C ′ that have different sign in div(f) on X ′ only
occurs for C, C ′ both vertical. For this, we did not yet need to extend the
ground field K. In order to continue, we note the following. Suppose that
we have a closed point x on the model X ′ of X over OK which is a double
point of a vertical fibre, and two irreducible components C, C ′ of that verti-
cal fibre pass through x, having non-zero multiplicities m and m′ for f that
differ in sign. Assume that K → K ′ is a Galois extension that ramifies over
the image of x in Spec(OK), with a ramification index e that is a multiple
of m − m′. In passing to the minimal resolution X̃ of X ′OK′ , the point x
gets replaced by a chain of e − 1 projective lines of self-intersection −2.
The multiplicities of f along these components change in e steps from em

to em′, so that the steps are m−m′ and a multiplicity 0 will appear some-
where, because m−m′ is a divisor of em.
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Thus we see how we can reach our goal: take a Galois extensionK → K ′

that ramifies as specified above over the images in Spec(OK) of the double
points where components meet with a different sign for f . (This is always
possible.) By our remarks above, it suffices to prove the inequality over K ′.
By construction, the morphism f extends over the model X̃ that arises in this
way. Moreover, it follows from the construction that for s′ a closed point
of Spec(OK′) and s its image in Spec(OK) we have ms′(f) ≤ es′ms(f).
Hence the sum of the local intersection numbers (Q, (f∗∞)vert)s′ for all s′

over s is bounded from above by [K ′ : K]ms(f) log #k(s). This is what
we needed to prove. �

9.1.4 Proposition Let f : X → P1 be a finite morphism of Riemann sur-
faces with X connected and of positive genus. Consider on X − f−1∞ the
function:

h(x) = g(f∗∞, x) +
1
2

log(|f(x)|2 + 1) .

Then h extends uniquely to an element of C∞(X), also denoted h. For all
x ∈ X we have:

h(x) ≤ (sup
X
g) deg f +

1
2

∫
X

log(|f |2 + 1)µX .

Proof Let us first show that h extends to a C∞ function on X . In fact, as
the beginning of the proof of Theorem 9.1.3 indicates, h is the logarithm of
the function x 7→ ‖·‖X(x)/‖·‖P1(x) that gives the quotient of two metrics
on OX(f∗∞): the Arakelov metric ‖·‖X and the pullback of the Fubini-
Study metric ‖·‖P1 (see 9.1.2). But then h is in C∞(X). We have, by (4.4.4):

h(x) =
∫
y∈X
−g(x, y)

1
πi

(∂∂h)y +
∫
X
hµX .

For s any local holomorphic generator of OX(f∗∞) we have:

1
πi
∂∂h =

1
2πi

∂∂ log(‖s‖2X)− 1
2πi

∂∂ log(‖s‖2P1) = (deg f)µX − f∗µP1 ,

where µP1 is the curvature form of the Fubini-Study metric on OP1(∞).
Substituting this in the previous equality, and using that for all x in X we
have

∫
y∈X g(x, y)µX(y) = 0, we get:

h(x) =
∫
y∈X

g(x, y)(f∗µP1)y +
∫
X

1
2

log(|f |2 + 1)µX .
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As µP1 defined as the curvature form of the Fubini-Study metric onOP1(∞),
we have

∫
P1 µP1 = deg(OP1(∞)) = 1. As the metric is invariant under

the transitive action of SU2, µP1 is everywhere positive. In fact, one can
compute that µP1 = (i/2π) dz dz/(1 + |z|2)2. We end up with:

h(x) ≤ (sup
X
g) deg f +

1
2

∫
X

log(|f |2 + 1)µX

as required. �

Proof [Proof of Theorem 9.1.1] In order to simplify our notation, we drop
the subscript l in bl. For P in P1(OK) we put:

h′(P ) = (P,∞)/[K : Q].

Then we have h(P ) ≤ h′(P ) + (1/2) log 2, as for all x ∈ C2 we have
|x1|2 + |x2|2 ≤ 2 max{|x1|, |x2|}2. In order to bound h′(b(Qx,i)) from
above we want to apply Theorem 9.1.3. It follows from the definition of
the morphism b that both the zero divisor div(b)+ and the polar divisor
div(b)− of b on Xl have as their support only K-rational closed points,
namely, cusps. In particular, we never have b(Qx,i) = ∞, by construction
of D′′x. We have also seen that the Zariski closure in X of Supp(Cusps) is
étale over OK (as OK-valued points the cusps are disjoint), and hence the
same holds for the Zariski closure inX of Supp(div(b)+)∪Supp(div(b)−).
Theorem 9.1.3 now gives us that:

[K : Q]·h′(b(Qx,i)) ≤ (Qx,i, b∗∞)X + deg b
∑
σ

sup
Xσ

gσ

+ (1/2)
∑
σ

∫
Xσ

log(|b|2 + 1)µXσ +
∑
s

ms(b) log #k(s)

with ms(b) the supremum of the multiplicities of div(b)− on X along the
irreducible components of the fibres of X at s. We are done if we can
prove that deg b is at most l2, and that ms(b) = 0 for all s. The definition
of b shows directly that its degree is l2−1 (it is the degree of the natural
morphism from X1(5l) to X1(5)). Let us now show that ms(b) = 0 for
all s. For this we evidently need information on the divisor div(b) on X .

We start with working over Q(ζ5l). From the discussion in Section 8.1
we recall that there is a fine moduli scheme Y1(5l)Z[ζ5l] over Z[ζ5l] of el-
liptic curves with balanced level structure (terminology from [Ka-Ma]).
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Let E(5l) → Y1(5l)Z[ζ5l] be the universal elliptic curve and let P5, Pl be
the tautological points of order 5 and l. From Proposition 8.2.8 we re-
call the elliptic curve E → Y1(5)′ with Y1(5)′ = Spec(Z[b, 1/discr(E)]).
The elliptic curve E(5l) → Y1(5l)Z[ζ5l,1/5] arises from E → Y1(5)′ by
a unique base change Y1(5l)Z[ζ5l,1/5] → Y1(5)′. This gives the regular
function b on Y1(5l)Z[ζ5l,1/5]. As b is invertible on Y1(5)′ it is invert-
ible on Y1(5l)Z[ζ5l,1/5]. We conclude that div(b) on X1(5l)Z[ζ5l] is a cer-
tain linear combination of the irreducible components of the closed sub-
schemes Cusps and X1(5l)F5[ζl]. In order to find this linear combination,
we examine the multiplicities of b along the irreducible components that we
have isolated.

We start with the multiplicities along the irreducible components of the
divisor Cusps. It is sufficient to study the situation over C, and here we can
make a beginning by looking at div(b) on X1(5)C. From the equations in
Proposition 8.2.8 we obtain that over the cusp 0 of X0(5)C lie two cusps,
say c1 and c2, with c1, say, corresponding to the 5-gon with the tautological
point of order 5 being on a component adjacent to the connected component
of 0, and the other, c2, corresponding to the 5-gon with the tautological
point of order 5 being on a component that is not adjacent to the connected
component of 0. We have div(b) = ±(c1 − c2) on X1(5)C; we could
compute the exact sign but that is not important for us. The divisor of b on
X1(5l)C is obtained by pulling back its divisor on X1(5)C via the forgetful
map X1(5l)C → X1(5)C. Hence, pulling back the divisor c1 − c2 we get
plus or minus the divisor of b on X1(5l)C; the multiplicities are just the
ramification indices above the cusps c1 and c2. Since these are in {1, l}, we
obtain that the multiplicities of b along the irreducible components of Cusps
are just 1 or l in absolute value.

Next we calculate the multiplicities of b along the irreducible compo-
nents ofX1(5l)F5[ζl]. The structure of a connected component of the scheme
X1(5l)F5[ζl] is as follows: it consists of two irreducible components, one on
which P5 has order 1, and one having an open part where P5 has order 5.
These two irreducible components intersect (transversally) in the supersin-
gular points.

We denote by Γ the union of the irreducible components over F5 on which
P5 has order 1. The construction of the scheme Y1(5)′ immediately gives
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us a forgetful map X1(5l)Z[ζ5l] − Γ − Supp(Cusps) → Y1(5)′. Since b is
invertible on Y1(5)′, the same holds for b along the irreducible components
ofX1(5l)F5[ζl], except possibly for the irreducible components in Γ. But the
multiplicity of b along such an irreducible component is then also zero, as
can be seen by the following argument. Let C ∪ C ′ be a connected com-
ponent of X1(5l)F5[ζl], with the irreducible component C corresponding to
P5 having order 1. All the horizontal components of div(b) on X1(5l)Z[ζ5l]

specialise to C ′. We know that b has multiplicity 0 along C ′ and hence it
restricts to a non-trivial rational function, also denoted b, on C ′. The degree
of b on C ′ is zero, or equivalently m(C ′, C) + (C ′,div(b)hor) = 0, where
m is the multiplicity of b along C. Now, since (C ′, div(b)hor) is zero and
(C ′, C) isn’t, we get m = 0.

All in all we conclude that the absolute values of the multiplicities of the
irreducible components in div(b) on X1(5l)Z[ζ5l] are bounded by a constant
times l, and that all multiplicities along irreducible components of fibers
over closed points s of Spec(Z[ζ5l]) are zero. In particular, for all closed
points s we have ms(b) = 0. This implies in fact that the rational function
b on X1(5l)Z[ζ5l] extends to a morphism to P1

Z. As this is a useful fact, we
record it in a Proposition. This completes the proof of Theorem 9.1.1. �

9.1.5 Proposition Let l > 5 be prime a prime number. The rational func-
tion bl on X1(5l)Z[ζ5l] from Proposition 8.2.9 extends to a morphism to P1

Z.

9.2 CONTROLLING Dx −D0

In this subsection, the hypotheses are as follows (unless stated otherwise).
We let K be a number field, OK its ring of integers, B := Spec(OK),
p : X → B a regular, split semi-stable curve over B whose generic fi-
bre X → SpecK is geometrically irreducible and of genus g ≥ 1. We let
D be the closure in X of an effective divisor of degree g (also denoted D)
on X . We let x be a K-rational torsion point of the Jacobian of X , i.e., a
torsion element of Pic(X), which has the property that there is a unique ef-
fective divisorDx onX such that x = [Dx−D]. Finally, we let P : B → X
be a section of p, i.e., an element of X (B).

We denote by Φx,P the unique finite vertical fractional divisor Φ (i.e.,
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with rational coefficients that are not necessarily integral) on X such that
(Dx −D − Φ, C) = 0 for all irreducible components C of fibres of p, and
such that P (B) is disjoint from the support of Φ. It is not difficult to see
that a Φ satisfying the first condition exists and that it is unique up to adding
multiples of fibers of p (the intersection pairing restricted to the divisors with
support in a fibre is negative semi-definite); see Lemme 6.14.1 of [Mor2].
The second condition removes the ambiguity of adding multiples of fibres.

We denote by δs the number of singular points in the geometric fibre at a
closed point s of B.

9.2.1 Theorem The OB-module R1p∗OX (Dx) is a torsion module on B,
and we have:

(Dx, P ) + log #R1p∗OX (Dx) +
1
8

(ωX/B, ωX/B) +
1
8

∑
s

δs log #k(s)

= (D,P )− 1
2

(D + Φx,P , D + Φx,P − ωX/B) +
1
2

deg det p∗ωX/B

+
∑
σ

∫
Xσ

log ‖ϑ‖(Dσ
x −Q) · µσ(Q) +

g

2
[K : Q] log(2π).

Here s runs over the closed points of B, and σ runs through the complex
embeddings of K.

We derive Theorem 9.2.1 from three lemmas. For the moment we work
in Q⊗Z P̂ic(X ).

9.2.2 Lemma The admissible line bundles:

OX (Dx−D)⊗ p∗P ∗OX (Dx−D)∨ and OX (Φx,P )

are numerically equivalent. That is, for any admissible line bundle F on X
we have:

(OX (Dx −D)⊗ p∗P ∗OX (Dx −D)∨, F ) = (OX (Φx,P ), F ).

Proof In this proof we just write Φ for Φx,P . We denote the first line bun-
dle in the lemma by Ψ. Since Dx −D is torsion, there is a positive integer
N such that Ψ⊗N is trivial on the generic fibre as a classical line bundle
(that is, without taking the metrics into account). We have a canonical iso-
morphism P ∗Ψ −̃→ OB onB. Combining, we find that Ψ⊗N has a rational
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section s with divX (s) vertical and with P ∗s 7→ 1. The latter condition
implies that P intersects to zero with divX (s) for the Arakelov intersection
product. On the other hand, as p∗P ∗OX (Dx − D)∨ is trivial on the fibres
of p over finite places of B, we have (N(Dx −D) − divX (s), C) = 0 for
all irreducible components C of fibres of p. Hence in fact Φ = 1

N divX (s).
To prove the lemma, it suffices now to prove that Ψ⊗N −̃→ OX (divX (s))
given by s 7→ 1, with 1 the tautological section, is an isometry. Because
of admissibility, it suffices to check that this is so when restricted to P ; but
here we get the canonical isomorphism P ∗Ψ −̃→ OB . This is indeed an
isometry by the definition of Ψ. �

9.2.3 Lemma Let X be a compact Riemann surface of genus g ≥ 1.
Let D be an effective divisor on X of degree g satisfying h0(D) = 1.
Then the determinant of cohomology λ(OX(D)) of D is identified with
H0(X,OX(D)). Further, the formula:

log ‖1‖+
δ(X)

8
+
∫
X

log ‖ϑ‖(D −Q) · µX(Q) = 0

holds for the length (with respect to Faltings’ metrisation of the determinant
of cohomology) of the tautological section 1 of H0(X,OX(D)).

Proof Since h0(D) = 1, H0(X,OX(D)) = C. Therefore, the set of
points Q on X such that h0(D − Q) > 0 is the support of D. Let Q be
a point outside the support of D. Then h0(D − Q) = 0. According to
the axioms for the metrisation of the determinant of cohomology, the exact
sequence:

0→ OX(D −Q)→ OX(D)→ Q∗Q
∗OX(D)→ 0

gives rise to an isometry:

λ(OX(D)) −̃→ λ(OX(D −Q))⊗Q∗OX(D) ∼=
∼= O(−Θ)[OX(D −Q)]⊗Q∗OX(D).

Taking the norm on left and right of a tautological section we obtain, us-
ing (4.4.6):

‖1‖ = exp(−δ(X)/8) · ‖ϑ‖(D −Q)−1 ·G(D,Q),
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where logG(D,Q) = gD,µX (Q). Taking logarithms and then integrating
against µX(Q) gives the result. �

9.2.4 Lemma (Noether formula) We have:

12 deg det p∗ωX/B = (ωX/B, ωX/B) +
∑
s

δs log #k(s)

+
∑
σ

δ(Xσ)− 4g[K : Q] log(2π) ,

the first sum running over the closed points of B, the second sum running
over the complex embeddings of K.

Proof See [Fal1] and [Mor3]. �

Proof [Proof of Theorem 9.2.1] We first show that R1p∗OX (Dx) is a tor-
sion module. As it is a coherentOB-module, it suffices to show that it is zero
on the generic point of B, i.e., that H1(X,OX(Dx)) is zero. By Riemann-
Roch, we have h0(Dx) − h1(Dx) = 1. By definition of Dx, we have
OX(Dx) ∼= Lx(D). And by construction of D, we have h0(Lx(D)) = 1.
This shows that h1(Dx) = 0.

Let us now prove the identity in Theorem 9.2.1. We start by noting that,
by (4.4.7):

(Dx −D,P ) = degP ∗OX (Dx −D).

By Lemma 9.2.2, OX (Dx)⊗ p∗P ∗OX (Dx −D)∨ and OX (D + Φx,P ) are
numerically equivalent. The Riemann-Roch theorem then gives:

deg det Rp∗(OX (Dx)⊗ p∗P ∗OX (Dx −D)∨) =

=
1
2

(D + Φx,P , D + Φx,P − ωX/B) + deg det p∗ωX/B .

By the projection formula for the determinant of cohomology we can write
the left-hand side as:

deg det Rp∗(OX (Dx)⊗ p∗P ∗OX (Dx −D)∨) =

= deg det Rp∗OX (Dx)− degP ∗OX (Dx −D)
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Since p∗OX (Dx) is canonically trivialised by the function 1, the term
deg det Rp∗OX (Dx) can be computed as:

deg det Rp∗OX (Dx) = −
∑
σ

log ‖1‖σ − log #R1p∗OX (Dx),

where for each complex embedding σ, the norm ‖1‖σ is the length of the
tautological section 1 of λ(OXσ(Dx)) = H0(OXσ(Dx)). By Lemma 9.2.3
we can then write:

deg det Rp∗OX (Dx) =
∑
σ

∫
Xσ

log ‖ϑ‖σ(Dσ
x −Q) · µσ(Q)

+
∑
σ

δ(Xσ)/8− log #R1p∗OX (Dx) .

Combining everything gives:

(Dx −D,P ) =− 1
2

(D + Φx,P , D + Φx,P − ωX/B)− deg det p∗ωX/B

+
∑
σ

∫
Xσ

log ‖ϑ‖(Dσ
x −Q) · µσ(Q)

+
∑
σ

δ(Xσ)/8− log #R1p∗OX (Dx) .

We obtain the required formula upon eliminating
∑

σ δ(Xσ)/8 with the
Noether formula, Lemma 9.2.4. �

9.2.5 Theorem We have an upper bound:

(Dx, P ) + log #R1p∗OX (Dx) ≤− 1
2

(D,D − ωX/B)

+ 2g2
∑
s∈B

δs log #k(s)

+
∑
σ

log ‖ϑ‖σ,sup +
g

2
[K : Q] log(2π)

+
1
2

deg det p∗ωX/B + (D,P ) ,

where s runs through the closed points of B, and where the supnorm
‖ϑ‖σ,sup is taken over Picg−1(Xσ).

The required upper bound follows directly from Theorem 9.2.1 by using
Lemma 9.2.6 below and the fact that (ωX/B, ωX/B) ≥ 0 (cf. Thm. 5
of [Fal1]).
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9.2.6 Lemma We have an upper bound:

− 1
2

(D + Φx,P , D + Φx,P − ωX/B) ≤

≤ −1
2

(D,D − ωX/B) + 2g2
∑
s∈B

δs log #k(s) ,

with s running through the closed points of B.

Proof In this proof we just write Φ for Φx,P . By the definition of Φ, we
have (Dx − D − Φ,Φ) = 0, or in other words, (Φ,Φ) = (Dx − D,Φ).
Using this we can write:

−1
2

(D+Φ, D+Φ−ωX/B) = −1
2

(D,D−ωX/B)+
1
2

(Φ, ωX/B−D−Dx) .

We write Φ =
∑

C Φ(C) · C, and for any finite fibre Fs of p we put
As := supC |Φ(C)| with C running through the irreducible components
of Fs. Since ωX/B, D and Dx intersect any irreducible component C with
non-negative multiplicity, we find

1
2

(Φ, ωX/B −D −Dx) ≤ 1
2

(∑
s

AsFs, ωX/B +D +Dx

)
≤ 2g

∑
s

As log #k(s) .

We are going to prove that As ≤ gδs, and then we are done. So let s be a fi-
nite place ofB. Let S0 be the set of irreducible components of Fs, and let S1

be the set of double points on Fs. Let Γs be the dual graph of Fs (thus, the
set of vertices of Γs corresponds to S0, the set of edges corresponds to S1,
and the graph is defined by the incidence relations). Choose an orientation
on Γs. This gives rise to the usual source and target maps s and t : S1 → S0.
Consider the boundary and coboundary maps d∗ = t∗ − s∗ : QS1 → QS0

and d∗ = t∗ − s∗ : QS0 → QS1 . Then d∗d∗ : QS0 → QS0 is given by
minus the intersection matrix of Fs. In particular, the map d∗d∗ sends Φ to
the map u : C 7→ −(Φ, C) = (D − Dx, C). The kernel of d∗d∗ consists
exactly of the constant functions, and the image consists of the orthogonal
complement of the constant functions. Now consider the graph Γs as an
electric circuit, where each edge has a resistance of 1 Ohm. By Ohm’s law
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and by spelling out the maps d∗ and d∗ we see that if we let at each ver-
tex C a current of u(C) Ampère enter the circuit, subject to the condition
that

∑
C u(C) = 0, the potentials ϕ(C) at each vertex C will be given, up

to addition of a constant function, by a solution of the equation d∗d∗ϕ = u.
Hence Φ is the potential corresponding to the current C 7→ (D − Dx, C),
normalised by the condition that Φ(CP ) = 0 with CP the component that
P specialises to. We must bound the |Φ(C)| for C varying over S0. The
worst case that may happen is that Γs is a chain, with D′ and D specialis-
ing entirely to the beginning and end point, respectively. In this case, the
biggest potential difference is g · (#S0 − 1) in absolute value, so that we
arrive at |Φ(C)| ≤ g · (#S0 − 1). Now note that Γs is connected and that
X/K has split semi-stable reduction. This gives #S0 − 1 ≤ δs and hence
|Φ(C)| ≤ gδs, as required. �
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Chapter Ten

An upper bound for Green functions on Riemann

surfaces

F. Merkl

We begin with explaining the setup and the results of this subsection. Let
X be a compact Riemann surface, endowed with a 2-form µ ≥ 0 that fulfils∫
X µ = 1. Let ∗ denote rotation by 90◦ in the cotangential spaces (with

respect to the holomorphic structure); in a coordinate z = x+ iy this means
∗dx = dy, ∗dy = −dx and, equivalently, ∗dz = −idz, ∗dz̄ = idz̄. In
particular, the Laplace operator on real C∞ functions on X can be written
as d∗d = 2i∂∂̄.

For a, b ∈ X , let ga,b : X−{a, b} → R be the (unique) solution on X (in
the sense of distributions) of the following differential equation:

d∗dga,b = δa − δb on X

with the normalising condition:∫
X−{a,b}

ga,b µ = 0.

Note that ga,a = 0. The distributional differential equation for ga,b is equiv-
alent to the following two more elementary conditions. Firstly, ga,b is a
real-valued harmonic function on X − {a, b}. Secondly, it has logarithmic
singularities near a and near b of the following type: for any local coordinate
z near a, the function P 7→ ga,b(P )− (2π)−1 log |z(P )− z(a)| extends to
a harmonic function in a neighbourhood of a, and for any local coordinate
w near b, the function P 7→ ga,b(P ) + (2π)−1 log |w(P )−w(b)| extends to
a harmonic function in a neighbourhood of b. The existence of such a func-
tion ga,b is shown in the theorem in paragraph II.4.3 on page 49 in [Fa-Kr].
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However, for a close to b, the proof of Lemma 10.4 below also shows the
existence of ga,b as a by-product. The difference of any two solutions of the
differential equation for ga,b extends to a global harmonic function on X
and thus is a constant. Hence, the normalising condition for ga,b determines
the function ga,b uniquely.

Now, for x ∈ X − {a}, let

ga,µ(x) :=
∫
b∈X−{x}

ga,b(x)µ(b).

Then we have:

d∗dga,µ(x) = δa − µ

in the sense of distributions, and:∫
X−{a}

ga,µ µ = 0.

We consider an atlas of X consisting of n local coordinates:

z(j) : U (j) → C, j = 1, . . . , n,

such that each range z(j)[U (j)] contains the closed unit disk. For any radius
0 < r ≤ 1 and j ∈ {1, . . . , n}, we define the disk:

U (j)
r = {P ∈ U (j) | |z(j)(P )| < r} .

We fix a radius 0 < r1 < 1 once and for all. Our aim is to prove the
following result.

10.1 Theorem Assume that the open sets U
(j)
r1 with j in {1, . . . , n}

cover X . Next, assume that c1 is a positive real number such that for all
j in {1, . . . , n} we have:

µ ≤ c1|dz(j) ∧ dz̄(j)| on U (j)
1 .

Finally, assume that for all j and k in {1, . . . , n}:

sup
U

(j)
1 ∩U

(k)
1

∣∣∣∣∣dz(j)

dz(k)

∣∣∣∣∣ ≤M
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holds with some constant M ≥ 1. Then for some positive constants c7, c9,
c10 and c11, depending only on r1, we have, for all a in X:

(10.2) ga,µ ≤ n(c10 + c1c11 + c7 logM) +
log 2
2π

and, for all j such that a ∈ U (j)
r1 :

(10.3)
lim
x→a

∣∣∣∣ga,µ(x)− 1
2π

log |z(j)(x)− z(j)(a)|
∣∣∣∣ ≤

≤ n(c10 + c1c11 + c7 logM) +
logM

2π
+ c9.

We start by considering just one coordinate z = z(j) for a fixed j. To sim-
plify the notation in this section, we drop the superscript (j) in U = U (j),
z = z(j), and so on. We fix three radii 0 < r1 < r2 < r3 < 1 once and for
all. The radii r2 and r3 should depend only on r1; e.g. r2 = (2r1 + 1)/3,
r3 = (r1 + 2)/3 is an admissible choice. Furthermore, we fix a partition of
unity: let χ : X → [0, 1] be a C∞ function which is compactly supported in
the interior of U1 with χ = 1 on Ur2 , and set χc = 1−χ. More specifically,
we take χ = χ̃(|z|) on U1 with a smooth function χ̃ : R → [0, 1] such that
χ̃(r) = 0 for r ≥ 1 − ε with some ε > 0, and χ̃(r) = 1 for r ≤ r2. The
shape function χ̃ may be taken independently of X and the choice of the
coordinate z, only depending on r2.

We shall use the 2-norm of a (real valued) 1-form ω over a measurable
set Y ⊆ X defined by:

‖ω‖Y :=
(∫

Y
ω ∧ ∗ω

)1/2

=
(

2i
∫
Y
ω1,0 ∧ ω0,1

)1/2

,

where ω = ω1,0 + ω0,1 is the decomposition of ω in its components in
T(1,0)X and T(0,1)X . In the case Y = X , we just write ‖ω‖ for ‖ω‖X .

Given a and b in Ur1 , we define the following function, having logarith-
mic singularities in a and b:

fa,b :=
1

2π
log

∣∣∣∣∣(z − z(a))(z(a)z − 1)
(z − z(b))(z(b)z − 1)

∣∣∣∣∣ on U1 − {a, b}.

Note that the singularities at 1/z(a) and 1/z(b) do not lie within the unit
disk. We note that:

d∗dfa,b = δa − δb
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holds on U1 in the sense of distributions, and that fa,b fulfils Neumann
boundary conditions on ∂U1. One can see this as follows. The meromorphic
function on U1 given by:

P 7→ (z(P )− z(a))(z(a)z(P )− 1)
(z(P )− z(b))(z(b)z(P )− 1)

=
(z(P )− z(a))( 1

z(P ) − z(a))

(z(P )− z(b))( 1
z(P ) − z(b))

takes positive real values on ∂U1. Let Log denote the principal branch of
the logarithm. The function

qa,b(P ) :=
1

2π
Log

(z(P )− z(a))(z(a)z(P )− 1)
(z(P )− z(b))(z(b)z(P )− 1)

is defined and holomorphic for P in a neighbourhood of ∂U1, and it takes
real values for P ∈ ∂U1. As a consequence, the directional derivative of the
imaginary part=qa,b tangential to ∂U1 vanishes on ∂U1. Using holomorphy,
this implies that the directional derivative of the real part <qa,b in normal
direction to ∂U1 vanishes also on ∂U1. Using <qa,b(P ) = fa,b(P ) for
P in a neighbourhood of U1, this proves the claimed Neumann boundary
conditions for fa,b.

Finally, for a ∈ Ur1 and P ∈ U1 − {a}, we set:

la(P ) :=
1

2π
χ(P ) log |z(P )− z(a)|,

extended by 0 to X − {a}.
Our first step in the proof of Theorem 10.1 is the following key lemma.

10.4 Lemma For a and b in Ur1 , the supremum supX |ga,b − la + lb| is
bounded by a constant c2 = c4 + c1c5, with c4, c5 depending only on r1.

10.5 Remark Note that ga,b− la+ lb has removable singularities at a and b,
since the logarithmic singularities cancel. The constant c2 is uniform in the
choice of the Riemann surface X , and uniform in the choice of a, b ∈ Ur1 .
The choice of the coordinate z influences c2 only via the dependence of c1

on the choice of z. The radii r2, r3 and the shape function χ̃ are viewed as
r1-dependent parameters; this is why we need not emphasise in the lemma
that c2 also depends on these quantities.
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Proof (of Lemma 10.4) We define the 2-form:

ua,b := d∗d(χcfa,b) on U1 − Ur1

and extend it by 0 to the whole surface X . Note that ua,b is supported in
U1 − Ur2 , since χc varies only there, and since fa,b is harmonic. Consider
the following variational principle on square integrable 1-forms ω. We want
to minimise ‖ω‖2 with the constraint:

d∗ω = ua,b

in the sense of distributions. Writing the constraint with test functions, we
see that the minimisation problem is taken over the following closed affine
linear subspace of L2(X,T ∗X):

V = {ω ∈ L2(X,T ∗X) : −
∫
X
dg ∧ ∗ω =

∫
X
gua,b for all g ∈ C∞(X)}.

The space V is nonempty, since ω̃a,b ∈ V holds for the following 1-form:

ω̃a,b =

{
d(χcfa,b) on U1 − Ur1 ,
0 otherwise.

Indeed, using Stokes’ theorem, we have:

−
∫
X
dg ∧ ∗ω̃a,b = −

∫
U1

dg ∧ ∗ω̃a,b

= −
∫
∂U1

g ∗ω̃a,b +
∫
U1

g d∗ω̃a,b.

The first summand in the last expression vanishes by the Neumann boundary
conditions of χcfa,b = fa,b on ∂U1, and the second summand equals:∫

U1

g d∗ω̃a,b =
∫
X
gua,b

by the definition of ua,b.
Our minimisation problem has a unique solution ωa,b ∈ V . It fulfils:

(10.6)
∫
X
ωa,b ∧ σ = 0 for all closed C∞ 1-forms σ.
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Indeed: if dσ = 0, then ωa,b + t ∗σ ∈ V holds for all t ∈ R, since ωa,b ∈ V
and d∗(∗σ) = −dσ = 0. Thus:

0 =
d

dt
‖ωa,b + t ∗ σ‖2

∣∣∣∣
t=0

= −2
∫
X
ωa,b ∧ σ.

In particular: ∫
X
ωa,b ∧ dg = 0

for all g ∈ C∞(X), i.e. dωa,b = 0 in the sense of distributions. Since
d∗ωa,b = ua,b and dωa,b = 0, we get that ωa,b is smooth. This follows from
(hypo-)elliptic regularity, as treated in Corollary 4.1.2 on page 101 in [Hor].
Precisely speaking, this corollary treats only the case of a single partial dif-
ferential equation. However, as is mentioned at the end of Section 4.0 on
page 97 of the reference, the extension of the result to systems of partial
differential equations with as many equations as unknowns, as needed here,
follows trivially. Then equation (10.6) implies that ωa,b is exact:

ωa,b = dg̃a,b

for some g̃a,b ∈ C∞(X); see for example [For], Corollary 19.13. We nor-
malise g̃a,b such that:

(10.7)
∫
X
g̃a,bµ = 0,

to make it uniquely determined.
We set

ha,b := g̃a,b + χfa,b −
∫
X
χfa,bµ.

We are now going to prove that d∗dha,b = δa − δb. We claim that
d∗d(χfa,b) = −ua,b + δa − δb holds. We prove this equality sep-
arately on the three sets X − Suppχ, X − Suppχc, and U1 − Ur1 ,
which cover X . The claimed equality holds on X − Suppχ, because
both sides vanish there. It holds also on X − Suppχc, because there
ua,b = 0 and d∗d(χfa,b) = d∗dfa,b = δa − δb are valid. Fi-
nally, on U1 − Ur1 , the function fa,b is harmonic, which implies that
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d∗d(χfa,b) = −d∗d(χcfa,b) = −ua,b on this annulus, which neither con-
tains a nor b. Thus the claim d∗d(χfa,b) = −ua,b + δa − δb holds in all
cases.

Combining this with the fact d∗dg̃a,b = ua,b, we conclude

d∗dha,b = d∗dg̃a,b + d∗d(χfa,b) = ua,b − ua,b + δa − δb

and thus

d∗dha,b = δa − δb.

Furthermore, using the normalisation
∫
X µ = 1 and

∫
X g̃a,bµ = 0, we

observe ∫
X
ha,bµ = 0.

Because ga,b is uniquely characterised by its properties d∗dga,b = δa − δb
and

∫
X ga,bµ = 0, we conclude ga,b = ha,b. Thus, we have shown

ga,b = g̃a,b + χfa,b −
∫
X
χfa,bµ.

The function:

g
(1)
a,b = g̃a,b + χfa,b

is harmonic on X − {a, b}, and:

g
(2)
a,b = g̃a,b − χcfa,b

is harmonic on U1; in particular both functions are harmonic on the annulus
A := U1−Ur2 . Now for every harmonic function g on A, we have a bound:

max
∂Ur3

g −min
∂Ur3

g ≤ c3‖dg‖A

with some positive constant c3 depending only on r2 and r3; note that the
circle ∂Ur3 is relatively compact in the annulusA. We bound ‖dg(2)

a,b‖A from
above:

‖dg(2)
a,b‖A ≤ ‖dg̃a,b‖A + ‖d(χcfa,b)‖A.
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We estimate the first summand as follows, using that ωa,b = dg̃a,b solves the
above variational problem:

‖dg̃a,b‖A ≤ ‖dg̃a,b‖ = ‖ωa,b‖ ≤ ‖ω̃a,b‖ = ‖ω̃a,b‖A = ‖d(χcfa,b)‖A;

we used that ω̃a,b is supported in A. Thus we have:

‖dg(2)
a,b‖ ≤ 2‖d(χcfa,b)‖A,

which is bounded by a constant, uniformly in a and b in Ur1 .
This also allows us to estimate g(1)

a,b : on A, we know g
(1)
a,b = g

(2)
a,b + fa,b,

hence,

‖dg(1)
a,b‖A ≤ ‖dg

(2)
a,b‖A + ‖dfa,b‖A ≤ 2‖d(χcfa,b)‖A + ‖dfa,b‖A.

Both summands on the right hand side are bounded by constants, only de-
pending on r1 and r2, but uniformly in a and b in Ur1 . To summarise, we
have shown that:

max
∂Ur3

g
(j)
a,b −min

∂Ur3

g
(j)
a,b

(j = 1, 2) are uniformly bounded by a constant depending only on r1, r2,
and r3. However, g(1)

a,b is harmonic onX−Ur3 , and g(2)
a,b is harmonic on Ur3 ,

which both have the same boundary ∂Ur3 . Thus, by the maximum principle:

max
X−Ur3

g
(1)
a,b − min

X−Ur3
g

(1)
a,b = max

∂Ur3

g
(1)
a,b −min

∂Ur3

g
(1)
a,b

and:

max
Ur3

g
(2)
a,b −min

Ur3

g
(2)
a,b = max

∂Ur3

g
(2)
a,b −min

∂Ur3

g
(2)
a,b .

Furthermore, maxX−Ur3 |χfa,b| and maxUr3 |χ
cfa,b| are bounded, uni-

formly in a and b in Ur1 , by a constant only depending on r1 and r3. Using
g̃a,b = g

(1)
a,b−χfa,b onX−Ur3 and g̃a,b = g

(2)
a,b+χcfa,b on Ur3 , we conclude

that maxX g̃a,b−minX g̃a,b is bounded on X = (X −Ur3)∪Ur3 by a con-
stant c6 only depending on the radii r1, r2 and r3. Using the normalisation
condition (10.7), we know that:

max
X

g̃a,b ≥ 0 ≥ min
X

g̃a,b
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holds; thus:

max
X
|g̃a,b| ≤ max

X
g̃a,b −min

X
g̃a,b

is also bounded by the same constant.
From this we get a bound for:

ga,b − χfa,b = g̃a,b −
∫
X
χfa,bµ.

Indeed, we estimate:∣∣∣∣∫
X
χfa,bµ

∣∣∣∣ ≤ ∫
U1

|fa,b|µ ≤ c1

∫
U1

|fa,b dz ∧ dz̄|,

which is uniformly bounded for a, b ∈ Ur1 by a constant c1c5 with c5 de-
pending only on r1; note that the logarithmic singularities are integrable.
Combining the bounds for maxX |g̃a,b| and

∣∣∫
X χfa,bµ

∣∣, we conclude that
supX |ga,b−χfa,b| is bounded by a constant c6 +c1c5 with c6, c5 depending
on r1. Since:

sup
X
|χfa,b − la + lb| =

1
2π

sup
U1

∣∣∣∣∣χ log

∣∣∣∣∣z(a)z − 1
z(b)z − 1

∣∣∣∣∣
∣∣∣∣∣

is bounded, uniformly in a, b ∈ Ur1 and X , the key lemma follows (with c4

being the sum of c6 and the uniform upper bound last mentioned). �

Proof (of Theorem 10.1) Since we now work with varying coordinates, we
include again the superscript coordinate index (j) in the coordinate z(j), its
domain U (j), but also in U (j)

r , χ(j), and l(j)a .

10.8 Lemma Consider two coordinates z(j) and z(k), with k and j in
{1, . . . , n}. Assume that x is in U

(j)
r1 ∩ U

(k)
r1 and that y is in U

(j)
r2 with

|z(j)(y)− z(j)(x)| < (r2 − r1)/M . Then y is in U (k)
r2 .

Proof The intersection U (j)
r1 ∩ U

(k)
r1 is an open neighbourhood of x. As-

sume that there exists y ∈ U
(j)
r2 with |z(j)(y) − z(j)(x)| < (r2 − r1)/M

and y /∈ U
(k)
r2 . Then there is also such a point y with minimal distance

|z(j)(y) − z(j)(x)| from x, since U (j)
r2 − U

(k)
r2 is compact. For this point y,

we conclude y ∈ ∂U
(k)
r2 ⊆ U

(k)
r2 , and the straight line from x to y in the
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z(j)-coordinate is contained in U (j)
r2 ∩ U

(k)
r2 . By the mean value theorem,

we conclude |z(k)(y) − z(k)(x)| ≤ M |z(j)(y) − z(j)(x)| < r2 − r1, hence
|z(k)(y)| < r2, since |z(k)(x)| ≤ r1. This contradicts y ∈ ∂U (k)

r2 . �

We choose a smooth partition of unity φ(j) : X → [0, 1], j = 1, . . . , n, such
that φ(j) is supported in U (j)

r1 . For a ∈ X , we set:

ha :=
∑
j

φ(j)(a)l(j)a .

10.9 Lemma Let a ∈ U (k)
r1 , y ∈ X , y 6= a. Then we have:

l(k)
a (y) ≤ log 2

2π
.

Proof This follows immediately from the definition of the function l(k)
a ,

since |z(k)(y)− z(k)(a)| ≤ 2 whenever y ∈ Supp(χ(k)). �

10.10 Lemma For all a, b ∈ X we have the inequality:

sup
X
|ga,b − ha + hb| ≤ n(c10 + c1c5 + c7 logM)

with constants c10, c5, and c7 depending only on r1.

Proof We first show for a ∈ U (k)
r1 ∩ U

(j)
r1 that:

sup
X
|l(k)
a − l(j)a | ≤

1
2π

[logM + | log(r2 − r1)|+ log 2].

To prove this, let y ∈ X . We distinguish 3 cases in order to prove that
l
(k)
a (y)− l(j)a (y) is bounded from above by the right hand side.

case 1:

y ∈ U
(j)
1 with |z(j)(y) − z(j)(a)| < (r2 − r1)/M . In particular, we

have |z(j)(y)| < |z(j)(a)| + (r2 − r1)/M ≤ r2 (recall that M ≥ 1),
hence a, y ∈ U

(j)
r2 . Consequently, the straight line [a, y](j) from a to y

in the z(j)-coordinate is contained in U (j)
r2 . Then Lemma 10.8 implies that

[a, y](j) ⊆ U
(k)
r2 . Using χ(j)(y) = χ(k)(y) = 1, we conclude by the mean

value theorem that:

l(k)
a (y)− l(j)a (y) =

1
2π

log

∣∣∣∣∣z(k)(y)− z(k)(a)
z(j)(y)− z(j)(a)

∣∣∣∣∣ ≤ logM
2π

,

which is bounded by the right hand side.
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case 2:

y /∈ U (j)
1 . Then l(j)a (y) = 0, and we conclude, using Lemma 10.9, that:

l(k)
a (y)− l(j)a (y) = l(k)

a (y) ≤ log 2
2π

.

case 3:

y ∈ U (j)
1 and |z(j)(y)− z(j)(a)| ≥ (r2 − r1)/M ; thus:

l(k)
a (y)− l(j)a (y) ≤ log 2

2π
− l(j)a (y) ≤ 1

2π
(log 2−χ(j)(y) log[(r2−r1)/M ]),

which is also bounded by the right hand side.
The upper bound for l(j)a (y)−l(k)

a (y) in our claim is obtained by exchang-
ing j and k. Thus the claim is proven.

We conclude:

(10.11)

|ha − l(j)a | ≤
∑
k

φ(k)(a)|l(k)
a − l(j)a | ≤

≤ 1
2π

(logM + | log(r2 − r1)|+ log 2) .

Combining this with Lemma 10.4, we conclude for a, b ∈ U (j)
r1 :

|ga,b − ha + hb| ≤ |ga,b − l(j)a + l
(j)
b |+ |ha − l

(j)
a |+ |hb − l

(j)
b |

≤ c10 + c1c5 + c7 logM

with some constants c10, c5, c7 depending only on r1 (a possible choice is
c7 = (logM)/π and c10 = (| log(r2 − r1)|+ log 2)/π + c4).

Finally, for general a, b ∈ X , we choose a finite sequence of points
a = a0, a1, . . . , am = b in X and indices j1, . . . , jm with m ≤ n and
ai−1, ai ∈ U (ji)

r1 for all i = 1, . . . ,m. Using:

ga,b =
m∑
i=1

gai−1,ai ,

we get by estimating:

|ga,b− ha + hb| ≤
m∑
i=1

|gai−1,ai − hai−1 + hai | ≤ n(c10 + c1c5 + c7 logM)

the claim of the lemma. �
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We define:

hµ(x) :=
∫
b∈X

hb(x)µ(b), (x ∈ X).

10.12 Lemma We have:

sup
X
|hµ| ≤ nc1c8,

with some universal constant c8. Furthermore, we have:

sup
b,x∈X
b 6=x

hb(x) ≤ log 2
2π

.

Proof We observe first that for all w ∈ C with |w| ≤ 1 the integral:

1
2π

∫
|z|≤1

| log |z − w|| |dz ∧ dz̄|

is bounded from above by a universal constant c8. We conclude that for all
x ∈ X we have:∫

b∈U(j)
r1

|l(j)b (x)|φ(j)(b)µ(b) ≤ c1

∫
b∈U(j)

r1

|l(j)b (x)| |dz(j) ∧ dz(j)|

≤ c1c8.

Let x ∈ X . We get the first estimate:

|hµ(x)| ≤
n∑
j=1

∫
U

(j)
1

|l(j)b (x)|φ(j)(b)µ(b) ≤ nc1c8.

Finally, the second estimate follows from Lemma 10.9:

hb =
n∑
j=1

φ(j)l
(j)
b ≤

log 2
2π

,

as required. �

10.13 Proposition For some positive constants c10, c7, and c11 that depend
only on r1 we have, uniformly in a and x 6= a on X:

|ga,µ(x)− ha(x)| ≤ n(c10 + c1c11 + c7 logM).
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Proof Indeed, averaging Lemma 10.10 over b with respect to µ, we obtain:

sup
X
|ga,µ − ha + hµ| ≤ n(c10 + c1c5 + c7 logM).

By Lemma 10.12, one has |hµ| ≤ nc1c8. Combining gives what we want
(we can take c11 = c5 + c8). �

10.14 Proposition Let c10, c7, and c11 be as in Proposition 10.13, and let a
be in X . Then limx→a |ga,µ(x)− ha(x)| exists, and we have:

lim
x→a
|ga,µ(x)− ha(x)| ≤ n(c10 + c1c11 + c7 logM).

Proof The functions ga,µ and ha have the same logarithmic singularity
at a; hence the limit exists. The estimate then follows from Proposi-
tion 10.13. �

We can now finish the proof of Theorem 10.1. We have seen in (10.11) that:

|ha − l(j)a | ≤
1

2π
(logM + | log(r2 − r1)|+ log 2) .

Combining this with Proposition 10.14 and using the definition of l(j)a gives
the second estimate of the theorem. As to the first estimate, using:

ga,µ ≤ ha + |ga,µ − ha|

we obtain it by applying the upper bound for ha in Lemma 10.12 and the
upper bound for |ga,µ − ha| in Proposition 10.13. This ends the proof of
Theorem 10.1. �
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Chapter Eleven

Bounds for Arakelov invariants of modular curves

B. Edixhoven and R. de Jong

In this chapter, we give bounds for all quantities on the right hand side
in the inequality in Theorems 9.1.1 and 9.2.5, in the context of the modular
curvesX1(5l) with l > 5 prime, using the upper bounds for Green functions
from the previous chapter. The final estimates are given in the last section.

11.1 BOUNDING THE HEIGHT OF X1(pl)

As before, for l > 5 prime, we let Xl be the modular curve X1(5l), over a
suitable base that will be clear from the notation. We let gl denote the genus
of Xl; we have gl > 1. A model Xl,Z is given by [Ka-Ma], as well as a
model Xl,Z[ζ5l] that is semi-stable; see Chapter 8. The aim of this section is
to prove a suitable bound for the stable Faltings height of Xl (see 4.4.10).
We will in fact give such a bound for the modular curves X1(pl) with p and
l distinct primes. Before we get to that, we prove some intermediate results,
that will also be important in the next section.

11.1.1 Lemma Let N ≥ 1 be an integer, and let:

B2(N) :=
∐
M |N

∐
d|(N/M)

B∗N,M,dS2(Γ1(M))new

be the basis of S2(Γ1(N)) obtained from newforms of levels dividing N as
explained in (2.2.17). Let f =

∑
n≥1 an(f)qn be an element of B2(N).

Then we have for all n ≥ 1:

|an(f)| ≤ 2n.
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Proof As an(B∗N,M,df) = an/d(f) (see 2.2.16), it suffices to treat the case
that f is a newform of some level M dividing N . We use the Weil bounds
on the ap(f) for all primes p. We recall from Section 1.8 of [De-Se] that we
have an equality of formal Dirichlet series:∑
n≥1

an(f)n−s =
∏
p|M

(1− ap(f)p−s)−1
∏
p-M

(1− αpp−s)−1(1− βpp−s)−1

with the following properties. For p - M we have |αp| = |βp| =
√
p. For

p|M we have:
ap(f) = 0 if p2|M,

ap(f) = 0 if εf factors through (Z/(M/p)Z)×,

|ap(f)| = p1/2 if εf does not factor through (Z/(M/p)Z)×,

|ap(f)| = 1 if p2|M and εf factors through (Z/(M/p)Z)×.

Using that:

(1− ap(f)p−s)−1 =
∑
k≥0

ap(f)kp−sk,

and that:

(1− αpp−s)−1(1− βpp−s)−1 = (
∑
k≥0

αkpp
−sk)(

∑
k≥0

βkpp
−sk)

we find that for arbitrary n we have |an(f)| ≤ σ0,M (n)
√
n, where σ0,M (n)

is the number of positive divisors of n that are prime to M , and a simple
estimate leads to |an(f)| ≤ 2n. �

The following lemma states a very well known lower bound for the Peters-
son norm of a normalised cuspform.

11.1.2 Lemma Let N ≥ 1 and let ω = fdq/q be the holomorphic 1-form
onX1(N)(C) attached to a cusp form f =

∑
n an(f)qn in S2(Γ1(N)) with

a1(f) = 1. Then we have:

‖ω‖2 =
i

2

∫
X1(N)

ω ∧ ω ≥ πe−4π.
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Proof We have ω =
∑

n≥1 an(f)qndq/q in the coordinate q = e2πiz ,
where z is the standard coordinate on the upper half plane H. If we let x
and y be the real and imaginary parts of z we have:

i

2
ω ∧ ω = 4π2|f |2 dx dy

Let F be the region in H given by the conditions |x| < 1/2 and y > 1.
Then:

‖ω‖2 ≥
∫
F

4π2|f(z)|2dxdy

= 4π2
∑
m,n≥1

am(f)an(f)
∫ 1/2

−1/2
e2πi(m−n)x

∫ ∞
1

e−2π(m+n)ydy

= 4π2
∑
n≥1

|an(f)|2e−4πn/4πn .

From the first term (note that a1(f) = 1) we obtain ‖ω‖2 ≥ πe−4π. �

We now specialise to a slightly less special case than our curves Xl: the
curves X1(pl) with p and l two distinct prime numbers. We call an Atkin-
Lehner basis for Ω1(X1(pl)) any basis of Ω1(X1(pl)) given by an ordering
of the set B2(pl). We start by describing, in a notation that is slightly differ-
ent from the one used in (2.2.14), the degeneracy maps that are used for the
definition of B2(pl). This time, we call them source and target maps:

sl : X1(pl)→ X1(p), (E,P, L) 7→ (E,P )

tl : X1(pl)→ X1(p), (E,P, L) 7→ (E/〈L〉, P )

sp : X1(pl)→ X1(l), (E,P, L) 7→ (E,L)

tp : X1(pl)→ X1(l), (E,P, L) 7→ (E/〈P 〉, L)

where (E,P, L) denotes an elliptic curve E with a point P of order p and a
point L of order l. Note that sl and tl have degree l2 − 1, and that sp and tp
have degree p2 − 1. For any integer M ≥ 1 we denote by Ω1(X1(M))new

the set of holomorphic 1-forms in Ω1(X1(M)) of the form fdq/q with f
in S2(X1(M))new. Our next goal is to get information on the Gram matrix
of an Atkin-Lehner basis of Ω1(X1(pl)). As described above, the contri-
bution to Ω1(X1(pl)) of each f in S2(Γ1(pl))new is the subspace Cfdq/q.
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The contribution of an f in S2(Γ1(p))new is the 2-dimensional space gen-
erated by s∗l fdq/q and t∗l fdq/q, and, of course, each f in S2(Γ1(l))new

contributes the 2-dimensional space generated by s∗pfdq/q and t∗pfdq/q.

11.1.3 Lemma For f in S2(Γ1(l))new and ω = fdq/q we have:

〈s∗pω, s∗pω〉 = (p2 − 1)‖ω‖2 ,
〈t∗pω, t∗pω〉 = (p2 − 1)‖ω‖2 ,
〈s∗pω, t∗pω〉 = (p− 1)ap(f)‖ω‖2.

We have similar equalities with p and l switched.

Proof The first two equalities are clear. As to the latter, note first that:

〈s∗pω, t∗pω〉 =
i

2

∫
X1(pl)

s∗pω ∧ t∗pω =
i

2

∫
X1(l)

sp,∗(s∗pω ∧ t∗pω) =

=
i

2

∫
X1(l)

ω ∧ sp,∗t∗pω .

Next note that sp : X1(pl)→ X1(l) and tp : X1(pl)→ X1(l) factor through
the forget map X1(pl)→ X1(l; p) where the latter curve corresponds to the
moduli problem (E,P,G) with P of order l and G a subgroup of order p.
This forget map has degree p − 1, and the correspondence on X1(l) in-
duced by X1(l; p) is the standard Hecke correspondence Tp. We find that
sp,∗t

∗
pω = (p − 1)T ∗pω. By the standard relation between eigenvalues and

q-coefficients we have T ∗pω = ap(f)ω, so finally:

〈s∗pω, t∗pω〉 =
i

2

∫
X1(l)

ω ∧ (p− 1)T ∗pω = (p− 1)ap(f)‖ω‖2

as required. �

11.1.4 Corollary Let p and l be two distinct primes. The structure of the
Gram matrix (〈ωi, ωj〉)i,j of holomorphic 1-forms attached to an Atkin-
Lehner basis for Ω1(X1(pl)) is as follows. Two subspaces attached
to distinct elements of the union of S2(Γ1(pl))new, S2(Γ1(l))new and
S2(Γ1(p))new are orthogonal to each other, hence the Gram matrix decom-
poses into blocks corresponding to these subspaces. The contribution of an
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element f in S2(Γ1(pl))new is the 1-by-1 block ‖fdq/q‖2. The contribution
of an element f in S2(Γ1(l))new is the 2-by-2 block:

(p− 1)‖fdq/q‖2
(
p+ 1 ap(f)
ap(f) p+ 1

)
,

where the norm ‖fdq/q‖2 is taken on X1(l)). The contribution of an ele-
ment f in S2(Γ1(p))new is the 2-by-2 block:

(l − 1)‖fdq/q‖2
(
l + 1 al(f)
al(f) l + 1

)
,

where the norm ‖fdq/q‖2 is taken on X1(l).

11.1.5 Corollary The determinant of the Gram matrix of the holomorphic
1-forms attached to an Atkin-Lehner basis for Ω1(X1(pl)) is bounded below
by (πe−4π)g.

Proof By the Weil-Ramanujan-Deligne bounds (or, in this case, the Weil
bounds, as the weight of the modular forms here is two), the determinant of
a 2-by-2 block as in Corollary 11.1.4 is bounded below by ‖fdq/q‖4. We
obtain our corollary by invoking Lemma 11.1.2. �

11.1.6 Corollary The Arakelov (1,1)-form µ on X1(pl) is given by:

µ =
i

2g

∑
ω

ω ∧ ω
‖ω‖2

+
i

2g

∑
ω

(
(p+ 1)s∗p(ω ∧ ω) + (p+ 1)t∗p(ω ∧ ω)
(p− 1)‖ω‖2((p+ 1)2 − |ap(fω)|2)

−
ap(fω)s∗pω ∧ t∗pω + ap(fω)t∗pω ∧ s∗pω
(p− 1)‖ω‖2((p+ 1)2 − |ap(fω)|2)

)

+
i

2g

∑
ω

(
(l + 1)s∗l ω ∧ s∗l ω + (l + 1)t∗l ω ∧ t∗l ω

(l − 1)‖ω‖2((l + 1)2 − |al(fω)|2)

−
al(fω)s∗l ω ∧ t∗l ω + al(fω)t∗l ω ∧ s∗l ω
(l − 1)‖ω‖2((l + 1)2 − |al(fω)|2)

)
,

with the first sum running over Ω1(X1(pl))new, the second sum running
over Ω1(X1(l))new, the third sum running over Ω1(X1(p))new, and where
fω is defined by ω = fωdq/q.
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Proof Consider first an arbitrary compact Riemann surface X and let
ω = (ω1, . . . , ωg) be an arbitrary basis of Ω1(X). Let a := 〈ω, ω〉 be the
g-by-g matrix given by ai,j = 〈ωi, ωj〉. Note that a = at. Let b = at,−1, the
inverse of the transpose of a. Then we claim that the Arakelov (1, 1)-form
on X can be written as:

µ =
i

2g

∑
i,j

bi,jωi ∧ ωj .

To see this, note that for ω an orthonormal basis this is the correct expres-
sion, and that changing to ω′ = ω·g with any invertible g does not change µ,
as one may directly calculate.

In our case, the basis (ω1, . . . , ωg) that we take is an Atkin-Lehner basis.
Using Corollary 11.1.4 one obtains the expression that we gave. �

We remark that Abbes and Ullmo have determined the Arakelov (1, 1)-form
on X0(n) for all square free n ≥ 1 such that X0(n) has genus at least one
in [Ab-Ul]. It should not be hard to generalise their result to X1(n) for
square free n.

Now we arrive at the main result of this section. We recall that the Falt-
ings height of a curve, and its stable or absolute version, have been briefly
described in (4.4.11).

11.1.7 Theorem For the stable Faltings height ofX1(pl), for distinct prime
numbers p and l, one has:

habs(X1(pl)) = O((pl)2 log(pl)).

Proof This proof is an adaptation of an argument in Section 5 of [Co-Ed]
where the caseX0(p) with p prime was treated. We may and do assume that
X1(pl) has genus at least one.

We start with a general observation. For XK a curve over a number field,
and K → L a finite extension, we claim that:

[L : Q]−1hL(XL) ≤ [K : Q]−1hK(XK).

This inequality simply results from the fact that for the Néron models of
the Jacobians the identity morphism on the generic fibres extends to a mor-
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phism:

(JOK )OL −→ JOL .

For n a positive integer, we let Xµ(n)Q denote the modular curve corre-
sponding to elliptic curves with an embedding of µn. The reason for con-
sidering this variant of X1(n) is that the cusp∞ of Xµ(n) isQ-rational. Of
course, X1(n)Q and Xµ(n)Q become isomorphic overQ(ζn), and therefore
we have, for all n:

habs(X1(n)Q) = habs(Xµ(n)Q).

For more details about these Xµ(n) we refer to sections 9.3 and 12.3
of [Di-Im].

The general observation above gives:

habs(Xµ(n)Q) ≤ hQ(Xµ(n)Q).

Because of this, it suffices to establish the bound of the theorem for the
hQ(Xµ(pl)Q).

Let p and l be given, and let X be the model over Z of Xµ(pl)Q ob-
tained by normalisation of the j-line P1

Z in the function field of Xµ(pl)Q.
As X is proper over Z, the Q-rational point ∞ extends to an element ∞
in X(Z), which is known to lie in the open part Xsm of X where the struc-
ture morphism to Spec(Z) is smooth, see [Di-Im]. In terms of the Tate curve
over Z((q)) = Z((1/j)), the cusp∞ is the immersion of µn, over Z, in the
n-torsion of the Tate curve (see Sections 8.6–8.11 of [Ka-Ma]).

We let J be the Néron model over Z of the Jacobian of the curve XQ.
Then, by the defining property, the embedding of XQ into JQ that sends
∞ to 0 extends to a morphism from Xsm to J . This morphism induces
via pullback of differential forms a morphism from Cot0(J) to S(Z), the
sub-Z-module of Ω1(XQ) of forms whose q-expansion at ∞ has coeffi-
cients in Z (see around (2.4.9)). As Cot0(J) and S(Z) are both Z-structures
on Ω1(X(C)), we have (see around (4.4.10)):

hQ(XQ) = deg(
g∧

0∗Cot0(J)) = − log Vol((R⊗ Cot0(J))/Cot0(J))

≤ − log Vol(R⊗ S(Z)/S(Z)),
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where the volume form on R⊗Cot0(J) comes from integration over J(C),
and that on R⊗ S(Z) from integration over X(C).

Let T ⊂ End(J) be the Hecke algebra, generated by all Ti, i ≥ 1, and
the 〈a〉, a in (Z/plZ)×. We have a perfect pairing (see (2.4.9)):

T× S(Z)→ Z, (t, ω) 7→ a1(tω).

Using the duality we can write:

− log Vol(R⊗ S(Z)/S(Z)) = log Vol(R⊗ T/T)

where the volume form on R ⊗ T is dual to the one on R ⊗ S(Z). Now
consider an Atkin-Lehner basis (ω1, . . . , ωg) of Ω1(X)C. Let Vol′ denote
the volume with respect to the volume form on R⊗T induced by the one on
C ⊗ S(Z) for which the basis (ω1, . . . , ωg) is an orthonormal basis. Then
we have:

log Vol(R⊗ T/T) = log Vol′(R⊗ T/T)− 1
2

log det(〈ω, ω〉) ,

where 〈ω, ω〉 is the matrix whose (i, j)-coefficient is 〈ωi, ωj〉. By Corol-
lary 11.1.5 we have:

− log det(〈ω, ω〉) ≤ g(4π − log π) = O((pl)2).

It remains to bound log Vol′(R ⊗ T/T). Let Γ be the set of integers i ≥ 1
such that there exists an ω in Ω1(X(C)) with a zero of exact order i − 1
at ∞. Then Γ is the set of integers i ≥ 1 such that h0(X(C),Ω1(−i∞))
is strictly less (and hence exactly one less) than h0(X(C),Ω1((−i+ 1)∞).
As h0(X(C),Ω1) = g, and h0(X(C),Ω1(−(2g − 1)∞)) = 0, there are
exactly g such integers, and we can write Γ = {i1, . . . , ig} with:

1 = i1 < i2 < . . . < ig ≤ 2g − 1.

Under the pairing between T and S(Z), each Hecke operator Ti is sent to
the element ω 7→ ai(ω) of the dual of S(Z), where the ai(ω) are given by
the q-expansion:

ω =
∑
i≥1

ai(ω)qi (dq/q) =
∑
i≥1

ai(ω)qi−1 dq.
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It follows that the elements Ti1 , . . . , Tig of the free Z-submodule T are lin-
early independent. Hence T′, the submodule of T generated by these Tij
has finite index. We thus find:

log Vol(R⊗ T/T) ≤ log Vol′(R⊗ T′/T′)− 1
2

log det(〈ω, ω〉) .

Now we have g = r1 +2r2, where r1 is the number of elements of our basis
(ω1, . . . , ωg) of C⊗ T∨ that are fixed by the complex conjugation. We let:

φ : R⊗ T −→ Rr1 × Cr2 × Cr2 −→ Rr1 × Cr2

be the map obtained from our basis (each ωi gives t 7→ a1(tωi)), composed
with the projection. We view Rr1 × Cr2 as Rg by decomposing each factor
C as R⊕ Ri. Then we have:

Vol′(R⊗ T/T′) = 2r2 | det(φ(Ti1), . . . , φ(Tig))|.

By construction, each φ(Tij )k is the real or imaginary part of some aij (ωl).
Hence by Lemma 11.1.1 we have:

|φ(Tij )k| ≤ 2ij .

We obtain:

| det(φ(Ti1), . . . , φ(Tig))| ≤
g∏
j=1

(2ij
√
g) ≤ (4g2)g.

Hence, finally:

log Vol′(R⊗ T/T) ≤ r2 log 2 + g(log 4 + 2 log g).

Noting that r2 ≤ g/2 and that g = O((pl)2) completes our proof. �

11.2 BOUNDING THE THETA FUNCTION ON Picg−1(X1(pl))

The aim of this section is to give a bound for the supnorm of the theta func-
tion that occurs in Theorem 9.2.5.

11.2.1 Theorem For X = X1(pl), with p and l distinct primes for which
the genus of X1(pl) is at least one, we have log ‖ϑ‖sup = O((pl)6) .
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We start with two lemmas, which are possibly of independent interest.

11.2.2 Lemma Let X = V/Λ be a principally polarised complex Abelian
variety and letH : V ×V → C be its Riemann form. Let λ1, . . . , λ2g be the
successive minima of the lattice Λ, with norm defined by ‖x‖2 = H(x, x).
Let (e1, . . . , e2g) be a symplectic basis of Λ, i.e., a basis with respect to
which the matrix of the symplectic form =(H) is, in g by g block form,
equal to ( 0 1

−1 0 ). The one has:√
det=(τ) ≤ (2g)!

2g
V2g

Vg
λg+1 · · ·λ2g ,

where τ is the period matrix in Hg corresponding to (e1, . . . , e2g). Here Vn
denotes the volume of the unit ball in Rn with its standard euclidean inner
product.

Proof We consider the lattice M = Z·e1⊕· · ·⊕Z·eg in the real subvector
space W = R·e1 ⊕ · · · ⊕ R·eg of V . Denote by µ1, . . . , µg the successive
minima of M , where the norm is given by restricting H to W (note that
M is isotropic for the symplectic form, so that H takes real values on W ).
We have (H(ei, ej))i,j = (=(τ))−1, so that the volume (with respect to the
inner product on W given by H) of W/M is equal to (det=(τ))−1/2, and
hence by Minkowski’s second fundamental inequality:

µ1 · · ·µg ≤ 2g
(det=(τ))−1/2

Vg
.

On the other hand we have:

µ1 · · ·µg ≥ λ1 · · ·λg = (λ1 · · ·λ2g) · (λg+1 · · ·λ2g)−1

and since the volume of V/Λ is 1 we obtain by Minkowski’s first fundamen-
tal inequality:

λ1 · · ·λ2g ≥
22g

(2g)!
1
V2g

.

Combining we find a lower bound:

µ1 · · ·µg ≥
22g

(2g)!
1
V2g
· (λg+1 · · ·λ2g)−1 .



bookarxiv March 18, 2010

BOUNDS FOR ARAKELOV INVARIANTS OF MODULAR CURVES 237

Combining this with the upper bound for µ1 · · ·µg we obtain the required
formula. �

11.2.3 Lemma Let N ≥ 3 be an integer. The group Γ1(N) is generated
by its elements whose entries are bounded from above in absolute value
by N6/4.

Proof We first note the following: let G be a group, and let S ⊂ G be a
set of generators. Let X be a transitive G-set and let x be in X . For each y
in X , let gy be an element of G such that gyx = y; we demand that gx = 1.
Then the g−1

sy sgy, for s in S and y in X , form a system of generators for the
stabiliser Gx of x. To see this, first replace S by S ∪ S−1. Let g be in Gx.
Write g = sn · · · s1 with si in S. Then we can write:

g = sn · · · s1 = g−1
snynsngyn · · · g

−1
s1y1s1gy1 with yi = (si−1 · · · s1)x.

The equality holds because siyi = yi+1, and gy1 = 1 and gsnyn = 1.
Now we apply this to our case. We take G = SL2(Z), and we take X to
be the subset of (Z/NZ)2 consisting of the elements of order N . This is
a transitive G-set. We let x = (1, 0); then Gx is identified with Γ1(N).
Let S be the set consisting of ( 1 1

0 1 ) and ( 1 0
1 1 ) and their inverses. Then

S generates G. We now apply the previous argument to find generators
of Γ1(N). So let y = (a, b) be in X . Then, thinking of Z/NZ as the
product of its local rings, we see that there is a u in Z with |u| ≤ N/2 and
a+ bu in (Z/NZ)×. Put a1 := a+ bu and b1 := b. Then:(

a1

b1

)
=

(
1 u

0 1

)(
a

b

)
.

Next, there is a v in Z with |v| ≤ N/2 and b1 + a1v = 1 mod N , i.e.:(
a1

1

)
=

(
1 0
v 1

)(
a1

b1

)
mod N.

Finally, let w be in Z with |w| ≤ N/2 and with image a1 in Z/NZ. Then
one has:(

a

b

)
=
(

1 −u
0 1

)(
1 0

−v 1

)(
1 w

0 1

)(
0 −1

1 0

)(
1

0

)
mod N.
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Writing out, we have:(
1 −u
0 1

)(
1 0

−v 1

)(
1 w

0 1

)(
0 −1

1 0

)
=
(
w − u(1− vw) −1− uv

1− vw v

)
so that we can put:

gy = g(a,b) =

(
w − u(1− vw) −1− uv

1− vw v

)
.

The absolute values of the coefficients of g(a,b) are smaller than N3/4, if
N ≥ 3, and the lemma follows. �

Proof [Proof of Theorem 11.2.1] Recall that ‖ϑ‖(z; τ) is given by:

‖ϑ‖(z; τ) = (det=(τ))1/4 exp(−π ty(=(τ))−1y)|ϑ(z; τ)|,

where y = =(z) and where τ is a period matrix in the Siegel upper half
plane Hg corresponding to X . We first deal with the factor det=(τ) and
for this we invoke Lemma 11.2.2. Choose once more an Atkin-Lehner basis
(ω1, . . . , ωg) for Ω1(X). Using the dual basis in Ω1(X)∨ we write:

J(X) = Cg/Λ ,

where:

Λ = Image
(
H1(X,Z)→ Cg : γ 7→

∫
γ
(ω1, . . . , ωg)

)
.

The polarisation form for J(X) is given by:

(z, w) 7→ tz · (〈ω, ω〉)−1
i,j · w.

Denote by ‖ · ‖P the corresponding norm on Cg. We also consider the
standard hermitian inner product on Cg, which is just (z, w) 7→ tz ·w. Here
we denote the corresponding norm by ‖ · ‖E . From the next two lemmas we
obtain:

(λg+1 · · ·λ2g)
2 ≤

(
ge4π(pl)46/π

)g
and hence, by Lemma 11.2.2, the estimate:

log(det=(τ)) = O((pl)2 log(pl)).
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11.2.4 Lemma The lattice Λ is generated by the subset of its elements x
that satisfy ‖x‖2E ≤ g·(pl)46.

Proof For the moment put N = pl. Following the natural surjections:

Γ1(N) � Γ1(N)ab = H1(Y1(N),Z) � H1(X1(N),Z)

we see that any generating set for Γ1(N) gives a generating set for
H1(X1(N),Z). We are going to take generators for Γ1(N) as given by
Lemma 11.2.3. In particular, the absolute values of their coefficients are
bounded by N6/4. We have to see now what this implies for ‖x‖E for cor-
responding elements x of Λ. Concretely, choose a g = ( a bc d ) in Γ1(N). The
image in Λ can be given as follows: choose any z in H and any path in H
from z to gz. This gives us a loop inX1(N), and the class of that loop is the
image of g in H1(X1(N),Z). In order to get to Λ we compute the periods
of (ω1, . . . , ωg) around this loop. We want to get bounds for these periods.
In order to do this, note first that we can assume that c 6= 0. Indeed, the
g with c = 0 are unipotent, hence have trivial image in H1(X1(N),Z).
Now we make the following choices. First, we want to take a z in H
with =(z) = =(gz). Since, for all z in H, =(gz) = |cz + d|−2=(z),
the condition that =(z) = =(gz) is equivalent to |cz + d| = 1. We
choose z = −d/c + i/|c|, i.e., such that cz + d = ±i, depending on
the sign of c. Second, the path that we take is the straight line from z

to gz. We have |c| ≥ N because g is in Γ1(N). Using furthermore that
the absolute values of the coefficients of g are bounded by N6/4 we get
|gz − z| ≤ |az + b|+ |z| ≤ N11/10 (where we have used that N ≥ 2). For
the period of an element ω = fdq/q of the Atkin-Lehner basis we obtain
from this that:∣∣∣∣∫ gz

z
ω

∣∣∣∣ =
∣∣∣∣∫ gz

z
f ·(dq)/q

∣∣∣∣ =
∣∣∣∣∫ gz

z
f ·2πi dw

∣∣∣∣ ≤ 2πN11

10
‖f‖,

where w denotes the standard coordinate of H (i.e., the inclusion map
into C), and ‖f‖ the supnorm of f on the straight line from z to gz; re-
call that q = exp(2πiw). When writing f =

∑
n≥1 an(f)qn we have

|an(f)| ≤ 2n by Lemma 11.1.1. Noting furthermore that that we have
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=z = |c|−1 ≥ 4/N6 it follows that:

‖f‖ ≤ 2
∑
n≥1

ne−8πN−6n =
2r

(1− r)2
, where r = e−8π/N6

.

Hence:

‖f‖ ≤ (N6/4π)2, and
∣∣∣∣∫ gz

z
f(dq)/q

∣∣∣∣ ≤ 2π
10
N11

(
N6

4π

)2

≤ N23.

This means that all g coordinates of our element x of Cg are, in absolute
value, at most N23. Hence ‖x‖2E , being the sum of the squares of these
coordinates, is at most g·N46 = g·(pl)46. �

11.2.5 Lemma For any x in Cg we have the estimate:

‖x‖2P ≤ (e4π/π)‖x‖2E .

Proof By Lemma 11.1.4 the matrix (〈ω, ω〉)−1 is almost diagonal, having
in fact diagonal elements 1/‖ω‖2 corresponding to newforms ω on X1(pl),
and 2-by-2 blocks corresponding to newforms ω on X1(l) and X1(p). The
2-by-2 block corresponding to a newform ω on X1(l) is:

1
(p− 1)‖ω‖2((p+ 1)2 − |ap(ω)|2)

(
p+ 1 −ap(ω)
−ap(ω) p+ 1

)
,

where the norm ‖ω‖2 is taken on X1(l).
The 2-by-2 block corresponding to a newform ω on X1(p) is:

1
(l − 1)‖ω‖2((l + 1)2 − |al(ω)|2)

(
l + 1 −al(ω)
−al(ω) l + 1

)
,

where the norm ‖ω‖2 is taken on X1(p).
A short calculation shows that for any (z1, z2) in C2 one has:(

z1 z2

)( p+ 1 −ap(ω)
−ap(ω) p+ 1

)(
z1

z2

)
(p− 1)((p+ 1)2 − |ap(ω)|2)

≤
(
|z1|2 + |z2|2

)
,

and similarly for X1(p), so that all in all one gets:

‖(z1, . . . , zg)‖2P ≤
|z1|2

‖ω1‖2
+ · · ·+ |zg|2

‖ωg‖2
.

The lemma follows by the lower bound from Lemma 11.1.2. �
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Next we consider the factor exp(−π ty(=(τ))−1y)|ϑ(z; τ)|. Since in our
previous estimates the choice of τ was irrelevant, it will cause no loss of
generality here if we restrict to τ lying in the so-called Siegel fundamental
domain Fg, which is the set of matrices τ = x+iy satisfying the conditions:

1. for each entry xij of x one has |xij | ≤ 1
2 ,

2. for all γ in Sp(2g,Z) one has det=(γ·τ) ≤ det=(τ),

3. y is Minkowski reduced, i.e., for each ξ = (ξ1, . . . , ξg) in
Zg and each i such that ξi, . . . , ξg are non-zero, one has
ξ y tξ ≥ yii and moreover, for each 1 ≤ i ≤ g− 1 one has
yi,i+1 ≥ 0.

It is well known that Fg contains at least one representative from each
Sp(2g,Z)-orbit on Hg. We claim that for τ in Fg the estimate:

exp(−π ty(=(τ))−1y)|ϑ(z; τ)| ≤ 23g3+5g

holds, for all z in Cg. Thus, this factor gives us a contribution O((pl)6). In
order to prove the estimate, write y = =(z) = (=(τ)) · b with b in Rg. Then
it is easy to see that:

exp(−π ty(=(τ))−1y)|ϑ(z; τ)| ≤
∑
n∈Zg

exp(−π t(n+ b)(=(τ))(n+ b)) .

Since the =(τ) are Minkowski reduced we have, for any m in Rg (cf. [Igu],
V §4):

tm=(τ)m ≥ c(g)
g∑
i=1

m2
i (=(τ))ii, c(g) =

(
4
g3

)g−1(3
4

)g(g−1)/2

.



bookarxiv March 18, 2010

242 CHAPTER 11

Moreover, we have (=(τ))i,i ≥
√

3/2 for i = 1, . . . , g. From this we derive:∑
n∈Zg

exp(−π t(n+ b)(=(τ))(n+ b)) ≤

≤
∑
n∈Zg

exp

(
−

g∑
i=1

πc(g)(ni + bi)2(=(τ))i,i

)
≤

≤
g∏
i=1

∑
ni∈Z

exp(−πc(g)(ni + bi)2(=(τ))i,i) ≤

≤
g∏
i=1

2
1− exp(−πc(g)(=(τ))ii)

≤

≤ 2g
(

1 +
2√

3πc(g)

)g
.

From this and the formula for c(g) the required estimate follows and the
proof of Theorem 11.2.1 is finished. �

11.3 UPPER BOUNDS FOR ARAKELOV GREEN FUNCTIONS ON THE
CURVES X1(pl)

The aim of this section is to give an upper bound for the Arakelov Green
functions on the curves X1(pl) that will enable us to bound from above
the contributions of the intersection numbers in the right hand side of the
inequality in Theorem 9.2.5. As the Xl(C) are compact, it is clear that for
each l such an upper bound exists, but we need such upper bounds that grow
as most as a power of l.

In order to establish such upper bounds we will use Franz Merkl’s result
on Green functions on arbitrary Riemann surfaces given in Chapter 10.

Instead of using the result of Merkl for our work we could certainly also
have used recent work by Jorgenson and Kramer in [Jo-Kr]. The results
of Jorgenson and Kramer date back to the same time as those of Merkl
(early Spring 2004). We chose to use Merkl’s results because his approach
is more elementary, and we had the details earlier than those of Jorgenson
and Kramer.

The following theorem gives a suitable upper bound for the Arakelov-
Green functions ga,µ (see (4.4.2) and Proposition 4.4.3) on the modular
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curves X1(pl) with p and l distinct primes.

11.3.1 Theorem There is a real number c such that for all pairs of distinct
prime numbers p and l for which the genus of X1(pl) is at least one and for
all distinct a and b on X1(pl)(C) we have:

ga,µ(b) ≤ c·(pl)6.

Let∞ denote the cusp∞ on X1(pl), and let q be the standard local coordi-
nate around∞ given by the map τ 7→ exp(2πiτ) from the region =τ > 1
in H to C. Then we have:

|log ‖dq‖Ar(∞)| = O((pl)6),

where ‖·‖Ar denotes the Arakelov metric on Ω1 (see Section 4.4).

Proof We write for the moment N for pl. We will apply Theorem 10.1,
but we will carry out the estimates on the more symmetrical modular curve
X(N) which for us is Γ(N)\(H∪P1(Q)). Let h : X(N)→ X1(N) be the
canonical map; it has degree N . We let µ denote the Arakelov (1, 1)-form
on X1(N), and we define µ′ = h∗µ/N . The characterising properties of
Green functions directly imply that:

(11.3.2) h∗ga,µ =
∑
h(b)=a

gb,µ′ ,

where the b are counted with multiplicity.
As in Section 10 we fix a constant r1 with 0 < r1 < 1; we take r1 := 3/4.

We need to construct an atlas with charts z(j) : U (j) → C forX(N) with all
z(j)(U (j)) containing the closed unit disk and with the U (j)

r1 coveringX(N).
We start with a construction of a local coordinate z : U → C in a neigh-

bourhood of the standard cusp ∞. Since SL2(Z/NZ) acts transitively on
the set of cusps of X(N), this construction will suffice to give the full atlas.
Our initial coordinate is induced by the map z from H to C that sends τ
to e2πiτ/N . As the following lemma is valid for all integers n ≥ 1, we state
it in that generality, and will apply it with n := N .

11.3.3 Lemma Let n be in Z≥1. The subset in H given by the conditions
−1/2 ≤ <τ < n− 1/2 and =τ > 1/n is mapped injectively to X(n)(C).



bookarxiv March 18, 2010

244 CHAPTER 11

Proof First we note that for ( a bc d ) in SL2(Z) and for τ in H we have:

=
(
aτ + b

cτ + d

)
=
=(τ)
|cτ + d|2

.

Let us call D the set of τ ∈ H that satisfy the two conditions of the lemma:

D = {τ ∈ H | −1/2 ≤ <(τ) < n− 1/2 and =(τ) > 1/n}.

Let τ be in D, and let γ = ( a bc d ) be in Γ(n), such that γτ 6= τ . If c = 0
then, as ad = 1, we have a = d and τ ′ = τ ± b with b a non-zero multiple
of n, and so τ ′ is not in D. If c 6= 0 then we have |c| ≥ n because n|c, and:

=
(
aτ + b

cτ + d

)
=
=(τ)
|cτ + d|2

≤ =(τ)
(=(cτ))2

≤ =(τ)
n2(=(τ))2

=

=
1

n2=(τ)
<

1
n2·(1/n)

=
1
n
,

hence γτ is not in D. �

In particular, the region of τ with −1/2 ≤ <τ < N − 1/2 and =τ > 1/2 is
mapped injectively into X(N) to give an open neighbourhood U of∞. We
could replace the condition “=τ > 1/2” by “=τ > 1/N”, but that would
not make the work to be done significantly easier. The map τ 7→ e2πiτ/N

gives an isomorphism:

(11.3.4) z : U −→ D(0, e−π/N ) ⊂ C.

The region of τ with −1/2 ≤ <τ < N − 1/2 and =τ > 3/4 gives an
open neighbourhood V of∞, contained in U , such that the translates of V
under SL2(Z/NZ) cover X(N) (note that 3/4 <

√
3/2). The image of V

under z is the diskD(0, e−3π/2N ). However, the quotient of the radii e−π/N

and e−3π/2N tends to 1 as N tends to infinity, hence we cannot work with
these disks directly.

What we do instead is the following. We define a new coordinate
z′ := e3π/2Nz to get z′V = D(0, 1). Then z′U = D(0, eπ/2N ). Let
ε := ε(N) := eπ/2N − 1 be the difference between the two new radii. Then
ε > π/2N . We can choose O(ε−2) open disks D(a, ε) with centre a in
D(0, 1), such that the union of the D(a, ε/2) contains D(0, 1); we let A
denote the set of these a. The D(a, ε) are contained in z′U = D(0, 1 + ε).
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The group SL2(Z/NZ) acts transitively on the set of cusps ofX(N). For
each cusp c, we choose a gc in SL2(Z/NZ) such that c = gc∞. The open
sets of our atlas for X(N) are then the U (a,c) with a in A and c a cusp,
defined by:

U (a,c) := gc · (z′)−1D(a, ε).

The required coordinates z(a,c) on the U (a,c) are defined by the composition
of isomorphisms:

z(a,c) : U (a,c)
g−1
c // U (a,∞)

z′ // D(a, ε) −a // D(0, ε)
·3/2ε // D(0, 3

2).

Indeed, the images z(a,c)U (a,c) contain the unit disk, and U
(a,c)
r1 corre-

sponds via z′ ◦ g−1
c to the subdisk D(a, ε/2) of D(a, ε), hence the U (a,c)

r1

cover X(N). The exact number n = n(N) of U (a,c) is the cardinality of A
times the number of cusps, hence n = O(N4). We choose a numbering of
A×{cusps} with the integers {1, . . . , n}, and we will denote our charts as:

(11.3.5) z(j) : U (j) → D(0, 3/2) ⊂ C.

11.3.6 Lemma For the local coordinates z(j) : U (j) → C on X(N) that we
have just defined, the following holds. For all j and k in {1, . . . , n} we
have:

sup
U

(j)
1 ∩U

(k)
1

∣∣∣∣∣dz(j)

dz(k)

∣∣∣∣∣ ≤M,

with M = 6.

Proof Let j and k be in {1, . . . , n}. If j and k arise from the same cusp,
then z(j) and z(k) differ by a translation, hence dz(j)/dz(k) = 1. Now
suppose that j and k arise from two distinct cusps. We may suppose then,
by acting with an element of SL2(Z/NZ), that k arises from the standard
cusp ∞. Let x denote the cusp that j arises from. The coordinate z(j) is
then obtained as above from an element gx of SL2(Z) that sends ∞ to x.
Let us write g−1

x = ( a bc d ). Note that c 6= 0, hence |c| ≥ 1. Let z be a point
in H with −1/2 ≤ <z < N − 1/2 that maps to an element in U (j)

1 ∩ U (k)
1 .
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Then we know that 1/2 < =z < 1 because disks given by =z > 1 around
different cusps do not meet at all. Likewise, we then know that:

1
2
< =

(
az + b

cz + d

)
=
=(z)
|cz + d|2

< 1.

Hence, as (=z)/|cz + d|2 ≤ (=z)/c2(=z)2, we have =z < 2/c2 which
gives in fact |c| = 1. Under these conditions, we estimate:∣∣∣∣∣log

∣∣∣∣∣d exp(2πiaz+bcz+d/N)
d exp(2πiz/N)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣log

∣∣∣∣∣exp(2πiaz+bcz+d/N)daz+bcz+d

exp(2πiz/N)dz

∣∣∣∣∣
∣∣∣∣∣ =

=
∣∣∣∣log

∣∣∣∣exp(2πi
az + b

cz + d
/N)

∣∣∣∣− log |exp(2πiz/N)| − log |cz + d|2
∣∣∣∣ ≤

≤ 4π/N + 4π/N + log 4.

So indeed, for N ≥ 6, we can take M = 6. Some explanations are
perhaps in order here: as =z and =(az + b)/(cz + d) are between 1/2
and 2, | exp(2πiz/N)| and | exp(2πiaz+bcz+d/N)| are between exp(−4π/N)
and exp(−π/N). As =(az + b)/(cz + d) = (=z)/|cz + d|2, we see that
|cz + d|2 is between 1/4 and 4. �

Our next task is to produce a suitable bound, as in Theorem 10.1, of the
type µ ≤ c1|dz(j) ∧ dz̄(j)|. We start with a bound for µ on disks around∞
on X1(pl).

11.3.7 Lemma Let r be a real number such that 0 < r < 1. We map
D(0, r) to X1(pl) by sending q 6= 0 to (C×/qZ, ζpl). The image of this
map is the image in X1(pl) of the region in H defined by the condition
“=τ > −(log r)/2π”, plus the cusp∞. We still denote by µ the (1, 1)-form
on D(0, r) induced by µ. Then we have, on D(0, r):

µ ≤ 28e4π

π

1
(1− r)4

· i
2
dqdq.

Proof We first bound, on the disk D(0, r), and for a newform f , the func-
tions

∑
n≥1 an(f)qn−1 and

∑
n≥1 an(f)qnl−1. We have, for |q| < r by

Lemma 11.1.1:

|
∑
n≥1

an(f)qn−1| ≤
∑
n≥1

|an(f)|rn−1 ≤ 2
∑
n≥1

nrn−1 =
2

(1− r)2
,
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and next:

|
∑
n≥1

an(f)qnl−1| ≤ 2
∑
n≥1

nrnl−1 =
2rl−1

(1− rl)2
for |q| < r.

Now recall from Corollary 11.1.6 that for µ we have the expression:

µ =
i

2g

∑
ω

ω ∧ ω
‖ω‖2

+
i

2g

∑
ω

(
(p+ 1)s∗p(ω ∧ ω) + (p+ 1)t∗p(ω ∧ ω)
(p− 1)‖ω‖2((p+ 1)2 − |ap(fω)|2)

−
ap(fω)s∗pω ∧ t∗pω + ap(fω)t∗pω ∧ s∗pω
(p− 1)‖ω‖2((p+ 1)2 − |ap(fω)|2)

)

+
i

2g

∑
ω

(
(l + 1)s∗l ω ∧ s∗l ω + (l + 1)t∗l ω ∧ t∗l ω

(l − 1)‖ω‖2((l + 1)2 − |al(fω)|2)

−
al(fω)s∗l ω ∧ t∗l ω + al(fω)t∗l ω ∧ s∗l ω
(l − 1)‖ω‖2((l + 1)2 − |al(fω)|2)

)
,

the first sum running over Ω1(X1(pl))new, the second sum running over
Ω1(X1(l))new, and the third sum running over Ω1(X1(p))new. We bound
the different terms from the above expression for µ. The contribution of an
ω in Ω1(X1(pl))new gives, for |q| < r:

i

2g‖ω‖2
ω ∧ ω =

1
g‖ω‖2

∣∣∣∣∣∣
∑
n≥1

an(fω)qn−1

∣∣∣∣∣∣
2

· i
2
dqdq

≤ 1
g

e4π

π

(
2

(1− r)2

)2

· i
2
dqdq

=
1
g

e4π

π

4
(1− r)4

· i
2
dqdq
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The contribution of an element ω of Ω1(p)new is:

i

2g

∑
ω

(
(l + 1)s∗l ω ∧ s∗l ω + (l + 1)t∗l ω ∧ t∗l ω

(l − 1)‖ω‖2((l + 1)2 − |al(fω)|2)

−
al(fω)s∗l ω ∧ t∗l ω + al(fω)t∗l ω ∧ s∗l ω
(l − 1)‖ω‖2((l + 1)2 − |al(fω)|2)

)
≤

≤ 1
g

e4π

π(l − 1)3

(
4(l + 1)
(1− r)4

+
4(l + 1)r2(l−1)

(1− rl)4
+

16
√
lrl−1

(1− r)2(1− rl)2

)
· i

2
dqdq.

Here one uses the Weil bounds on al(fω). Symmetrically (in p and l), the
contribution to µ of an element ω of Ω1(l)new is:

i

2g

∑
ω

(
(p+ 1)s∗pω ∧ s∗pω + (p+ 1)t∗pω ∧ t∗pω

(p− 1)‖ω‖2((p+ 1)2 − |ap(fω)|2)

−
ap(fω)s∗pω ∧ t∗pω + ap(fω)t∗pω ∧ s∗pω
(p− 1)‖ω‖2((p+ 1)2 − |ap(fω)|2)

)
≤

≤ 1
g

e4π

π(p− 1)3

(
4(p+ 1)
(1− r)4

+
4(p+ 1)r2(p−1)

(1− rp)4
+

16
√
prp−1

(1− r)2(1− rp)2

)
· i

2
dqdq.

Now we sum all contributions up, over the elements of Ω1(X1(pl))new,
Ω1(X1(p))new, and Ω1(X1(l))new. We get for |q| < r:

µ ≤ 4e4π

π

(
1

(1− r)4
+

1
(1− r)4

+
r2(l−1)

(1− rl)4
+

rl−1

(1− r)2(1− rl)2
+

1
(1− r)4

+
r2(p−1)

(1− rp)4
+

rp−1

(1− r)2(1− rp)2

)
· i

2
dqdq,

and finally:

µ ≤ 28e4π

π

1
(1− r)4

· i
2
dqdq, for |q| < r.

�
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Our next step is to consider the disks gU in X(pl), where g is in
SL2(Z/plZ) and where U is as in (11.3.4).

11.3.8 Lemma Let g be in SL2(Z/plZ) and let z : U → D(0, e−π/pl) be as
in (11.3.4). Let zg := z ◦ g−1 : gU → D(0, e−π/pl). Then we have, for the
restriction to gU of the pullback h∗µ of µ along h : X(N)→ X1(N):

(h∗µ)|gU ≤ c(pl)4|dzgdzg|,

with c independent of p and l.

Proof To prove this, we consider the map h ◦ g ◦ z−1 from D(0, e−π/pl)
to X1(pl) and the pullback of µ to D(0, e−π/pl). We observe that µ is in-
variant under all automorphisms of X1(pl). This applies in particular to
the diamond operators and the Atkin-Lehner pseudo-involutions (defined
in (2.5.13)). As the group generated by these automorphisms permutes the
cusps of X1(pl) transitively, we can take such an automorphism α such that
α ◦ h ◦ g ◦ z−1 sends D(0, e−π/pl) to a disk around the cusp ∞, where
we can then apply Lemma 11.3.7. The pullbacks of µ via h ◦ g ◦ z−1 and
α ◦ h ◦ g ◦ z−1 are the same. We are also free to replace the coordinate z by
ζz with ζ ∈ C such that |ζ| = 1.

The map h ◦ g ◦ z−1 sends a point 0 6= q ∈ D(0, e−π/pl) to the point of
X1(pl) corresponding to (C×/qplZ, ζap (ql)b, ζcl (q

p)d) for certain a and b in
Fp and c and d in Fl depending on g. After replacing h with h composed
with a suitable diamond operator, and z by ζz with ζ a suitable element
of µpl(C), we are in one of four cases, that we will treat one by one.

In the first case, q is mapped to (C×/qplZ, ζpl). Then the map h ◦ g ◦ z−1

factors as the coverD(0, e−π/pl)→ D(0, e−π) of degree pl sending q to qpl,
followed by the map of Lemma 11.3.7 that sends qpl to (C×/qplZ, ζpl). Then
we have, on D(0, e−π/pl):

h∗µ ≤ 28e4π

π

1
(1− e−π)4

· i
2
d(qpl)d(qpl)

≤ 28e4π

π

1
(1− e−π)4

(pl)2· i
2
dqdq.

In the second case, q is mapped to (C×/qplZ, ql, ζl). In this case,
we compose it with the pseudo-involution wζp , which brings us to the
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point (C×/qlZ, ζp, ζl). The map then factors as the lth power map from
D(0, e−π/pl) to D(0, e−π/p), followed by the map of Lemma 11.3.7 com-
posed with a suitable diamond operator. We find:

h∗µ ≤ 28e4π

π

1
(1− e−π/p)4

· i
2
d(ql)d(ql)

≤ 28e4π

π

1
(1− e−π/p)4

l2· i
2
dqdq.

The third case is obtained by interchanging the roles of p and l, so we will
not make it explicit.

In the fourth case, q is mapped to (C×/qplZ, q). We compose with the
pseudo-involution wζpl , which brings us to (C×/qZ, ζpl). This is the map of
Lemma 11.3.7. We find:

h∗µ ≤ 28e4π

π

1
(1− e−π/pl)4

· i
2
dqdq.

In these four cases, we see that the factor in front of (i/2)dqdq in the
upper bound for h∗µ on D(0, e−π/pl) is O((pl)4). This gives the required
estimate on gU , as dq on D(0, e−π/pl) corresponds to dzg on gU . �

11.3.9 Lemma For the local coordinates z(j) and the real (1, 1)-form µ′ on
X(pl) as defined in (11.3.5) we have:

µ′ ≤ c1|dz(j) ∧ dz(j)|

on U (j)
1 with c1 = c1(pl) = O(pl).

Proof First of all, we have, by definition: µ′ = (1/pl)h∗µ. The definition
of the z(j) (see 11.3.5) plus the definitions z′ = e3π/2plz and ε = eπ/2pl− 1
give:

dz =
2ε
3
e−3π/2pl·dz(j).

If pl gets large, then the factor e3π/2pl tends to 1 and for ε we have
ε = (π/2pl)(1 + O(1/pl)). Combining all this with Lemma 11.3.8 fin-
ishes the proof. �

We can now finish the proof of Theorem 11.3.1. We apply Theorem 10.1
on X(pl) with the (1, 1)-form µ′. Then we have n = O((pl)4), M = 6
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(Lemma 11.3.6) and c1 = O(pl) (Lemma 11.3.9). We obtain from (10.2)
that there exists a constant c such that gb,µ′(b′) ≤ c·(pl)5 for all distinct
primes p and l, and all distinct b and b′ on X(pl). For distinct a and a′ on
X1(pl) we then have (see (11.3.2)):

ga,µ(a′) =
∑
h(b)=a

gb,µ′(h(a′)) ≤ c·(pl)6.

The statement that log ‖dz(j)‖Ar(P ) = O((pl)6) follows from the in-
equality (10.3) in Theorem 10.1. Indeed, if locally we write ga,µ as
ga,µ = log |z − z(a)|+ f then f(a) = − log ‖dz‖Ar(a). �

11.4 BOUNDS FOR INTERSECTION NUMBERS ON X1(pl)

In this section, we will bound the intersection numbers occurring in the right
hand side of the inequality in Theorem 9.2.5, in the situation described in
Section 8.2.

11.4.1 Theorem Let p and l be two distinct prime numbers, both at least 5,
and let X be the semistable model over B := SpecZ[ζpl] provided
by [Ka-Ma]. For two cusps P and Q (possibly equal) in X (B) we have:

(P, P ) ≤ 0, and |(P,Q)| = O((pl)7).

For a cuspidal effective divisor D of degree g on X we have:

|(D,D − ωX/B)| = O((pl)11).

Proof As p and l are at least 5, the genus of X1(pl) is at least two. By the
adjunction formula (see (4.4.8)). we have −(P, P ) = (P, ωX/B), and by
[Fal1], Theorem 5, we have (P, ωX/B) ≥ 0, hence (P, P ) ≤ 0.

Let us now derive an upper bound for (P, ωX/B). As the automorphism
group of X over B preserves the Arakelov intersection product on X and
acts transitively on the cusps, it suffices to do this for the standard cusp∞.
The Fourier expansion at∞ of the rational function j on X is of the form
j = 1/q + f with f ∈ Z[[q]]. Therefore, 1/j is regular in a neighbourhood
of∞, and has a zero of order one along∞. It follows that d(1/j) generates
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∞∗ωX/B , and d(1/j) = dq in ∞∗ωX/B . By definition of the Arakelov
intersection product and Theorem 11.3.1 we then have:

(∞, ωX/B) = −[Q(ζpl)) : Q] log ‖dq‖Ar(∞) = O((pl)7).

We now know |(P, P )| = O((pl)7) for all cusps P in X (B). We will
now show that |(P,Q)| = O((pl)7). By the Theorem of Manin-Drinfeld,
see [Dri], the image of the divisor P − Q in J1(pl)(Q(ζpl)) is of finite
order. Let Φ be a vertical fractional divisor such that for any irreducible
component C of a fibre of X overB we have (P −Q−Φ, C) = 0. By [Hri]
or Theorem 4 of [Fal1] we have (P −Q−Φ, P −Q−Φ) = 0. Equivalently,
we have:

2(P,Q) = (P, P ) + (Q,Q)− (P −Q,Φ).

The term (P − Q,Φ) can be dealt with by the method used in the proof
of Lemma 9.2.6. We work this out in this special situation. We make Φ
unique by demanding that its support is disjoint from P . Of course, this does
not change the number (P − Q,Φ), but it makes it easier to talk about Φ.
The support of Φ is contained in the reducible fibers. These are exactly
the fibers in the characteristics p and l. Let us estimate the contribution at
the prime p. We have to sum over the maximal ideals of the Fp-algebra
Fp[x]/(xl−1 + · · ·+ 1). All residue fields of this algebra are isomorphic to
a finite extension F of Fp, and the number of them is (l − 1)/ dimFp F. Let
XF be the fibre at one of these residue fields, and let ΦF be the part of Φ that
has support in XF. Then XF is the union of two irreducible components I
and I ′, with transversal intersection at the supersingular points. The number
of Fp-valued supersingular points is given by:

s := #XF(Fp)s.s. = #
(
X1(l)(Fp)s.s.

)
=

(p− 1)(l2 − 1)
24

.

The degree on I of the restriction to it of OX (I ′) is s, and, symmetrically,
degI′ OX (I) = s. As I + I ′ = XF is a principal divisor in a neighbour-
hood of XF, the restrictions of OX (I + I ′) to I and I ′ are trivial, we have
degI OX (I) = −s and degI′ OX (I ′) = −s. It follows that ΦF is one of
the following fractional divisors: ΦF = 0 if P and Q specialise to points on
the same irreducible component of XF; ΦF = (1/s)·I if P specialises to a
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point on I ′ and Q to a point on I; ΦF = (1/s)·I ′ if P specialises to a point
on I and Q to a point on I ′. If we denote by (P − Q,Φ)F the contribution
to (P −Q,Φ) at the fibre XF, we have:

|(P −Q,Φ)F| ≤ (2/s)· log #F.

Summing this over the residue fields of Fp[x]/(xl−1 + · · · + 1) gives, for
the contribution (P −Q,Φ)p to (P −Q,Φ) at p:

|(P −Q,Φ)p| ≤
l−1

dimFp(F)
·2
s
· log #F =

48 log p
(p− 1)(l + 1)

.

Likewise, we have, for the contribution at l to (P −Q,Φ):

|(P −Q,Φ)l| ≤
48 log l

(l − 1)(p+ 1)
.

So, finally:

|(P −Q,Φ)| ≤ 48 log l
(l − 1)(p+ 1)

+
48 log p

(p− 1)(l + 1)
.

The estimate |(P,Q)| = O((pl)7) now follows.
To get to the second statement of the theorem, note that

(D,D − ωX/B) = (D,D + ωX/B)− 2(D,ωX/B)

=
∑
k 6=l

(Pk, Pl)− 2(D,ωX/B),

where D = P1 + · · · + Pg, with repetitions allowed. By our previous
estimates, we get |(D,D − ωX/B)| = O(g2(pl)7) = O((pl)11). �

We will also need a lower bound for the intersection number of two distinct
points on X1(pl).

11.4.2 Theorem There is an integer c such that for all pairs of distinct
primes p and l such that X1(pl) has genus at least one, for any extension
K of Q(ζ5l) and for P and Q distinct points in X1(pl)(K) we have:

1
[K : Q]

(P,Q) ≥ c(pl)6,

where (P,Q) is the Arakelov intersection number of P and Q on the mini-
mal regular model of X1(pl) over OK .
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Proof We have:

(P,Q) = (P,Q)fin + (P,Q)∞,

with (P,Q)fin the contribution from the finite places of K, and (P,Q)∞ the
contribution from the infinite places. As P 6= Q, we have (P,Q)fin ≥ 0.
On the other hand, we have:

(P,Q)∞ =
∑
σ

−gσ(Pσ, Qσ).

By Theorem 11.3.1 we have:

gσ(Pσ, Qσ) ≤ c·(pl)6

for some absolute constant c. This finishes the proof. �

11.5 A BOUND FOR h(x′l(Q)) IN TERMS OF h(bl(Q))

In this section we do what was promised at the beginning of Section 9.1, by
stating and proving the following proposition and a corollary.

11.5.1 Proposition There is a real number c such that the following holds.
Let b be in Q, such that b5(b2 + 11b− 1) 6= 0. Let (u, v) in Q2 be a torsion
point on the elliptic curve Eb over Q given by the equation:

(11.5.2) y2 + (b+ 1)xy + by = x3 + bx2 ,

i.e., on the fibre at b of the universal elliptic curve with a point of order 5
given in Proposition 8.2.8. Then the absolute heights h(u) and h(v) are
bounded from above by c+ 14h(b).

Proof Let b, u and v inQ be as in the statement of the proposition. We will
now invoke known bounds for the difference between the Weil height and
the Néron-Tate height on elliptic curves over number fields. Such bounds
are given, for example, in [Dem], [Zim], and [Sil]. In [Sil] bounds are
given for elliptic curves given by general Weierstrass equations, but under
the assumption that the coefficients are algebraic integers. Therefore, for us
it seems better to use the following bound in Zimmer’s theorem on page 40
of [Zim].
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11.5.3 Theorem (Zimmer) Let E be an elliptic curve over Q given by a
Weierstrass equation y2 = x3 + Ax + B, and let P ∈ E(Q). Let h denote
the absolute Weil height on P2(Q), and ĥ the absolute Néron-Tate height
on E attached to h. Then one has:

− 2−1(2−1h(1 : A3 : B2) + 7 log 2) ≤ h(P )− ĥ(P ) ≤
≤ 2−1h(1 : A3 : B2) + 6 log 2 .

So, we must compare our plane elliptic curve Eb with one given by a stan-
dard Weierstrass equation. We put:

v1 := v + ((b+ 1)u+ b)/2, u1 := u+ (b+ (b+ 1)2/4)/3 .

Then (u1, v1) is a point on the elliptic curve E′b given by a Weierstrass
equation y2 = x3 + Ax + B, with A and B polynomials in b, with co-
efficients in Q, of degrees at most 4 and 6, respectively. We note that A
and B depend only on b, not on (u, v). Using Lemma 4.2.3 and writing A
as A0 + b(A1 + b(A2 + b(A3 + bA4))), we see that there is a real num-
ber c1, such that for all b we have h(A) ≤ c1 + 4h(b). Similarly, there
is a c2 such that h(B) ≤ c2 + 6h(b). Therefore, there is a c3 such that
h(1 : A3 : B2) ≤ c3 + 24h(b). Zimmer’s theorem 11.5.3, plus the fact that
the Néron-Tate height of torsion points is zero, tells us that there is a c4 such
that for all b and for all torsion points (u, v) on Eb, we have:

h(u1, v1) ≤ c4 + 12h(b) .

Expressing u and v in u1 and v1, and using again Lemma 4.2.3, we get a
real number c5 such that for all b and all (u, v) as in the proposition we are
proving, we have:

h(u) ≤ c5 + 14h(b), h(v) ≤ c5 + 14h(b) .

This ends the proof of Proposition 11.5.1. �

11.5.4 Corollary There is a real number c such that for each l and each
Qx,i as in the beginning of Section 9.1 we have:

h(x′l(Qx,i)) ≤ c+ 14h(bl(Qx,i)).
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Proof By definition (Section 8.2), x′l(Qx,i) is the x-coordinate of a point of
order 5l on the fibre at bl(Qx,i) of the elliptic curve E in Proposition 8.2.8.
Proposition 11.5.1 gives the result. �

11.6 AN INTEGRAL OVER X1(5l)

In this section we will give an upper bound for the integral appearing in the
estimate in Theorem 9.1.1. We recall the situation: l is a prime number with
l > 5, and b is the regular function on Y1(5)Q given by Proposition 8.2.8.
We also view b as a regular function bl on Y1(5l)Q via pullback along the
map Y1(5l)Q → Y1(5)Q that sends (E/S, P5, Pl) to (E/S, P5), where S is
any Q-scheme, E/S an elliptic curve, P5 in E(S) everywhere of order 5,
and Pl in E(S) everywhere of order l.

11.6.1 Proposition There exist real numbers A and B such that for all
primes l > 5: ∫

X1(5l)(C)
log(|bl|2 + 1)µ ≤ A+B · l6 ,

where µ is the Arakelov (1, 1)-form.

Proof In order to simplify the notation in the proof, we will let X1(5l)
denote the Riemann surface X1(5l)Q(C) of complex points of the curve
X1(5l)Q over Q, and we will drop de subsscript l in bl. We will denote
points of Y1(5l) as triples (E,P5, Pl) with E a complex elliptic curve, with
points P5 of order 5 and Pl of order l. Similarly, we will denote points of
Y1(5) by pairs (E,P ), and points on the j-line just by elliptic curves.

The equations in Proposition 8.2.8 show that the rational function b on
X1(5) has exactly one pole, that it is of order one, and that at that point,
the function j : X1(5) → P1 has a pole of order 5. The region in H con-
sisting of the τ with =(τ) > 1 gives an embedding of the disk D(0, e−2π)
into the j-line, sending q 6= 0 to C×/qZ. The inverse image of this disk
under j : X1(5) → P1 consists of 4 disks, one around each cusp. The two
disks around the cusps where j is ramified are given by the embeddings
D(0, e−2π/5)→ X1(5), sending q 6= 0 to (C×/q5Z, q) and to (C×/q5Z, q2).
As the integral in the proposition that we are proving does not change if we
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replace b by its image under a diamond operator 〈a〉 with a ∈ F×5 , we may
and do suppose that b has its pole at the center of the punctured disk

U = {(C×/q5Z, q) : q ∈ D(0, e−2π/5)∗} ⊂ X1(5) .

The integral of log(|b|2 + 1)µ over the complement of the inverse image of
U in X1(5l) is bounded by the supremum of log(|b|2 + 1) on X1(5) − U .
This upper bound does not depend on l. Hence it is enough to prove that the
integral of log(|b|2 + 1)µ over the inverse image of U in X1(5l) is bounded
byB · l6, for a suitableB. Now this inverse image of U is a union of 2(l−1)
punctured disks Uc and Vd with c and d running through F×l given by:

Uc = {(C×/q5Z, q, ζcl ) : q ∈ D(0, e−2π/5)∗}

and:

Vd = {(C×/q5lZ, ql, q5d) : q ∈ D(0, e−2π/5l)∗} .

For each c in F×l the map X1(5l) → X1(5) restricts to the isomorphism
Uc → U given by q 7→ q. For each d in F×l , the restriction Vd → U is given
by q 7→ ql.

Around the standard unramified cusp of X1(5l) we have the punctured
disk:

Wl = {(C×/qZ, ζ5, ζl) : q ∈ D(0, e−2π/5)∗}.

By applying a suitable element from the group of automorphisms of X1(5l)
generated by the Atkin-Lehner pseudo-involutions and the diamond op-
erators we can establish isomorphisms of the Uc with Wl. The point
(C×/q5Z, q, ζcl ) in Uc is then first sent to (C×/q5Z, q, ζl) by 〈c−1〉, and
then to (C×/qZ, ζ5, ζl) by the Atkin-Lehner pseudo-involution that divides
out by the group generated by the point of order 5 (see Definition 2.5.13).
The coordinate q on Wl is then identified in this way with the coordinate q
on Uc. We observe that µ is invariant under each automorphism of X1(5l).
Lemma 11.3.7 gives a real number C1 such that for all l and c, the positive
real (1, 1)-form µ on Uc can be estimated from above by:

µ|Uc ≤ C1 ·
i

2
dqdq .
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Similarly, for each d in F×l a suitable automorphism of X1(5l) maps Vd to
the punctured disk W ′l :

W ′l = {(C×/qZ, ζ5, ζl) : q ∈ D(0, e−2π/5l)∗} .

Lemma 11.3.7 gives a real number C2 such that for all l and d, the positive
real (1, 1)-form µ on Vd can be estimated from above by:

µ|Vd ≤ C2 ·
1

(1− e−2π/5l)4
· i

2
dqdq .

Now the function qb on U extends to a holomorphic function on a disk
containing U , hence |qb| is bounded on U . Hence there is a real number
C3 > 1 such that |b|2 + 1 ≤ C3·|q−2| on U . It follows that on all Uc we
have |b|2 + 1 ≤ C3·|q−2|, and that on all Vd we have |b|2 + 1 ≤ C3·|q−2l|
(note that under Vd → U , (C×/q5lZ, ql, q5d) is sent to (C×/q5lZ, ql)). We
remark that 1/(1 − e−x) = x−1(1 + O(x)) as x tends to 0 from above.
Hence there is a C4 ∈ R such that for all l:

1
(1− e−2π/5l)4

≤ C4·l4 .

We get, for all l:∫
b−1U

log(|b|2 + 1)µ ≤ (l − 1)C1

∫
D(0,e−2π/5)

log(C3·|q−2|) · i
2
dqdq

+ (l − 1)C2
1

(1− e−2π/5l)4

∫
D(0,e−2π/5l)

log(C3·|q−2l|) · i
2
dqdq ≤

≤
∫
|z|<1

(
lC1 log(C3·|z|−2) + C2C4l

5 log(C3·|z|−2l)
) i

2
dzdz

≤
∫
|z|<1

(
C1l log(C3·|z|−2) + C2C4l

6 log(C3·|z|−2)
) i

2
dzdz

= (C1l + C2C4l
6)·(π logC3 + π) .

This finishes the proof of Proposition 11.6.1 �

11.7 FINAL ESTIMATES OF THE ARAKELOV CONTRIBUTION

We will now put the estimates of the preceding sections together, in the
situation of Section 8.2. We briefly recall this situation. We have a prime
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number l > 5, and Xl denotes the modular curve X1(5l), over Q, and gl its
genus. The Jacobian variety of Xl is denoted by Jl. In Jl(Q)[l] we have the
Gal(Q/Q)-module V that realises the representation ρ from Gal(Q/Q) to
GL2(F) attached to a surjective ring morphism f : T(1, k) � F such that
the image of ρ contains SL2(F). We have an effective divisorD0 onXl,Q(ζl),
of degree gl, supported on the cusps. For every x in V there is a unique
effective divisor Dx = Qx,1 + · · · + Qx,gl of degree gl such that x is the
class of Dx−D0. We have written Dx = Dfin

x +Dcusp
x , where Dcusp

x is the
part of Dx supported on the cusps. The numbering of the Qx,i is such that
Dfin
x = Qx,1 + · · ·+Qx,dx . We have morphisms bl and x′l from Xl,Q to P1

Q
that, seen as rational functions, have their poles contained in the set of cusps
of Xl.

The following proposition gives upper bounds for the absolute heights of
the algebraic numbers bl(Qx,i) and x′l(Qx,i), polynomial in l. The height
function h used here is as defined in (4.1.6). The proof of the proposition
combines the involved arguments of the previous sections.

11.7.1 Proposition There is an integer c, such that for all x in V as above,
and for all i ∈ {1, . . . , dx}, the absolute heights of bl(Qx,i) and x′l(Qx,i) are
bounded from above by c·l12.

Proof We will just write b for bl. Let V be as in the proposition. Theo-
rem 9.1.1 shows that for all x ∈ V , all i ∈ {1, . . . , dx} and all number fields
K containing Q(ζ5l) over which Qx,i is rational, we have:

(11.7.2)

h(b(Qx,i)) ≤
1

[K : Q]

(
(Qx,i, b∗∞)X + l2

∑
σ

sup
Xσ

gσ +

+
1
2

∑
σ

∫
Xσ

log(|b|2 + 1)µXσ

)
+

1
2

log 2 .

Here X is the minimal regular model of Xl over B := SpecOK .
Let us first concentrate on the second and third terms of the right hand

side of (11.7.2). Theorem 11.3.1 gives an integer c1 such that for all σ
we have supXσ gσ ≤ c1·l6, uniformly in all l. Proposition 11.6.1 gives an
integer c2 such that for all σ we have (1/2)

∫
Xσ

log(|b|2 + 1)µXσ ≤ c2·l6,
uniformly in all l. Hence, for all x ∈ V , all i ∈ {1, . . . , dx} and all number
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fields K containing Q(ζ5l) over which Qx,i is rational, we have:

(11.7.3) h(b(Qx,i)) ≤
1

[K : Q]
(Qx,i, b∗∞)X + c1·l8 + c2·l6 ,

uniformly in all l and V .
We now concentrate on the first term. We recall that b∗∞ is an effective

cuspidal divisor on Xl. Let x be in V . We apply Theorem 9.2.5, where (in
the notation of that theorem) we assume that all Qx,i (i ∈ {1, . . . , gl}) are
K-rational and that K contains Q(ζ5l), and that P is a cusp. We also use
the obvious fact that log #R1p∗OX (Dx) is nonnegative. That gives:

(Dx, P )
[K : Q]

≤ 1
[K : Q]

(
−1

2
(D0, D0 − ωX/B) + 2g2

l

∑
s∈B

δs log #k(s)

+
∑
σ

log ‖ϑ‖σ,sup +
gl
2

[K : Q] log(2π)

+
1
2

deg det p∗ωX/B + (D0, P )
)
.

Theorem 11.4.1, applied with B = Spec(Z[ζ5l]), gives that:

1
[K : Q]

|(D0, D0 − ωX/B)| = O(l10),

and that:

1
[K : Q]

|(D0, P )| = O(l8),

as D0 is an effective cuspidal divisor of degree gl and gl = O(l2). By
Theorem 11.2.1 we have:

1
[K : Q]

∑
σ

log ‖ϑ‖σ,sup = O(l6).

By Theorem 11.1.7 we have:

1
[K : Q]

deg det p∗ωX/B = O(l2 log l).

Finally, we have:

g2
l

[K : Q]

∑
s∈B

δs log #k(s) = O(l6),
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by the following argument. The only non-trivial contributions come from
s over 5 and over l. The total contribution at 5 is independent of which
extension K of Q(ζ5) we use, and for Q(ζ5) there is only one s over 5,
k(s) = F5, and δs equals the number of supersingular points in X1(l)(F5),
which is O(l2). The contribution from l can be computed over Q(ζl). Then
there is one s, and k(s) = Fl, and δs is the number of supersingular points
in X1(5)(Fl), which is O(l) (see Section 8.1).

Putting these last estimates together, we get that there is an integer c3 such
that for all l and x we have:

(11.7.4)
1

[K : Q]
(Dx, P ) ≤ c3·l10.

Now Dx is the sum of gl points Qx,i. In order to get upper bounds for the
individual (Qx,i, P ) we need a lower bound for these. Theorem 11.4.2 gives
us a lower bound ifQx,i 6= P and Theorem 11.4.1 gives us one if P = Qx,i.
Putting these together, we get an integer c4 such that for all l, x and i:

1
[K : Q]

(Qx,i, P ) ≥ c4·l6.

The last two estimates together imply that there is an integer c5 such that for
all l, x and i we have:

1
[K : Q]

(Qx,i, P ) ≤ c5·l10.

As b∗∞ is an effective cuspidal divisor on Xl, of degree O(l2), the previ-
ous inequality implies that there is an integer c6 such that for all l, x and
i ∈ {1, . . . , dx} we have:

1
[K : Q]

(Qx,i, b∗∞)X ≤ c6·l12.

This finishes the proof concerning the height of bl(Qx,i). Corollary 11.5.4
then finishes the proof. �

We recall, from the end of Section 8.2, that, in the situation as described in
the beginning of this section, we take a linear combination fl := bl + nx′l
with 0 ≤ n ≤ g2

l (#F)4, such that under the map fl : Xl,Q → P1
Q the

divisorsDfin
x = Qx,1+· · ·+Qx,dx , for x ∈ V , have distinct images fl,∗Dfin

x .
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Suppose that fl is any such linear combination. The fl,∗Dfin
x are then distinct

effective divisors of degree dx on A1
Q.

For each x in V , we get a polynomial PD0,fl,x with coefficients inQ given
by:

PD0,fl,x(t) =
dx∏
i=1

(t− fl(Qx,i)) in Q[t],

and the map that sends x to PD0,fl,x is injective, and Gal(Q/Q(ζl))-
equivariant.

We have seen that there is an integer m with 0 ≤ m ≤ g·(#F)4 such that
the map:

aD0,fl,m : V → Q, x 7→ PD0,fl,x(m) =
dx∏
i=1

(m− fl(Qx,i))

is injective and hence a generator of the Q(ζl)-algebra Al,Q(ζl) associated
with V . Assume that m is such an integer. The following theorem gives our
final upper bound for the absolute height of the coefficients of the minimal
polynomial:

(11.7.5) PD0,fl,m =
∏
x∈V

(T − aD0,fl,m(x)) =
∑
j

PjT
j in Q(ζl)[T ]

of aD0,fl,m over Q(ζl).

11.7.6 Theorem There exists an integer c such that for all l, V , D0, fl and
m as above we have, for all Pj as in (11.7.5):

h(Pj) ≤ c·l14·(#F)2.

Proof Let c1 be an integer as given by Proposition 11.7.1. Let l, V , D0, fl
and m be as in the theorem. For each x ∈ V and each i in {1, . . . , dx} we
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have, by Proposition 11.7.1, the definition of fl, and Lemma 4.2.3:

(11.7.7)

h(fl(Qx,i)) = h(bl(Qx,i) + nx′l(Qx,i))

≤ log 2 + h(bl(Qx,i)) + h(nx′l(Qx,i))

≤ log 2 + h(bl(Qx,i)) + h(n) + h(x′l(Qx,i))

≤ log 2 + c1·l12 + log
(
l2·(#F)4

)
+ c1·l12

≤ 2c1·l12 + 2 log l + 4 log(#F) + log 2

≤ c2·l12 + 4 log(#F),

for c2 = c1 + 1.
In order to simplify the notation during the rest of this proof, we write

a for aD0,fl,m and P for PD0,fl,m. Then we have, for each x ∈ V (using
dx ≤ l2 and (11.7.7)):

(11.7.8)

h(a(x)) = h

(
dx∏
i=1

(m− fl(Qx,i))

)
≤

dx∑
i=1

h(m− fl(Qx,i))

≤
dx∑
i=1

(log 2 + h(m) + h(fl(Qx,i)))

≤ dx·
(
log 2 + log

(
l2(#F)4

)
+ c2·l12 + 4 log(#F)

)
≤ c3·l14 + 8l2 log(#F),

where c3 = c2 + 1.
Let j be in {0, . . . ,#V }. Then Pj is, up to a sign, the value of the

elementary symmetric polynomial of degree #V − j evaluated in the a(x),
where x ranges through V . Lemma 4.2.4, together with (11.7.8), gives us:

h(Pj) ≤ #V · log 2 +
∑
x∈V

h(a(x))

≤ #V ·
(
log 2 + c3·l14 + 8l2 log(#F)

)
≤ c·(#F)2·l14,

where c = c3 + 1, and where we have used that log #F ≤ l log l since F is
a quotient of T(1, k) and k ≤ l + 1. �

A last consequence of all Arakelovian estimates is the following upper
bound for the term log #R1p∗OX (Dx) in Theorem 9.2.5.
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11.7.9 Theorem There is an integer c such that for all l > 5 prime and all x
in V we have:

1
[K : Q]

log #R1p∗OX (Dx) ≤ c·l10.

Proof We have already seen, in the proof of Proposition 11.7.1, that the
right hand side of the inequality in Theorem 9.2.5, divided by [K : Q], is
bounded from above by a constant times l10. We have also seen in Theo-
rem 11.4.2 that the term (Dx, P )/[K : Q] on the left hand side is bounded
from below by a constant times l8 (recall that Dx is of degree O(l2)). This
proves the inequality. �

This upper bound will be very useful for us, as the next interpretation shows.
Recall that Xl has good reduction over Z[1/5l].

11.7.10 Theorem There is an integer c with the following property. Let l,
Xl, V and D0 as in the beginning of this section. A prime number p 6 |5l is
said to be V -good if for all x in V − {0} the following two conditions are
satisfied:

1. at all places v of Q over p the specialisation Dx,Fp at v is the unique
effective divisor on the reduction Xl,Fp such that the difference with
D0,Fp represents the specialisation of x;

2. the specialisations of the non-cuspidal partDfin
x ofDx at all v above p

are disjoint from the cusps.

Then we have: ∑
p not V -good

log p ≤ cl12·(#F)2.

Proof First of all, a prime number p satisfies conditions (1) and (2) for all x
in V −{0} if and only if it satisfies them one of them, as Gal(Q/Q(ζl)) acts
transitively on V − {0} by assumption.

We take K to be the extension of Q(ζl) that corresponds to the tran-
sitive Gal(Q/Q(ζl))-set V − {0}; this is the field of definition of one x
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in V − {0}. Then [K : Q] = O(l·(#F)2). We define S(V ) to be the im-
age in Spec(Z[1/5l]) of the support in Spec(OK) of the finite OK-module
R1p∗OX (Dx). By Theorem 11.7.9 we have:

log #(Z[1/5l]⊗ R1p∗OX (D′x)) = O(l11·(#F)2),

and hence: ∑
p∈S(V )

log p = O(l11·(#F)2).

We claim that the p in S(V ) are precisely the primes p 6∈ {5, l} such that
condition (1) is not satisfied for x. To see this, we first note that for a
morphism OK → Fp the canonical map from Fp ⊗OK R1p∗OX (Dx) to
H1(Xl,Fp , OXFp

(Dx,Fp)) is an isomorphism (see Theorem III.12.1 of [Hart];
base change and cohomology in top dimension commute). The divisor
Dx,Fp is the unique effective divisor in its linear equivalence class if and
only if h0(Xl,Fp , OXFp

(Dx,Fp)) = 1, which, by Riemann-Roch, is equiva-

lent to h1(Xl,Fp , OXFp
(Dx,Fp)) = 0.

Now we let T (V ) denote the set of primes p 6∈ {5, l} such that at least
one specialisation of Dfin

x at a place of K above p is not disjoint from the
cusps. Taking into account that [K : Q] = O(l·(#F)2), equation (11.7.4)
gives us an upper bound:

(Dx, P ) = O(l11·(#F)2)

As the degree of Dcusp
x is at most O(l2), Theorem 11.4.1 gives us:

|(Dcusp
x , P )| = O(l7·(#F)2), hence (Dfin

x , P ) = O(l11·(#F)2).

As the divisor Cusps has degree O(l), we have:

(Dfin
x ,Cusps) = O(l12·(#F)2).

The intersection number (Dfin
x ,Cusps) is the sum of (Dfin

x ,Cusps)fin, the
contribution of the finite places, and (Dfin

x ,Cusps)∞, the contribution of the
infinite places. We have:

(Dfin
x ,Cusps)∞ =

∑
i,P,σ

−gσ(Qx,i, P ),
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where the sum is taken over the i with 1 ≤ i ≤ dx, over the cusps P and the
σ : K → C. Then Theorem 11.3.1 gives the upper bound:

(Dfin
x ,Cusps)fin = (Dfin

x ,Cusps)− (Dfin
x ,Cusps)∞ = O(l12·(#F)2).

By the definition of our set T (V ) and the definition of (Dfin
x ,Cusps)fin we

get: ∑
p∈T (V )

log p ≤ (Dfin
x ,Cusps)fin = O(l12·(#F)2).

The proof of the theorem is then finished by noticing that the set of primes
p 6∈ {5, l} that are not V -good is precisely the union of S(V ) and T (V ). �
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Chapter Twelve

Approximating Vf over the complex numbers

J.-M. Couveignes

In this chapter, we address the problem of computing torsion divisors on
modular curves with an application to the explicit calculation of modular
representations. We assume we are given an even integer k > 2, a prime
integer l > 6(k − 1), a finite field F with characteristic l, and a ring epi-
morphism f : T(1, k) → F. We want to compute the associated Galois
representation ρf : Gal(Q/Q) → GL2(F). This representation lies in the
jacobian of the modular curve X1(l). Indeed, let f2 : T(l, 2) → F be the
unique ring homomorphism such that f2(Tm) = f(Tm) for every positive
integer m. Let Vf be the subgroup of J1(l)(Q)[l] cut out by the kernel of
f2. This is a dimension 2 vector space over F. Given a finite generating set
(t1, . . . , tr) with r = (l2 − 1)/6 as in Theorem 2.5.12 we can rewrite Vf as
a finite intersection

Vf =
⋂

1≤i≤r
ker
(
ti, J1(l)(Q)[l]

)
. (12.1)

Then Vf realizes ρf and we may write ρf as a morphism

ρf : Gal(Q/Q)→ GL(Vf ).

We will assume that the image of ρf contains SL(Vf ). Otherwise ρf
would be reducible according to Theorem 2.5.18. And the reducible case is
treated in Section 14.2.

We want to compute the splitting field Kf of ρf as an extension of Q.
Computing Vf using general algorithms from computer algebra, like Buch-
berger’s algorithm, seems difficult in this situation because Vf is defined as
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a subset of the l-torsion subgroup inside J1(l). A naive algebraic descrip-
tion of Vf would lead us to write down an equation for J1(l)[l]; something
similar to an l-division polynomial for J1(l). The degree of such a polyno-
mial would be the cardinality of the group of torsion points, that is l2g(X1(l))

where the genus g(X1(l)) of X1(l) grows quadratically in l. Such a degree
is far too large for us: we are looking for an algorithm with polynomial time
complexity in l.

We describe below an algorithm for computing elements in Vf . This is
a deterministic algorithm and the running time is polynomial in l. We shall
work with the jacobian J1(5l) rather than with J1(l). We set

X = X1(5l)

and we denote by g the genus of the latter curve. We note that the con-
ditions above imply k ≥ 4, l ≥ 19 and g ≥ 289. Using the map
B5l,l,1 : X1(5l) → X1(l) defined in Section 2.2, and the associated mor-
phism B∗5l,l,1 : J1(l) → J1(5l) between Jacobian varieties, we can see the
subspace Vf as an Fl-subspace inside the l-torsion of the jacobian

J = J1(5l).

To avoid confusions we shall call Wf ⊂ J1(5l) the image of Vf ⊂ J1(l) by
B∗5l,l,1. We call Wf the Ramanujan subspace associated with f . Elements
in J are represented by divisors on the curve X . For every class in Wf , we
compute a sharp enough approximation for some divisor in this class. It will
be explained in Chapter 14 how one can compute the splitting field of this
divisor from such a complex approximation, using the upper bounds for the
naive height of torsion divisors on modular curves proven in Section 11.7.

This chapter is organized as follows. In Section 12.1 we recall how points
on X are represented using standard coordinates taking values in the com-
plex unit disk. Section 12.2 recalls state of the art algorithms for computing
the lattice of periods Λ of the jacobian J of the modular curve X . In Sec-
tion 12.3 we describe an algebraic model for X1(5l) and we relate it to the
analytic model Γ1(5l)\H∗.

The four next sections collect useful intermediate results. Section 12.4
provides explicit inequalities relating coefficients and values of converging
power series. In Section 12.5 we prove formal identities relating Jacobians
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and Wronskians, that are necessary for the local study of the Jacobi integra-
tion map. Section 12.6 collects simple quantitative facts about the Jacobi
integration map. Section 12.7 relates several natural norms on the space of
parabolic modular forms of weight 4.

A point on J can be represented in two different ways. We may con-
sider it as a class x + Λ in Cg/Λ = J(C). We may also fix a degree g
divisor Ω on X and represent an element in J(C) by a divisor Q − Ω in
the corresponding linear equivalence class, where Q is an effective degree
g divisor on X . In Sections 12.8 and 12.9 we adopt this latter point of view
and we show that it is very convenient for computational purposes and leads
to polynomial time algorithms. Unfortunately, the points we are interrested
in (the x belonging to the Ramanujan subspace Wf ) are rather difficult to
characterize and compute in this form. However, assuming the divisor Ω
has been chosen correctly (e.g. we take for Ω the divisor D0 constructed in
Section 8.1), to every x in Wf there corresponds a unique divisor Qx such
thatQx−Ω lies in the class represented by x+Λ ∈ J(C). Such aQx will be
called a Ramanujan divisor. Computing x ∈ Cg is not too difficult because
the defining equations of Vf given in Equation (12.1) become linear in the
analytic model Cg/Λ. The difficulty then is to compute Qx once given x.
This is a typical example of the inverse Jacobi problem. Section 12.10 pro-
vides a partial general solution for this inverse Jacobi problem: it explains
how, given Ω and some x + Λ, one can find a divisor Q such that Q − Ω
lies in the corresponding linear equivalent class. Since we are only working
with approximations, we must control the error made in computing Q from
x. The output divisor Q′ is hopefully close to Q but most likely not equal
to it. We call x′ the image of Q′ by the Jacobi integration map. Statements
in Section 12.10 control the difference between x and x′. We can’t hope a
much better result in full generality since, in general, the divisor Q is not
even unique, because x could lye in the singular locus of the Jacobi map.
To relate the distance between Q′ and Q and the distance between x′ and
x, we need some information about the local behavior of the Jacobi map at
Q−Ω. Using results from Arakelov theory proven in Section 11.7, we show
in Sections 12.11, 12.12 and 12.13 that when x lies in Wf then the error on
x and the error on Qx are nicely related. This finishes the proof of the main
Theorem 12.10.2 in this chapter. The last Section 12.14 provides a more
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algebraic variant of this theorem.
In this chapter, we shall use several times the main statements in Chap-

ter 5 and in particular Lemma 5.4.12 and Theorem 5.4.3. These statements
basically say that it is possible to compute efficiently sharp approximations
of zeros of power series, provided we don’t prospect near the boundary of
the disk of convergence. In particular these zeros are well conditioned: they
are not dramatically affected by a small perturbation of the series.

We suggest that the reader look at the first pages and main statements in
Chapter 5 before going further in this chapter.

Remark. The symbol Θ in this chapter stands for a positive effective abso-
lute constant. So any statement containing this symbol becomes true if the
symbol is replaced in every occurrence by some large enough real number.

Remark. In this chapter the letter i stands for the square root of −1 in C
having positive imaginary part.

12.1 POINTS, DIVISORS AND COORDINATES ON X

In this section we recall how points, functions, forms and divisors are rep-
resented on a modular curve. We denote by F the classical fundamental
domain for the action of SL2(Z) on the Poincaré upper half planeH. We set
D = F̄ ∪∞. We set

T =

(
1 1
0 1

)
.

For every positive integer w we set

Dw =
⋃

0≤k≤w−1

T k(D).

We denote by Fw the image of Dw by the map z 7→ exp(2iw−1πz). This
is a compact subset of the open disk D(0, 1) ∈ C. It is even contained



bookarxiv March 18, 2010

APPROXIMATING VF OVER THE COMPLEX NUMBERS 271

in D(0, exp(−π/w)). Any cusp on X(C) can be written γ(∞) for some
γ ∈ SL2(Z). These γ can be chosen once for all with entries

≤ lΘ

in absolute value. We denote by Ξ the set of all these chosen γ. The set Ξ
parametrizes the cusps of X . We assume that the identity belongs to Ξ. It
parametrizes the cusp∞ itself. We write the topological space X(C) as a
union

X(C) =
⋃
γ∈Ξ

γ(Dwγ ) =
⋃
γ∈Ξ

⋃
0≤k≤wγ−1

γ(T k(D))

where wγ is the width of the cusp γ(∞). We say that the γT k arising in this
union form a standard system of right cosets representatives for Γ1(5l) in
SL2(Z).

Every point on X is represented by a complex number z in γ(Dwγ ) ⊂ H
for some γ in Ξ. But γ−1(z) ∈ Dwγ will often be more convenient. And

qγ = exp(2iw−1
γ πγ−1(z)) (12.2)

is even more convenient. So most of the time, a complex point on X will be
given as a pair (γ, q) where γ ∈ Ξ and q ∈ Fwγ ⊂ D(0, exp(−π/wγ)) is
the value of qγ at this point. We set

Dγ = γ(Dwγ ) ⊂ Γ1(5l)\H∗ = X1(5l).

When γ is the identity Id, we sometimes write q instead of qId. The
parameter q traditionally plays a more important role. Functions and forms
on X1(5l) are often identified with their q-expansions. The function field
C(X1(5l)) can thus be identified with a subfield of the field of Puiseux series
C{{q}}. In particular, we have an action of Aut(C) on modular functions
and we can define the field Q(X1(5l)) of Q-rational functions on X1(5l) to
be the field of functions having q-expansion with Q-rational coefficients.
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We define the distance

dγ(P1, P2)

between two points P1 = (γ, q1) and P2 = (γ, q2) in Dγ to be the modulus
|q2 − q1| of the difference of their qγ coordinates. Of course dγ extends to
D(0, 1) ⊃ Fwγ .

Given a complex number q in the open disk D(0, 1), let z ∈ H ∪ ∞ be
such that

exp(2iw−1
γ πγ−1(z)) = q.

In the special case q = 0 we set z = γ(∞). Such a z may not be unique. But
two such z’s are mapped onto each other by some power of γ×Twγ × γ−1.
Since the latter lies in Γ1(5l) we have defined a map

µγ : D(0, 1)→ X1(5l).

This is the parameterization associated with γ. It sends Fwγ onto Dγ . Any
form (resp. function) on X1(5l) can be lifted to D(0, 1) along the map µγ .
For example, Klein’s modular function j(z) is usually given as a function of
q = qId. There exists a Laurent series J(x) in the indeterminate x such that
j(z) = J(q). Further

J(x) =
1
x

+ 744 +
∑
k≥1

c(k)xk (12.3)

where the coefficients c(k) are rational integers. It can be checked easily
that the expansion of j at the cusp γ(∞) is given by

j(z) = J(qwγγ ) (12.4)

where wγ is the width of the cusp γ(∞). It is a consequence of a famous
theorem by Petersson and Rademacher that the coefficient c(k) is bounded
from above by

Θ
√
k. (12.5)
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Now let d be a positive integer and let Q = Q1 + Q2 + · · · + Qd be a
degree d effective divisor on X . Let ε be a non-negative real number. We
say that Q is ε-simple if the following conditions hold true.

1. For every integer k such that 1 ≤ k ≤ d, the point Qk belongs to Dγk

for a unique γk in Ξ. So Qk = (γk, qk). We ask that qk lies in the
interior of Fwk where wk is the width of the cusp γk(∞).

2. The distance between qk and the boundary of Fwk is > ε.

3. If 1 ≤ k1 < k2 ≤ d and γk1 = γk2 = γ, we write Qk1 = (γ, q1) and
Qk2 = (γ, q2) and we ask that |q2 − q1| > ε.

Not every divisorQ is ε-simple but if ε < 1/(dΘ) there exists an ε-simple
divisor Q′ = Q′1 + Q′2 + · · · + Q′d such that for every 1 ≤ k ≤ d we have
Q′k = (γk, q′k) and |q′k − qk| ≤ Θdε.

12.2 THE LATTICE OF PERIODS

This section is devoted to the explicit calculation of the lattice of periods
of X . All the algorithms in this section are detailed in the two books by
Cremona [Cre] and Stein [Ste2] and in Bosman’s thesis [Bos2]. See also
Chapter 6.

We need a complex analytic description of the torus J(C) as Cg/Λ where
Λ is the lattice of periods. We first compute an explicit description of the
first group in singular cohomology

Hsing
1 (X1(5l),Z).

Using Manin-Shokurov theory we find a basis Bsing
1 for this Z-module. Ev-

ery element in this basis is an integer linear combination of Manin symbols

∑
γ

cγ{γ(0), γ(∞)}. (12.6)

The γ in the sum (12.6) runs over the standard system of right cosets
representatives for Γ1(5l) in SL2(Z). The integer coefficients cγ can be
chosen to be
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≤ exp(lΘ)

in absolute value.
We also need a basis B1

DR of the space of holomorphic differentials

H1 = H1
DR(X1(5l))

or equivalently a basis of the space S2(Γ1(5l)) of weight two cusp forms.
We shall use the standard basis made of normalized newforms of level 5l
together with normalized newforms of level l lifted to level 5l by the two
degeneracy maps.

Let f =
∑

k≥v fkq
k be a form in this basis. The q-valuation v of f is

1 or 5. The first non-zero coefficient fv in the q-expansion of f is 1. The
coefficients fk in the q-expansion of f are algebraic integers. The modulus
of fk is kΘ. One can compute an approximation of fk within exp(−m) in
deterministic polynomial time (klm)Θ.

The action of Atkin-Lehner involutions w5 and wl is expressed in the
basis B1

DR by theorem 2 of [Asa]. The action of the diamond operators
is known also because every form in B1

DR is an eigenform for the Hecke
algebra T(5l) generated by the operators Tn for n prime to 5l.

We also need the expansion of every form f(q) in B1
DR at every cusp

γ(∞). More precisely, f(q)q−1dq should be rewritten as h(qγ)q−1
γ dqγ for

every γ in Ξ. Since the level 5l is squarefree, the group generated by the
Atkin-Lehner involutions and the diamond operators acts simply transitively
on the cusps. So there is an automorphism in this group that sends ∞ to
γ(∞). This automorphism can be represented by a matrix Wγ in GL2(Q)
having integer entries as explained in Section 6.2 of Chapter 6. If

γ =

(
a b

c d

)

then the width wγ of the cusp γ(∞) is

wγ =
5l

gcd(5l, c)
.
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Let r be the unique integer in [0, wγ [ such that d ≡ cr mod wγ . Set
b′ = b− ar and d′ = (d− cr)/wγ and c′ = c/ gcd(5l, c). Then

Wγ =

(
awγ b′

5lc′ wγd
′

)
(12.7)

and the product

W−1
γ × γ =

(
w−1
γ rw−1

γ

0 1

)
(12.8)

fixes∞ and it acts on Fourier expansions like the substitution q 7→ ζq1/wγ

for some root of unity ζ = exp(2riπ
wγ

). Since the action of Wγ on forms is
known, we can compute the expansion of all forms in B1

DR at all cusps in
deterministic polynomial time (klm)Θ where k is the q-adic accuracy and
m the complex absolute accuracy of coefficients.

Once we have computed a basis for both the singular homology
Hsing

1 (X1(5l),Z) and the de Rham cohomologyH1
DR(X1(5l)) we can com-

pute the lattice Λ of periods. Since we are given a basis B1
DR of holomorphic

differentials, the lattice Λ is well defined inside CB1
DR as the image of the

integration map Hsing
1 (X1(5l),Z)→ CB1

DR sending a cycle c onto the vec-
tor (

∫
c ω)ω∈B1

DR
. The image of the basis Bsing

1 by the integration map is a
basis Bper of the lattice Λ of periods. The so-called matrix of periods has
entries

∫
c ω where c is a cycle in the basis Bsing

1 of Hsing
1 (X1(5l),Z) and

ω = f(q)q−1dq is a form in the basis B1
DR of H1

DR(X1(5l)). Comput-
ing these periods reduces to evaluating integrals of the form

∫ β
α f(q)q−1dq

where α and β are two cusps. We first cut this integral in two pieces∫ β
α f(q)q−1dq =

∫ β
i f(q)q−1dq −

∫ α
i f(q)q−1dq. Since the group gen-

erated by Atkin-Lehner involutions and diamond operators acts transitively
on the cusps, we can reduce to the computation of integrals of the form∫∞
α f(q)q−1dq where α = (a + bi)/c and a, b and c are integers bounded

by lΘ in absolute value. Since the coefficient fk in the q-expansion of f are
bounded by kΘ we can compute approximations of the entries in the period
matrix within exp(−m) in deterministic polynomial time (lm)Θ.

We note that the L∞ norm on CB1
DR induces a distance dJ on the quotient

CB1
DR/Λ = J(C)
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dJ(x+ Λ, y + Λ) = min
z∈Λ
|x− y − z|∞. (12.9)

This distance will be useful when evaluating rounding errors in the course
of numerical computations. We denote by

φ : X → J

the Jacobi integration map. This map is well defined once we have chosen a
degree 1 divisor on X as origin. For any γ in Ξ, the restriction of φ to Dγ is
Lipschitz with constant lΘ according to Equation (12.57). More precisely,
if P1 = (γ, q1) and P2 = (γ, q2) are two points in Dγ then

dJ(φ(P2), φ(P1)) ≤ lΘ × |q2 − q1|.

For every positive integer k, we also denote by φ the integration map
φ : Xk → J . We denote by

φ′ : Div(X)→ J

the map induced by φ on the group of divisors on X . The restriction of φ′

to the subgroup Div0(X) of degree 0 divisors is independent of the origin
we have chosen.

12.3 MODULAR FUNCTIONS

Since we plan to compute the splitting field of some very special divisors
on the modular curve X = X1(5l) we must be able to evaluate some well
chosen modular functions of weight 0 and level 5 or 5l at a given point
z ∈ H. In this section we describe algebraic models for X1(5) and X1(5l)
and we explain how to compute the expansions of the involved modular
functions at every cusp.

12.3.1 The modular curve X1(5)

In this section we recall the definition of several classical level 5 modular
functions and we show how to compute their expansions at each of the four
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cusps ofX1(5). Let b be an indeterminate and consider the elliptic curve Eb
in Tate normal form with equation

y2 + (1 + b)xy + by = x3 + bx2. (12.10)

The point P = (0, 0) has order 5 and its multiples are 2P = (−b, b2),
3P = (−b, 0), 4P = (0,−b). Call P1

b the projective line with parameter b.
The modular invariant of Eb is

j = j(b) = −(b4 + 12b3 + 14b2 − 12b+ 1)3

b5(b2 + 11b− 1)
(12.11)

Let

s = −11 + 5
√

5
2

and s̄ be the two complex roots of b2 + 11b − 1. We call A∞, A0, As, As̄
the points on P1

b corresponding to the values∞, 0, s and s̄ of the parameter
b. The elliptic curve Eb → P1

b − {A∞, A0, As, As̄} is the universal ellip-
tic curve with one point of order 5. So there exists a unique isomorphism
between the modular curve X1(5) = Γ1(5l)\H∗ and P1

b that is compatible
with the moduli structure on either side. We want to compute this isomor-
phism. More precisely we compute the expansions of b at every cusp of
X1(5). To this end we compare the curve in Equation (12.10) and the Tate
curve [Tat2] with equation

y′2 + x′y′ = x′3 + a4x
′ + a6 (12.12)

where

a4 =−5
∑
n≥1

σ3(n) qn

a6 =−
∑
n≥1

5σ3(n) + 7σ5(n)
12

qn

and q is a formal parameter. We note that the coefficients in the expansions
above are integers and we have

a4 =
1− E4(q)

48

a6 =
1− 3E4(q) + 2E6(q)

1728
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where

E4(q) = 1 + 240
∑
n≥1

σ3(n) qn

E6(q) = 1− 504
∑
n≥1

σ5(n) qn.

The modular invariant of the Tate curve in Equation (12.12) is

j(q) =
1728E3

4(q)
E3

4(q)− E2
6(q)

=
1
q

+ 744 + 196884q + · · · (12.13)

Any isomorphism between the two Weierstrass curves in Equations (12.10)
and (12.12) must take the form

x=u2x′ + r (12.14)

y=u3y′ + su2x′ + t.

Straightforward calculation gives the following necessary and sufficient
conditions for the affine transform in (12.14) to induce an isomorphism of
Weierstrass curves:

1728E3
4(q)

E3
4(q)− E2

6(q)
=−(b4 + 12b3 + 14b2 − 12b+ 1)3

b5(b2 + 11b− 1)
(12.15)

u2 =−E4(q)
E6(q)

× (b2 + 1)(b4 + 18b3 + 74b2 − 18b+ 1)
(b4 + 12b3 + 14b2 − 12b+ 1)

r=
u2 − b2 − 6b− 1

12

s=
u− b− 1

2

t=
b3 + 7b2 − (5 + u2)b+ 1− u2

24

We can simplify a bit these expressions. The first one just means

j(q) = j(b).

From the classical [Sch3, Proposition 7.1] identities(
qdj

dq

)2

= j(j − 1728)E4
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and (
qdj

dq

)3

= −j2(j − 1728)E6

we deduce(
qdb

dq

)
=
E6(q)
E4(q)

× b(b2 + 11b− 1)(b4 + 12b3 + 14b2 − 12b+ 1)
5(b2 + 1)(b4 + 18b3 + 74b2 − 18b+ 1)

.

So the expression for u2 can be written

u2 = −b(b
2 + 11b− 1)

5
(
qdb
dq

) (12.16)

The expansion of j as a series in q has integer coefficients and can be com-
puted using Equation (12.13). We deduce the expansion of q as a series in
j−1

q = j−1 + 744j−2 + 750420j−3 + · · · (12.17)

It has integer coefficients and one can compute it from the expansion of j
as a series in q using any reasonable algorithm for the reversion of a power
series: brute force linear algebra or the more efficient algorithms in [Br-Ku]
or the quasi-optimal algorithms in [Ke-Um].

We first study the situation locally atA∞. A local parameter for P1
b atA∞

is b−1. The expansion

j−1 = −b−5 + 25b−6 + · · · (12.18)

of j−1 as a series in b−1 has integer coefficients and can be computed using
Equation (12.11) and standard algorithms for polynomial arithmetic. We
substitute (12.18) in (12.17) and find

q = −b−5 + 25b−6 + · · ·

One more reversion gives the expansion of b−1 as a series in q
1
5 .

b−1 = −q
1
5 + 5q

2
5 + · · · . (12.19)

This expansion defines an embedding of the local field at A∞ inside the
field of Puiseux series C{{q}} in the formal parameter q. We deduce the
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expansion of u from Equations (12.16) and (12.19)

u2 = q
−2
5 + 4q

−1
5 + 4− 10q

1
5 − 30q

2
5 + · · · (12.20)

We also find

r = −1− 5q
1
5 − 10q

2
5 + 35q

4
5 + 45q + · · · (12.21)

The coordinates of the 5-torsion P on Eb are xP = 0 and yP = 0. The
image of P on the Tate curve has x′-coordinate

x′P = −ru−2 = q
2
5 + q

3
5 + 2q

4
5 − 2q + · · ·

Since on the Tate curve we have

x′(w, q) =
∑
n∈Z

wqn

(1− wqn)2
− 2

∑
n≥1

nqn

1− qn
(12.22)

we deduce that the value of the parameter w at the 5-torsion point P is

w(P ) = q±
2
5 mod < q > .

We may take either sign in the exponent above because we may choose any
of the two isomorphisms corresponding to either possible values for u. We
decide that

w(P ) = q
2
5 mod < q > . (12.23)

So the limit curve when q → 0 or equivalently when b → ∞ is a 5-gon,
with a 5-torsion point lying on the second component after the one carrying
the origin. So let

γ =

(
a b

c d

)
be any matrix in SL2(Z) such that c is 2 modulo 5 and d is 0 modulo 5. For
example take

γ =

(
1 2
2 5

)
In particular, the cusp γ(∞) = 1/2 has width 5. We set

qγ(z) = exp(2iπγ−1(z)/5).
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If we replace q1/5 by qγ in Equations (12.19), (12.20) and (12.21) we obtain
the expansions of b−1, u2 and r at the cusp γ(∞) = 1/2. Note in particular
that u2 is a modular function with weight−2 and level 5. By construction, it
has no zero and no pole outside the cusps. Similarly b is a modular function
with weight 0 and level 5. By construction, it has no pole outside the cusps.

We now study the situation locally at A0. A local parameter at A0 is b.
We find j−1 = b5 + 25b6 + · · · and q = b5 + 25b6 + · · · and we fix an
embedding of the local field at A0 inside C{{q}} by setting

b = q
1
5 − 5q

2
5 + 15q

3
5 − 30q

4
5 + · · · (12.24)

Using Equation (12.16) we deduce

u2 = 1− 6q
1
5 + 19q

2
5 − 40q

3
5 + 55q

4
5 + · · · (12.25)

and

r = −q
1
5 + 4q

2
5 − 10q

3
5 + 15q

4
5 + · · · (12.26)

So the coordinate x′P of the 5-torsion point P is

x′P = q
1
5 + 2q

2
5 + 3q

3
5 + 5q

4
5 + 3q +O(q

6
5 )

and the parameter w at P can be taken to be w(P ) = q
1
5 mod < q > this

time. The limit curve when q → 0 or equivalently when b → 0 is a 5-gon,
with a 5-torsion point lying on the first component after the one carrying the
origin. So let

γ =

(
a b

c d

)

be any matrix in SL2(Z) such that c is 1 modulo 5 and d is 0 modulo 5. For
example take

γ =

(
0 −1
1 0

)

In particular, the cusp γ(∞) = 0 has width 5. We set

qγ(z) = exp(2iπγ−1(z)/5).
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If we replace q1/5 by qγ in Equations (12.24), (12.25) and (12.26) we obtain
the expansions of b, u2 and r at the cusp γ(∞) = 0.

We now study the situation locally at As. A local parameter at As is b− s
and

j−1 = (−1
2

+
11
√

5
50

)(b− s) + (−45443
125

+
4064
√

5
25

)(b− s)2 + · · ·

and

b− s = −125 + 55
√

5
2

q − (375 + 170
√

5)q2 − 3375 + 1495
√

5
2

q3 + · · ·

and

u2 = −25 + 11
√

5
2

− (200 + 90
√

5)q − 3575 + 1595
√

5
2

q2 + · · ·

and

r = −7 + 3
√

5
2

− (100 + 45
√

5)q − (1300 + 580
√

5)q2 + · · ·

and

x′P = −1
2

+
√

5
10
− 5 +

√
5

2
q +
−15 +

√
5

2
q2 + (−10 +

√
5)q3 + · · ·

We note that the coordinate x′(P ) of the 5-torsion point P is

x′(P ) =
w

(1− w)2
+O(q)

where w = exp(4iπ
5 ) = ζ2

5 . So the parameter w at P can be taken to be
w(P ) = ζ2

5 mod < q > this time. The limit curve when b → s is thus a
1-gon equipped with the 5-torsion point ζ2

5 in its smooth locus Gm. Let

γ =

(
a b

c d

)

be any matrix in SL2(Z) such that c is 0 modulo 5 and d is 2 modulo 5. For
example take

γ =

(
3 1
5 2

)
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In particular, the cusp γ(∞) = 3/5 has width 1. We set

qγ(z) = exp(2iπγ−1(z)).

If we replace q by qγ in the expansions above we obtain the expansions of
b, u2 and r at the cusp γ(∞) = 0.

We finally study the situation locally at As̄. A local parameter at As is
b− s̄ and

j−1 = (−1
2
− 11

√
5

50
)(b− s̄)− (

45443
125

+
4064
√

5
25

)(b− s̄)2 + · · ·

and

b− s̄ =
−125 + 55

√
5

2
q+(−375+170

√
5)q2 +

−3375 + 1495
√

5
2

q3 + · · ·

and

u2 =
−25 + 11

√
5

2
+ (−200 + 90

√
5)q +

−3575 + 1595
√

5
2

q2 + · · ·

and

r =
−7 + 3

√
5

2
+ (−100 + 45

√
5)q + (−1300 + 580

√
5)q2 + · · ·

and

x′P = −1
2
−
√

5
10

+
−5 +

√
5

2
q − 15 +

√
5

2
q2 − (10 +

√
5)q3 + · · ·

We note that the coordinate x′(P ) of the 5-torsion point P is

x′(P ) =
w

(1− w)2
+O(q)

where w = exp(2iπ
5 ) = ζ5. So the parameter w at P can be taken to be

w(P ) = ζ5 mod < q > this time. The limit curve when b → s̄ is thus a
1-gon equipped with the 5-torsion point ζ5 in its smooth locus Gm. Let

γ =

(
a b

c d

)
be any matrix in SL2(Z) such that c is 0 modulo 5 and d is 1 modulo 5. For
example take

γ = Id =

(
1 0
0 1

)
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In particular, the cusp γ(∞) =∞ has width 1. We set

qId(z) = exp(2iπz).

If we replace q by qId in the expansions above we obtain the expansions of
b, u2 and r at the cusp∞.

Altogether we have proved the following.

12.3.2 Lemma (Computing expansions of b, u2 and r) There exists a de-
terministic algorithm that given an integer k ≥ 1 computes the k first terms
in the expansions of b, u2 and r at each of the four cusps of X1(5), at the
expense of kΘ elementary operations.

We recall that the functions b, u2 and r are defined in Equation (12.15).
Further b is a weight zero and level 5 modular function having no pole out-
side the cusps. The weight −2 and level 5 modular function u2 has no zero
and no pole outside the cusps. Finally r is the sum of two level 5 modular
functions having no pole outside the cusps. One of weight −2 and one of
weight 0. We also notice that the coefficients in the expansions of b, u2 and
r lye in Z or Z[1+

√
5

2 ]. Lemma 12.4.9 implies that there exists a positive
constant Θ such that for every integer k ≥ 1, the k-th coefficient in these
expansions has absolute value ≤ exp(Θ

√
k).

12.3.3 A plane model for X1(5l)

Let l > 5 be a prime. We call Xl = X1(5l) the moduli of elliptic curves
with one point of order 5l. The genus of Xl is gl = (l − 2)2. In this section
we define and study a natural homogeneous singular plane model Cl for this
curve. In particular we enumerate the geometric points on Xl above every
singularity ofCl and we explain how to compute series expansions for affine
coordinates at every such branch. Finally we recall how to compute the zeta
function of the function field Fp(Xl) for every prime integer p 6∈ {5, l}.

Let b be an indeterminate and let Eb be the elliptic curve in Equa-
tion (12.10). The field Q(b) of rational fractions in b is the function field
Q(X1(5)) of the modular curve X1(5) over Q. The map

B5l,5,1 : Xl → X1(5)
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introduced in Section 2.2 defines a degree l2 − 1 extension Q(Xl)/Q(b).
We construct an explicit model for this extension. The multiplication by l
isogeny

[l] : Eb → Eb

induces a degree l2 rational function on x-coordinates:

x 7→ N(x)
D(x)

where N(x) is a monic degree l2 polynomial in Q(b)[x]. Recursion for-
mulae for division polynomials (see [Eng] section 3.6) provide a quick al-
gorithm for computing this polynomial, and also show that the coefficients
actually lie in Z[b]. The roots of N(x) are the x-coordinates of the points Q
on Eb such that [l]Q is P = (0, 0). If l is congruent to ±1 modulo 5 then
lP = ±P and x divides N(x). Otherwise N(x) is divisible by x− b. Call
Tl(b, x) the quotient of N(x) by x or x − b, accordingly. This is a monic
polynomial in Z[b][x] with degree l2−1 in x. As a polynomial in x we have

Tl(b, x) =
∑

0≤k≤l2−1

al2−1−k(b)x
k

where a0(b) = 1. We call d be the total degree of Tl.
Let F be a field extension of Q(b) where Tl(b, x) ∈ Q(b)[x] has a root.

A suitable twist of the Tate curve Eb given by Equation (12.10) has a point
of order 5l defined over F . This proves that the function field extension
Q(Xl)/Q(b) can be embedded in F/Q(b). Since the degree of Tl(b, x) in
x is equal to the degree of the extension Q(Xl)/Q(b) we deduce that the
polynomial Tl is irreducible in Q(b)[x] and the quotient field Q(b)[x]/Tl
is isomorphic to Q(Xl). Since the latter field is a regular extension of
Q(b) = Q(X1(5)) we deduce that Tl is absolutely irreducible.

Let Cl ⊂ P2 be the projective curve with homogeneous equation
Tl(b

z ,
x
z )zd in the variables b, x and z. The map B5l,5,1 : X1(5l) → X1(5)

is unramified except at b ∈ {0,∞, s, s̄}. So for every point R on Xl such
that b(R) 6∈ {0, s, s̄,∞}, the function b− b(R) is a uniformizing parameter
at R. Let U be the affine open set with equation

zb(b2 − 11bz + z2) 6= 0.
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Every point on Cl∩U is smooth and all points onXl above points in Cl−U
are cusps in the modular sense (i.e. the modular invariant has a pole at these
points). The smooth point R = (bR, xR) on Cl ∩ U is the moduli of the
curve EbR equipped with the unique 5l-torsion point Q having x-coordinate
xR and such that [l]Q = P ∈ EbR .

12.3.4 The singularities of Cl

We study the cusps of X1(5l) that are mapped onto A∞ by B5l,5,1. Set
ζl = exp(2iπ

l ). Let α and β be integers such that 0 ≤ α, β ≤ l− 1. Let also
α̃ and β̃ be integers such that 0 ≤ α̃, β̃ ≤ l − 1 and

α̃ ≡ α/5 mod l

and

β̃ ≡ (β − 2)/5 mod l.

We set wQ = ζα̃l q
β̃
l q

2
5l and observe that

w5
Q = ζαl q

β
l mod < q >

and

wlQ = q
2
5 mod < q >= wP

according to Equation (12.23). We denote by Q the point on the Tate curve
in (12.12), having w-coordinate wQ. The isomorphism given by Equa-
tions (12.14) maps Q onto a 5l-torsion point on the curve Eb. This point is
called Q also. The couple (Eb, Q) defines a point on X1(5l) that is mapped
onto (Eb, P ) by B5l,5,1. We substitute w by wQ in expansion (12.22) and
find

x′Q = ζα̃l q
β̃
l q

2
5l (1 +O(q

1
5l ))

if 0 ≤ β̃ ≤ l−1
2 and

x′Q = ζ−α̃l q
l−β̃
l
− 2

5l (1 +O(q
1
5l ))
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if l+1
2 ≤ β̃ ≤ l − 1. Using Equation (12.14) and the expansions in Equa-

tions (12.20) and (12.21) we find

xQ + 1 = ζα̃l q
β̃
l
+ 2

5l
− 2

5 (1 +O(q
1
5l )) (12.27)

if 0 ≤ β̃ ≤ l−1
2 and

xQ + 1 = ζ−α̃l q
l−β̃
l
− 2

5l
− 2

5 (1 +O(q
1
5l )) (12.28)

if l+1
2 ≤ β̃ ≤ l − 1.

Let

γ =

(
a b

c d

)

be any matrix in SL2(Z) such that c is 5β̃ + 2 modulo 5l and d is 5α̃ mod-
ulo 5l. In particular, the cusp γ(∞) = a/c has width w = 5l

gcd(5l,c) . So w is
5 if β = 0 and 5l otherwise. We set

qγ(z) = exp(2iπγ−1(z)/w).

If we replace q1/w by qγ in Equation (12.27) or (12.28) above we obtain the
expansion of x at the cusp γ(∞) = a/c.

The same method applies to cusps of X1(5l) that are mapped onto A0,
As or As̄ by B5l,5,1.

12.3.5 Lemma (Computing expansions of x) There exists a deterministic
algorithm that given an integer k ≥ 1 computes the k first terms in the
expansions of x at each of the cusps of X1(5l), at the expense of (kl)Θ

elementary operations.

We notice that the coefficients in these expansions of x lye in Z or
Z[1+

√
5

2 ] and there exists a positive constant Θ such that for every inte-
ger k ≥ 1, the k-th coefficient in these expansions has absolute value
≤ exp((kl)Θ).

So we have a very accurate description of the singularities of Cl since for
every branch ofX1(5l) above such a singularity we can compute expansions
of both coordinates b and x as series in the local parameter qγ .
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We shall also need the following result due to Manin, Shokurov, Merel
and Cremona [Man1, Mer, Cre, Fre].

12.3.6 Lemma (Manin, Shokurov, Merel, Cremona) For l a prime and
p 6∈ {5, l} another prime, the zeta function of Xl mod p can be computed
in deterministic polynomial time in l and p.

We first compute the action of the Hecke operator Tp on the space of
Manin symbols for the congruence group Γ1(5l) associated with Xl. Then,
from the Eichler-Shimura identity Tp = Fp + p < p > /Fp we deduce the
characteristic polynomial of the Frobenius Fp. 2

12.4 POWER SERIES

In this section we give some notation and we state a few useful elementary
properties of power series in several variables. We are mainly interrested in
relating the size of coefficients in the expansions and the size of the values of
the series where it converges. In the course of our calculations we shall en-
counter three kinds of power series. Expansions of normalized eigenforms
have rather small coefficients, according to the Ramanujan conjecture. To
deal with such expansions we introduce in Definition 12.4.2 the type of a
power series. We shall also consider modular functions having no pole out-
side the cusps. The coefficients in the expansions of such functions may be
larger, but they are controled by the Petersson and Rademacher’s inequality
as explained in Lemma 12.4.9 below. Even more general modular functions
may have quite big coefficients. To deal with this case, we introduce in
Definition 12.4.13 the exp-type of a power series.

12.4.1 The type of a power series

Let g ≥ 1 be an integer. The L∞ norm of a vector x = (x1, . . . , xg) ∈ Cg

is maxk |xk| and it is denoted |x|∞. The L1 norm is |x|1 =
∑

k |xk|
and the L2 norm is |x|2 =

√∑
k |xk|2. We denote by ‖x‖ the vec-

tor (|x1|, . . . , |xg|). If y = (y1, . . . , yg) is another vector in Cg we
denote by x ? y the componentwise product (x1y1, . . . , xgyg). We set
0g = (0, . . . , 0) ∈ Cg and 1g = (1, . . . , 1) ∈ Cg and 2g = (2, . . . , 2).
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If n = (n1, . . . , ng) ∈ Ng we write n! for the product n1!n2! · · ·ng! and
xn for the product xn1

1 · · ·x
ng
g . We note P (x, r) =

∏g
k=1D(xk, rk) ⊂ Cg,

the polydisc with center x and polyradius r. When r = (r, r, . . . , r) we
just write P (x, r). If x = (x1, . . . , xg) ∈ Rg, we say that x ≥ 0g if and
only if xk ≥ 0 for every k. We say that x > 0g if and only if xk > 0 for
every k. An entire series f in the g variables x1, . . . , xg is a formal sum
f =

∑
k fkx

k where the index k runs over Ng.

12.4.2 Definition (Type of a power series in several variables) Let A be
a real number ≥ 1 and consider n = (n1, . . . , ng) ∈ Ng such that n ≥ 1g.
We say that f is of type (A, n) if for every k ≥ 0g we have

|fk| ≤ A(k + 1g)n = A
∏

1≤m≤g
(km + 1)nm .

For every z ∈ P (0g, 1) we deduce an upper bound for the value of f at z.

|f(z)| ≤
∑
k≥0g

A(k + 1g)n|zk| ≤A
∏

1≤m≤g

∑
km≥0

(km + 1)nm |zm|km

≤ n!A∏
m(1− |zm|)nm+1

=
n!A

(1g − ‖z‖)n+1g
. (12.29)

We check that if f is of type (A, a) and h is of type (B, b), then the product
fh is of type

(AB,a + b + 1g). (12.30)

12.4.3 Refocusing a power series

Given an entire series f of type (A, n) and a vector

c = (c1, . . . , cg) ∈ P (0g, 1)

we set

Fc(y) =Fc(y1, . . . , yg)

= f(c + y ? (1g − ‖c‖)) = f((cm + ym(1− |cm|))m).
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We call Fc the refocused series of f at c. According to [Cou, Lemme 16]
this is a series of type (Ac, n + 1g) where

Ac = n!A exp(g + |n|1)2g+|n|1(1g − ‖c‖)−n−2g . (12.31)

In particular, it converges for y ∈ P (0g, 1).

12.4.4 Bounding the remainder

For any integer u ≥ 0 we denote by Ru(x) the remainder of order u of the
series f(x). So

f(x) =
∑

|k|1≤u−1

fkxk +Ru(x).

According to [Cou, Lemme 17], if f is of type (A,n) and if r is a real in
]0, 1[ and if z ∈ P (0g, r) then

|Ru(z)| ≤ B(u+ 1)(n+1)g|z|u∞ (12.32)

where n = |n|∞ and

B =
n!2Ag

(1− r)g+|n|1
.

Further, if κ is a real in ]0, 1[ and if

u ≥ max(
16(ng)2

(log r)2
,
2(log κ− logB)

log r
)

then

|Ru(z)| ≤ κ for z ∈ P (0g, r).

12.4.5 The type of a quotient

Let f =
∑

k fkx
k be an entire series in the g ≥ 2 variables x1, . . . , xg.

Assume that f has type (A,n) for some A ≥ 1 and n ≥ 1g. Assume
that f is divisible by a polynomial P (z1, . . . , zg). So there exists an entire
series h =

∑
k hkxk such that f = Ph. We want to estimate the size of

coefficients in h. We shall only need the case when P = z2 − z1. So we
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restrict to this special case. Let k = (k1, . . . , kg). For every integer m such
that 2 ≤ m ≤ g we set

um =
km + 1

km + nm + 1
.

We set

û1 =
k1 + 1

k1 + n1 + 1
.

If |û1 − u2| < | û1+1
2 − u2| we set u1 = û1+1

2 . Otherwise we set u1 = û1.
In any case

1
|1− u1|

≤ 2(k1 + n1 + 1)
n1

and

1
u1
≤ k1 + n1 + 1

k1 + 1

and

1
|u2 − u1|

≤ 3(k2 + n2 + 1)
n2

.

From Cauchy’s integral hk is equal to

1
(2πi)g

∫
|ζ1|=u1

. . .

∫
|ζg |=ug

f(ζ1, ζ2, . . . , ζg)
(ζ2 − ζ1)

∏
1≤m≤g ζ

km+1
m

dζ1dζ2 . . . dζg.

Using Equation (12.29) we find

|f(ζ1, ζ2, . . . , ζg)| ≤
n!A∏

1≤m≤g(1− um)nm+1

≤n!2n1+1A
∏

1≤m≤g

(
km + nm + 1

nm

)nm+1

.

So

|hk| ≤
3n!2n1+1A(k2 + n2 + 1)

n2

∏
1≤m≤g

(km + nm + 1)kn+nm+1

(km + 1)km (nm)nm+1
.

So h has type (12n!2n1+|n|1+gA exp(|n|1),n + 2× 1g).
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Now if we manage to divide f by K polynomials of the form zj1 − zj2
we obtain a series of type

(A exp(8gK(|n|∞ + 2K)2),n + 2K × 1g). (12.33)

12.4.6 The type of derivatives

If f is an entire series in one variable of type (A,n), then the derivative f ′

of f is of type

(A2n, n+ 1).

So the the d-th derivative of f is of type

(A2dn+
d(d−1)

2 , n+ d). (12.34)

12.4.7 The Petersson and Rademacher’s inequality

The modular functions that appear in Lemma 12.3.2 are not modular forms:
they have poles at the cusps. Since we plan to evaluate these functions at
well chosen points z in the Poincaré upper half plane, we must control the
size of the coefficients in the expansions of these functions.

Let f : H → C an holomorphic periodic function with integer period e.
So f(z + e) = f(z) for every z ∈ H. We assume that f is meromorphic at
∞. So f can be written as a series

f(z) = F(qe) =
∑
k
e
≥v

a k
e
qke

where

qe = exp(
2iπz
e

)

and v ∈ 1
eZ is the valuation of f at∞ and the a k

e
are the coefficients in the

Puiseux expansion of f at∞, and the series F converges in the unit disk.
Conversely, to every Puiseux series∑

k
e
≥v

a k
e
q
k
e
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with radius of convergence ≥ 1 we can associate an holomorphic function
f : H→ C having period e, and meromorphic at∞.

By abuse of notation we say that f is a Puiseux series with radius ≥ 1
and period e. The set of all such functions is a ring. An example of such a
series is provided by Klein’s modular invariant j(z) = J(q) where J is the
series in Equation (12.3). In view of Petersson and Rademacher’s inequality
(12.5) it is natural to state the following lemma.

12.4.8 Lemma (The Petersson and Rademacher’s property) Let

f(z) =
∑
k
e
≥v

a k
e
q
k
e

be a Puiseux series with radius of convergence≥ 1. Then the two properties
below are equivalent

1. There exist two positive constants K1 and K3 such that for every
integer k ≥ K3 we have∣∣∣a k

e

∣∣∣ ≤ exp

(
K1

√
k

e

)
. (12.35)

2. There exist two positive constants K2 and K4 such that for every
z = x+ iy ∈ H such that y−1 ≥ K4 we have

|f(z)| ≤ exp
(
K2

y

)
. (12.36)

We say that such a Puiseux series is PR (like Petersson and Rademacher).
The set of PR series is a ring which is integrally closed in the ring of Puiseux
series with radius of convergence ≥ 1.

This lemma is easily proven: one implication results from Cauchy’s for-
mula and the other implication is trivial. Using Lemma 12.4.8 and the
Petersson-Rademacher inequality (12.5) we prove the following lemma.

12.4.9 Lemma (Integral modular forms are PR) Let N ≥ 1 be an inte-
ger. Let f : H→ C be a modular function of weight 0 for the group Γ1(N).
Assume that f has no pole outside the cusps. So f is holomorphic on H, or
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equivalently it belongs to the ring C[Y1(N)] of integral functions on Y1(N).
Then the expansion of f at any cusp is PR.

So the Petersson-Rademacher inequality for the Fourier coefficients of j

holds true for any integral function on Y1(N). We also prove the following
lemma concerning the discriminant form.

12.4.10 Lemma (The discriminant and its inverse are PR) Let

∆(q) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

be the discriminant form. The inverse ∆−1 of ∆ is a PR series in q.

This results from the product formula for ∆. We deduce that
Lemma 12.4.9 extends to modular functions of arbitrary weight.

12.4.11 Lemma (Integral modular forms are PR) Let N ≥ 1 be an inte-
ger. Let f : H → C be a modular function of weight k ∈ Z for the group
Γ1(N). Assume that f has no pole outside the cusps. Then the expansion
of f at any cusp is PR.

12.4.12 The exp-type of a power series

We shall have to deal with series in one variable having bigger coefficients
than the ones introduced in Sections 12.4.1 and 12.4.7. The successive
derivatives appearing in Lemma 12.11.2 are a good example. We no longer
care about convergence then. We just want to control the size of the (loga-
rithms) of the coefficients.

12.4.13 Definition (Exp-type of a power series in one variable) Let n be
an integer ≥ 2 and let A and B be two real numbers ≥ 1. We say that an
entire series f =

∑
k≥0 fkx

k is of exp-type (A,B, n) if for every k ≥ 0 we
have

|fk| ≤ exp((Ak +B)n).

If f1 is of exp-type (A1, B1, n1) and f2 of exp-type (A2, B2, n2) then the
product f1f2 is of exp-type
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(A1 +A2, B1 +B2 + 1, n) (12.37)

where n is the maximum of n1 and n2.
If f is of exp-type (A,B, n) and k ≥ 1 is an integer, then the k-th power

fk is of exp-type (kA, kB + k − 1, n). The derivative f ′ = df/dx of f is
of exp-type

(A,A+B + 1, n). (12.38)

If f is of exp-type (A,B, n) and g(x) = 1/(1 − xf(x)), then g is of
exp-type

(
√
A+B + 1, 0, 2n). (12.39)

12.5 JACOBIANS AND WRONSKIANS OF POWER SERIES

In this section we state and prove an algebraic identity relating Wronskian
and Jacobian determinants. This identity will be useful to control the local
behaviour of the Jacobi integration map. We first state this identity in its
simplest and most natural form in Section 12.5.1. We then state a more
general identity in Section 12.5.2. The proofs are given in Sections 12.5.3
and 12.5.4.

12.5.1 A special case

We assume that g ≥ 2 is an integer and we consider g entire series f1(x),
f2(x), . . . , fg(x) in one variable x, with coefficients in C. The Wronskian
associated with f = (f1, . . . , fg) is the determinant

Wf (x) =
1∏

1≤m≤g−1m!
×

∣∣∣∣∣∣∣∣∣∣
f1(x) . . . fg(x)
f ′1(x) . . . f ′g(x)

...
...

f
(g−1)
1 (x) . . . f

(g−1)
g (x)

∣∣∣∣∣∣∣∣∣∣
. (12.40)
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We may also introduce g indeterminates y1, y2, . . . , yg and define the Jaco-
bian associated with f to be the determinant

Jf =

∣∣∣∣∣∣∣∣∣∣
f1(y1) . . . fg(y1)
f1(y2) . . . fg(y2)

...
...

f1(yg) . . . fg(yg)

∣∣∣∣∣∣∣∣∣∣
.

Let now D =
∏
k<m(ym − yk) be the reduced discriminant. Then the

Jacobian Jf lies in the ring C[[y1, . . . , yg]] and is divisible by the reduced
discriminant in this ring. Further, the quotient Jf/D is congruent to Wf (0)
modulo the maximal ideal of C[[y1, . . . , yg]]:

Jf

D
≡Wf (0) mod (y1, y2, . . . , yg)C[[y1, . . . , yg]]. (12.41)

A proof of this identity is given in the next Sections 12.5.3 and 12.5.4.
Now assume that all the series fk(x) have type (A,n). Then the Jacobian
Jf has type

(g!Ag, n1g).

We deduce from Equation (12.34) and (12.30) that the Wronskian Wf has
type

(Ag exp(Θng2 + Θg3), gn− 1 +
g(g + 1)

2
). (12.42)

12.5.2 A more general identity

Let g ≥ 2 be an integer. Let K be any field with characteristic zero. Let
f1(x), . . . , fg(x) be g entire series in one variable x having coefficients in
K. Let f = (f1, . . . , fg) be the corresponding vector. Let 1 ≤ n ≤ g be an
integer and consider the n first derivatives

f (0), f (1), . . . , f (n−1)

of f with respect to the variable x. The exterior product

Wf ,n =
f (0)

0!
∧ f (1)

1!
∧ · · · ∧ f (n−1)

(n− 1)!
∈

n∧
(K[[x]])g (12.43)
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is a sort of partial Wronskian associated with the vector f .
Now let S ≥ 1 be an integer and let

n = m1 +m2 + · · ·+mS

be a partition of n in S parts. In particular ms is a positive integer for every
1 ≤ s ≤ S. Let y1, y2, . . . , yS be S distinct indeterminates and consider the
corresponding partial Jacobian

Jf ,(ms)1≤s≤S = Wf ,m1(y1) ∧Wf ,m2(y2) · · · ∧Wf ,mS (yS) (12.44)

in
n∧

(K[[y1, . . . , yS ]])g .

Let

D(ms)1≤s≤S =
∏

1≤s1<s2≤S
(ys2 − ys1)ms1ms2

be the corresponding partial weighted discriminant. The following identity
is a partial generalization of Equation (12.41)

Jf ,(ms)1≤s≤S

D(ms)1≤s≤S

≡Wf ,n(0) mod (y1, y2, . . . , yS). (12.45)

In particular Jf ,(ms)1≤s≤S is divisible by the weighted discriminant
D(ms)1≤s≤S in the K[[y1, . . . , yS ]]-module

∧n (K[[y1, . . . , yS ]])g. A proof
of this identity given in the next Sections 12.5.3 and 12.5.4.

Now let K ≥ 1 be an integer and let

g = n1 + n2 + · · ·+ nK

be a partition of the dimension g. So nk is a positive integer for each
1 ≤ k ≤ K. We consider K vectors f1, . . . , fK in (K[[x]])g. We introduce
K indeterminates x1, . . . , xK and following Equation (12.43) we define the
total Wronskian to be

W(fk,nk)1≤k≤K =
∧

1≤k≤K
Wfk,nk(xk) ∈ K[[x1, x2, . . . , xK ]]. (12.46)
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For every 1 ≤ k ≤ K let Sk be a positive integer and let

nk = mk,1 +mk,2 + · · ·+mk,Sk

be a partition of nk into Sk parts. For every 1 ≤ k ≤ K and 1 ≤ s ≤ Sk

we introduce the new indeterminate yk,s and following Equation (12.44) we
define the total Jacobian to be

J(fk,(mk,s)1≤s≤Sk )1≤k≤K =
∧

1≤k≤K
Jfk,(mk,s)1≤s≤Sk

(12.47)

in

K[[(yk,s)1≤k≤K; 1≤s≤Sk ]].

We set

n = (nk)1≤k≤K

and

mk = (mk,s)1≤s≤Sk

and

m = (mk,s)1≤k≤K; 1≤s≤Sk .

Both m and n are partitions of g. And m is a refinement of n. We define
the discriminant relative to m and n to be

Dm,n =
∏

1≤k≤K
Dmk

=
∏

1≤k≤K

∏
1≤s1<s2≤Sk

(yk,s2 − yk,s1)mk,s1mk,s2 .

Collecting K equations like (12.45) we obtain

J(fk,mk)1≤k≤K

Dm,n
≡W(fk,nk)1≤k≤K (0) mod (yk,s)1≤k≤K; 1≤s≤Sk . (12.48)

This generalization of Equation (12.41) will be useful in Section 12.13.3
when studying the Jacobi map. We now prove it using a formal analogue of
the Jacobi map.
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12.5.3 Proof of Equation (12.45) in a special case

In this section assume that S = n and m1 = m2 = · · · = mS = 1. We
write f as a series in x with coefficients in Kg

f = Ψ0 + Ψ1x+ Ψ2x
2 + · · · ∈ Kg[[x]]

where

Ψk =
f (k)

k!
(0) ∈ Kg

for every k ≥ 0. We consider the formal integration

F =
∫ x

0
f(x)dx = Ψ0x+

Ψ1

2
x2 +

Ψ2

3
x3 + · · · ∈ Kg[[x]].

We introduce S new indeterminates y1, . . . , yS and we set

Φ(y1, . . . , yS) = F(y1) + · · ·+ F(yS) ∈ Kg[[y1, . . . , yS ]]. (12.49)

We denote by

m = (y1, . . . , yS)K[[y1, . . . , yS ]]

the maximal ideal in K[[y1, . . . , yS ]]. For every k ≥ 1 we call

νk = yk1 + · · ·+ ykS

the k-th Newton’s power sum. We check that

Φ(y1, . . . , yS) = Ψ0ν1 +
Ψ1

2
ν2 + · · ·+ ΨS−1

S
νS +R

where the remainder R is a vector in (K[[y1, . . . , yS ]])g whose coefficients
are symmetric functions in the (ys)1≤s≤S and belong to mS+1. So these
coefficients belong to K[[ν1, . . . , νS ]] and for every 1 ≤ k ≤ S the partial
derivative ∂R

∂νk
is zero modulo

n = m ∩K[[ν1, . . . , νS ]] = (ν1, . . . , νS)K[[ν1, . . . , νS ]].

We deduce that for every 1 ≤ k ≤ S

∂Φ
∂νk
≡ Ψk−1

k
mod n. (12.50)
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On the other hand, it is clear from the definition of Φ in Equation (12.49)
that for every 1 ≤ s ≤ S

∂Φ
∂ys

=
dF
dx

(ys) = f(ys). (12.51)

Finally, for every 1 ≤ k ≤ S and 1 ≤ s ≤ S we have

∂νk
∂ys

= kyk−1
s

and the determinant∣∣∣∣∂νk∂ys

∣∣∣∣
k,s

= S!
∏

1≤s1<s2≤S
(ys2 − ys1). (12.52)

Equation (12.45) then follows from Equations (12.50), (12.51) and
(12.52) applying the chain rule for derivatives.

12.5.4 Proof of Equation (12.45) in general

We introduce the n indeterminates xs,j for 1 ≤ s ≤ S and 1 ≤ j ≤ ms. We
put the lexicographic order on these indeterminates and we apply Equation
(12.45) to the series f and partition n = 1 + 1 + · · ·+ 1. We obtain

f(x1,1) ∧ ···∧f(xS,mS )=(Wf ,n(0)+O(x1,1,...,xS,mS ))

×
Q

(1,1)≤(s1,j1)<(s2,j2)≤(S,mS)(xs2,j2−xs1,j1 ) (12.53)

where O(x1,1, . . . , xS,mS ) stands for any element in the ideal generated by
x1,1, . . . , xS,mS in K[[x1,1, . . . , xS,mS ]] .

We introduce S new indeterminates y1, . . . , yS . We also introduce n
indeterminates zs,j for 1 ≤ s ≤ S and 1 ≤ j ≤ ms. For every 1 ≤ s ≤ S

we consider f(ys + z) as a series in z with coefficients in K[[ys]]. We apply
Equation 12.45 to the series f(ys + z) and partition ms = 1 + 1 + · · ·+ 1.
We obtain

f(ys+zs,1)∧···∧f(ys+zs,ms ) = (Wf ,ms (ys)+O(zs,1,...,zs,ms ))

×
Q

1≤j1<j2≤ms
(zs,j2−zs,j1 ) (12.54)

We now replace xs,j by ys + zs,j in Equation (12.53) and we obtain

f(y1+z1,1) ∧ ···∧f(yS+zS,mS )=(Wf ,n(0)+O(y1,...,yS ,z1,1,...,zS,mS ))

×
Q

(1,1)≤(s1,j1)<(s2,j2)≤(S,mS)(ys2−ys1+zs2,j2−zs1,j1 ) (12.55)
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We now notice that the left hand side of Equation (12.55) is the wedge prod-
uct of the left hand sides of the S equations like (12.54). Further, the dis-
criminants on the right hand sides of the S equations like (12.54) divide the
discriminant in the right hand side of Equation (12.55). So we equate the
right hand side of Equation (12.55) and the wedge product of the right hand
sides of the S equations like (12.54). We then divide by the product of the
S small discriminants. We then reduce modulo the ideal generated by the
variables zs,j and we obtain

V
1≤s≤SWf ,ms (ys)=(Wf ,n(0)+O(y1,...,ys))×

Q
1≤s1<s2≤S

(ys2−ys1 )ms1ms2

as was to be proven.

12.6 A SIMPLE QUANTITATIVE STUDY OF THE JACOBI MAP

In this section we prove some upper and lower bounds for the Jacobi map.
Upper bounds are rather trivial but important to control the complexity of
the algorithms. Lower bounds are not very surprising either. But they play
an important role in the proof of Theorem 12.10.1.

12.6.1 Upper bounds for the Jacobi map

We first prove that the Jacobi map is Lipschitz with constant lΘ. Indeed
let γ ∈ Ξ and call φγ = φ ◦ µγ the composition of the Jacobi map
φ : X → J(C) with the modular parameterization µγ : D(0, 1) → X .
So

φγ : qγ 7→
(∫ qγ

ω

)
ω∈B1

DR

and we don’t need to specify the origin of the integral here. Every
ω = f(q)q−1dq in B1

DR can be written h(qγ)q−1
γ dqγ where h(qγ) is the

expansion of the modular form f at the cusp γ(∞). It is a consequence of
Ramanujan’s conjectures proven by Deligne and the explicit formulae by
Asai for pseudo-eigenvalues that the series h(qγ)q−1

γ is of type

(Θ,Θ). (12.56)
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Therefore if q1 and q2 belong to D(0, exp(−π/wγ)) ⊃ Fwγ the integral∫ q2
q1
h(qγ)q−1

γ dqγ is bounded in absolute value by |q2− q1| times lΘ accord-
ing to Equation (12.32). So the Jacobi map is Lipschitz with constant

≤ lΘ. (12.57)

We now consider some vector ~γ = (γk)1≤k≤g ∈ Ξg and we call

φ~γ : D(0, 1)g → CB
1
DR/R

the composition of the Jacobi map φ : Xg → J(C) with the product of the
modular parameterizations

µ~γ =
∏

1≤k≤g
µγk : D(0, 1)g → Xg.

For every 1 ≤ k ≤ g we set wk = wγk . Let q = (q1, . . . , qg) with
qk ∈ D(0, exp(−π/wk)) for every 1 ≤ k ≤ g. We study the map φ~γ locally
at q. The tangent space to D(0, 1)g ⊂ Cg at q is identified with Cg and we
denote by (δk)1≤k≤g its canonical basis. The underlying R-vector space has
basis (δ1, . . . , δg, iδ1, . . . , iδg). For 1 ≤ k ≤ g we set δk+g = iδk. Similarly
we call (ek)1≤k≤g the canonical basis of Cg = CB1

DR and set ek+g = iek

for 1 ≤ k ≤ g. So (ek)1≤k≤2g is a basis of the R-vector space underlying
Cg. Let Dqφ~γ be the differential of φ~γ at q. For 1 ≤ k ≤ 2g let ρk be the
image of δk by this differential. The determinant of Dqφ~γ

ρ1 ∧ . . . ∧ ρ2g

e1 ∧ . . . ∧ e2g

is the square of the absolute value of the Jacobian determinant

J~γ(q) =
∣∣∣∣ ω

dqγk
(qk)

∣∣∣∣
1≤k≤g, ω∈B1

DR.

(12.58)

We shall need an upper bound for the absolute value of J~γ(q). As a series
in the g indeterminates q1, q2, . . . , qg, the Jacobian J~γ has type

(exp(Θg2),Θ1g). (12.59)

This results from Equation (12.56) and the definition of J~γ in Equa-
tion (12.58). If ~γ = (γ, γ, . . . , γ) is the repetition of g times the same γ in Ξ,
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we write Jγ for J~γ and we denote by Wγ(q) the Wronskian associated with
Jγ . This is a series in one variable q. We deduce from Equations (12.42)
and (12.56) that Wγ has type

(exp(Θg3),Θg2). (12.60)

12.6.2 Lower bounds for the Jacobi map

We now bound from below the Wronskian Wγ(q) and the Jacobian Jγ(q)
for some special values of q and q. So we assume that ~γ = (γ, γ, . . . , γ)
is the repetition of g times the same γ in Ξ and we study the Jacobi map
φ : Xg → J in the neighborhood of (γ(∞), . . . , γ(∞)) where γ(∞) is
the cusp associated with γ. The parameter at the cusp γ(∞) is the qγ from
Equation (12.2).

We first treat the case when γ = Id and we write J∞ (resp. W∞) for JId

(resp. WId). We denote by

Gg =
∏

1≤m≤g−1

m!

the denominator that appears in the definition of the Wronskian in Equa-
tion (12.40). The expansions in q = qId of the ω

dq for ω ∈ B1
DR are entire

series with algebraic integer coefficients; and they are permuted by the ab-
solute Galois group of Q. So the series G2

g ×W∞(q)2 has coefficients in
Z.

We set η = g(g+1)
2 . The product W∞(q)(dq)η is a degree η holomorphic

form on X . Therefore it has 2(g − 1)η zeros counting multiplicities. Since
the q-valuation v ofW∞(q) is the multiplicity of the cusp∞ in the divisor of
W∞(q)(dq)η, we deduce that v ≤ 2(g−1)η. So the seriesG2

g×W∞(q)2 has
valuation 2v ≤ 2(g−1)g(g+1) and rational integer coefficients. We deduce
from Equations (12.60) and (12.30) that the type of the series W∞(q)2 is

(exp(Θg3),Θg2). (12.61)

We write

W∞(q)2 =
c

G2
g

× q2v +R2v+1(q)
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where c is a non-zero rational integer and R2v+1 is the remainder of order
2v + 1. We can bound this remainder using Equations (12.32) and (12.61).

|R2v+1(q)| ≤ exp(Θl6)|q|2v+1.

So if |q| ≤ exp(−Θl6) we have |W∞(q)2| ≥ 1
2G2

g
× q2(g−1)g(g+1) and

|W∞(q)| ≥ 1
2Gg

× q(g−1)g(g+1) ≥ exp(−Θl5)× q(g−1)g(g+1). (12.62)

So we fix such a q. For example we take

q = 10−κ1l6 (12.63)

for some large enough positive constant κ1. We set

q = q1g = (q, . . . , q) (12.64)

and x = (x1, . . . , xg) where x1, . . . , xg are new indeterminates. The Jaco-
bian

J∞(q + x ? (1g − ‖q‖))

is an entire series in the g variables x1, . . . , xg. This is indeed the Jacobian
associated with the g series

(f(q + x(1− |q|))/(q + x(1− |q|)))f(q)q−1dq∈B1
DR

in the variable x. Equation (12.41) gives us the first non-zero term in the
expansion of this series at x = 0g:

J∞(q + x ? (1g − ‖q‖)) = W∞(q)(1− |q|)
g(g−1)

2

∏
k<m

(xm − xk)

+R g(g−1)
2

+1
(x).

The type of the Jacobian J∞(q) as a series in q is given by Equa-
tion (12.59). We deduce from Equation (12.31) that the refocused series
J∞(q + x ? (1g − ‖q‖)) is a series in x of type (exp(Θg2),Θ1g). Using
Equation (12.32) we deduce that for x in P (0g, exp(−π))∣∣∣R g(g−1)

2
+1

(x)
∣∣∣ ≤ exp(Θg2)|x|

g(g−1)
2

+1
∞ .
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We set s = |x|∞ and we assume that x takes the special form

x = (
s

g
,
2s
g
, . . . ,

(g − 1)s
g

, s) (12.65)

and s ≤ exp(−π). Then

∣∣∣∣∣W∞(q)(1− |q|)
g(g−1)

2

∏
k<l

(xl − xk)

∣∣∣∣∣≥ |W∞(q)|
(
s(1− |q|)

g

) g(g−1)
2

≥Θ−1 |W∞(q)|
(
s

g

) g(g−1)
2

We take

s = 10−κ2l12 (12.66)

for some large enough positive constant κ2. Using Equations (12.63) and
(12.62) we obtain the following lower bound for the Jacobian

|J∞(q + x(1− q))| ≥ exp(−Θl16) (12.67)

when q, q, and x are given by Equations (12.63), (12.64), (12.65), and
(12.66). In particular |q + x(1− q)|∞ can be assumed to be ≤ exp(−2π).
So

max
q∈D(0,exp(−2π))g

|J∞(q)| ≥ exp(−Θl16). (12.68)

In order to bound from below Jγ for any γ ∈ Ξ we observe that Jγ and
J are closely related: If w is the width of the cusp γ(∞), there exists a
w-th root of unity ζγ and an algebraic number λγ of absolute value 1 (the
product of all pseudo-eigenvalues) such that the following formal identity
in C[[q1, . . . , qg]] holds true

Jγ(q1, . . . , qg) = λγJ∞(ζγq1, . . . , ζγqg). (12.69)

So the lower bound in Equation (12.68) is also valid for every Jγ .
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12.7 EQUIVALENCE OF VARIOUS NORMS

The main algorithm in this text (the one in Section 12.8) uses a subroutine
that computes the complex roots of an analytic function on a compact set.
This problem is well conditioned according to Lemma 5.4.12 of Chapter 5,
provided we have a decent lower bound for the maximum of the function in
question. In our situation, the analytic functions are derived from quadratic
differentials on X . We need simple conditions for these functions not to
be uniformly small in absolute value in the neighborhood of any cusp. The
second inequality in Equation (12.71) below provides such a condition. In
order to prove this inequality we study Jacobians associated with weight 4
cusp forms on X , locally at every cusp.

12.7.1 Space of quadratic differentials

In this section we shall make use of parabolic modular forms of weight 4
on X . To every such form f(q) one can associate a quadratic differential
ω = f(q)q−2(dq)2. The divisor of ω is related to the divisor of f by the
following relation

Div(ω) = Div(f)− 2Cusps

where Cusps is the sum of all cusps. Note that X1(5l) has no elliptic point.
The map f(q) 7→ f(q)q−2(dq)2 defines a bijection between the space of
weight 4 parabolic forms and the spaceH2(Cusps) of quadratic differentials
with divisor ≥ −Cusps. We denote by g2 the dimension of the latter space.
This is 3g − 3 plus the degree of Cusps (the number of cusps).

We shall need a basis Bquad for the space H2(Cusps) or equivalently a
basis for the space S4(Γ1(5l)) of weight four cusp forms. We shall again
use the standard basis made of normalized newforms of level 5l together
with normalized newforms of level l lifted to level 5l by the two degeneracy
maps. We also need the expansion of every form in Bquad at every cusp
γ(∞) for γ ∈ Ξ. More precisely, f(q)q−2(dq)2 should be rewritten as
h(qγ)q−2

γ (dqγ)2 for every γ in Ξ. As for degree 1 forms, and using the same
methods, we can compute the expansion of all quadratic forms in Bquad at
all cusps in deterministic polynomial time (klm)Θ where k is the q-adic
accuracy and m the complex absolute accuracy of coefficients.
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We now define several important norms on the space H2(Cusps). If ω is
a form in H2(Cusps), we denote by |ω|∞ the L∞ norm in the basis Bquad.
To every cusp γ(∞) with γ ∈ Ξ we associate a norm on H2(Cusps). We
define |ω|γ to be the maximum of the modulus of the function ωqγ(dqγ)−2

for |qγ | ≤ 1/2.

|ω|γ = max
|qγ |≤1/2

∣∣∣∣ qγ ω(dqγ)2

∣∣∣∣ . (12.70)

Any two such norms are of course equivalent: their ratios are bounded by
a constant. More interestingly, the logarithm of this constant factor is poly-
nomial in the level 5l of X: for any γ in Ξ and any ω in H2(Cusps) we
have

l−Θ × |ω|γ ≤ |ω|∞ ≤ exp(lΘ)× |ω|γ . (12.71)

These inequalities will be proven in Section 12.7.3.

12.7.2 Jacobian of weight 4 cusp forms

Remind that we have constructed in Section 12.7.1 a basis Bquad for
the space H2(Cusps) of quadratic differential forms. If ~γ ∈ Ξg2 and
q = (qk)1≤k≤g2 we define the quadratic Jacobian

J quad
~γ (q) =

∣∣∣∣ qγkω(dqγk)2
(qk)

∣∣∣∣
1≤k≤g2, ω∈Bquad.

(12.72)

It is a consequence of Ramanujan’s conjectures proven by Deligne and the
explicit formulae by Asai for pseudo-eigenvalues that the series qγω

(dqγ)2
is of

type

(Θ,Θ). (12.73)

for every ω in Bquad and every γ in Ξ. So the series in the g2 variables q1,
q2, . . . , qg2 defined by Equation (12.72) is of type

(exp(Θl4),Θ1g2). (12.74)

Further, if ~γ = (γ, . . . , γ) ∈ Ξg2 is the repetition of g2 times the same
γ, we write J quad

γ for J quad
~γ and we denote by W quad

γ the corresponding
Wronskian. This is a series in one variable q and it is of type
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(exp(Θl6),Θl4). (12.75)

We need a similar estimate to Equation (12.68) for these quadratic Jaco-
bians J quad

γ . We first treat the case when γ = Id and we write J quad
∞ (resp.

W quad
∞ ) for J quad

Id (resp. W quad
Id ). We denote by

Gg2 =
∏

1≤m≤g2−1

m!

the denominator in the definition of W quad
∞ .

The expansions in q = qId of the qω
(dq)2

for ω ∈ H2(Cusps) are entire
series with algebraic integer coefficients; and they are permuted by the ab-
solute Galois group ofQ. So the series G2

g2×W
quad
∞ (q)2 has coefficients in

Z. We set η2 = g2(g2+3)
2 . The product W quad

∞ (q)q−g2(dq)η2 is a degree η2

form on X and it is holomorphic outside Cusps. More precisely, it belongs
toHη2(g2Cusps). Therefore it has

2(g − 1)η2 + g2 deg(Cusps) ≤ Θl6

zeros counting multiplicities. We deduce that the q-valuation v2 of
W quad
∞ (q) is ≤ Θl6. So the series G2

g2 ×W
quad
∞ (q)2 has valuation ≤ Θl6

and rational integer coefficients. We deduce from Equations (12.75) and
(12.30) that the type of the series W quad

∞ (q)2 is

(exp(Θl6),Θl4). (12.76)

We write

W quad
∞ (q)2 =

c

G2
g2

q2v2 +R2v2+1(q)

where c is a non-zero rational integer and R2v2+1 is the remainder of order
2v2 + 1. We can bound this remainder using Equations (12.32) and (12.76).

|R2v2+1(q)| ≤ exp(Θl6)|q|2v2+1.

So if |q| ≤ exp(−Θl6) we have |W quad
∞ (q)2| ≥ 1

2G2
g2

|q|2v2 and

|W quad
∞ (q)| ≥ exp(−Θl5) |q|Θl

6

. (12.77)
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So we fix such a q. For example we take

q = 10−κ3l6 (12.78)

where κ3 is a large enough positive constant. We set

q = q1g2 = (q, . . . , q) (12.79)

and x = (x1, . . . , xg2) where x1, . . . , xg2 are new indeterminates. The
Jacobian

J quad
∞ (q + x ? (1g2 − ‖q‖))

is an entire series in the g2 variables x1, . . . , xg2 . This is indeed the Jacobian
associated with the g2 series

(f(q + x(1− |q|))/(q + x(1− |q|)))f(q)q−2(dq)2∈Bquad

in the variable x. Equation (12.41) gives us the first non-zero term in the
expansion of this series at x = 0g2 :

J quad
∞ (q + x ? (1g2 − ‖q‖)) = W quad

∞ (q)(1− |q|)
g2(g2−1)

2

∏
k<l

(xl − xk)

+R g2(g2−1)
2

+1
(x).

The type of the Jacobian J quad
∞ (q) as a series in q is given by Equa-

tion (12.74). We deduce from Equation (12.31) that the refocused series
J quad
∞ (q + x ? (1g2 − ‖q‖)) is a series in x of type (exp(Θl4),Θ1g2).

Using Equation (12.32) we deduce that for x in P (0g2 , exp(−π))

∣∣∣∣R g2(g2−1)
2

+1
(x)
∣∣∣∣ ≤ exp(Θl4)|x|

g2(g2−1)
2

+1
∞ .

We set s = |x|∞ and we assume that x takes the special form

x = (
s

g2
,
2s
g2
, . . . ,

(g2 − 1)s
g2

, s) (12.80)

and s ≤ exp(−π). Then
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˛̨̨̨
W quad
∞ (q)(1−|q|)

g2(g2−1)
2

Q
k<l(xl−xk)

˛̨̨̨
≥
˛̨̨
W quad
∞ (q)

˛̨̨“
s(1−|q|)
g2

” g2(g2−1)
2

≥Θ−1
˛̨̨
Wquad
∞ (q)

˛̨̨“
s
g2

” g2(g2−1)
2

We take

s = 10−κ4l12 (12.81)

where κ4 is a large enough positive constant. Using Equations (12.78) and
(12.77) we obtain the following lower bound for the quadratic Jacobian

|J quad
∞ (q + x(1− q))| ≥ exp(−Θl16) (12.82)

when q, q, and x are given by Equations (12.78), (12.79), (12.80), and
(12.81). In particular |q + x(1− q)|∞ can be assumed to be ≤ 1/2. So

max
q∈D(0,1/2)g2

∣∣∣J quad
∞ (q)

∣∣∣ ≥ exp(−Θl16). (12.83)

In order to bound from below J quad
γ for any γ ∈ Ξ we observe that if

w is the width of the cusp γ(∞), there exists a w-th root of unity ζγ and
an algebraic number λquad

γ of absolute value 1 (the product of all pseudo-
eigenvalues) such that the following formal identity in C[[q1, . . . , qg]] holds
true

J quad
γ (q1, . . . , qg2) = λquad

γ J quad
∞ (ζγq1, . . . , ζγqg2). (12.84)

So the lower bound in Equation (12.83) is also valid for every J quad
γ .

12.7.3 Equivalence of norms onH2(Cusps)

In Section 12.7.1 we have defined various norms on the space of quadratic
differential formsH2(Cusps). If

ω = f(q)q−2(dq)2

is a quadratic differential form in H2(Cusps), the norm |ω|∞ is the L∞

norm associated with the basis Bquad. For every γ ∈ Ξ, the norm |ω|γ is
defined by Equation (12.70). We write

ω = f(q)q−2(dq)2 = h(qγ)q−2
γ (dqγ)2.
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We must prove both inequalities in Equation (12.71). The first inequality is
a trivial consequence of Equations (12.73) and (12.32).

We denote byMquad
γ the matrix occurring in the definition of the jacobian

J quad
γ . So

Mquad
γ (q1, q2, . . . , qg2) =

(
qγω

(dqγ)2
(qk)

)
1≤k≤g2, ω∈Bquad

=
(
h(qk)
qk

)
1≤k≤g2, h(qγ)q−2

γ (dqγ)2∈Bquad.

In particular J quad
γ is the determinant ofMquad

γ .
Now let q, q and x be given by Equations (12.78), (12.79), (12.80), and

(12.81). We set

r = q + x(1− q) = (r1, r2, . . . , rg2) ∈ D(0, 1/2)g2

and denote by Mquad
γ (r) the evaluation of Mquad

γ at r. The entries
in Mquad

γ (r) are bounded above by lΘ in absolute value. Using Equa-
tion (12.82) we deduce that the entries in the inverse matrix of Mquad

γ (r)
are bounded in absolute value by exp(Θl16).

Let ω be a form in H2(Cusps) and let c ∈ Cg2 be the coordinate vectors
of ω = h(qγ)q−2

γ (dqγ)2 in the basis Bquad. For every 1 ≤ k ≤ g2 set
vk = h(rk)/rk and let v = (v1, . . . , vg2) be the corresponding vector. We
have

vt =Mquad
γ (r)× ct

where vt is the transposed vector of v and ct is the transposed vector of c.
So

|ω|∞ = |c|∞ ≤ g2 exp(Θl16)× |v|∞

and this is ≤ exp(Θl16) × |ω|γ from the definition of |ω|γ given in Equa-
tion (12.70).

12.8 AN ELEMENTARY OPERATION IN THE JACOBIAN

An important prerequisite for the explicit computation in the Jacobian J is
to be able to compute the linear space associated with some divisor on X .
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In this section, we describe an algorithm to solve the following elementary
problem: given 3g− 4 points P1, P2, . . . , P3g−4 in X(C), find g points Q1,
. . . , Qg in X(C) such that

Q1 + · · ·+Qg ∼ 2K − (P1 + · · ·+ P3g−4)

where ∼ stands for linear equivalence of divisors and K is the canonical
class. This elementary problem will be used as a building block for explicit
arithmetic operations in the jacobian J of X . We observe that the solution
is not always unique. However, the image of Q1 + · · · + Qg by the Jacobi
integration map φ′ : SymgX → J is well defined. When doing numerical
approximations, it will be convenient to measure the error in J(C) = C/Λ
in terms of the distance dJ defined in Equation (12.9).

We shall solve the above problem in two steps. We set

P = P1 + · · ·+ P3g−4

and we first look for a differential quadratic form ω in the linear space
H2(−P ) ⊂ H2(Cusps) using our explicit knowledge of the latter space
and linear algebra algorithms. We then compute the divisor (ω) of ω and
output the (effective) difference (ω)− P . We now provide details for these
two steps.

We denote by T = P + Cusps the divisor obtained by adding the cusps
to P . The degree of T is g2 − 1. We write T = T1 + T2 + · · · + Tg2−1

where Tk = (γk, qk) for every 1 ≤ k ≤ g2 − 1. Let ε1 = exp(−m1) be
a positive real number. We assume that m1 ≥ Θl. We find an ε1-simple
divisor T ′ = T ′1 + T ′2 + · · ·+ T ′g2−1 such that for every 1 ≤ k ≤ g2 − 1 we
have T ′k = (γk, q′k) and

|q′k − qk| ≤ Θ(g2 − 1)ε1.

We look for a quadratic form inH2(Cusps) having divisor≥ −Cusps+T ′.
The space of such forms can be described as the kernel of a matrixM. Each
of the g2−1 lines ofM corresponds to a point T ′k for some 1 ≤ k ≤ g2−1.
The g2 columns ofM correspond to the g2 forms in the basis Bquad. The
entry ofM at the line corresponding to the point T ′k = (γk, q′k) and column
corresponding to the form ω in Bquad is obtained in the following way: we
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consider the expansion of ω in the variable qγk

ω = h(qγk)q−2
γk

(dqγk)2

and we evaluate the function h(qγk)q−1
γk

at the value q′k of qγk corresponding
to T ′k. The entries inM are bounded by lΘ in absolute value according to
Equations (12.56) and (12.32).

We can’t compute M exactly. Instead of that, we fix a positive real
ε2 = exp(−m2) and we compute a matrix M′ with decimal entries in
Z[i, 1/10] such that the differenceM′ −M has L∞ norm ≤ ε2. The en-
tries in this matrixM′ can be chosen to have numerators and denominators
bounded in absolute value by exp(Θ(l+m2)). We find a non-zero vector in
the kernel ofM′, having coefficients in Z[i] and bounded in absolute value
by exp(Θl2(l+m2)). We divide this vector by its largest coefficient an ob-
tain a vector v = (vk)1≤k≤g2 with L∞ norm equal to 1. This vector may not
lie in the kernel ofM butMv has coefficients bounded by g2 exp(−m2).
We call ν the quadratic differential form in H2(Cusps) having coordinate
vector v in the basis Bquad. By definition we have

|ν|∞ = 1 (12.85)

Using Lemma 5.4.12 of Chapter 5 together with Equations (12.71) and
(12.85) we show that if m2 ≥ lΘ, then for every 1 ≤ k ≤ g2 − 1 the
form ν has a zero T ′′k = (γk, q′′k) such that

|q′k − q′′k | ≤ exp(−Θ−1√m2).

If m2 ≥ Θm2
1 then these g2 − 1 zeros must be pairwise distinct, because

each of them is close to some T ′k and the latter points form an ε1-simple
divisor. The divisor of ν can be written

(ν) = T ′′ − Cusps +Q′

where T ′′ =
∑

1≤k≤g2−1 T
′′
k and Q′ is a degree g effective divisor. We

rewrite (ν) as

(ν) = P +Q′ +
∑

1≤k≤g2−1

(
T ′′k − Tk

)
.

The image of the error term
∑

1≤k≤g2−1 (T ′′k − Tk) by φ′ is small in the
torus J(C) = C/R. More precisely
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dJ(0, φ′(
∑

1≤k≤g2−1

(
T ′′k − Tk

)
)) ≤ exp(−m1/Θ)

provided m1 ≥ lΘ and m2 ≥ mΘ
1 .

So Q′ is a good approximation for the solution Q to the original problem.
Using the algorithm in Theorem 5.4.3 of Chapter 5, we compute an approx-
imation of the divisor of ν and output the corresponding approximation Q′′

of Q′.

12.8.1 Lemma (An elementary operation) There is a deterministic algo-
rithm that on input a degree 3g − 4 effective divisor P = P1 + · · ·+ P3g−4

on X1(5l), returns a degree g effective divisor Q = Q1 + · · ·+Qg such that

Q1 + · · ·+Qg ∼ 2K − (P1 + · · ·+ P3g−4)

whereK is the canonical class onX1(5l). The running time is (lm)Θ where
5l is the level and m the required absolute accuracy of the result.

Remind that the accuracy of the result in the above statement is measured
in the torus C/Λ using the distance dJ introduced in Equation (12.9).

12.9 ARITHMETIC OPERATIONS IN THE JACOBIAN

We fix a degree g effective divisor Ω onX . We also need an effective degree
g − 4 auxiliary divisor Π. For example, we may choose a point O as origin
for the Jacobi integration map (e.g. O could be the cusp at infinity), and set
Ω = gO and Π = (g− 4)O. An element in Pic0(X) is given as the class of
a divisor Q − Ω where Q is a degree g effective divisor. Let R be another
degree g effective divisor. In order to add the class of Q − Ω and the class
of R − Ω we apply Lemma 12.8.1 twice. We first apply it to the divisor
Q + R + Π. This is indeed a degree 3g − 4 effective divisor. We obtain a
degree g effective divisor T such that T ∼ 2K−Q−R−Π. We again apply
Lemma 12.8.1 to the divisor T + Ω + Π this time. And we obtain a degree
g effective divisor U such that U + Ω ∼ Q + R. So the class of U − Ω is
the sum of the classes of Q− Ω and R− Ω.
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In order to compute the opposite of the class Q − Ω, we apply
Lemma 12.8.1 to the divisor 2Ω + Π and obtain a degree g effective di-
visor R, linearly equivalent to 2K − Π − 2Ω. We apply Lemma 12.8.1 to
the divisor R + Q + Π and obtain a degree g effective divisor T such that
T − Ω ∼ −(Q− Ω).

12.9.1 Theorem (Arithmetic operations in J1(5l)) Addition and subtrac-
tion in the jacobian of X1(5l) can be computed in deterministic time (lm)Θ

where 5l is the level and m the required absolute accuracy of the result.

Again, the accuracy of the result is measured in the torus C/Λ using the
distance dJ introduced in Equation (12.9). In particular the error belongs to
a group, and when chaining operations in the jacobian, the successive errors
add to each other: the error on the result is the sum of the errors on either
input plus the error introduced in the current calculation. This observation
is particularly useful in conjunction with the fast exponentiation algorithm
of Section 5.1: if we multiply a divisor Q − Ω by a positive integer N ,
assuming that every elementary operation introduces and error≤ ε, then the
error on the final result is ≤ Θ × ε × N logN so the loss of accuracy is
≤ Θ logN .

12.9.2 Theorem (Fast exponentiation in J1(5l)) There is a deterministic
algorithm that on input two degree g effective divisors Ω and Q on X1(5l)
and a positive integer N outputs a degree g effective divisor R such that

R− Ω ∼ N(Q− Ω).

The algorithm runs in time (lm logN)Θ where 5l is the level and m the
required absolute accuracy of the result.

12.10 THE INVERSE JACOBI PROBLEM

In this section we are given a degree g effective origin divisor Ω on X and
an element x in CB1

DR , and we want to solve the inverse Jacobi problem for

x+ Λ ∈ CB1
DR/Λ = J(C).
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So we look for a degree g effective divisor P = P1 + · · · + Pg on X such
that φ′(P − Ω) = x+ Λ. We note that the solution might not be unique.

The main idea is the following: we start from a family of 2g classes
b1 + Λ, b2 + Λ, . . . , b2g + Λ in J for which the inverse Jacobi problem is
already solved: for every 1 ≤ k ≤ 2g, we know a divisor Bk − Ω such that
φ′(Bk − Ω) = bk + Λ. We try to approximate x by an integer combination∑

1≤k≤2gNkbk. This should not be too difficult if the bk are very small and
R-linearly independent: we compute the coordinates of x ∈ Cg in the R-
basis made of the bk and we round each of these coordinates to the closest
integer. Once we have found the Nk we note that the divisor

∑
kNkBk

would be a nice solution to the problem if it were a difference between
two effective degree g divisors. This is not the case of course, but using
the algorithms in Theorems 12.9.2 and 12.9.1 we find a degree g effective
divisor P such that P −Ω is linearly equivalent to

∑
kNkBk. We output P

and we are done.
There remains to explain how to find the bk and the corresponding Bk.

For every 1 ≤ k ≤ 2g, we set Bk = R′k − Rk where Rk and R′k are two
points on X that are very close. More precisely, we choose the g first points
Rk = (γk, qk) for 1 ≤ k ≤ g, and we set Rk+g = Rk. We also choose a
positive integer Υ = exp(−χ). We assume that χ ≥ lΘ so Υ is small. For
1 ≤ k ≤ g, we set R′k = (γk, qk + Υ) and R′k+g = (γk, qk + iΥ). We set

bk =

(∫ R′k

Rk

ω

)
ω∈B1

DR

∈ CB1
DR .

These integrals can be computed efficiently using the same method as for
period integrals. We now want to quantify the condition that these bk should
be R-linearly independent. So let (ek)1≤k≤g be the canonical basis of Cg

and set ek+g = iek for 1 ≤ k ≤ g. So (ek)1≤k≤2g is a basis of the R-vector
space underlying Cg. We shall need a lower bound for the determinant

b1 ∧ . . . ∧ b2g
e1 ∧ . . . ∧ e2g

. (12.86)

Since Υ is going to be small, we derive such a lower bound from the local
study of the Jacobi integration map. We call ~γ ∈ Ξg the vector (γk)1≤k≤g
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and we call

φ~γ : D(0, 1)g → C/R

the composition of the Jacobi map φ : Xg → J(C) with the product of the
modular parameterizations

µ~γ =
∏

1≤k≤g
µγk : D(0, 1)g → Xg.

For every 1 ≤ k ≤ g we set wk = wγk . Let q = (q1, . . . , qg) with
qk ∈ D(0, exp(−π/wk)) for every 1 ≤ k ≤ g. We study the map φ~γ
locally at q. The tangent space to D(0, 1)g ⊂ Cg at q is identified with Cg

and we denote by (δk)1≤k≤g its canonical basis. The underlying R-vector
space has basis (δ1, . . . , δg, iδ1, . . . , iδg). For 1 ≤ k ≤ g we set δk+g = iδk.
Let Dqφ~γ be the differential of φ~γ at q. For 1 ≤ k ≤ 2g let ρk be the image
of δk by this differential. Assuming χ ≥ lΘ and using Equations (12.56)
and (12.32) we prove that the coefficients of ρk in the basis (em)1≤m≤2g

have absolute value

≤ lΘ. (12.87)

The determinant of Dqφ~γ

ρ1 ∧ . . . ∧ ρ2g

e1 ∧ . . . ∧ e2g

is the square of the absolute value of the Jacobian determinant

J~γ(q) =
∣∣∣∣ ω

dqγk
(qk)

∣∣∣∣
1≤k≤g, ω∈B1

DR.

(12.88)

We denote λ the opposite of the logarithm of the absolute value of the
above determinant, and we call it the illconditioning of q. We shall see that
the inverse Jacobi problem is well conditioned unless the illconditioning is
large.

We first observe that we can bound from below the norm of every ρk in
terms of λ. Indeed, the determinant of Dqφ~γ is bounded from above by the
product of the L2 norms

∏
1≤k≤2g |ρk|2 so
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exp(−2λ) ≤ |ρk|2 ×
∏
j 6=k
|ρj |2 ≤ |ρk|2 × exp(Θl3)

using Equation (12.87). So

|ρk|2 ≥ exp(−2λ−Θl3). (12.89)

Our next concern is to bound from below the determinant of Equa-
tion (12.86) in terms of the illconditioning λ. For every 1 ≤ k ≤ 2g we
notice that Υρk is the first order approximation of bk. We deduce from
Equations (12.56) and (12.32) that

|bk −Υρk| ≤ lΘΥ2.

Using the lower bound (12.89) we deduce that

Υ
2
|ρk|2 ≤ |bk|2 ≤

3Υ
2
|ρk|2 ≤ lΘΥ

provided χ ≥ lΘ + 2λ.
Using multilinearity of the determinant we can bound the difference

b1 ∧ . . . ∧ b2g
e1 ∧ . . . ∧ e2g

−Υ2g ρ1 ∧ . . . ∧ ρ2g

e1 ∧ . . . ∧ e2g

by

2g
(

max
1≤k≤2g

|bk|2
)2g−1

max
1≤k≤2g

|bk −Υρk|2 ≤ 2glΘ(2g−1)lΘΥ2g+1

and this is less than half of Υ2g|ρ1∧···∧ρ2ge1∧···∧e2g | = exp(−2λ)Υ2g as soon as

χ ≥ Θl3 + 2λ.

We deduce that∣∣∣∣ b1 ∧ · · · ∧ b2ge1 ∧ · · · ∧ e2g

∣∣∣∣ ≥ 1
2

exp(−2λ− 2gχ).

So we have a lower bound for the determinant of the transition matrix
between the basis (ek)1≤k≤2g and the basis (bk)1≤k≤2g. Further the entries
in this matrix are bounded by lΘΥ in absolute value. Therefore the entries
in the inverse matrix are bounded by
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2 exp(2λ+ 2gχ)lΘgΥ2g−1 ≤ exp(2λ+ χ+ Θl3)

in absolute value. We thus can compute this inverse matrix in time polyno-
mial in l, λ, χ and the required absolute accuracy.

In Section 12.2 we have constructed a basis Bper for the lattice of peri-
ods, consisting of vectors with coordinates bounded by exp(lΘ) in absolute
value in the basis (ek)1≤k≤2g. The coordinates of these periods in the basis
(bk)1≤k≤2g are bounded by

exp(lΘ + 2λ+ χ)

in absolute value.
Every point in the fundamental parallelogram associated with the ba-

sis Bper (i.e. having coordinates in [0, 1] in this basis) has coordinates
≤ exp(2λ + χ + lΘ) in absolute value in the basis (bk)1≤k≤2g. When
we replace the latter coordinates by the closest integer, the induced er-
ror is bounded by lΘΥ according to the L2 norm for the canonical basis
(ek)1≤k≤2g.

According to Equation (12.67) there exists a vector q with illconditioning

λ ≤ lΘ.

This finishes the proof of the following theorem.

12.10.1 Theorem (Inverse Jacobi problem) The exists a deterministic al-
gorithm that takes as input

• a prime integer l,

• an element x in the tangent space CB1
DR to J1(5l) at the origin (where

B1
DR is the basis of H1

DR made of normalized newforms of level 5l
together with normalized newforms of level l lifted to level 5l by the
two degeneracy maps),

• a degree g effective (origin) divisor Ω on X1(5l),

and returns an approximation of the degree g effective divisor

P = P1 + · · ·+ Pg
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on X1(5l) such that φ′(P − Ω) = x+ Λ.
The running time is (l × log (2 + |x|∞)×m)Θ where 5l is the level, m

is the required absolute accuracy of the result and log (2 + |x|∞) is the size
of x i.e. the logarithm of its L∞ norm in the canonical basis of CB1

DR .

We insist that the absolute accuracy in the above theorem is measured
in the space CB1

DR using the L∞ norm; or equivalently in the jacobian
J = J1(5l) using the distance dJ . However, when x belongs to the Ra-
manujan subspace Wf and assuming the degree g origin divisor Ω is the
cuspidal divisor D0 manufactured in Section 8.1, then there is a unique ef-
fective degree g divisor Q such that φ′(Q − Ω) = x + Λ. We call it the
Ramanujan divisor associated with x. In that case, we can and must con-
trol the error in Xg. This error can be expressed as the distance between
Q =

∑
1≤k≤g Qk and the output divisor Q′ =

∑
1≤k≤g Q

′
k. Assume that

Qk = (γk, qk). The distance between Q and Q′ is defined to be the mini-
mum over all permutations σ of {1, 2, . . . , g} of the quantity

max
1≤k≤g

∣∣∣qk − qγk(Q′σ(k))
∣∣∣ .

Sections 12.11 to 12.13 will be mainly devoted to the proof of the theorem
below.

12.10.2 Theorem (Approximating Vf over the complex numbers)
There exists a deterministic algorithm that takes as input an even integer
k > 2, a prime integer l > 6(k − 1), a finite field F with characteristic l,
a ring epimorphism f : T(1, k) → F, and a cuspidal divisor Ω on X1(5l)
like the divisor D0 constructed in Section 8.1, and computes complex
approximations for every element inWf ⊂ J1(5l), the image of Vf ⊂ J1(l)
by B∗5l,l,1. Here Vf ⊂ J1(l) is defined by Equation (12.1) and we assume
that the image of the Galois representation ρf associated with f contains
SL(Vf ). The algorithm returns for every element x in Wf a complex
approximation of the unique degree g divisor Qx =

∑
1≤n≤g Qx,n such

that Qx − Ω lies in the class represented by x. Every point Qx,n is given as
a couple (γ, q) where γ ∈ Ξ and q is an approximation of the value at Qx,n
of the local analytic parameter qγ defined by Equation (12.2). The running
time of the algorithm is≤ (m×#Vf )Θ for some absolute constant Θ. Here
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#Vf is the cardinality of the Galois representation Vf and m is the required
absolute accuracy of the returned approximations for the q associated with
every Qx,n.

There are two important differences between Theorem 12.10.1 and The-
orem 12.10.2. While Theorem 12.10.1 controls the error in J1(5l), Theo-
rem 12.10.2 controls the error in X1(5l)g. Unfortunately, Theorem 12.10.2
only applies to special divisors like the Qx − Ω. For these divisors, one
can prove that the inverse Jacobi problem is reasonably well conditioned.
Results in Section 8.1 prove that Qx is well defined; and using Proposi-
tion 11.7.1 in Section 11.7 one can show that computing Qx from x is a
well conditioned problem. This will be the purpose of the next three sec-
tions.

Another remark concerning notation. We denote by Ω the divisor D0

introduced in section 8.1. And we writeQx rather thanDx. The only reason
for this slight change in notation is that many things are already called D in
this chapter, and we want to avoid any possible confusion.

12.11 THE ALGEBRAIC CONDITIONING

An important feature of Theorems (12.9.1), (12.9.2), and (12.10.1) is that
the error in all these statements is measured in the torus J(C). We have
seen that this helps controlling the accumulation of errors when we chain
computations. However, when solving the inverse Jacobi problem, we want
to control the error in SymgX , at least for the final result of the computa-
tion. So we need a theoretical estimate for the error in SymgX in terms of
the error in J(C). This will be the main concern of this and the following
two sections.

So assume that we are given a degree g effective origin divisor Ω on X
and a vector x inCB1

DR , and we look for an effective degree g divisor P such
that φ′(P − Ω) = x+ Λ, where Λ is the lattice of periods. We write

P = n1P1 + n2P2 + · · ·+ nKPK (12.90)

where the (Pk)1≤k≤K are pairwise distinct points on X and the (nk)1≤k≤K
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are positive integers such that

n1 + n2 + · · ·+ nK = g.

We shall make two assumptions.
The first assumption is rather essential: we assume that the divisor P is

non-special or equivalently that :

dim(Λ(P )) = 1. (12.91)

A first interresting consequence of this first assumption is that the answer
to the inverse Jacobi problem is unique; and the error can be defined as the
distance to the unique solution.

The second assumption we make is more technical. We assume that
Klein’s modular fonction j does not take the values 0 or 1728 at any of
the points (Pk)1≤k≤K . So

j(Pk) 6∈ {0, 1728}.

Removing the second assumption would only result in an heavier presen-
tation. By contrast, the first assumption plays a crucial role in the forthcom-
ing calculations. Its meaning is that the Jacobi map φ′ : SymgX → J is
a local diffeomorphism at P − Ω. Our first task is to reformulate this first
assumption in a more algebraic setting. We look for an algebraic variant of
the Jacobi determinant in Equation (12.88). Knowing that such an algebraic
quantity is non-zero we will bound it from below in Section 12.12.

We assume that we are given a basis B1
Z of H1

DR(X1(5l)) such that for
every ω = f(q)q−1dq in B1

Z, the associated modular form f(q) has rational
integer coefficients and type (exp(Θl4),Θ). The existence of such a basis
is granted by Lemma 12.11.1 below. We stress that we don’t try to compute
such a basis. We are just happy to know that it exists.

We also need an algebraic uniformizing parameter tQ at every point Q on
X such that j(Q) 6∈ {0, 1728}. When Q is not a cusp either, the differential
dj of Klein’s function j has no pole nor zero atQ. So j− j(Q) is a uniformiz-
ing parameter at Q. So we set tQ = j− j(Q) in that case. When Q = γ(∞)
is a cusp and γ ∈ Ξ, we set

jγ = j ◦W−1
γ
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where Wγ is given in Equation (12.7). We deduce from Equation (12.8)
that the automorphism W−1

γ maps the cusp γ(∞) to the cusp∞. So jγ has
a simple pole at γ(∞) and j−1

γ is a uniformizing parameter at γ(∞). So
we set tQ = j−1

γ in that case. We notice that jγ only depends on the width
of γ(∞). We call j1 = j, j5, jl and j5l the four corresponding functions.
Alltogether, tQ is one of the following functions: j− j(Q), 1/j, 1/j5, 1/jl or
1/j5l.

Let ω be a form in B1
Z and let k be an integer such that 1 ≤ k ≤ K where

K is the number of distinct points in the divisor P of Equation (12.90). Let
tk = tPk be the algebraic uniformizing parameter at Pk and consider the
Taylor expansion of ω/dtk at Pk

ω/dtk=ξ ωk,0+ξ ωk,1×
tk
1!

+ξ ωk,2×
t2k
2!

+···+ξ ωk,nk−1×
t
nk−1
k

(nk−1)!
+O(t

nk
k ). (12.92)

We only need the first nk terms in this expansion, where nk is the multi-
plicity of Pk in the divisor P . We form the matrix

Malg
P =

(
ξ ωk,m

)
1≤k≤K, 0≤m≤nk−1;ω∈B1

Z.
(12.93)

The lines in Malg
P are indexed by pairs (k,m) where 1 ≤ k ≤ K and

0 ≤ m ≤ nk − 1. The columns in Malg
P are indexed by forms ω in B1

Z.
We call Malg

P the algebraic Wronskian matrix at P . The determinant of
Malg

P will play an important role in the sequel. We call it the algebraic
conditioning.

An important feature of the matrix Malg
P is that its entries are alge-

braic functions evaluated at the points Pk for 1 ≤ k ≤ K. Indeed let
tk = tPk ∈ {j − j(Pk), 1/j, 1/j5, 1/jl, 1/j5l} be the chosen algebraic uni-
formizing parameter at the point Pk and set ω(0) = ω/dtk. For every integer
m ≥ 0 set ω(m+1) = dω(m)/dtk. Then

ξ ωk,m = ω(m)(Pk).

Lemma 12.11.2 below provides more detailed information about the al-
gebraic dependency between the derivatives ω(m) and Klein’s function j.

It is an important consequence of our first assumption in Equation (12.91)
that the determinant of the algebraic Wronskian matrix is non-zero

detMalg
P 6= 0.
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In the next Section 12.12 we shall derive a lower bound for this deter-
minant, using the theory of heights. To finish this section, there remains to
state and prove the two Lemmas 12.11.1 and 12.11.2. We first construct the
basis B1

Z.

12.11.1 Lemma (A rational basis) There is a basis B1
Z of H1

DR(X1(5l))
such that for every ω = f(q)q−1dq in B1

Z, the associated modular form
f(q) has rational integer coefficients and type

(exp(Θl4),Θ).

The transition matrix from the basis B1
DR to the basis B1

Z has algebraic in-
teger entries bounded in absolute value by exp(Θl4) and its determinant is
the square root of a non-zero rational integer.

We construct B1
Z from B1

DR using a descent process.
Let ω be a differential form in the basis B1

DR and let

f(q) = ωq(dq)−1 =
∑
j≥1

fjq
j

be the corresponding modular form. Let Zf be the ring generated by the
coefficients of f(q). As a Z-module, Zf is generated by the fj for j ≤ 4l2.
Let Kf be the fraction field of Zf . Let L be a strict subfield of Kf . Let
a = (aj)1≤j≤4l2 be a vector with rational integer coefficients. The asso-
ciated linear combination

∑
1≤j≤4l2 ajfj belongs to L if and only if a be-

longs to a submodule of Z4l2 with rank < 4l2. The degree df of Kf over Q
is bounded above by 2g. So the number of strict subfields of Kf is < 22g.
So there exists rational integers (aj)1≤j≤4l2 such that 0 ≤ aj < 22g and
θ =

∑
1≤j≤4l2 ajfj does not belong to any strict subfield of Kf . This θ is

an algebraic integer that generates Kf over Q. For 0 ≤ k ≤ df − 1 we set

Tr(θkf) =
∑
j≥1

Tr(θkfj)qj

where Tr : Zf → Z is the trace map. Since |fj | ≤ Θ(j + 1)Θ and
|θ| ≤ exp(Θl2) we deduce that |Tr(θkfj)| ≤ exp(Θl4)(j + 1)Θ. So the
series Tr(θkf) for 0 ≤ k ≤ df − 1 have type (exp(Θl4),Θ).

We do the same construction for every Galois orbit in B1
DR. We collect all

the forms thus obtained. This makes a basis B1
Z of H1

DR(X1(5l)) consisting
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of forms f(q)q−1dq where f(q) is a series with integer coefficients and of
type (exp(Θl4),Θ). 2

Now let’s prove some quantitative statement about the algebraic depen-
dency between the successive derivatives ω(m) and j.

12.11.2 Lemma (An algebraic relation) Let t be one of the functions
j, 1/j, 1/j5, 1/jl, 1/j5l. Let ω be a form in B1

Z and let m ≥ 0 be an inte-
ger. Set ω(0) = ω/dt and ω(m) = dmω(0)/(dt)m. There exists a non-zero
irreducible polynomial E(X,Y ) ∈ Z[X,Y ] such that

E(ω(m), t) = 0.

Its degree in either variable is

≤ (lm)Θ,

and its coefficients are bounded in absolute value by

exp((lm)Θ).

All the functions involved belong to the fieldQ(X1(5l)) of modular func-
tions having Puiseux expansion in Q{{q}} at the cusp ∞. This field is a
regular extension of Q(j) corresponding to the standard model of X1(5l)
over Q.

We assume that t = j since the other cases are quite similar. The dif-
ferential dj has 4(l2 − 1) zeros of multiplicity 2 (the points in the fiber
of j above 0) and 6(l2 − 1) zeros of multiplicity 1 (the points in the fiber
of j above 1728). So ω(0) = ω/dj has degree ≤ 14l2 and less than 10l2

poles. When we differentiate ω(0) we increase by one the multiplicity of
each pole. So dω(0) has the same poles as ω(0) and the total multiplic-
ity of these poles is less than 24l2. When we divide by dj we don’t add
poles but we increase the multiplicities by 1 (in the fiber of j above 1728)
or 2 (in the fiber of j above 0). The degree of the polar divisor of ω(1) is
thus ≤ 38l2. We go on like that and we prove that the degree of ω(m) is
≤ (14 + 24m)l2 ≤ 24(m + 1)l2. The degree of j is 12(l2 − 1). So there
is an irreducible polynomial E(x, y) in Z[x, y] such that E(ω(m), j−1) = 0
and degxE ≤ 12(l2 − 1) and degy E ≤ 24(m+ 1)l2.
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In order to bound the coefficients in E(x, y) we consider the expansions
of j−1 and ω(m) at the cusp∞. Remember that

j(q) =
1
q

+ 744 +
∑
k≥1

c(k)qk

so

−q2 dj

dq
= 1− q

∑
k≥1

kc(k)qk.

From Equation (12.5) we deduce that
∑

k≥1 kc(k)qk has exp-type (Θ, 0, 2)
in the sense of Section 12.4.12. Using Equation (12.39) we deduce that(
−q2 dj

dq

)−1
has exp-type (κ1, 0, 4) where κ1 ≥ 1 is an absolute constant.

We write

ω(0) = −q2 ω

dq

(
−q2 dj

dq

)−1

.

The series ω/dq has type (exp(Θl4),Θ) and exp-type (Θ,Θl2, 2). Using
Equation (12.37) we deduce that ω(0) has exp-type (κ2, l

2κ3, 4) for some
absolute constants κ2 ≥ 1 and κ3 ≥ 1. A simple iteration shows that ω(m)

has exp-type

(κ2 +mκ1, l
2κ3 +mκ2 +

m(m− 1)
2

κ1 + 2m, 4).

So if a is an integer such that 0 ≤ a ≤ 12(l2 − 1) then
(
ω(m)

)a
has

exp-type

(Θl2(m+ 1),Θl2(l +m+ 1)2, 4).

On the other hand, j−1 has exp-type (Θ, 0, 4) and if b is an integer such
that 0 ≤ b ≤ 24(m+ 1)l2 then j−b has exp-type

(Θ(m+ 1)l2,Θ(m+ 1)l2, 4).

So all the monomials
(
ω(m)

)a
j−b arising in equation E(ω(m), j−1) = 0

have exp-type

(Θl2(m+ 1),Θl2(l +m+ 1)2, 4)
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and the coefficients in their q-expansions up to order

deg(ω(m))× deg(j−1) ≤ Θ(m+ 1)l4

are rational integers bounded in absolute value by

exp(Θl24(m+ 1)8).

Since the coefficients inE(x, y) are solutions of the homogeneous system
given by these truncated q-expansions, they are bounded in absolute value
by

exp(Θl28(m+ 1)9).

2

12.12 HEIGHTS

In this section we recall basis facts about heights of algebraic numbers and
we deduce upper and lower bounds for the determinant of the algebraic
Wronskian matrix in Equation (12.93) when the divisor P is a Ramanujan
divisor.

Let Q̄ ⊂ C be the algebraic closure of Q in C. Let α ∈ Q̄ be an algebraic
number. The degree dα of α is the degree of the field extension Q(α)/Q.
Let

f(x) = adαx
dα + adα−1x

dα−1 + · · ·+ a0

be the unique irreducible polynomial in Z[x] such that f(α) = 0 and
adα > 0. We say that adα is the denominator of α and we denote it dα.

LetK be a number field containing α. The multiplicative height of α with
respect to K is

HK(α) =
∏
σ

max(1, |σ(α)|)
∏
v

max(1, |α|v)

where the σ in the first product runs over the set of embeddings of K into
C and the v in the second product runs over the non-archimedean places of
K. In the special case K = Q(α) we have

HQ(α)(α) = dα
∏

1≤k≤dα

max(1, |αk|)
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where the αk are the dα roots of f(x).
The logarithmic height of α with respect to K is

hK(α) = logHK(α)

and the absolute (logarithmic) height of α is

h(α) =
hK(α)

deg(K/Q)
=
hQ(α)(α)

dα
.

Knowing the degree dα and absolute height h(α) of a non-zero algebraic
number α, we deduce the following upper and lower bounds for the absolute
value |α|

exp (−dα × h(α)) ≤ |α| ≤ exp (dα × h(α)) .

Let F (x) be a degree dF polynomial in Z[x] and assume that all coeffi-
cients in F (x) are bounded by HF in absolute value. Let K be a number
field and let α ∈ K be an algebraic number. We set β = F (α).

If σ is any embedding of K into C we have σ(β) = F (σ(α)) so

max(1, |σ(β)|)≤ (dF + 1)HF max(1, |σ(α)|)dF .

Now, let v be a non-archimedean valuation of K. We have

max(1, |β|v)≤max(1, |α|v)dF .

Forming the product over all σ’s and all v’s we find that the absolute
logarithmic height of β is

≤ dF × h(α) + log(dF + 1) + logHF . (12.94)

Now assume that α and β belong to a degree d extension K of Q and let
E(x, y) ∈ Z[x, y] be a polynomial such that E(α, y) 6= 0 and E(α, β) = 0.
Assume that all coefficients inE(x, y) are bounded byHE in absolute value.
Call dx (resp. dy) the degree of E(x, y) with respect to the variable x (resp.
y).

We write

E(x, y) =
∑

0≤k≤dy

Ek(x)yk.
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We deduce from inequality (12.94) that every Ek(α) has absolute height

≤ dx × h(α) + log(dx + 1) + logHE . (12.95)

Let K be the largest k such that Ek(α) 6= 0. Set

F (y) = E(α, y) =
∑

0≤k≤K
Ek(α)yk.

If σ is any embedding of K into C we call

σF (y) = E(σ(α), y) =
∑

0≤k≤K
Ek(σ(α))yk

the polynomial obtained by applying σ to all the coefficients in F (y). Ap-
plying Landau’s inequality to σF (y) we find that

max(1, |σ(β)|) ≤
√
dy + 1×max0≤k≤K(|Ek(σ(α))|)

|EK(σ(α))|

and this is

≤
√
dy + 1× (dx + 1)HE ×max(1, |σ(α)|)dx ×max(1, |EK(σ(α))|−1).

Now, let v be a non-archimedean valuation ofK. Applying Gauss’ lemma
to F (y) we find that

max(1, |β|v)≤ |EK(α)|−1
v ×max(1, |α|v)dx

≤max(1, |EK(α)|−1
v )×max(1, |α|v)dx .

Forming the product over all σ’s and all v’s we find that the absolute
logarithmic height of β is bounded from above by

log(dy + 1)
2

+ log(dx + 1) + logHE + dx × h(α) + h(EK(α)).

Using Equation (12.95) we deduce that

h(β) ≤ log(dy + 1)
2

+ 2 log(dx + 1) + 2 logHE + 2dx × h(α).
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12.12.1 Lemma (Relating heights of algebraic numbers) Let α and β

belong to a degree d extension of Q and let E(x, y) ∈ Z[x, y] be a polyno-
mial such that E(α, y) 6= 0 and E(α, β) = 0. Assume that all coefficients
in E(x, y) are bounded by HE in absolute value. Call dx (resp. dy) the
degree of E(x, y) with respect to the variable x (resp. y). Then the absolute
heights of α and β are related by the following inequality

h(β) ≤ log(dy + 1)
2

+ 2 log(dx + 1) + 2 logHE + 2dx × h(α).

We now can bound the heights of the entries in the algebraic Wronskian
of Section 12.11, at least in the cases we are interrested in. Let

x+ Λ ∈Wf ⊂ J(C) = CB
1
DR/Λ

be a non-zero vector in the Ramanujan subspace Wf of Theorem 12.10.2.
Assume that the degree g origin divisor Ω on X1(5l) is the cuspidal divisor
D0 manufactured in Section 8.1. Let P be the unique degree g divisor such
that

φ′(P − Ω) = x+ Λ.

As proven in Section 8.1, the two assumptions of Section 12.11 are sat-
isfied in that case: the divisor P = n1P1 + n2P2 + · · · + nKPK is non-
special and Klein’s modular fonction j does not take the values 0 or 1728
at any of the points (Pk)1≤k≤K . Proposition 11.7.1 in Section 11.7 im-
plies that the absolute height of every j(Pk) is ≤ lΘ. Using Lemma 12.11.2
and Lemma 12.12.1 we deduce that every entry in the algebraic Wronskian
matrix of Equation (12.93) has absolute height ≤ lΘ. Further any such en-
try generates an extension of Q of degree ≤ (#Vf )Θ. So every entry in
the algebraic Wronskian has denominator and absolute value bounded by
exp((#Vf )Θ). So both the denominator and absolute value of the determi-
nant are ≤ exp((#Vf )Θ). So

h(det(Malg
P )) ≤ (#Vf )Θ (12.96)

in that case.
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Note also that, as an algebraic integer, the algebraic conditioning as de-
gree at most twice #Vf because the square of it lies in the definition field of
x+ Λ and the latter field is a degree #Vf − 1 extension of Q.

We deduce that for all primes p but a finite number bounded by (#Vf )Θ,
the divisor P remains non-special when we reduce modulo any place p

above p. Indeed, we can assume that p 6∈ {5, l} so X1(5l) has good re-
duction modulo p. We also can assume that j(Pk) 6∈ {0, 1728} mod p be-
cause both the degree and the absolute height of j(Pk) are ≤ (#Vf )Θ. We
also can assume that the Pk remain pairwise distinct modulo p for the same
reason: we just need to exclude less than (#Vf )Θ primes p. We can also
assume that every Pk which is not a cusp does not reduce modulo p onto
a cusp. We also assume that p is larger than the genus g of X1(5l) so that
the Taylor expansion in Equation (12.92) remains valid modulo p. So the
algebraic Wronskian matrix reduces modulo p to the algebraic Wronskian
matrix. Excluding a few more primes, but no more than (#Vf )Θ, we can
assume that the algebraic conditioning does not vanish modulo p. So the
divisor P remains non-special.

12.12.2 Lemma (Reduction modulo p of a Ramanujan divisor) Call Ω
the cuspidal divisor D0 on X1(5l) introduced in Section 8.1 and let Wf

be the Ramanujan subspace Wf of Theorem 12.10.2. Let

x ∈Wf ⊂ J1(5l)

and let P be the unique divisor on X1(5l) such that P − Ω lies in the class
defined by x. Then P is non-special and for all primes p but a finite number
bounded by (#Vf )Θ, the divisor P remains non-special modulo any place
p above p.

We stress that the above lemma is very similar to Theorem 11.7.10.

12.13 BOUNDING THE ERROR IN Xg

In this section we fill the gap between Theorems 12.10.1 and 12.10.2. For
x + Λ ∈ Wf ⊂ J(C) and P the corresponding Ramanujan divisor, we
relate the error on P and the error on x. We need some control on the Ja-
cobi integration map locally at P . A first step in this direction is the upper
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bound for the height of the algebraic stability, given in Equation (12.96).
In Section 12.13.1 we deduce a lower bound for the determinant of the dif-
ferential of the Jacobi map at P . This bound implies that the Jacobi map
is non-singular on a reasonably large neighborhood of P , as we show in
Section 12.13.3. In Section 12.13.4 we deduce that the inverse of the Ja-
cobi map is well defined and Lipschitz (with reasonably small constant) on
a (reasonably large) neighborhood of x + Λ. We shall need the identities
between Wronskians and Jacobians of power series proven in Section 12.5.
The reason for these algebraic complications is the following: we need an
equation for the singular locus in Xg of the Jacobi integration map. The
space Xg is stratified by the diagonals. The strata correspond to partitions
of {1, 2, 3, . . . , g}. We obtain a different equation for the singular locus on
every stratum. These various equations are related by algebraic identities
between Jacobians and Wronskians.

12.13.1 The analytic conditioning of a divisor

Let

P = n1P1 + · · ·+ nKPK (12.97)

be a degree g effective divisor on X where the nk are positive integers for
1 ≤ k ≤ K. For every k we write

Pk = (γk, qk)

where γk ∈ Ξ and qk ∈ Fwk ⊂ D(0, exp(−π/wk)), where wk is the width
of the cusp γk(∞). Let

φ(nk)1≤k≤K :
∏

1≤k≤K
Symnk X → J(C) = CB

1
DR/Λ

be the relevant Jacobi integration map in this context. We stress that this
map is different from the maps introduced before. Its initial set is a sort of
semi-symmetric product i.e. something between the Cartesian product Xg

and the full symmetric product SymgX . In order to write down the differ-
ential of this map at the divisor P , we need a local system of coordinates on∏

1≤k≤K Symnk X . We shall use partial Newton power sums. Let

R = (γ, qγ(R))
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be a point on X . For every n ≥ 1 and m ≥ 1 we define the m-th power
sum νR,n,m on SymnX to be the function that takes the value

(qγ(Q1)− qγ(R))m + (qγ(Q2)− qγ(R))m + · · ·+ (qγ(Qn)− qγ(R))m

at {Q1, . . . , Qn}.

Now let us come back to the divisor P in Equation (12.97). The functions

(νPk,nk,m)1≤k≤K; 1≤m≤nk

form a local system of coordinates on
∏

1≤k≤K Symnk X at the divisor P .
The matrix of the differential at P of the integration map φ(nk)1≤k≤K in the
bases (dνPk,nk,m)1≤k≤K; 1≤m≤nk and B1

DR is

Mana
P =

1∏
1≤k≤K

∏
1≤m≤nk m!

(
ψ ω
k,m

)
1≤k≤K; 0≤m≤nk−1

(12.98)

where ψ ω
k,m is the m-th derivative of ω/dqγk with respect to qγk , evaluated

at Pk = (γk, qk). The determinant of this matrix is called the analytic con-
ditioning of the divisor P . This analytic conditioning and the algebraic con-
ditioning defined in Section 12.11 after Equation (12.93) differ by simple
factors we should not be afraid of.

Now, we assume that we are in the context of Theorem 12.10.2. We call
Ω the cuspidal divisor D0 constructed in Section 8.1 and we assume that
the class of P − Ω corresponds to a point x in the Ramanujan subspace
Wf ⊂ J . Equation (12.96) implies that the algebraic conditioning of P is
≥ exp(−(#Vf )Θ). In order to obtain a similar lower bound for the analytic
conditioning, we must bound from below the complementary factors.

The factor 1/
∏

1≤k≤K
∏

1≤m≤nk m! is ≥ exp(−Θl7).
Lemma 12.11.1 implies that the factor coming from the change of bases

from B1
DR to B1

Z is ≥ exp(−lΘ).
There are also factors due to the change of coordinates. Assume for ex-

ample that Pk is not a cusp. So the algebraic parameter at Pk is j − j(Pk).
The analytic parameter at Pk is qγk − qk. The extra factor in the analytic
conditioning is thus (

dj

dqγk
(Pk)

)nk(nk+1)

2
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Lemma 12.13.2 below ensures that there exists a constant K1 such that this
factor is ≥ exp(−(#Vf )K1) provided there exists a constant K2 such that
|j(Pk)| and |j(Pk)− 1728| are both≥ exp(−(#Vf )K2). But this latter con-
dition is met because j(Pk) is not {0, 1728}, and both its degree and loga-
rithmic height are ≤ (#Vf )Θ.

Assume now that Pk is a cusp. Then the algebraic parameter at P is the
function 1/jwk introduced in Section 12.11 where wk ∈ {1, 5, l, 5l} is the
width of the cusp Pk = γk(∞). And the derivative d(1/jwk)/dqγk is just 1.
So the analytic conditioning at a Ramanujan l-torsion divisor is

≥ exp(−(#Vf )Θ). (12.99)

To finish this section, there remains to state and prove Lemma 12.13.2.

12.13.2 Lemma (Lower bounds for dJ/dx) For every positive real num-
ber K1 there exists a positive real number K2 such that the following state-
ment is true.

Let L ≥ 2 be an integer and let J(x) be Klein’s series given in Equa-
tion (12.3). Let q ∈ D(0, 1) be a complex number in the unit disk such that
1−|q| ≥ L−K1 and |J(q)| ≥ exp(−LK1) and |J(q)−1728| ≥ exp(−LK1).
Then |dJdx (q)| ≥ exp(−LK2).

We first note that dJ
dx (q) only vanishes if J(q) ∈ {0, 1728}. So we just

want to prove that if dJdx is small at q then q is close to a zero of it. We would
like to apply Lemma 5.4.12 to the series −x2J′(x) = −x2 dJ

dx . But this se-
ries is not of type (A,n) because its coefficients are a bit too large. So we set
R = (1 + |q|)/2 and we set J(x) = −x2R2×J′(Rx). From the hypothesis
in the lemma there exists a positive realK3 such that logRn ≤ −n×L−K3 .
From Equation (12.5) there exists an absolute constant κ such that the coef-
ficient of xn in −x2 × J′(x) is ≤ exp(κ

√
n). This implies that the series

J(x) has type (exp(LK4),K4) for some K4 ≥ 1. We apply Lemma 5.4.12
of Chapter 5 to the series J(x) at q/R and we are done. 2

12.13.3 The neighborhood of a non-special divisor

The singular locus of the Jacobi integration map φ : Xg → J is a strict
closed subset. So every non-special effective degree g divisor has a neigh-
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borhood in SymgX consisting of non-special divisors. In this section, we
provide a quantified version of this statement. We first need to define sim-
ple neighborhoods of the divisor P in Equation (12.97). Let ε be a positive
real number. We call Pε the set of degree g effective divisors P ′ that can
be written P ′ =

∑
1≤k≤K

∑
1≤m≤nk P

′
k,m where P ′k,m = (γk, q′k,m) and

|q′k,m − qk| ≤ ε.
We assume that P is non-special. We expect that if ε is small enough, then

P ′ is non-special as well. In order to write down the analytic conditioning
of P ′ we must take multiplicities into account. So we rewrite P ′ as

P ′ =
∑

1≤k≤K

∑
1≤s≤Sk

mk,sP
′
k,s,

where mk = (mk,s)1≤s≤Sk is a partition of nk into Sk non-empty parts. In
particular

nk = mk,1 +mk,2 + · · ·+mk,Sk .

For every 1 ≤ k ≤ K we call

xk = qγk − qk

the local analytic parameter at Pk. We call fk the vector in (C[[xk]])B
1
DR

defined by

fk =
(

Taylor
(

ω

dqγk
, qk

))
ω∈B1

DR

∈ (C[[xk]])B
1
DR (12.100)

where Taylor
(

ω
dqγk

, qk

)
is the Taylor expansion of ω

dqγk
at qk in the param-

eter xk.
For every 1 ≤ k ≤ K and 1 ≤ s ≤ Sk we write

P ′k,s = (γk, q′k,s)

and we set yk,s = q′k,s − qk.
The analytic conditioning of P is the Wronskian in Equation (12.46) eval-

uated at (0, 0, . . . , 0) ∈ CK and divided by n! =
∏

1≤k≤K nk!
The analytic conditioning of P ′ is the Jacobian in Equation (12.47) di-

vided by m! =
∏

1≤k≤K
∏

1≤s≤Sk mk,s! More precisely, the Jacobian in
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Equation (12.47) is m! times the Taylor expansion of the analytic condi-
tioning in the parameters (yk,s)1≤k≤K;1≤s≤Sk .

These two conditionings are related by Equation (12.48). The condition-
ing at P ′ is divisible by the determinant Dm,n relating the two partitions.
And the quotient specializes to the conditioning at P times n!/m!

Let S =
∑

1≤k≤K Sk. Then J(fk,mk)1≤k≤K is a series in the S variables
(yk,s)1≤k≤K; 1≤s≤Sk .

We assume that qk and q′k,m belong to D(0, exp(−π/wk)).

Using Equation (12.56) about the size of coefficients in modular forms,
the type of refocused series as described in Section 12.4.3, the type of
derivatives given in Section 12.4.6, the type of quotient series given in Sec-
tion 12.4.5, we can prove that the series

J(fk,mk)1≤k≤K

Dm,n

has type (exp(lΘ), lΘ1g).
We denote by λ the opposite of the logarithm of the absolute value of the

analytic conditioning of P . We call it the analytic illconditioning of P . It
generalizes the illconditioning introduced in Section 12.10. The only differ-
ence is that here we take multiplicities into account. Using Equation (12.48)
and inequality (12.32) on bounding the remainder, we now prove that if

− log ε ≥ lΘ + λ (12.101)

then P ′ is a non-special divisor also. According to Equation (12.99) the
analytic illconditioning λ is≤ (#Vf )Θ. So any divisor in the neighborhood
Pε is non-special, provided ε ≤ exp(−(#Vf )Θ).

12.13.4 Relating the direct and inverse error

We go on with the notation in the previous Section 12.13.3. We have a
divisor P as in Equation (12.97). We denote by S(nk)1≤k≤K or just S the
map

(R1,...,Rg)7→({R1,...,Rn1},{Rn1+1,...,Rn1+n2},...,{Rn1+n2+···+nK−1+1,...,Rg})

and we check that the following diagram commutes:
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Xg

S(nk)1≤k≤K

��

φ

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

∏
1≤k≤K Symnk X

φ(nk)1≤k≤K // J

We can see the divisor P as a point on the semi-symmetric prod-
uct

∏
1≤k≤K Symnk X. We call U ∈ Xg the unique g-uple such that

S(U) = P .

We assume that P is a non-special divisor. The map φ(nk)1≤k≤K is thus
a local diffeomorphism at P . However, the map φ is not a local diffeomor-
phism at U because S is not, unless the partition n is (1, 1, . . . , 1). We shall
allow ourselves to write φ′ instead of φ(nk)1≤k≤K in this section.

The previous Section 12.13.3 provides an explicit analytic description
of the maps φ (resp. φ′) at U (resp. P ). We have local coordinates
(zk,m)1≤k≤K; 1≤m≤nk at U ∈ Xg. If R is a g-uple in Xg we write

R = (Rk,m)1≤k≤K; 1≤m≤nk

and we set

zk,m(R) = qγk(Rk,m)− qk.

For every 1 ≤ k ≤ K we define the series Fk ∈ (C[[xk]])
B1

DR to be the
formal integral

Fk(xk) =
∫ xk

0
fk(xk)dxk = Fk,1 × xk + Fk,2 × x2

k + . . .

where fk is the vector defined in Equation (12.100). This is the Taylor ex-
pansion of the Jacobi map at the point Pk. The Taylor expansion of φ at U
is

Taylor(φ,U) =
∑

1≤k≤K

∑
1≤m≤nk

Fk(zk,m)
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and it lies in

(C[[(zk,m)1≤k≤K; 1≤m≤nk ]])B
1
DR .

We stress that for every ω in B1
DR, the corresponding coordinate in the

above Taylor expansion is a series of type

(lΘ,Θ× 1g) (12.102)

because it is mostly the expansion of a modular form at a point which is not
too close to the boundary of the unit disk.

We now split this Taylor expansion in two pieces. We write

Taylor(φ,U) = T1 + T2

where T1 is a sort of principal part

T1 =
∑

1≤k≤K

∑
1≤m≤nk

∑
1≤j≤nk

Fk,j × zjk,m

=
∑

1≤k≤K

∑
1≤j≤nk

Fk,j
∑

1≤m≤nk

zjk,m

=
∑

1≤k≤K

∑
1≤j≤nk

Fk,j × νPk,nk,j({Rk,1, Rk,2, . . . , Rk,nk})

=
∑

1≤k≤K

∑
1≤j≤nk

Fk,j × νPk,nk,j(S(R)), (12.103)

and T2 = Taylor(φ,U) − φ1 is the corresponding remainder. It is clear
from Equation (12.103) that T1 can be written

T1 = T ′1 ◦ S

where T ′1 is the first order term (the differential) in the Taylor expansion of
φ′ at P = S(U). We write T2 = T ′2 ◦ S where T ′2 is the corresponding re-
mainder. Our goal now is to prove that in many circumstances the principal
term T ′1 dominates the remainder T ′2. In order to control how close is R to
U (or equivalently how close is S(R) to P ) we set

ε(R) = max
1≤k≤K; 1≤m≤nk

|zk,m(Rk,m)|

= max
1≤k≤K; 1≤m≤nk

|qγk(Rk,m)− qk|
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and

η(S(R)) = max
1≤k≤K; 1≤j≤nk

|νPk,nk,j({Rk,1, Rk,2, . . . , Rk,nk})|

and we assume that η(S(R)) is ≤ exp(−lΘ).

We first bound the remainder T2(R) = T ′2(S(R)) from above in terms of
η(S(R)). Using Buckholtz inequality (5.10) we can bound the coordinates
zk,m(R) = qγk(Rk,m)− qk for every 1 ≤ k ≤ K and 1 ≤ m ≤ nk in terms
of the bound η(S(R)) on Newton power functions:

|zk,m(R)| ≤ 5η(S(R))1/nk

so

|zk,m(R)|nk+1 ≤ 5g+1 × η(S(R))(nk+1)/nk ≤ 5g+1 × η(S(R))1+1/g.

Using the type estimate in Equation (12.102) and Equation (12.32) we
deduce that∣∣T ′2(S(R))

∣∣
∞ ≤ exp(lΘ)× η(S(R))1+1/g. (12.104)

We now bound from below T1(R) = T ′1(S(R)) in terms of η(S(R)).
This time we need some hypothesis on the divisor P . We assume that we
are in the context of Theorem 12.10.2. We call Ω the cuspidal divisor D0

constructed in Section 8.1 and we assume that the class of P−Ω corresponds
to a point x in the Ramanujan subspace Wf ⊂ J . We note that T ′1 is a
linear map and its matrix in the bases (νPk,nk,j)1≤k≤K; 1≤j≤nk and B1

DR

is the matrix Mana
P of Equation (12.98). The coefficients in this matrix

are ≤ lΘ in absolute value. The determinant of this matrix is the analytic
conditioning. According to Equation (12.99) the analytic conditioning at
such a Ramanujan l-torsion divisor is ≥ exp(−(#Vf )Θ). We deduce that∣∣T ′1(S(R))

∣∣
∞ ≥ exp(−(#Vf )Θ)× η(S(R)). (12.105)

We deduce from Equations (12.105) and (12.104) that∣∣T ′1(S(R))
∣∣
∞ ≥ 2

∣∣T ′2(S(R))
∣∣
∞

as soon as ε(R) ≤ exp(−(#Vf )Θ).
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Using Lemma 12.13.5 below we deduce that there exist two absolute pos-
itive constants κ1 and κ2 such that if∣∣φ(R)− φ′(P )

∣∣
∞ ≤ exp(−(#Vf )κ1)

then there exists a divisor S in
∏

1≤k≤K Symnk X such that

η(S) ≤ exp((#Vf )κ2)×
∣∣φ(R)− φ′(P )

∣∣
∞

and φ′(S) = φ(R).
Using again that the conditioning of P is ≥ exp(−(#Vf )Θ) together

with the estimates in Section 12.13.3, e.g. Equation (12.101), we deduce
that if the constant κ1 has been chosen big enough, then this divisor S is
non-special. Therefore S = S(R) and we have proven that

η(S(R)) ≤ exp((#Vf )κ2)×
∣∣φ(R)− φ′(P )

∣∣
∞

therefore

ε(R) ≤ exp((#Vf )κ3)×
∣∣φ(R)− φ′(P )

∣∣
∞

for some absolute positive constant κ3.
This relation between the error in J and the error in Xg finishes the proof

of Theorem 12.10.2.

To finish this section there remains to state and prove Lemma 12.13.5.

12.13.5 Lemma (Perturbation of a non-singular linear map) Let g ≥ 1
be a positive integer and let P̄ (0g,1g) ∈ Cg be the closed polydisk with
polyradius 1g and centered at the origin. Let T : P̄ (0g,1g) → Cg be
a continuous function and let T1 : Cg → Cg be a linear function. Set
T2 = T − T1 and assume that for every R = (R1, . . . , Rg) in P̄ (0g,1g) we
have |T1(R)|∞ > 2|T2(R)|∞. Let K > 0 be a positive real number such
that for every R in Cg

|T1(R)|∞ ≥ K × |R|∞ .

Then the image by T of the polydisk P̄ (0g,1g) contains the polydisk
P̄ (0g, K2 × 1g) with polyradius K/2× 1g.
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For every real number t ∈ [0, 1] we denote by St the image by T1 + tT2

of the L∞-sphere with radius 1. Then St is contained in

Cg − P̄ (0g,
K

2
× 1g)

for every t ∈ [0, 1]. So S1 is homologous to S0 in Cg − P̄ (0g, K2 × 1g) and
its class in

H2g−1(Cg − P̄ (0g,
K

2
× 1g),Z)

is non-zero. So for every x in P̄ (0g, K2 × 1g), the class of S1 in
H2g−1(Cg−{x},Z) is non-zero either. Assume now that x does not belong
to the image by T of the polydisk P̄ (0g,1g). Then S1 is the boundary of
T (P̄ (0g,1g)) ⊂ Cg −{x} and its class in H2g−1(Cg −{x},Z) is trivial. A
contradiction. 2

12.14 FINAL RESULT OF THIS CHAPTER

We now state the final result of this chapter.

12.14.1 Theorem (Approximating Vf over the complex numbers)
There exists a deterministic algorithm that takes as input an even integer
k > 2, a prime integer l > 6(k − 1), a finite field F with characteristic l,
a ring epimorphism f : T(1, k) → F, and a cuspidal divisor Ω on X1(5l)
like the divisor D0 constructed in Section 8.1, and computes complex
approximations for every element inWf ⊂ J1(5l), the image of Vf ⊂ J1(l)
by B∗5l,l,1. Here Vf ⊂ J1(l) is defined by Equation (12.1) and we assume
that the image of the Galois representation ρf associated with f contains
SL(Vf ). The algorithm returns for every element x inWf the unique degree
g effective divisor Qx such that Qx − Ω lies in the class represented by x.
More precisely, the algorithm returns the cuspidal part Qcusp

x of Qx and
a complex approximation of its finite part Qfin

x =
∑

1≤n≤dx Qx,n. Every
point Qx,n is given by complex approximations of its affine coordinates
(b(Qx,n), x(Qx,n)) in the plane model Cl ofX1(5l) given in Section 12.3.3.
The running time of the algorithm is ≤ (m × #Vf )Θ for some absolute
constant Θ. Here #Vf is the cardinality of the Galois representation Vf and
m is the required absolute accuracy.
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There are only two differences between this Theorem 12.14.1 and the pre-
vious Theorem 12.10.2. Firstly we claim that we can separate the cuspidal
and the finite part of Qx. Secondly we return algebraic coordinates b and x
for the points Qx,i rather than analytic ones.

Indeed, Theorem 12.10.2 gives us for every point P in the support of Qx
an analytic coordinate (γ, q). We want to decide if the point P in question
is equal to γ(∞). Let j be Klein’s modular function. We know that both the
degree and the logarithmic height of j(P ) are ≤ (#Vf )Θ. So there exists
an absolute constant κ1 such that if 1/j(P ) is ≤ exp(−(#Vf )κ1) then it is
zero. But the Petersson-Rademacher inequality tells us that there exists an
ε > 0 such that if x is a complex number bounded by ε in absolute value
then

|J(x)| ≥ 1
2|x|

where J(x) is Klein’s series given in Equation (12.3). Using Equation (12.4)
we deduce that there exists an absolute constant κ2 such that if q is
≤ exp(−(#Vf )κ2) then q = 0 and the point P = (γ, q) is the cusp γ(∞).
This explains why we can recognize cusps.

Now assume that P = (γ, q) is a point in the support of some Qx and
assume that P is not a cusp. Then |q| ≥ exp(−(#Vf )κ2) and in order to
compute b(P ) and x(P ) we just substitute qγ by q in the expansions for x
and b at γ(∞) computed in Section 12.3.
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Chapter Thirteen

Computing Vf modulo p

J.-M. Couveignes

In this chapter we address the problem of computing in the group of lk-
torsion rational points in the jacobian variety of algebraic curves over finite
fields, with an application to computing modular representations.

Let p be a prime and let Fp = Z/pZ be the field with p elements. Let Fp
be an algebraic closure of Fp. For any power q of p we call Fq ⊂ Fp the
field with q elements. Let A2 ⊂ P2 be the affine and projective planes over
Fq. Let C ⊂ P2 be a plane projective geometrically integral curve over Fq.
Let X be its smooth projective model and let J be the jacobian variety of
X . We note g the genus of X and d the degree of C. We assume that we
are given the numerator of the zeta function of the function field Fq(X). So
we know the characteristic polynomial of the Frobenius endomorphism Fq

of J . This is a monic degree 2g polynomial χ(x) with integer coefficients.
Let l 6= p be a prime integer and let k ≥ 1 be an integer. We look

for a nice generating set for the group J [lk](Fq) of lk-torsion points in
J(Fq). By nice we mean that the generating set (gi)1≤i≤I should induce
a decomposition of J [lk](Fq) as a direct product

∏
1≤i≤I < gi > of cyclic

subgroups with non-decreasing orders. Given such a generating set and an
Fq-endomorphism of J , we also want to describe the action of this endo-
morphism on J [lk](Fq) by an I × I integer matrix.

By an algorithm in this paper we usually mean a probabilistic Las Ve-
gas algorithm. In some places we shall give deterministic algorithms or
probabilistic Monte-Carlo algorithms, but this will be stated explicitly. See
Section 5.1 for a reminder of computational complexity theory. The main
reason for using probabilistic Turing machines is that we shall need to con-
struct generating sets for the Picard group of curves over finite fields. Solv-
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ing such a problem in the deterministic world is out of reach at this time.
See Section 5.1.

In Section 13.1 we recall how to compute in the Picard group J(Fq). Sec-
tion 13.2 gives a naive algorithm for picking random elements in this group.
Pairings are useful when looking for relations between divisor classes. So
we recall how to compute pairings in Section 13.3. Section 13.4 is con-
cerned with characteristic subspaces for the action of Frobenius inside the
l∞-torsion of J(Fp). In Section 13.5 we look for a convenient surjection
from J(Fq) onto its lk-torsion subgroup. We use the Kummer exact se-
quence and the structure of the ring generated by the Frobenius endomor-
phism. In Section 13.6 we give an algorithm that, on input a degree d plane
projective curve over Fq, plus some information on its singularities, and the
zeta function of its function field, returns a nice generating set for the group
of lk-torsion points inside J(Fq) in probabilistic polynomial time in log q,
d and lk. In Section 13.7 we apply the general algorithms in Section 13.6
to the modular curve X1(5l) in order to compute explicitly a modular rep-
resentations Vf modulo l. Such a representation modulo l can be realized as
a subgroup Wf inside the l-torsion of J1(5l)/Q. The idea is to compute the
reduction modulo p of the group scheme Wf as a subgroup of J1(5l)/Fp,
for many small primes p. One can then lift using the Chinese Remainder
Theorem, as will be explained in Section 14.8.

Remark. The symbol Θ in this chapter stands for a positive effective abso-
lute constant. So any statement containing this symbol becomes true if the
symbol is replaced in every occurrence by some large enough real number.

13.1 BASIC ALGORITHMS FOR PLANE CURVES

In this section, we recall elementary results about computing in the Picard
group of an algebraic curve over a finite field. See [Hac, Vol, Die] for a
more detailed treatment.

13.1.1 Finite fields

We should first explain how finite fields are represented. The prime field
Fp is just Z/pZ so elements in it are represented as integers in [0, p − 1[.
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The base field Fq is given as Fp[x]/f(x) where f(x) is an irreducible uni-
tary polynomial with degree a in Fp[x] where p is the characteristic and
q = pa. A finite extension of Fq is given as Fq[y]/h(y) where h(y) is a
unitary irreducible polynomial in Fq[y]. We shall never use two extensions
of Fq simultaneously. Remind polynomial factoring in Fq[x] is Las Vegas
probabilistic polynomial time in log q and the degree of the polynomial to
be factored [Ga-Ge, Chapter 14].

13.1.2 Plane projective curves and their smooth model

We now explain how curves are represented in this paper. To start with,
a projective plane curve C over Fq is given by a degree d homogeneous
polynomial E(x, y, z) in the three variables x, y and z, with coefficients in
Fq. The curve C is assumed to be absolutely integral. By a point on C
we mean a geometric point: an element of C(Fq) where Fq = Fp is the
algebraic closure of Fp fixed in the introduction. Any Fq-point on C can be
represented by its affine or projective coordinates.

Let X be a smooth model of C and let X → C be the desingularization
map. If P ∈ X(Fq) is a geometric point on X above a singular point S
on C, we say that P is a singular branch. The conductor C is an effec-
tive divisor on X . It is the closed subscheme of X defined by the sheaf
AnnOC (OX/OC). Every multiplicity in C is even. Some authors call C the
adjunction divisor. Its support consists of all singular branches. The con-
ductor expresses the local behaviour of the map X → C. See [Ser1, IV.1],
[Gor]. We have deg(C) = 2δ where

δ =
(d− 1)(d− 2)

2
− g

is the difference between the arithmetic genus of C and the geometric
genus of X . Since δ ≤ (d− 1)(d− 2)/2, the support of C contains at
most (d− 1)(d− 2)/2 geometric points in X(Fq). So the field of def-
inition of any singular branch on X is an extension of Fq with degree
≤ (d− 1)(d− 2)/2. A modern reference for singularities of plane curves
is [Cas, Section 5.8].

The smooth model X of C is not given as a projective variety. Indeed,
we shall only need a nice local description of X above every singularity of
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C. This means that we need a list of all singular points on C, and a list
(a labelling) of all points in X(Fq) lying above every singularity of C (the
singular branches), and a uniformizing parameter at every such branch. We
also need the Laurent series expansions of affine plane coordinates in terms
of all these uniformizing parameters.

More precisely, let P ∈ X(Fq) be a geometric point above a singular
point S, and let v be the corresponding valuation. The field of definition of
P is an extension field FP of Fq with degree ≤ (d− 1)(d− 2)/2. Let xS
and yS be affine coordinates that vanish at the singular point S on C. We
need a local parameter tP at P and expansions xS =

∑
k≥v(xS) akt

k
P and

yS =
∑

k≥v(yS) bkt
k
P with coefficients in FP .

Because these expansions are not finite, we just assume that we are given
a black box that on input a positive integer n returns the first n terms in
all these expansions. In all the cases we shall be interested in, this black
box will contain a Turing machine that answers in time polynomial in n and
log q and the genus g. This is the case for curves with ordinary multiple
points for example. We have shown in Section 12.3 that this is also the
case for the standard plane model of modular curves X1(5l). Using general
normalization and factorization algorithms [Die, Section 2] one may show
that this is indeed the case for all plane curves without any restriction, but
this is beyond the scope of this text.

We may also assume that we are given the conductor C ofC as a combina-
tion of singular branches with even coefficients. The following algorithms
still work if the conductor is replaced by any divisor D that is greater than
the conductor and has polynomial degree in d. Such a divisor can be found
easily: the singular branches on X are supposed to be known already, and
the multiplicities are bounded above by (d− 1)(d− 2)/2.

13.1.3 Divisors, forms, and functions

Smooth Fq-points on C are represented by their affine or projective coor-
dinates. Labelling for the branches above singular points is given in the
description of X . So we know how to represent divisors on X . For any in-
teger h ≥ 0 the Fq-linear space H0(P2,OP2(h)) of degree h homogeneous
polynomials in x, y, and z has dimension (h+ 1)(h+ 2)/2. A basis for it is



bookarxiv March 18, 2010

COMPUTING Vf MODULO p 347

made of all monomials of the form xaybzc with a, b, c ∈ N and a+b+c = h.
We denote by OX(h) the pullback of OP2(h) to X . Let F be a degree h
form on P2 having non-zero pullback FX on X . Let ∆ = (FX) be the divi-
sor of this restriction. The map f 7→ f

FX
is a bijection from H0(X,OX(h))

to the linear space H0(X,OX(∆)) associated with ∆.
We assume that we are given a divisor D bigger than the conductor

C. We assume that the degree of D is ≤ dΘ. We have explained in
the previous Section 13.1.2 how to find such a divisor. The dimension of
H0(X,OX(h)(−D)) is at least dh + 1 − g − deg(D) and is equal to this
number when it exceeds g − 1. This is the case if

h ≥ d+
deg D

d
.

The dimension of H0(X,OX(h)(−D)) is greater than 2g if

h ≥ 3d
2

+
deg D

d
.

We take h to be the smallest integer fulfilling this condition. The com-
posite map X�C↪→P2 induces a map

ρh : H0(P2,OP2(h))→ H0(X,OX(h)).

The image of ρh containsH0(X,OX(h)(−D)). This is known as Noether’s
residue theorem [Gor, Theorem 7]. It will be convenient to describe
H0(X,OX(h)(−D)) as a quotient

0→ Ker ρh → ρ−1
h (H0(X,OX(h)(−D)))

ρh→ H0(X,OX(h)(−D))→ 0.

We need linear equations for

ρ−1
h (H0(X,OX(h)(−D))) ⊂ H0(P2,OP2(h)).

We consider a generic homogeneous form

F (x, y, z) =
∑

a+b+c=h

εa,b,cxaybzc

of degree h in x, y and z. For every branch P above a singular point S ∈ C
(assuming for example that S has non-zero z-coordinate) we replace in
F (x

z ,
y
z , 1) the affine coordinates x = x

z and y = y
z by their expansions
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as series in the local parameter tP at this branch. We ask the resulting series
in tP to have valuation at least the multiplicity of P in the divisor D. Every
singular branch thus produces linear equations in the εa,b,c. The collection
of all such equations defines the subspace ρ−1

h (H0(X,OX(h)(−D))).
A basis for the subspace Ker ρh of ρ−1

h (H0(X,OX(h)(−D))) consists
of all xaybzcE(x, y, z) with a + b + c = h − d. We fix a supplemen-
tary space MC to Ker ρh in ρ−1

h (H0(X,OX(h)(−D))) and we assimilate
H0(X,OX(h)(−D)) to it.

Given a homogeneous form in three variables one can compute its divi-
sor on X using resultants and the given expansions of affine coordinates in
terms of the local parameters at every singular branch. A function is given
as a quotient of two forms.

13.1.4 The Brill-Noether algorithm

The linear space MC computed in the previous paragraph is isomorphic to
H0(X,OX(h)(−D)) via the map ρh. This space allows us to compute in
the group J(Fq) of Fq-points in the jacobian of X . We fix an effective Fq-
divisor Ω with degree g on X . This Ω will play the role of origin: a point
α ∈ J(Fq) is represented by a divisor A − Ω in the corresponding linear
equivalence class, where A is an effective Fq-divisor on X with degree g.
Given another point β ∈ J(Fq) by a similar divisor B−Ω, we can compute
the space H0(X,OX(h)(−D − A − B)) which is non-trivial and pick a
non-zero form F1 in it. The divisor of F1 is (F1) = A+B + D +R where
R is an effective divisor with degree hd − 2g − deg(D). The linear space
H0(X,OX(h)(−D−R−Ω)) has dimension at least 1. We pick a non-zero
form F2 in it. It has divisor (F2) = D + R + Ω + D where D is effective
with degree g. And D − Ω is linearly equivalent to A− Ω +B − Ω.

In order to invert the class α of A − Ω we pick a non-zero form F1 in
H0(X,OX(h)(−D−2Ω)). The divisor of F1 is (F1) = 2Ω+D+R where
R is an effective divisor with degree hd − 2g − deg(D). The linear space
H0(X,OX(h)(−D−R−A)) has dimension at least 1. We pick a non-zero
form F2 in it. It has divisor (F2) = D + R + A + B where B is effective
with degree g. And B − Ω is linearly equivalent to −(A− Ω).

13.1.5 Lemma (Arithmetic operations in the jacobian) Let C/Fq be a
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degree d plane projective absolutely integral curve. Let g be the geometric
genus of C. Assume that we are given the smooth model X of C and a Fq-
divisor with degree g on X , denoted Ω. We assume that Ω is given as a dif-
ference between two effective divisors with degrees bounded by dΘ. This Ω
serves as an origin. Arithmetic operations in the Picard group Pic0(X/Fq)
can be performed in time polynomial in log q and d. This includes addition,
subtraction and comparison of divisor classes.

If Ω is not effective, we use Lemma 13.1.6 below to compute a non-zero
function f in H0(X,OX(Ω)) and we write Ω′ = (f) + Ω. This is an
effective divisor with degree g. We replace Ω by Ω′ and finish as in the
paragraph before Lemma 13.1.5 2

We now recall the principle of the Brill-Noether algorithm for comput-
ing complete linear series. Remind functions in Fq(X) are represented as
quotients of forms.

13.1.6 Lemma (Brill-Noether) There exists an algorithm that on input a
degree d plane projective absolutely integral curve C/Fq and the smooth
model X of C and two effective Fq-divisors A and B on X , computes a
basis for H0(X,OX(A − B)) in time polynomial in d and log q and the
degrees of A and B.

We assume that deg(A) ≥ deg(B), otherwise H0(X,OX(A−B)) = 0.
Let a be the degree of A. We let h be the smallest integer such that

hd− g + 1 > a+ deg D.

The space H0(X,OX(h)(−D − A)) is non-zero. It is contained in the
image of the map

ρh : H0(P2,OP2(h))→ H0(X,OX(h))

so that we can represent it as a subspace of H0(P2,OP2(h)). We pick
a non-zero form f in H0(X,OX(h)(−D − A)) and compute its divisor
(f) = D +A+D. The space H0(X,OX(h)(−D−B −D)) is contained
in the image of the map ρh so that we can represent it as a subspace of
H0(P2,OP2(h)). We compute forms γ1, γ2, . . . , γk inH0(P2,OP2(h)) such
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that their images by ρh provide a basis for H0(X,OX(h)(−D−B −D)).
A basis for H0(X,OX(A−B)) is made of the functions γ1

f , γ2f , . . . , γkf . 2

We deduce an explicit moving lemma for divisors.

13.1.7 Lemma (Moving divisor lemma I) There exists an algorithm that
on input a degree d plane projective absolutely integral curve C/Fq and
the smooth model X of C and a degree zero divisor D = D+ −D− and an
effective divisorAwith degree< q onX computes a divisorE = E+−E−

linearly equivalent to D and disjoint to A in time polynomial in d and log q
and the degrees of D+, and A. Further the degree of E+ and E− can be
taken to be ≤ 2gd.

Let O be an Fq-rational divisor on X such that 1 ≤ deg(O) ≤ d and dis-
joint toA. We may takeO to be a well chosen fiber of some plane coordinate
function onX . We compute the linear spaceH0(X,OX(D+−D−+2gO)).
The subspace of H0(X,OX(D+ −D− + 2gO)) consisting of functions f
such that (f) +D+−D−+ 2gO is not disjoint to A is contained in a union
of at most deg(A) < q hyperplanes. We conclude invoking Lemma 13.1.8
below. 2

There remains to state and prove the

13.1.8 Lemma (Solving inequalities) Let q be a prime power, d ≥ 2 and
n ≥ 1 two integers and let H1, . . . , Hn be hyperplanes inside V = Fdq , each
given by a linear equation. Assume that n < q. There exists a deterministic
algorithm that finds a vector in U = V −

⋃
1≤k≤nHk in time polynomial in

log q, d and n.

This is proved by lowering the dimension d. For d = 2 we pick any affine
line L in V not containing the origin. We observe that there are at least q−n
points in U ∩L = L−

⋃
1≤k≤n L∩Hk. We enumerate points in L until we

find one which is not in any Hk. This requires at most n+ 1 trials.
Assume now that d is bigger than 2. Hyperplanes in V are parametrized

by the projective space P(V̂ ) where V̂ is the dual of V . We enumerate points
in P(V̂ ) until we find a hyperplane K distinct from every Hk. We compute
a basis for K and an equation for every Hk ∩K in this basis. This way, we
have lowered the dimension by 1. 2
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We can strengthen a bit the moving divisor algorithm by removing the
condition that A has degree < q. Indeed, in case this condition is not met,
we call α the smallest integer such that qα > deg(A) and we set β = α+ 1.
We apply Lemma 13.1.7 after base change to the field with qα elements
and find a divisor Eα. We call eα the norm of Eα from Fqα to Fq. It is
equivalent to αD. We similarly construct a divisor eβ that is equivalent to
(α + 1)D. We return the divisor E = eβ − eα. We observe that we can
take α ≤ 1 + logq deg(A) so the degree of the positive part E+ of E is
≤ 6gd(logq(deg(A)) + 1).

13.1.9 Lemma (Moving divisor lemma II) There exists an algorithm that
on input a degree d plane projective absolutely integral curve C/Fq and the
smooth model X of C and a degree zero Fq-divisor D = D+ − D− and
an effective divisor A on X computes a divisor E = E+ − E− linearly
equivalent to D and disjoint to A in time polynomial in d and log q and the
degrees of D+, and A. Further the degree of E+ and E− can be taken to be
≤ 6gd(logq(deg(A)) + 1).

13.2 A FIRST APPROACH TO PICKING RANDOM DIVISORS

Given a finite field Fq and a plane projective absolutely integral curve C
over Fq with projective smooth model X , we call J the jacobian of X and
we consider two related problems: picking a random element in J(Fq) with
(close to) uniform distribution and finding a generating set for (a large sub-
group of) J(Fq). Let g be the genus of X . We assume that we are given a
degree 1 divisorO = O+−O− whereO+ andO− are effective, Fq-rational
and have degree bounded by ΘgΘ for some positive constant Θ.

We know from [Mu-St-Th, Theorem 2] that the group Pic0(X/Fq) is
generated by the classes [p − deg(p)O] where p runs over the set of prime
divisors of degree ≤ 1 + 2 logq(4g − 2). For the convenience of the reader
we quote this result as a lemma.

13.2.1 Lemma (Müller, Stein, Thiel) Let K be an algebraic function field
of one variable over Fq. Let N ≥ 0 be an integer. Let g be the genus of
K. Let χ : Div(K)→ C∗ be a character of finite order which is non-trivial
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when restricted to Div0. Assume that χ(B) = 1 for every prime divisor B

of degree ≤ N . Then

N < 2 logq(4g − 2).

If q < 4g2, the number of prime divisors of degree ≤ 1 + 2 logq(4g − 2)
is bounded by ΘgΘ. So we can compute easily a small generating set for
J(Fq). In the rest of this section, we will assume that the size q of the field
is greater than or equal to 4g2. This condition ensures the existence of a
Fq-rational point.

Picking efficiently and provably random elements in J(Fq) with uniform
distribution seems difficult to us. We first give here an algorithm for ef-
ficiently constructing random divisors with a distribution that is far from
uniform but still sufficient to construct a generating set for a large subgroup
of J(Fq). Once given generators, picking random elements becomes much
easier.

Let r be the smallest prime integer bigger than 30, 2g − 2 and d. We
observe r is less than max(4g − 4, 2d, 60). The set P(r, q) of Fq-places
with degree r on X has cardinality

#P(r, q) =
#X(Fqr)−#X(Fq)

r
.

So

(1− 10−2)
qr

r
≤ #P(r, q) ≤ (1 + 10−2)

qr

r
.

Indeed, |#X(Fqr)− qr − 1| ≤ 2gq
r
2 and |#X(Fq)− q − 1| ≤ 2gq

1
2 .

So ∣∣∣∣#P(r, q)− qr

r

∣∣∣∣ ≤ 4g + 3
r

q
r
2 ≤ 8q

r
2

and 8rq
−r
2 ≤ r23− r

2 ≤ 10−2 since r ≥ 31.
Since we are given a degree d plane model C for the curve X , we have a

degree d map x : X → P1. This is the composition of the desingularization
map X → C with the restriction to C of the rational map [x, y, z] → [x, z].
Since d < r, the function x maps P(r, q) to the set U(r, q) of monic prime
polynomials of degree r over Fq. The cardinality of U(r, q) is qr−q

r so

(1− 10−9)
qr

r
≤ #U(r, q) ≤ qr

r
.
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The fibers of the map x : P(r, q) → U(r, q) have cardinality between 0
and d. We can pick a random element in U(r, q) with uniform distribution
in the following way: we pick a random monic polynomial of degree r with
coefficients in Fq, with uniform distribution. We check whether it is irre-
ducible. If it is, we output it. Otherwise we start again. This is polynomial
time in r and log q.

Given a random element in U(r, q) with uniform distribution, we can
compute the fiber of x : P(r, q) → U(r, q) above it and, provided this
fiber is non-empty, pick a random element in it with uniform distribution. If
the fiber is empty, we pick another element in U(r, q) until we find a non-
empty fiber. At least one in every d× (0.99)−1 fibers is non-empty. We thus
define a distribution µ on P(r, q) and prove the following.

13.2.2 Lemma (A very rough measure) There is a unique measure µ on
P(r, q) such that all non-empty fibers of the map x : P(r, q)→ U(r, q) have
the same measure, and all points in a given fiber have the same measure.
There exists a probabilistic algorithm that picks a random element inP(r, q)
with distribution µ in time polynomial in d and log q. For every subset Z of
P(r, q) the measure µ(Z) is related to the uniform measure #Z

#P(r,q) by

#Z
d#P(r, q)

≤ µ(Z) ≤ d#Z
#P(r, q)

.

Now let D(r, q) be the set of effective Fq-divisors with degree r on X .
Since we have assumed that q ≥ 4g2 we know that X has at least one Fq-
rational point. Let Ω be a degree r effective divisor on X/Fq. We associate
to every α in D(r, q) the class of α− Ω in J(Fq). This defines a surjection

φr : D(r, q)→ J(Fq)

with all its fibers having cardinality #Pr−g(Fq). So the set D(r, q) has
cardinality qr−g+1−1

q−1 #J(Fq). So

#P(r, q) ≤ #D(r, q) ≤ qr−g
1− 1

qr−g+1

1− 1
q

qg(1 +
1
√
q

)2g.

Since q ≥ 4g2 we have

#D(r, q) ≤ 2eqr.
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Assume that G is a finite group and ψ an epimorphism of groups

ψ : J(Fq)→ G.

We look for some divisor ∆ ∈ D(r, q) such that

ψ(φr(∆)) 6= 0 ∈ G.

Since all the fibers of ψ ◦φr have the same cardinality, the fiber above 0 has
at most

2eqr

#G

elements. So the number of prime divisors ∆ ∈ P(r, q) such that ψ(φr(∆))
is not 0 is at least

qr(
0.99
r
− 2e

#G
).

We assume that #G is at least 12r. Then at least half of the divisors in
P(r, q) are not mapped onto 0 by ψ ◦ φr. The µ-measure of the subset con-
sisting of these elements is at least 1

2d . So if we pick a random ∆ in P(r, q)
with µ-measure as in Lemma 13.2.2, the probability of success is at least
1
2d . If we make 2d trials, the probability of success is ≥ 1− exp(−1) ≥ 1

2 .

13.2.3 Lemma (Finding non-zero classes) There exists a probabilistic
(Monte-Carlo) algorithm that takes as input

1. a degree d and geometric genus g plane projective absolutely integral
curve C over Fq, such that q ≥ 4g2,

2. the smooth model X of C,

3. a degree 1 divisorO = O+−O− whereO+ andO− are effective, Fq-
rational and have degree bounded by ΘgΘ for some positive constant
Θ,

4. an epimorphism ψ : Pic0(X/Fq)→ G (that need not be computable)
such that the cardinality of G is at least max(48g, 24d, 720),

and outputs a sequence of 2d elements in Pic0(X/Fq) such that at least one
of them is not in the kernel of ψ with probability ≥ 1

2 . The algorithm is
polynomial time in d and log q.
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As a special case we take G = G0 = J(Fq) and ψ = ψ0 the identity. Ap-
plying Lemma 13.2.3 we find a sequence of elements in J(Fq) out of which
one at least is non-zero (with high probability). We take G1 to be the quo-
tient of G by the subgroup generated by these elements and ψ1 the quotient
map. Applying the lemma again we construct another sequence of elements
in J(Fq) out of which one at least is not in G0 (with high probability). We
go on like that and produce a sequence of subgroups in J(Fq) that increase
with constant probability until the index in J(Fq) becomes smaller than
max(48g, 24d, 720). Note that every step in this method is probabilistic: it
succeeds with some probability, that can be made very high (exponentially
close to 1) while keeping a polynomial overall complexity.

13.2.4 Lemma (Finding an almost generating set) There exists a proba-
bilistic (Monte-Carlo) algorithm that takes as input

1. a degree d and geometric genus g plane projective absolutely integral
curve C over Fq, such that q ≥ 4g2,

2. the smooth model X of C,

3. a degree 1 divisorO = O+−O− whereO+ andO− are effective, Fq-
rational and have degree bounded by ΘgΘ for some positive constant
Θ,

and outputs a sequence of elements in Pic0(X/Fq) that generate a subgroup
of index at most

max(48g, 24d, 720)

with probability ≥ 1
2 . The algorithm is polynomial time in d and log q.

Note that we do not catch the whole group J(Fq) of rational points but
a subgroup G with index at most ι = max(48g, 24d, 720). This is a small
but annoying gap. In the sequel we shall try to compute the l-torsion of
the group J(Fq) of rational points. Because of the small gap in the above
lemma, we may miss some l-torsion points if l is smaller than ι. However,
let k be an integer such that lk > ι. And let x be a point of order l in J(Fq).
Assume that there exists a point y in J(Fq) such that x = lk−1y. The group
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< y > generated by y and the group G have non-trivial intersection because
the product of their orders is bigger than the order of J(Fq). Therefore x
belongs to G.

Our strategy for computing J(Fq)[l] will be to find a minimal field exten-
sion FQ of Fq such that all points in J(Fq)[l] are divisible by lk−1 in J(FQ).
We then shall apply the above lemma to J(FQ). To finish with, we shall
have to compute J(Fq) as a subgroup of J(FQ). To this end, we shall use
the Weil pairing.

13.3 PAIRINGS

Let n be a prime to p integer and J a jacobian variety over Fq. The Weil pair-
ing relates the full n-torsion subgroup J(Fq)[n] with itself. It can be defined
using Kummer theory and is geometric in nature. The Tate-Lichtenbaum-
Frey-Rück pairing is more arithmetic and relates the n-torsion J(Fq)[n] in
the group of Fq-rational points and the quotient J(Fq)/nJ(Fq). In this sec-
tion, we quickly review the definitions and algorithmic properties of these
pairings, following work by Weil, Lang, Menezes, Okamoto, Vanstone, Frey
and Rück.

We first recall the definition of Weil pairing following [Lan3]. Let k be
an algebraically closed field with characteristic p. For every abelian variety
A over k, we denote by Z0(A)0 the group of 0-cycles with degree 0 and by
S : Z0(A)0 → A the summation map, that associates to every 0-cycle of
degree 0 the corresponding sum in A. Let V and W be two projective non-
singular integral varieties over k, and let α : V → A and β : W → B be the
canonical maps into their Albanese varieties. Let D be a correspondence on
V ×W . Let n ≥ 2 be a prime to p integer. Let a (resp. b) be a 0-cycle
of degree 0 on V (resp. W ) and let a = S(α(a)) (resp. b = S(β(b))) be
the associated point in A (resp. B). Assume that na = nb = 0. The Weil
pairing en,D(a, b) is defined in [Lan3, VI, §4, Theorem 10]. It is an n-th
root of unity in k. It is linear in a, b and D.

Assume now that V = W = X is a smooth projective integral curve over
k and assume that A = B = J is its jacobian and

α = β = φ : X → J
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is the Jacobi map (once an origin onX has been chosen). If we takeD to be
the diagonal on X ×X we define a pairing en,D(a, b) that will be denoted
en(a, b) or en,X(a, b). It does not depend on the origin for the Jacobi map.
It is non-degenerate.

The jacobian J comes with a principal polarization i.e. an isomorphism
λ : J → Ĵ between J and its dual Ĵ . If α is an endomorphism α : J → J ,
we denote by tα its transpose tα : Ĵ → Ĵ . If D is a divisor on J that is
algebraically equivalent to zero, the image by tα of the linear equivalence
class of D is the linear equivalence class of the inverse image α−1(D). See
[Lan3, V, §1]. The Rosati dual of α is defined to be α∗ = λ−1 ◦ tα ◦ λ. The
map α→ α∗ is an involution, and α∗ is the adjoint of α for the Weil pairing

en,X(a, α(b)) = en,X(α∗(a), b) (13.1)

according to [Lan3, VII, §2, Proposition 6].
If Y is another smooth projective integral curve over k andK its jacobian

and f : X → Y a non-constant map with degree d, and f∗ : K → J the
associated map between jacobians, then for a and b of order dividing n in
K one has

en,X(f∗(a), f∗(b)) = en,Y (a, b)d.

The Frey-Rück pairing can be constructed from the Lichtenbaum version
of Tate’s pairing [Lic] as was shown in [Fr-Ru]. Let q be a power of p.
Let again n ≥ 2 be a prime to p integer and let X be a smooth projective
absolutely integral curve over Fq. Let g be the genus of X . We assume that
n divides q − 1. Let J be the jacobian of X . The Frey-Rück pairing

{, }n : J(Fq)[n]× J(Fq)/nJ(Fq)→ F∗q/(F∗q)n

is defined as follows. We take a class of order dividing n in J(Fq). Such a
class can be represented by an Fq-divisor D with degree 0. We take a class
in J(Fq) and pick a degree zero Fq-divisor E in this class, that we assume
to be disjoint to D. The pairing evaluated at the classes [D] and [E] mod n
is

{[D], [E] mod n}n = f(E) mod (F∗q)n

where f is any function with divisor nD. This is a non-degenerate pairing.



bookarxiv March 18, 2010

358 CHAPTER 13

We now explain how one can compute the Weil pairing, following work
by Menezes, Okamoto, Vanstone, Frey and Rück. The Tate-Lichtenbaum-
Frey-Rück pairing can be computed similarly. As usual, we assume that
we are given a degree d plane model C for X . Assume that a and b have
disjoint support (otherwise we may replace a by some linearly equivalent
divisor using the explicit moving Lemma 13.1.7.) We compute a function
fa with divisor na. We similarly compute a function fb with divisor nb.
Then

en(a, b) =
fb(a)
fa(b)

.

This algorithm is polynomial in the degree d of C and the order n of the di-
visors, provided the initial divisors a and b are given as differences between
effective divisors with polynomial degree in d.

Using an idea that appears in a paper by Menezes, Okamoto and Van-
stone [Me-Ok-Va] in the context of elliptic curves, and in [Fr-Ru] for gen-
eral curves, one can make this algorithm polynomial in log n in the follow-
ing way. We write a = a0 = a+

0 − a−0 where a+
0 and a−0 are effective

divisors. Let fa be the function computed in the above simple minded al-
gorithm. One has (f) = na+

0 − na−0 . We want to express fa as a product
of small degree functions. We use a variant of fast exponentiation. Us-
ing Lemma 13.1.7 we compute a divisor a1 = a+

1 − a−1 and a function f1

such that a1 is disjoint to b and (f1) = a1 − 2a0 and such that the degrees
of a+

1 and a−1 are ≤ 6gd(logq(deg(b)) + 1). We go on and compute, for
k ≥ 1 an integer, a divisor ak = a+

k − a−k and a function fk such that ak

is disjoint to b and (fk) = ak − 2ak−1 and such that the degrees of a+
k

and a−k are ≤ 6gd(logq(deg(b)) + 1). We write the base 2 expansion of
n =

∑
k εk2

k with εk ∈ {0, 1}. We compute the function Φ with divisor∑
k εkak. We claim that the function fa can be written as a product of the

fk, for k ≤ log2 n, and Φ with suitable integer exponents bounded by n in
absolute value. Indeed we write F1 = f1, F2 = f2f

2
1 , F3 = f3f

2
2 f

4
1 and so

on. We have (Fk) = ak − 2ka and

Φ
∏
k

F−εkk

has divisor na so is the fa we were looking for.
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13.3.1 Lemma (Computing the Weil pairing) There exists an algorithm
that on input a prime to q integer n ≥ 2 and a degree d absolutely inte-
gral plane projective curve C over Fq and its smooth model X and two
Fq-divisors on X , denoted a = a+ − a− and b = b+ − b−, with degree 0,
and order dividing n in the jacobian, computes the Weil pairing en(a, b) in
time polynomial in d, log q, log n and the degrees of a+, a−, b+, b−, the
positive and negative parts of a and b.

13.3.2 Lemma (Computing Tate-Lichtenbaum-Frey-Rück pairings)
There exists an algorithm that on input an integer n ≥ 2 dividing q − 1
and a degree d absolutely integral plane projective curve C over Fq and its
smooth model X and two Fq-divisors on X , denoted a = a+ − a− and
b = b+ − b−, with degree 0, and such that the class of a has order dividing
n ≥ 2 in the jacobian, computes the Tate-Lichtenbaum-Frey-Rück pairing
{a, b}n in time polynomial in d, log q, log n and the degrees of a+, a−, b+,
b−, the positive and negative parts of a and b.

13.4 DIVISIBLE GROUPS

Let Fq be a finite field with characteristic p and letX be a projective smooth
absolutely integral algebraic curve over Fq. Let g be the genus of X and let
l 6= p be a prime integer. We assume that g ≥ 1. Let J be the jacobian
of X and let End(J/Fq) be the ring of endomorphisms of J over Fq. Let
Fq be the Frobenius endomorphism. In this section we study the action of
Fq on lk-torsion points of J . We first consider the whole lk-torsion group.
We then restrict to some well chosen subgroups where this action is more
amenable.

Let χ(x) be the characteristic polynomial of Fq ∈ End(J/Fq). The
Rosati dual to Fq is q/Fq. Let

O = Z[x]/χ(x)

and Ol = Zl[x]/χ(x). We set

ϕq = x mod χ(x) ∈ O.

Mapping ϕq onto Fq defines an epimorphism from the ring O onto Z[Fq].
In order to control the degree of the field of definition of lk-torsion points
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we shall bound the order of ϕq in (O/lkO)∗. We set

U1 = (O/lO)∗ = (Fl[x]/χ(x))∗.

Let the prime factorization of χ(x) mod l be
∏
i χi(x)ei with deg(χi) = fi.

The order of U1 is
∏
i l

(ei−1)fi(lfi − 1). Let γ be the smallest integer such
that lγ is bigger than or equal to 2g. Then the exponent of the group U1

divides

A1 = lγ
∏
i

(lfi − 1).

We set

B1 =
∏
i

(lfi − 1)

and

C1 = lγ .

There is a unique polynomial M1(x) ∈ Z[x] with degree < 2g such that

ϕA1
q − 1
l

= M1(ϕq) ∈ O.

Now for every positive integer k, the element ϕq belongs to the unit group

Uk = (O/lkO)∗

of the quotient algebra O/lkO = Z[x]/(lk, χ(x)). The prime factoriza-
tion of χ(x) mod l is lifted modulo lk as

∏
i Ξi(x) with Ξi monic and

deg(Ξi) = eifi, and the order of Uk is
∏
i l
fi(kei−1)(lfi − 1). The expo-

nent of the latter group divides

Ak = A1l
k−1.

So we set

Bk = B1 =
∏
i

(lfi − 1)

and

Ck = C1l
k−1 = lk−1+γ .
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There is a unique polynomial Mk(x) ∈ Z[x] with degree < deg(χ) such
that

ϕAkq − 1
lk

= Mk(ϕq) ∈ O.

For every integer N ≥ 2 we can compute Mk(x) mod N from χ(x) in
probabilistic polynomial time in log q, log l, logN , k, g. Indeed we first
factor χ(x) mod l then compute the χi and the ei and fi. We compute

xAk mod (χ(x), lkN)

using the fast exponentiation algorithm presented in Section 5.1. We remove
1 and divide by lk.

13.4.1 Lemma (Frobenius and l-torsion) Let k be a positive integer and
l 6= p a prime. Let χ(x) be the characteristic polynomial of the Frobenius
Fq of J/Fq. Let ei and fi be the multiplicities and inertiae in the prime
decomposition of χ(x) mod l. Let γ be the smallest integer such that lγ is
bigger than or equal to 2g. Let B =

∏
i(l

fi − 1). Let Ck = lk−1+γ and
let Ak = BCk. The lk-torsion in J splits completely over the degree Ak
extension of Fq. There is a degree < 2g polynomial Mk(x) ∈ Z[x] such
that

FAkq = 1 + lkMk(Fq).

For every integer N one can compute such a Mk(x) mod N from χ(x) in
probabilistic polynomial time in log q, log l, logN , k, g.

In order to state sharper results it is convenient to introduce l-divisible
subgroups inside the l∞-torsion of a jacobian J , that may or may not corre-
spond to subvarieties. We now see how to define such subgroups and control
their rationality properties.

13.4.2 Lemma (Divisible group) Let Π : J [l∞] → J [l∞] be a group ho-
momorphism whose restriction to its image G is a bijection. Multiplication
by l is then a surjection fromG onto itself. We denote byG[lk] the lk-torsion
inG. There is an integer w such thatG[lk] is a free Z/lkZmodule of rank w
for every k. We assume that Π commutes with the Frobenius endomorphism
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Fq. We then say G is the divisible group associated with Π. From Tate’s
theorem [Tat1] Π is induced by some endomorphism in End(J/Fq) ⊗Z Zl
and we can define Π∗ the Rosati dual of Π and denote by G∗ = Im(Π∗) the
associated divisible group, that we call the adjoint of G.

Remark. The dual G∗ does not only depend on G. It may depend on Π
also. This will not be a problem for us.

Remark. We may equivalently define Π∗ as the dual of Π for the Weil
pairing. See Equation (13.1).

We now give an example of divisible group. Let F (x) = F1(x) and
G(x) = G1(x) be two monic coprime polynomials in Fl[x] such that

χ(x) = F1(x)G1(x) mod l.

According to Bezout’s theorem we have two polynomialsH1(x) andK1(x)
in Fl[x] such that

F1H1 +G1K1 = 1

and deg(H1) < deg(G1) and deg(K1) < deg(F1).
From Hensel’s lemma, for every positive integer k there exist four poly-

nomials Fk(x), Gk(x), Hk(x) and Kk(x) in (Z/lkZ)[x] such that Fk and
Gk are monic and

χ(x) = Fk(x)Gk(x) mod lk

and

FkHk +GkKk = 1 mod lk

and deg(Hk) < deg(G1) and deg(Kk) < deg(F1) and F1 = Fk mod l,
G1 = Gk mod l, H1 = Hk mod l, K1 = Kk mod l.

The sequences (Fk)k, (Gk)k, (Hk)k, (Kk)k converge in Zl[x] to F0, G0,
H0, K0. If we substitute Fq for x in F0H0 we obtain a map

ΠG : J [l∞]→ J [l∞]

and similarly, if we substitute Fq for x in G0K0 we obtain a map ΠF . It is
clear that Π2

F = ΠF and Π2
G = ΠG and ΠF + ΠG = 1 and ΠFΠG = 0.
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We call GF = Im(ΠF ) and GG = Im(ΠG) the associated supplementary
l-divisible groups.

13.4.3 Definition (Characteristic subspaces) For every non-trivial monic
factor F (x) of χ(x) mod l such that the cofactor G = χ/F mod l is prime
to F , we write χ = F0G0 the corresponding factorization in Zl[x]. The
l-divisible group

GF = Im(ΠF )

is called the F0-torsion in J [l∞] and is denoted J [l∞, F0]. It is the charac-
teristic subspace of Fq associated with the factor F . If F = (x− 1)e is the
largest power of x − 1 dividing χ(x) mod l we abbreviate G(x−1)e = G1.
If F = (x− q)e then we write similarly G(x−q)e = Gq.

We notice that there exists a unit u in End(J/Fq) ⊗Z Zl such that the
Rosati dual Π∗1 of Π1 is

Π∗1 = Πq ◦ u.

Therefore

Gq = G∗1

and the restriction of the Weil pairing to G1[lk] × Gq[lk] is non-degenerate
for any integer k ≥ 1.

We now compute fields of definitions for torsion points inside such divis-
ible groups. The action of Fq on the lk-torsion GF [lk] = J [lk, F0] inside
GF factors through the ring Ol/(lk, F0(ϕq)) = Zl[x]/(lk, F0). We deduce
the following.

13.4.4 Lemma (Frobenius and F0-torsion) Let k be a positive integer and
l 6= p a prime. Let χ(x) be the characteristic polynomial of the Frobenius
Fq of J . Let χ = FG mod l with F and G monic coprime. Let ei and fi be
the multiplicities and inertiae in the prime decomposition of F (x) mod l.
Let γ be the smallest integer such that lγ is bigger than or equal to 2g. Let
B(F ) =

∏
i(l

fi − 1). Let Ck(F ) = lk−1+γ and Ak(F ) = B(F )Ck(F ).
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The lk-torsion in GF splits completely over the degree Ak(F ) extension of
Fq. There is a degree < deg(F ) polynomial Mk(x) ∈ Zl[x] such that

ΠF ◦ FAk(F )
q = ΠF + lkΠF ◦Mk(Fq).

For every power N of l, one can compute such an Mk(x) modulo N from
χ(x) and F (x) in probabilistic polynomial time in log q, log l, logN , k, g.

If we take for F the largest power of x − 1 dividing χ(x) mod l in the
above lemma, we can take B(F ) = 1 so Ak(F ) is an l power ≤ 2glk.

If we take for F the largest power of x − q dividing χ(x) mod l in the
above lemma, we have B(F ) = l − 1 so Ak(F ) is ≤ 2g(l − 1)lk.

So the characteristic spaces associated with the eigenvalues 1 and q split
completely over small degree extensions of Fq.

13.5 THE KUMMER MAP

Let X be a smooth projective absolutely integral curve over Fq of genus g
and J the jacobian ofX . Let n ≥ 2 be an integer dividing q−1. We assume
that g ≥ 1. In this section, we construct a convenient surjection from J(Fq)
to J(Fq)[n]. If P is in J(Fq) we take some R ∈ J(Fq) such that nR = P

and form the 1-cocycle (σR−R)σ in H1(Fq, J [n]). Using the Weil pairing
we deduce an element

S 7→ (en(σR−R,S))σ

in

Hom(J [n](Fq), H1(Fq, µn)) = Hom(J [n](Fq),Hom(Gal(Fq), µn)).

The map that sends P mod nJ(Fq) to S 7→ (en(σR − R,S))σ is in-
jective because the Frey-Rück pairing is non-degenerate. We observe that
Hom(Gal(Fq), µn) is isomorphic to µn because giving an homomorphism
from Gal(Fq) to µn is equivalent to giving the image of the Frobenius gen-
erator Fq. We obtain a bijection

Tn,q : J(Fq)/nJ(Fq)→ Hom(J [n](Fq), µn)
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that we call the Tate map. It maps P onto S 7→ en(FqR − R,S). If J [n]
splits completely over Fq we set Kn,q(P ) = FqR−R and define a bijection

Kn,q : J(Fq)/nJ(Fq)→ J [n](Fq) = J [n]

that we call the Kummer map.

13.5.1 Definition (The Kummer map) Let J/Fq be a jacobian and n ≥ 2
a prime to p integer. Assume that J [n] splits completely over Fq. For
P in J(Fq) we choose any R in J(Fq) such that nR = P and we set
Kn,q(P ) = FqR−R. This defines a bijection

Kn,q : J(Fq)/nJ(Fq)→ J [n](Fq) = J [n].

We now assume that

n = lk

is a power of some prime integer l 6= p. We still make the (strong !) assump-
tion that J [n] splits completely over Fq. We want to compute the Kummer
map Kn,q explicitly. Let P be an Fq-rational point in J . Let R be such that
nR = P . Since Fq − 1 annihilates J [n], there is an Fq-endomorphism κ of
J such that Fq − 1 = nκ. We note that κ belongs to Z[Fq] ⊗Z Q = Q[Fq]
and therefore commutes with Fq. We have

κ(P ) = (Fq − 1)(R) = Kn,q(P )

and κ(P ) is Fq-rational. So we can compute Kn,q(P ) without computing
R. We don’t need to divide P by n.

The Kummer map will show very useful but its definition requires that
J [n] splits completely over Fq. If this is not the case, we must base change
to some extension of Fq.

Let χ(x) be the characteristic polynomial of Fq and let B =
∏
i(l

fi − 1)
where the fi are the degrees of the irreducible factors of χ(x) mod l. Let
lγ be the smallest power of l that is bigger than or equal to 2g. Let
Ck = lγ+k−1 and Ak = BCk. Set Q = qAk . From Lemma 13.4.1 there is a
polynomial Mk(x) such that

FQ = 1 + lkMk(Fq).
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So for P an FQ-rational point in J and R such that nR = P , the Kummer
map Kn,Q applied to P is

Mk(Fq)(P ) = (FQ − 1)(R) = Kn,Q(P )

and this is an FQ-rational point.

13.5.2 Lemma (Computing the Kummer map) Let J/Fq be a jacobian.
Let g ≥ 1 be its dimension. Let l 6= p be a prime integer and n = lk

a power of l. Let χ(x) be the characteristic polynomial of Fq and let
B =

∏
i(l

fi − 1) where the fi are the degrees of the irreducible factors
of χ(x) mod l. Let lγ be the smallest power of l that is bigger than or equal
to 2g. Let Ck = lγ+k−1 and Ak = BCk. Set Q = qAk and observe that n
dividesQ−1 because J [n] splits completely over FQ. There exists an endo-
morphism κ ∈ Z[Fq] of J such that nκ = FQ− 1 and for every FQ-rational
point P and anyRwith nR = P one has κ(P ) = (FQ−1)(R) = Kn,Q(P ).
This endomorphism κ induces a bijection between J(FQ)/nJ(FQ) and
J [n](FQ) = J [n]. Given χ(x) and a positive integer N one can compute
κ mod N as a polynomial in Fq with coefficients in Z/NZ in probabilistic
polynomial time in g, log l, log q, k, logN .

This lemma is not of much use in practice because the field FQ is too big.
On the other hand, we may not be interested in the whole n-torsion in J but
just a small piece in it, namely the n-torsion of a given divisible group.

So let l 6= p be a prime integer and G an l-divisible group in J [l∞]. Let

Π ∈ End(J/Fq)⊗Z Zl

be a projection onto G. So

Π : J [l∞]→ G.

We assume that Π2 = Π. Let n = lk and let Q be a power of q such that
G[n] splits completely over FQ. Let P be an FQ-rational point in G. Let
R ∈ G(Fq) be such that nR = P . We set

KG,n,Q(P ) = FQR−R

and define an isomorphism

KG,n,Q : G(FQ)/nG(FQ)→ G(FQ)[n] = G[n].
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In order to make this construction explicit, we now assume that there
exists some κ ∈ Zl[Fq] such that

(FQ − 1− nκ)Π = 0.

Lemma 13.4.4 provides us with such a Q and such a κ whenG = J [l∞, F0]
is some characteristic subspace.

We now can compute this new Kummer map KG,n,Q. Let P be an FQ-
rational point in G. Let R ∈ G be such that nR = P . From

(FQ − 1− nκ)Π(R) = 0 = (FQ − 1− nκ)(R)

we deduce that KG,n,Q(P ) = κ(P ). Hence the following lemma.

13.5.3 Lemma (The Kummer map for a divisible group) Let J/Fq be a
jacobian. Let g be its dimension. Let l 6= p be a prime integer and n = lk

a power of l. We assume that g ≥ 1. Let χ(x) be the characteristic poly-
nomial of Fq. Assume that χ(x) = F (x)G(x) mod l with F and G monic
coprime polynomials in Fl[x] and let GF be the associated divisible group.
Let B =

∏
i(l

fi − 1) where the fi are the degrees of the irreducible fac-
tors of F (x) mod l. Let lγ be the smallest power of l that is bigger than
or equal to 2g. Let Ck = lk−1+γ and Ak = BCk. Set Q = qAk . From
Lemma 13.4.4 there exists an endomorphism κ ∈ Zl[Fq] such that

ΠF (nκ− FQ + 1) = 0

and for every FQ-rational point P ∈ GF and any R ∈ GF with nR = P

one has

κ(P ) = (FQ − 1)(R) = KG,n,Q(P ).

This endomorphism κ induces a bijection between GF (FQ)/nGF (FQ) and
GF [n](FQ) = GF [n]. Given χ(x) and F (x) and a power N of l, one
can compute κ mod N as a polynomial in Fq with coefficients in Z/NZ in
probabilistic polynomial time in g, log l, log q, k, logN . Any N ≥ n(4Q)g

suffices for the purpose of computing κ(P ).
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13.6 LINEARIZATION OF TORSION CLASSES

Let C be a degree d plane projective absolutely integral curve C over Fq
with geometric genus g ≥ 1, and assume that we are given the smooth model
X of C. We also assume that we are given a degree 1 divisorO = O+−O−

where O+ and O− are effective, Fq-rational and have degree bounded by
ΘgΘ for some constant Θ.

Let J be the jacobian of X . We assume that l 6= p is a prime integer that
divides #J(Fq). Let n = lk be a power of l. We want to describe J(Fq)[lk]
by generators and relations.

If x1, x2, . . . , xI are elements in a finite commutative groupGwe letR be
the kernel of the map ξ : ZI → G defined by ξ(a1, · · · , aI) =

∑
i aixi. We

callR the lattice of relations between the xi. We first give a very general and
rough algorithm for computing relations in any finite commutative group.

13.6.1 Lemma (Finding relations in blackbox groups) Let G be a finite
and commutative group and let x1, x2, . . . , xI be elements in G. A basis
for the lattice of relations between the xi can be computed at the expense of
3I#G operations (or comparisons) in G.

We first compute and store all the multiples of x1. So we list 0, x1, 2x1,
. . . until we find the first multiple e1x1 that is equal to zero. This gives us the
relation r1 = (e1, 0, . . . , 0) ∈ R. This first step requires at most o = #G
operations in G and o comparisons.

We then compute successive multiples of x2 until we find the first one
e2x2 that is in L1 = {0, x1, . . . , (e1−1)x1}. This gives us a second relation
r2. The couple (r1, r2) is a basis for the lattice of relations between x1 and
x2. Using this lattice, we compute the list L2 of elements in the group
generated by x1 and x2. This second step requires at most 2o operations
and e1e2 ≤ o comparisons.

We then compute successive multiples of x3 until we find the first one
e3x3 that is in L2. This gives us a third relation r3. The triple (r1, r2, r3) is
a basis for the lattice of relations between x1, x2 and x3. Using this lattice,
we compute the list L3 of elements in the group generated by x1, x2 and x3.
This third step requires at most 2o operations and o comparisons. And we
go on like this. 2
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We stress that the algorithm above is far from efficient and will not be
very useful unless the group G is very small.

We now come back to the computation of generators and relations for
J(Fq)[lk]. Let B = l − 1. Let lγ be the smallest power of l that is bigger
than or equal to 2g and let Ak = Blγ+k−1. We set Qk = qAk . Let F be the
largest power of x − 1 dividing the characteristic polynomial χ(x) of Fq.
Definition 13.4.3 and Lemma 13.5.3 provide us with two surjective maps

Π1 : J(FQk)[l∞]→ G1(FQk)

and

KG1,lk,Qk
: G1(FQk)→ G1[lk].

If we now take for F the largest power of x − q dividing χ(x), Defini-
tion 13.4.3 and Lemma 13.5.3 give two surjective maps

Πq : J(FQk)[l∞]→ Gq(FQk)

and

KGq ,lk,Qk : Gq(FQk)→ Gq[lk].

Remember that Gq = G∗1 and the restriction of the Weil pairing to
G1[lk] × Gq[lk] is non-degenerate. We use this pairing to build a presenta-
tion for G1[lk] and Gq[lk] simultaneously. The motivation for this approach
is that generators for G1[lk] provide relations for Gq[lk], and conversely.

If Qk ≥ 4g2, we use Lemma 13.2.4 to produce a sequence γ1, . . . , γI
of elements in J(FQk) that generate (with high probability) a subgroup of
index at most

ι = max(48g, 24d, 720).

If Qk ≤ 4g2 we use Lemma 13.2.1 to produce a sequence γ1, . . . , γI of
elements in J(FQk) that generate it.

Let N be the largest divisor of #J(FQk) which is prime to l.
We set

αi = KG1,lk,Qk
(Π1(Nγi))
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and

βi = KGq ,lk,Qk(Πq(Nγi)).

The group Ak generated by the αi has index at most ι in G1[lk]. The
group Bk generated by the βi has index at most ι inGq[lk]. Let lδ be smallest
power of l that is bigger than ι and assume that k > δ. Then

G1[lk−δ] ⊂ Ak.

We now explain how to compute the lattice of relations between given
elements ρ1, . . . , ρJ in G1[lk]. We denote by R this lattice. We recall that
the restriction of the Weil pairing to G1[lk] × Gq[lk] is a non-degenerate
pairing

elk : G1[lk]×Gq[lk]→ µlk .

We fix an isomorphism between the group

µlk(Fq) = µlk(FQk)

of lk-th roots of unity and Z/lkZ. Having chosen the preimage of 1 mod lk,
computing this isomorphism is a problem called discrete logarithm. We can
compute this discrete logarithm by exhaustive search at the expense ofO(lk)
operations in FQk . There exist more efficient algorithms, but we don’t need
them for our complexity estimates.

We regard the matrix (elk(ρj , βi)) as a matrix with I rows, J columns and
coefficients in Z/lkZ. This matrix defines a morphism from ZJ to (Z/lkZ)I

whose kernel is a lattice R′ that contains R. The index of R in R′ is at
most ι. IndeedR′/R is isomorphic to the orthogonal subspace to Bk inside
< ρ1, . . . , ρJ >⊂ G1[lk]. So it has order ≤ ι. We then compute a basis
of R′. This boils down to computing the kernel of an I × (J + I) integer
matrix with entries bounded by lk. This can be done by putting this matrix
in Hermite normal form (see [Coh, 2.4.3]). The complexity is polynomial
in I , J and k log l. See [Hav], [Coh, 2.4.3] and [Kal].

Once given a basis of R′, the sublattice R can be computed using
Lemma 13.6.1 at the expense of ≤ 3Jι operations.

We apply this method to the generators (αi)i ofAk. Once given the lattice
R of relations between the αi it is a matter of linear algebra to find a basis
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(b1, . . . , bw) for Ak[lk−δ] = G1[lk−δ]. The latter group is a rank w free
module over Z/lk−δZ and is acted on by the q-Frobenius Fq. For every bj
we can compute the lattice of relations between Fq(bj), b1, b2, . . . , bw and
deduce the matrix of Fq with respect to the basis (b1, . . . , bw). From this
matrix we deduce a nice generating set for the kernel of Fq − 1 in G1[lk−δ].
This kernel is J [lk−δ](Fq). We deduce the following.

13.6.2 Theorem (Computing the lk-torsion in the Picard group) There
is a probabilistic Monte-Carlo algorithm that on input

1. a degree d and geometric genus g plane projective absolutely integral
curve C over Fq,

2. the smooth model X of C,

3. a degree 1 divisorO = O+−O− whereO+ andO− are effective, Fq-
rational and have degree bounded by ΘgΘ for some positive constant
Θ,

4. a prime l different from the characteristic p of Fq and a power n = lk

of l,

5. the zeta function of X ,

outputs a set g1, . . . , gI of divisor classes in the Picard group of X/Fq, such
that the lk-torsion Pic(X/Fq)[lk] is the direct product of the < gi >, and
the orders of the gi form a non-decreasing sequence. Every class gi is given
by a divisorGi−gO in the class, whereGi is a degree g effective Fq-divisor
on X .

The algorithm runs in probabilistic polynomial time in d, log q and lk. It
outputs the correct answer with probability ≥ 1

2 . Otherwise, it may return
either nothing or a strict subgroup of Pic(X/Fq)[lk].

If one is given a degree zero Fq-divisor D = D+−D− of order dividing
lk, one can compute the coordinates of the class of D in the basis (gi)1≤i≤I

in polynomial time in d, log q, lk and the degree of D+. These coordinates
are integers xi such that

∑
1≤i≤I xigi = [D].
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13.7 COMPUTING Vf MODULO p

In this section, we apply the general algorithm given in Section 13.6 to the
plane curve Cl constructed in Section 12.3.3 and we compute Ramanu-
jan divisors modulo p. So we assume that we are given an even integer
k > 2, a prime integer l > 6(k − 1), a finite field F with characteris-
tic l, and a ring epimorphism f : T(1, k) → F. More precisely, we are
given the images f(Ti) for i ≤ k/12. We want to compute the associ-
ated Galois representation Vf ⊂ J1(l) or rather its image Wf ⊂ J1(5l) by
B∗5l,l,1 : J1(l) → J1(5l). We will assume that the image of ρf contains
SL(Vf ). We set Xl = X1(5l) and Jl = J1(l) and we denote by gl the genus
of Xl.

Let p 6∈ {5, l} a prime integer. We explain how to compute divisors on
Xl/Fp associated to every element x inWf/Fp ⊂ J/Fp. The definition field
Fq for such divisors can be predicted from the characteristic polynomial of
the Frobenius endomorphism Fp acting on Vf . So the strategy is to pick
random Fq-points in the l-torsion of the jacobian Jl and to project them
onto Wf using Hecke operators.

The covering map B5l,l,1 : Xl → X1(l) has degree 24. We call it π. It
induces two morphisms π∗ : J1(l) → Jl and π∗ : Jl → J1(l) such that
the composite map π∗ ◦ π∗ is multiplication by 24 in J1(l). We denote by
Al ⊂ Jl the image of π∗. This is a subvariety of Jl isogenous to J1(l).
The restriction of π∗ ◦ π∗ to Al is multiplication by 24. The maps π∗ and
π∗ induce Galois equivariant bijections between the N -torsion subgroups
J1(l)[N ] and Al[N ] for every integer N which is prime to 6.

Using Theorem 2.5.12 we derive from f a finite set (t1, . . . , tr) of ele-
ments in T(l, 2) with r = (l2 − 1)/6 and

Vf =
⋂

1≤i≤r
ker
(
ti, J1(l)(Q)[l]

)
. (13.2)

and Wf ⊂ Al ⊂ Jl is the image of Vf by π∗.
We choose an integer s such that 24s is congruent to 1 modulo l. For

every integer n ≥ 2 we note Tn ∈ T(l, 2) the n-th Hecke operator with
weight 2 and level l. We can see Tn as endomorphism of J1(l). We set



bookarxiv March 18, 2010

COMPUTING Vf MODULO p 373

T̂n = [s] ◦ π∗ ◦ Tn ◦ π∗. We notice that

T̂n ◦ π∗ = π∗ ◦ Tn

on J1(l)[l]. This way, the map π∗ : J1(l)→ Jl induces a Galois equivariant
bijection of T(l, 2)-modules between J1(l)[l] and Al[l]. And Wf = π∗(Vf )
is the subspace in Al[l] cut out by all T̂n − τ(n). We notice that π∗, π∗,
Tn, and T̂n can be seen as correspondences as well as morphisms between
jacobians. The following lemma states that the Hecke action on divisors can
be efficiently computed.

13.7.1 Lemma (Computing the Hecke action) Let l and p be primes such
that p 6∈ {5, l}. Let n ≥ 2 be an integer. Let q be a power of p and let
D be an effective Fq-divisor of degree deg(D) on Xl mod p. The divisor
π∗◦π∗(D) can be computed in polynomial time in l, deg(D) and log q. The
divisor π∗ ◦ Tn ◦ π∗(D) can be computed in polynomial time in l, deg(D),
n and log q.

If n is prime to l, we define the Hecke operator T (n, n) as an ele-
ment in the ring of correspondences on X1(l) tensored by Q. See [Lan4,
VII, §2 ]. From [Lan4, VII, §2, Theorem 2.1] we have Tli = (Tl)i and
Tni = Tni−1Tn − nTni−2T (n, n) if n is prime and n 6= l. And of course
Tn1Tn2 = Tn1n2 if n1 and n2 are coprime. So it suffices to explain how to
compute Tl and also Tn and T (n, n) for n prime and n 6= l.

Let x = (E, u) be a point on Y1(l) ⊂ X1(l) representing an elliptic curve
E with one l-torsion point u. Let n be an integer. The Hecke operator Tn
maps x onto the sum of all (EI , I(u)), where I : E → EI runs over the
set of all isogenies of degree n from E such that I(u) still has order l. If
n is prime to l, the Hecke operator T (n, n) maps x onto 1

n2 times (E,nu).
So we can compute the action of these Hecke correspondences on points
x = (E, u) using Vélu’s formulae [Vel].

There remains to treat the case of cusps.
We call σβ for 1 ≤ β ≤ l−1

2 the cusp onX1(l) corresponding to the l-gon
equipped with an l-torsion point on the β-th component. The corresponding
Tate curves C∗/q have an l-torsion point w = ζ?l q

β
l where the star runs over

the set of all residues modulo l. There are l Tate curves at every such cusp.
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We call µα for 1 ≤ α ≤ l−1
2 the cusps on X1(l) corresponding to a 1-gon

equipped with the l-torsion point ζαl in its smooth locusGm. The Tate curve
at µα is the Tate curves C∗/q with l-torsion point w = ζαl . One single Tate
curve here: no ramification.

For n prime and n 6= l we have

Tn(σβ) = σβ + nσnβ

and

Tn(µα) = nµα + µnα,

where nα in µnα (resp. nβ in σnβ) should be understood as a class in
(Z/lZ)∗/{1,−1}.

Similarly

Tl(σβ) = σβ + 2l
∑

1≤α≤ l−1
2

µα

and

Tl(µα) = lµα.

And of course, if n is prime to l, then

T (n, n)(σβ) =
1
n2
σnβ

and

T (n, n)(µα) =
1
n2
µnα.

All together, one can compute the effect of Tn on cusps for all n. For the
sake of completeness, we also give the action of the diamond operator 〈n〉
on cusps. If n is prime to l then 〈n〉(σβ) = σnβ and 〈n〉(µα) = µnα.

2

We can now state the following theorem.

13.7.2 Theorem (Computing Vf modulo p) There is a probabilistic (Las
Vegas) algorithm that takes as input an even integer k > 2, a prime inte-
ger l > 6(k − 1), a finite field F with characteristic l, a ring epimorphism
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f : T(1, k) → F, a cuspidal divisor Ω on X1(5l) as constructed in Sec-
tion 8.1, and a prime p 6∈ {5, l}, and computes the reduction modulo p of ev-
ery element inWf ⊂ J1(5l). Here Vf ⊂ J1(l) is defined by Equation (13.2)
and Wf the image of Vf ⊂ J1(l) by B∗5l,l,1, and we assume that the image
of the Galois representation ρf associated with f contains SL(Vf ). The al-
gorithm returns for every element x in Wf a degree g effective divisor Qx,p
on X1(5l)/Fp such that Qx,p − Ω lies in the class represented by x modulo
p. The running time of the algorithm is ≤ (p × #Vf )Θ for some absolute
constant Θ.

Remark. It has been proven in Section 8.1 that the divisorQx onX1(5l)/Q
associated to x ∈ Wf ⊂ J1(5l)(Q̄)[l] is non-special. According to
Lemma 12.12.2 and Theorem 11.7.10, for every prime p but a finite number
bounded by lΘ, the divisor Qx remains non-special modulo p for every x in
Wf , and is equal to the divisor Qx,p returned by the algorithm above.

To prove Theorem 13.7.2 we notice that Section 12.3.3 gives us a
plane model for Xl mod p and a resolution of its singularities. From
Lemma 12.3.6 we obtain the zeta function of Xl mod p. The character-
istic polynomial of Fp acting on the 2-dimensional F-vector space Vf is
X2 − f(Tp)X + pk−1 mod l. Since we know f(Ti) for 2 ≤ i ≤ k/12 we
deduce f(Tp) using Manin-Drinfeld-Shokurov theory. Knowing the char-
acteristic polynomial of Fp, we deduce the order of Fp acting on Vf mod p.
We deduce some small enough splitting field Fq for Vf mod p. We then ap-
ply Theorem 13.6.2 and obtain a basis for the l-torsion in the Picard group
of Xl/Fq. The same theorem allows us to compute the matrix of the endo-
morphism π∗ ◦π∗ in this basis. We deduce a Fl-basis for the imageA[l](Fq)
of π∗ ◦ π∗. Using Theorem 13.6.2 again, we now write down the matrices
of the Hecke operators T̂n in this basis for all n ≤ (l2 − 1)/6. It is then a
matter of linear algebra to compute a basis for the intersection of the kernels
of all (ti)1≤i≤(l2−1)/6 in A[l](Fq). The algorithm is Las Vegas rather than
Monte-Carlo because we can check the result, the group Wf having known
cardinality (#F)2. 2
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Chapter Fourteen

Computing the residual Galois representations

B. Edixhoven

In this chapter we first combine the results of Chapters 11 and 12 in order
to work out the strategy of Chapter 3 in the setup of Section 8.2. This gives
the main result, Theorem 14.1.1: a deterministic polynomial time algorithm,
based on computations with complex numbers. The crucial transition from
approximations to exact values is done in Section 14.4, and the proof of
Theorem 14.1.1 is finished in Section 14.7. In Section 14.8 we replace the
complex computations with the computations over finite fields from Chap-
ter 13, and give a probabilistic (Las Vegas type) polynomial time variant of
the algorithm in Theorem 14.1.1.

14.1 MAIN RESULT

For positive integers k and n we have defined, in Section 2.4, T(n, k)
as the Z-algebra in EndC(Sk(Γ1(n))) generated by the Hecke opera-
tors Tm (m ≥ 1) and the 〈a〉 (a in (Z/nZ)×). Theorem 2.5.10 says
that T(n, k) is generated as Z-module by the Hecke operators Ti with
1 ≤ i ≤ k·[SL2(Z) : Γ1(n)]/12. In particular, T(1, k) is generated
as Z-module by the Ti with i ≤ k/12. For each k and n, each sur-
jective ring morphism T(n, k) → F gives rise to a Galois representation
ρm : Gal(Q/Q) → GL2(F). Theorem 2.5.18 says that if n = 1 and the
characteristic l of F satisfies l > 6(k − 1), then ρm is reducible, or has
image containing SL2(F).

14.1.1 Theorem There is a deterministic algorithm that on input a positive
integer k, a finite field F, and a surjective ring morphism f : T(1, k) → F
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such that the associated Galois representation ρ : Gal(Q/Q) → GL2(F) is
reducible or has image containing SL2(F), computes ρ in time polynomial
in k and #F. The morphism f is given by the images of T1, . . . , Tbk/12c.
More explicitly, the algorithm gives:

1. a Galois extensionK of Q, given as aQ-basis e and the products eiej
(i.e., the ai,j,k in Q such that eiej =

∑
k ai,j,kek are given);

2. a list of the elements σ of Gal(K/Q), where each σ is given as its
matrix with respect to e;

3. an injective morphism ρ from Gal(K/Q) into GL2(F), making F2

into a semi-simple representation of Gal(Q/Q),

such that K is unramified outside l, with l the characteristic of F, and such
that for all prime numbers p different from l we have:

trace(ρ(Frobp)) = f(Tp) and det(ρ(Frobp)) = pk−1 in F.

14.1.2 Remark Of course, we do not only prove existence of such an algo-
rithm, but we actually describe one in the proof. We cannot claim that we
really give such an algorithm because we did not make all constants in our
estimates explicit, e.g., those in Theorem 11.7.6 and Theorem 11.7.10.

Proof As this proof is rather long, we divide it into sections.

14.2 REDUCTION TO IRREDUCIBLE REPRESENTATIONS

Let k, F, l and f be as in Theorem 14.1.1. By definition, the associated
representation ρ : Gal(Q/Q) → GL2(F) is semi-simple, unramified out-
side {l} and has det ◦ρ = χk−1

l , with χl : Gal(Q/Q) → F×l the mod l
cyclotomic character. Hence ρ is reducible if and only if it is of the form
χil ⊕ χjl , for some i and j in Z/(l−1)Z with i+j = k−1 in Z/(l−1)Z.
The following result gives us an effective way to decide if ρ is reducible,
and to determine ρ in that case. More precisely, using the standard algo-
rithms based on modular symbols this proposition reduces the proof of The-
orem 14.1.1 to the case where ρ is irreducible.
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14.2.1 Proposition In this situation, if l = 2, then ρ ∼= 1⊕ 1, and if l = 3,
then ρ ∼= 1⊕ χ3. Assume now that l ≥ 5. Let i and j be in Z/(l−1)Z such
that i + j = k−1. Then ρ is isomorphic to χil ⊕ χ

j
l if and only if for all

prime numbers p 6= l with p ≤ (l2−1)/12 we have f(Tp) = pi+pj in F.

Proof The statements about l=2 and l=3 are proved in Théorème 3
of [Ser4] (see also Theorem 3.4 of [Edi1]). As T(1, k) is not zero (it has
F as quotient), k is even.

The idea for the rest of the proof is to use suitable cuspidal eigenforms
over Fl whose associated Galois representations give all the χil⊕χ

j
l with

i+j odd, and then to apply Proposition 2.5.16.
For a in Z even such that 4 ≤ a ≤ l−3 or a = l+1, let Ea be the element

of Ma(1,Fl) with a1(Ea)=1 and Tp(Ea) = (1+pa−1)Ea for all primes p.
These Ea can be obtained by reducing the Eisenstein series Ea modulo l,
after multiplication by Bk/2k (see Example 2.2.3). We cannot use El−1

because its reduction has constant q-expansion 1, and so it cannot be nor-
malised as we need. The Ea are eigenforms, and we have ρEa = 1⊕χa−1

l .
We note that the χa−1

l give all powers of χl except χ−1
l . But we do have

1 ⊕ χ−1
l = χ−1

l ⊗ ρEl+1
. We also note that, for each a, Ea and θl−1Ea

give the same Galois representation. Therefore, all χil⊕χ
j
l with i+j odd are

associated with suitable cupsidal eigenforms. The proof is then finished by
invoking Proposition 2.5.16. �

14.3 REDUCTION TO TORSION IN JACOBIANS

Let k, F, l and f be as in Theorem 14.1.1, such that the representation ρ
attached to f is irreducible. The following proposition is a special case of
Theorem 3.4 of [Edi1].

14.3.1 Proposition In this situation, there is a k′ in Z>0 and a surjec-
tive ring morphism f ′ : T(1, k′) → F and an i in Z/(l−1)Z such that
2 ≤ k′ ≤ l+1 and ρ ∼= ρ′ ⊗ χil , where ρ′ : Gal(Q/Q) → GL2(F) is
the Galois representation attached to f ′.

Such a k′, f ′ and i can be computed in time polynomial in k and l as fol-
lows. First, one computes the Fl-algebras Fl ⊗ T(1, k′) for 2 ≤ k′ ≤ l+1.



bookarxiv March 18, 2010

380 CHAPTER 14

Then, for each i in Z/(l−1)Z and for each k′, one checks if there exists an
Fl-linear map from Fl ⊗ T(1, k′) to F that sends, for all m ≤ (l2−1)/12
with l not dividing m, Tm to m−if(Tm), and if so, if it is an algebra mor-
phism. The previous proposition guarantees that such k′, f ′ and i do exist.
Proposition 2.5.16 guarantees that ρ ∼= ρ′ ⊗ χil .

Using standard algorithms for linear algebra over Q, the computation of
ρ is reduced to that of ρ′. By Theorem 2.5.12, ρ′ is realised in J1(l)(Q)[l] as
the intersection of the kernels of a set of elements of Fl⊗T(l, 2) that can be
computed in time polynomial in k and l. Hence, the proof of Theorem 14.1.1
is reduced to the case where ρ is irreducible, and is realised in J1(l)(Q)[l]
as described in Theorem 2.5.12.

14.4 COMPUTING THE Q(ζl)-ALGEBRA CORRESPONDING TO V

We recall the situation. The representation ρ of Gal(Q/Q) attached to the
surjective ring morphism fk : T(1, k) → F has image containing SL2(F),
and is also attached to a surjective ring morphism f2 : T(2, l) → F. In par-
ticular, ρ is realised on the two-dimensional F-vector space V in J1(l)(Q)[l]
consisting of all elements annihilated by ker(f2). We note that l > 5. As
in Section 8.2 we let Xl be the modular curve X1(5l), over Q, and we em-
bed V in the Jacobian Jl of Xl via pullback by the standard map from Xl

to X1(l). We take a cuspidal divisor D0 on Xl,Q(ζl) as in Theorem 8.1.7.
We have, for each x ∈ V , a unique effective divisor Dx of degree gl (the
genus of Xl) on Xl,Q, such that in Jl(Q) we have x = [Dx−D0]. We write
each Dx as Dfin

x + Dcusp
x , where Dcusp

x is supported on the cusps and Dfin
x

is disjoint from the cusps. We write Dx =
∑gl

i=1Qx,i, with Qx,i in Xl(Q),
such that Dfin

x =
∑dx

i=1Qx,i.
Theorem 12.10.2 says that we have an analytic description of V inside

Jl(C), and, that for every embedding σ : Q(ζl) → C, complex approxima-
tions Dσ,x of the Dx can be computed in polynomial time in #F and the
required accuracy (the number of digits on the right of the decimal point).
Each such approximation is given as a sum of gl points Qσ,x,i in Xl(C), the
numbering of which by i ∈ {1, . . . , gl} is completely arbitrary, i.e., unre-
lated to each other when σ varies. Similarly, complex approximations of all
bl(Qx,i) or (1/bl)(Qx,i) (one of which two has absolute value < 2) and of
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all x′l(Qx,i) or (1/x′l)(Qx,i) can be computed in polynomial time in #F and
the required accuracy. We denote such approximations by bl(Qσ,x,i), etc.

We compute such approximations, and also of j(Qx,i) or (1/j)(Qx,i),
for all σ, x and i, with accuracy a sufficiently large absolute constant
times l15·(#F)6. Here, and the rest of this section, we will use the O-
notation without making the implied “absolute” constants explicit.

Using these approximations we will first decide for which (σ, x, i) the
point Qσ,x,i approximates a cusp or not. For x = 0 we have Dx = D0

and so all Q0,i are cusps. Recall that the cusps are precisely the poles
of the rational function j. Hence a necessary for Qσ,x,i to approxi-
mate a cusp is that (1/j)(Qσ,x,i) is small. Let x in V be non-zero,
and i in {1, . . . , gl} such that j(Qx,i) 6= 0. By Proposition 11.7.1,
the expression for j in b in Proposition 8.2.8, and Lemma 4.2.3, we
have h((1/j)(Qx,i)) = O(l12). The degree of (1/j)(Qx,i) over Q is at
most l2·(#F)2. By Lemma 4.2.5, we have, for all σ : Q → C, that if
(1/j)(Qx,i) 6= 0, then |σ((1/j)(Qx,i))| ≥ exp(−O(l14(#F)2)). We con-
clude that the Qσ,x,i for which |σ((1/j)(Qσ,x,i))| < exp(−O(l14(#F)2))
are the ones that approximate cusps. This gives us the correct value
of the integers dx, and, after renumbering the Qσ,x,i, approximations
Dfin
σ,x =

∑dx
i=1Qσ,x,i of the Dfin

x .
The next step is to get an integer n with 0 ≤ n ≤ l4·(#F)4 such

that the function fl := bl + nx′l separates the various Qx,i with x ∈ V

and i ≤ dx that are distinct. We do this using just one embedding σ

of Q(ζl) in C. For x in V and i ≤ dx we have, by Proposition 11.7.1,
h((bl(Qx,i), x′l(Qx,i))) = O(l12). For x and y in V , the field over
which they are both defined has degree at most l·(#F)3 over Q. By
Lemma 4.2.5, we conclude that Qσ,x,i and Qσ,y,j approximate the same
point if and only if |bl(Qσ,x,i) − bl(Qσ,y,j)| < exp(−O(l13·(#F)3))
and |x′l(Qσ,x,i) − x′l(Qσ,y,j)| < exp(−O(l13·(#F)3)). We observe
that the required approximations can indeed be computed within the re-
quired time because the height bounds from Proposition 11.7.1 imply that
|bl(Qσ,x,i)| < O(l14·(#F)2)), i.e., also on the left of the decimal point there
are not too many digits. An integer n as above does not give a suitable fl if
and only if there are Qσ,x,i and Qσ,y,j that approximate different points and
still |fl(Qσ,x,i)− fl(Qσ,y,j)| < exp(−O(l13·(#F)3))). Trying the possible
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n one by one until we have a suitable one gives us a function fl as desired.
Now that we have our function fl, we continue, as explained at the end of

Section 8.2, by computing an integer m with 0 ≤ m ≤ l2·(#F)4 such that
the function:

am : V → Q, x 7→
dx∏
i=1

(m− fl(Qx,i))

is injective, and hence a generator of the Q(ζl)-algebra AQ(ζl) corre-
sponding to V . As in the previous step, we do this using just one em-
bedding σ of Q(ζl) in C. We estimate the loss in accuracy in com-
puting a product

∏
i≤dx(m − fl(Qσ,x,i)). For x in V and i ≤ dx

we have h(fl(Qx,i)) = O(l12). Hence, in the product, we have
|fl(Qσ,x,i)| = O(l14·(#F)2). As there are at most l2 factors, the loss
of accuracy is at most O(l16·(#F)2) digits. Hence, from our approx-
imations fl(Qσ,x,i) we get approximations aσ,m(x) of the am(x) with
accuracy O(l15·(#F)3). For all candidates m and all x in V , that
h(am(x)) = O(l14), and the degree of am(x) over Q is at most (#F)2. We
conclude that a candidate m is not suitable if and only if there are distinct x
and y in V with |aσ,m(x) − aσ,m(y)| < exp(O(−l14·(#F)2)). Trying one
by one gives us a suitable m.

We denote by a = aD0,fl,m the generator of AQ(ζl) that we obtained by
finding suitable n and m. We will now compute the minimal polynomial
of a over Q(ζl):

(14.4.1) P =
∏
x∈V

(T − a(x)), P =
∑

PjT
j , Pj ∈ Q(ζl).

As h(a(x)) = O(l14), and, for j in {0, . . . ,#V }, Pj is, up to a sign,
an elementary symmetric polynomial in the a(x), Lemma 4.2.4 gives that
h(Pj) = O(l14·(#F)2). We write the Pj in the Q-basis (1, ζl, . . . , ζ l−2

l )
of Q(ζl):

Pj =
∑
i<l−1

Pj,iζ
i
l , Pj,i ∈ Q.

Then, for each j, (Pj,0, . . . , Pj,l−2) is the unique solution inQ of the system
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of linear equations, indexed by the σ in Gal(Q(ζl)/Q):∑
i<l−1

σ(ζil )Pj,i = σ(Pj).

Applying Lemma 4.2.6 and Cramer’s rule give:

(14.4.2) h(Pj,i) ≤ l log l + l·h(Pj) = O(l15·(#F)2).

So, in order to deduce the Pj,i from approximations as in Proposi-
tion 3.2 the accuracy we need is O(l15·(#F)2). We estimate the loss
of accuracy in the evaluation of the product in (14.4.1). We already
know that h(a(x)) = O(l14), and that the degree of a(x) over Q
is (#F)2. Therefore, for all embeddings σ of Q(ζl) into C, we have
|aσ(x)| = exp(O(l14·(#F)2)). As there are (#F)2 factors in (14.4.1), the
loss of accuracy is at most O(l14·(#F)4)). We conclude that our approxi-
mations Pσ =

∏
x∈V (T − aσ(x)) at all σ are accurate enough to get good

enough approximations of the Pj,i such that Proposition 3.2 gives us the
exact values of the Pj,i. So, finally, we know AQ(ζl) explicitly as:

AQ(ζl) = Q(ζl)[T ]/(P ) =
⊕

0≤i<(#F)2

Q(ζl)·T i.

We remark that the definition of a directly implies that a(0) = 1. Hence
P has a factor T − 1. Under our assumption that the image of ρ contains
SL2(F) the polynomial P/(T − 1) is irreducible over Q(ζl).

14.5 COMPUTING THE VECTOR SPACE STRUCTURE

The addition map +: V ×V → V corresponds to a morphism ofQ-algebras
+∗ : A→ A⊗Q A, called co-adition. We will now explain how to compute
the co-addition over Q(ζl), i.e., the morphism of Q(ζl)-algebras:

+∗ : AQ(ζl) −→ AQ(ζl) ⊗Q(ζl) AQ(ζl) = Q(ζl)[U, V ]/(P (U), P (V )).

To give this morphism is equivalent to give the image of our generator a of
the previous section. This image can be written uniquely as a polynomial
in U and V of degree less than (#F)2 in each variable. Hence, there are
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unique µi,j in Q(ζl), for i and j in {0, . . . , (#F)2−1}, such that for all x
and y in V we have, in Q:

(14.5.1) a(x+ y) =
∑
i,j

µi,j ·a(x)ia(y)j .

We view (14.5.1) as an inhomogeneous system of (#F)4 linear equa-
tions in the µi,j . Then our bound h(a(x)) = O(l14), together with
Cramer’s rule and Lemma 4.2.6 give h(µi,j) = O(l14·(#F)6). Writing
µi,j =

∑
k<l−1 µi,j,kζ

k
l , we have h(µi,j,k) = O(l15·(#F)6). Hence our

approximations aσ(x) are sufficiently precise to deduce the exact values of
the µi,j,k.

We also want to compute the multiplication map F × V → V . That is,
for each λ in F we want to know the map (λ·)∗ from AQ(ζl) to itself that
it induces. For λ = 0 this is the map that sends a to 1. Let now λ be
in F×. Then there are unique αi in Q(ζl), for i in {0, . . . , (#F)2−1} such
that (λ·)∗(a) =

∑
i α·ai. These αi uniquely determined by the following

equalities in Q, for all x in V :

(14.5.2) a(λ·x) =
∑
i

αi·a(x)i.

Arguments as above for the addition show that our approximations aσ(x)
allow us to get the exact values of the αi.

14.6 DESCENT TO Q

At this moment, we finally have to pay the price for working with a divi-
sor D0 on Xl,Q(ζl) and not on Xl itself. We have AQ(ζl) = Q(ζl) ⊗ A,
hence we have a semi-linear action of Gal(Q(ζl)/Q) on the Q(ζl)-
algebra AQ(ζl): for τ in Gal(Q(ζl)/Q), λ in Q(ζl), and x in AQ(ζl) we
have τ(λx) = τ(λ)·τ(x). TheQ-algebra A is precisely the subset of AQ(ζl)

of elements of that are fixed by this action.
In order to understand what the action of Gal(Q(ζl)/Q) does with our

generator a of AQ(ζl), we must include the divisor D0 into its notation:
we will write aD0 for it. Then, for each τ in Gal(Q(ζl)/Q) we have
τ(aD0) = aτD0 , where aτD0 is defined as a, but with the divisor D0 re-
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placed by τD0. For each σ : Q(ζl) → C, and for each x in V ⊂ Jl(C), we
have the approximations aσ,D0(x) of aD0(x), and aστ,D0(x) of aτD0(x).

We take a generator τ of Gal(Q(ζl)/Q) = F×l . There are unique ci in
Q(ζl), for i in {0, . . . , (#F)2−1}, such that τ(a) =

∑
i ci·ai. These ci are

uniquely determined by the following system of equalities in Q, indexed by
the x in V :

(14.6.1) aτD0(x) =
∑

0≤i<(#F)2

ci·aD0(x)i.

Lemma 4.2.6 implies that for all i we have h(ci) = O(l14·(#F)6), and
hence, writing ci =

∑
j<l−1 ci,jζ

j
l , h(ci,j) = O(l15·(#F)6). We conclude

that our approximations aσ,D0(x) of aD0(x), and aστ,D0(x) of aτD0(x), for
all x and σ, are sufficiently accurate to get the exact values of the ci.

Linear algebra over Q gives us then A, in terms of a Q-basis with multi-
plication table, and with the maps +∗ : A→ A⊗A and (λ·)∗ : A→ A that
correspond to the F-vector space structure on V .

14.7 EXTRACTING THE GALOIS REPRESENTATION

We finish our computation of the Galois representation ρ as indicated in
Chapter 3. We view V × V as HomF(F2, V ). This gives a right-action
by GL2(F) on V × V , hence a left-action on A ⊗ A. This action can be
expressed in the co-addition and the F×-action. We let B be the Q-algebra
corresponding to the subset IsomF(F2, V ) of HomF(F2, V ). To compute
B, as a factor of A ⊗ A, we compute its idempotent, i.e., the element of
A ⊗ A that is 1 on IsomF(F2, V ) and 0 on its complement, as follows. In
AQ(ζl) = Q(ζl)[T ]/((T − 1)Pl) we have the idempotent a1 = P1/P1(1)
which, as function on V , is the characteristic function of {0}. Then a1 is an
element ofA. Let a2 = 1−a1 inA. Then a2 is the characteristic function of
V −{0}. We let a3 be the element ofA⊗A obtained by taking the product of
the g·(a2⊗1), where g ranges through GL2(F). Then a3 is the characteristic
function of IsomF(F2, V ). We compute B = (A ⊗ A)/(1 − a3) by linear
algebra over Q, in terms of a basis with a multiplication table, and with the
GL2(F)-action.

We factor the algebra B as a product of fields, using a polynomial time
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factoring algorithm over Q (see [Le-Le-Lo] and [Len2]). Each factor K of
B then gives us an explicit realisation of ρ, as explained in Chapter 3: let
G ⊂ GL2(F) be the stabiliser of a chosen factor K; then G = Gal(K/Q)
and the inclusion is a representation from G to GL2(F). This finishes the
proof of Theorem 14.1.1. �

14.7.1 Remark In the factorisation of the algebra B above, our assumption
that imρ contains SL2(F) implies that the idempotents lie in the sub-algebra
BG of invariants by the subgroup G of GL2(F) consisting of the g with
det(g) a k−1th power in F×l . This subalgebra is a product of copies of Q.

If F = Fl, factoring B can be avoided by twisting ρ by a suitable power
of χl. Indeed, ρ′ := ρ ⊗ χ

1−k/2
l has image GL2(Fl), and ρ can then be

obtained as ρ′ ⊗ χk/2−1
l .

14.8 A PROBABILISTIC VARIANT

In this section we give a probabilistic Las Vegas type algorithm, based on
the results of Chapter 13, that computes the representation ρ as in Theo-
rem 14.1.1, in probabilistic running time polynomial in k and #F. A nice
feature of computations over finite fields is that there is no loss of accuracy,
as in the previous sections where computations with complex numbers were
used. On the other hand, information obtained modulo varying primes is a
bit harder to combine, and here the point of view of Galois theory that we
have taken, relating sets with Galois action to algebras, is very convenient.

Let f : T(1, k) → F be as in Theorem 14.1.1, as well as l and the rep-
resentation ρ : Gal(Q/Q) → GL2(F). Sections 14.2 and 14.3 apply with-
out any change. So we can now put ourselves in the situation as in the
beginning of Section 14.4. Then imρ contains SL2(F), ρ is realised on a
two-dimensional F-vector space in Jl(Q)[l], and for each x in V there is a
unique effective divisor Dx of degree gl on Xl,Q such that x = [Dx −D0]
in Jl(Q). For each x in V , we write Dx = Dfin

x + Dcusp
x as before, with

Dfin
x =

∑dx
i=1Qx,i and Dx =

∑gl
i=1Qx,i.

Using Theorem 13.7.2, we try to compute the reductions Dx,Fq over suit-
able extensions of the residue fields of Z[ζl] at successive prime numbers p
up to c·l15·(#F)6, with c a suitable absolute constant, skipping 5 and l.
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These fields Fq have degree at most l·(#F)3 over their prime field Fp.
If some Dx,Fq is not unique, this will be detected by our computations,
and we throw the corresponding prime p away. By Theorem 11.7.10, at
most O(l12·(#F)2) primes p are thrown away. For the V -good primes
p ≤ B, with V -good defined as in Theorem 11.7.10, we then have com-
puted all Dx,Fq .

We split each such Dx,Fq in a cuspidal part Dcusp
x,Fq and a non-cuspidal

part Dfin
x,Fq . By Theorem 11.7.10, there are at most O(l12·(#F)2) primes p

where at some Fq, the sum
∑

x∈V degDfin
x,Fq is less than

∑
x∈V dx. (In fact,

as imρ contains SL2(F), all dx for x 6= 0 are equal, but our argument does
not need this.) This means that we have computed the unordered list of dx.
We discard the primes pwhere for some Fq the sum

∑
x∈V degDfin

x,Fq is less
than

∑
x∈V dx. For the remaining primes, we have computed the Dfin

x,Fq for
all x in V .

We want an integer n such that fl := bl+nx′l separates theDfin
x . Let p be

the smallest V -good prime with p > l4·(#F)4. We compute the Dfin
x,Fq over

some Fq at p. We view the effective divisorDFq :=
∑

x∈V D
fin
x,Fq as a closed

subscheme of Xl,Fq . Then fl as above embeds DFq into A1
Fq if and only if

it is injective on the geometric points of DFq and has non-zero derivative at
the multiple points of DFq . As the degree of DFq is at most l2·(#F)2, this
excludes at most l4·(#F)4 elements of Fp, and the algorithms of Chapter 13
let us compute these in polynomial time. We choose n in {0, . . . , l4·(#F)4}
such that fl embeds DFq into A1

Fq . Then, by Nakayama’s lemma, fl embeds∑
x∈V D

fin
x into A1

Q, and hence separates the Dfin
x .

The next step is to compute an integer m in {0, l2·(#F)4} such that the
function:

am : V → Q, x 7→
dx∏
i=1

(m− fl(Qx,i))

is injective, and hence a generator of the Q(ζl)-algebra AQ(ζl) correspond-
ing to V . Let p and Fq be as in the preceding paragraph. For x ∈ V , write
Dfin
x,Fq =

∑dx
i=1Qx,i,Fq . We take m in {0, . . . , l2·(#F)4} such that the el-

ements
∏dx
i=1(m − fl(Qx,i,Fq)) of Fq, for x ∈ V , are all distinct. Then

a := am has the desired property.
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The minimal polynomial P in Q(ζl)[T ] of a over Q(ζl) is given as:

P =
∏
x 6=0

(T − a(x)), P =
∑
j

PjT
j , Pj ∈ Q(ζl).

We have seen in (14.4.2) that, when writing Pj =
∑

i<l−1 Pj,iζ
i
l , we have

h(Pj,i) = O(l15·(#F)2). Our construction shows that all Pj,i are integral
at all primes p that are V -good. From the Dfin

x,Fq that we have computed, we
get the images of the Pj,i in Fp, for all p that are V -good, up to c·l15·(#F)2.
Proposition 3.7 then gives us the Pj,i. So, at this point, we have computed
the Q(ζl)-algebra AQ(ζl).

To compute the F-vector space structure, we proceed as in Section 14.5.
For each V -good prime p up to our bound c·l15·(#F)6, we compute at each
Fq over p the images in Fq of the µi,j from the linear system (14.5.1),
over Fq, and then the µi,j,k in Fp. Proposition 3.7 and the height bound
h(µi, j, k) = O(l15·(#F)6) give us the µi,j,k. The αi as in (14.5.2) can be
computed in similarly, as well as the ci as in (14.6.1). From here on, the
computation then proceeds as in Section 14.7.
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Chapter Fifteen

Computing coefficients of modular forms

B. Edixhoven

In this chapter we apply the our main result on the computation of Galois
representations attached to modular forms of level one to the computation of
coefficients of modular forms. In Section 15.1 we treat the case of the dis-
criminant modular form, i.e., the computation of Ramanujan’s τ -function at
primes. In Section 15.2 we deal with the more general case of forms of level
one and arbitrary weight k, reformulated as the computation of Hecke oper-
ators Tn as Z-linear combinations of the Ti with i < k/12. In Section 15.3
we give an application to theta functions of even, unimodular positive defi-
nite quadratic forms over Z.

15.1 COMPUTING τ(p) IN TIME POLYNOMIAL IN log p

We recall that Ramanujan’s τ -function is defined by the following identity
of formal power series with integer coefficients:

x
∏
n≥1

(1− xn)24 =
∑
n≥1

τ(n)xn.

15.1.1 Theorem There exists a deterministic algorithm that on input a
prime number p gives τ(p), in running time polynomial in log p.

Proof Deligne has proved in [Del1] and [Del2] that for all prime numbers
p we have |τ(p)| < 2p11/2. Therefore, it suffices to compute τ(p) mod l
for all primes l < x, if the product of these l is at least 4p11/2. Analytic
number theory (see for example [Ten], I.2.6, Corollary 10.1) tells us that we
can take x = O(log p), hence the proof is reduced to showing that there is a
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deterministic algorithm that computes τ(p) mod l for prime numbers p and l
in time polynomial in log p and l. Of course, the slightly weaker but much
more elementary bound |τ(p)| = O(n6) in [Miy, Cor. 2.1.6] also suffices
for our purposes.

We take an algorithm as in Theorem 14.1.1, and we apply it with k = 12.
We have T(1, 12) = Z, and for each n in Z≥1, the element Tn of T(1, k) is
the integer τ(n). We must now show that from the output of the algorithm
we can compute τ(p) mod l deterministically, in time polynomial in log p
and l. For l prime, we let ρl : Gal(Kl/Q)↪→GL2(Fl) denote the Galois rep-
resentation attached to ∆. As the discriminant of the ring of integersA ofKl

is a power of l, Theorem 1.4 of [Bu-Le] gives the existence of a determin-
istic polynomial time algorithm that, given Kl, produces A, given by a Z-
basis. The maximal order A is preserved by the action of Gal(Kl/Q). Then
Gal(Kl/Q) acts on the étale Fp-algebra A := A/pA, and Hom(A,Fp) is a
Gal(Kl/Q)-torsor. Moreover, A is the product of its finitely many residue
fields A/m, where m ranges through the maximal ideals of A.

We let Frob denote the absolute Frobenius endomorphism ofA; it sends a
to ap, it is an automorphism and it induces the absolute Frobenius automor-
phism on each of the residue fields. The matrix of Frob can be computed in
time polynomial in l and log p.

The Frobenius element σm attached to a maximal ideal m of A is the
unique element σ of Gal(Kl/Q) that fixes m and induces the absolute
Frobenius on A/m. For varying m, the σm form the Frobenius conjugacy
class (at p) in Gal(Kl/Q).

For each σ in Gal(Kl/Q) we let Aσ be the quotient of A by the ideal
generated by the image of Frob− σ. Such an Aσ can be computed in poly-
nomial time. The σ in the Frobenius conjugacy class are precisely those σ
for which Aσ is non-zero. We can try the σ one by one until we have found
a σ in the Frobenius conjugacy class. Then we apply the map ρl given by
Theorem 14.1.1 to it, and get an element ρl(σ) of GL2(Fl). The trace of
ρl(σ) is then τ(p) mod l. �
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15.2 COMPUTING Tn FOR LARGE n AND LARGE WEIGHT

In this section we prove the following two results, for which we first re-
call some notation. For positive integers k and N we have defined, in
Section 2.4, T(N, k) as the Z-algebra in EndC(Sk(Γ1(N))) generated by
the Hecke operators Tn (n ≥ 1) and the 〈a〉 (a in (Z/NZ)×). By Theo-
rem 2.5.10, T(N, k) is generated as Z-module by the Hecke operators Ti
with 1 ≤ i ≤ k·[SL2(Z) : Γ1(N)]/12. Just before (2.4.9) we have defined
Mk(Γ1(N),Z) as the sub Z-module ofMk(Γ1(N)) consisting of the f with
all ai(f) in Z.

15.2.1 Theorem One can compute, on input two positive integers k and n,
and the factorisation of n into prime factors, the element Tn of the Hecke
algebra T(1, k), by computing the Galois representations attached to suffi-
ciently many maximal ideals of T(1, k) as in Theorem 14.1.1. The com-
putation gives Tn as Z-linear combination of the Ti with i ≤ k/12. This
algorithm is deterministic. For fixed k, it has running time polynomial in
log n. If the generalised Riemann hypothesis (GRH) holds for all number
fields that are quotients of Q ⊗ T(1, k)’s, then the algorithm has running
time polynomial in k and log n.

15.2.2 Corollary Assume GRH. There exists a deterministic algorithm that
on input the weight k ≥ 0 and the coefficients ai(f) with 0 ≤ i ≤ k/12 of
a modular form f in Mk(SL2(Z),Z), and a positive integer n together with
its factorisation into primes, computes an(f) in running time polynomial in
k, log n, and the maximum of the log(1 + |ai(f)|) with i ≤ k/12.

The principle of the proof of Theorem 15.2.1 is first to reduce the computa-
tion of Tn to that of the Tp for the primes p that divide n, using the identities
implicit in (2.2.11). For p prime, Tp is computed from its images in suffi-
ciently many residue fields T(1, k)/m, using the LLL-algorithm for lattice
reduction. Such an image is computed as the trace of a Frobenius element
at p of the Galois representation ρm attached to m. The Galois represen-
tation is computed as in Theorem 14.1.1. The problem in doing all this is
to keep the residue fields small, because the computation of ρm takes time
polynomial in k and #(T(1, k)/m). Here it makes a big difference if one
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assumes GRH or not. Assuming GRH, there are suffiently many m with
T(1, k)/m of size polynomial in k and log p so that Tp can be reconstructed
from its images in these T(1, k)/m. If we do not assume GRH, then we
cannot rule out the possibility that all “small” primes (small in terms of the
discriminant of T(1, k)) are completely inert in T(1, k). Before we give the
proof of Theorem 15.2.1, where the details of the algorithm are given, and
the analysis of the running time, we state and prove some preliminary re-
sults. Corollary 15.2.2 will be deduced from Theorem 15.2.1, using some
elementary properties of the Eisenstein series Ek, and the interpretation of
the Z-module Sk(SL2(Z),Z) as the Z-dual of T(1, k).

We start with a simple result that is well known.

15.2.3 Proposition Let k ≥ 4 be an even integer. Let n = (k − 14)/12 if
k ≡ 2 mod 12, and n = bk/12c otherwise. Then T(1, k) is free of rank n
as Z-module, and the Ti with 1 ≤ i ≤ n form a Z-basis for T.

Proof Theorem 2.5.10 tells us that T := T(1, k) is generated as Z-module
by the Ti with 1 ≤ i ≤ k/12, but we will not use this. What we do use is
that the pairing:

Sk(SL2(Z),Z)× T −→ Z, (f, t) 7→ a1(tf)

is perfect (see (2.4.9)). What me must show is then that Sk(SL2(Z),Z)
is free of rank n as Z-module, and that the maps ai : f 7→ ai(f), with
1 ≤ i ≤ n, form a Z-basis of the dual of Sk(SL2(Z),Z). As ∆ is q times a
unit in Z[[q]], we have:

Sk(SL2(Z),Z) = ∆·Mk−12(SL2(Z),Z).

According to Swinnerton-Dyer ([Swi, §3]):

(15.2.4) M(SL2(Z),Z) = Z[E4,∆]⊕ E6·Z[E4,∆],

withE4 and ∆ algebraically independent, andE2
6 = E3

4−1728∆. It follows
that Sk(SL2(Z),Z) is free of rank n. Suitable monomials in E4, ∆ and E6

show that (a1, . . . , an) is a Z-basis of Sk(SL2(Z),Z)∨. �

We note that we do not absolutely need the previous proposition, because
from the set of generators Ti with 1 ≤ i ≤ k/12 as given by Theorem 2.5.10
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one can also compute a Z-basis in time polynomial in k, and this is what one
will probably do in the case of arbitrary level and weight. But in this case
of level one we have chosen to be more explicit.

We consider the Hecke algebras T(1, k) as lattices in the R-algebras
T(1, k)R := R ⊗ T(1, k). As all Tm are selfadjoint as operators on
Sk(SL2(Z)) with respect to the Petersson inner product (see Section 2.2),
all their eigenvalues are real. As the level is 1, all normalised eigenforms are
newforms; let us write them as f1, . . . , fn, and view them as ring morphisms
fi : T(1, k)→ R. Then the map:

f : T(1, k)R −→ Rn, t 7→ (f1(t), . . . , fn(t)),

is an isomorphism of R-algebras. The trace form on the Z-algebra T(1, k)
induces the trace form of the R-algebra Rn, i.e., the standard inner product
on Rn. We equip T(1, k)R with the standard volume form, i.e., the one for
which a unit cube has volume 1. Our first goal is now to get a bound for the
absolute discriminant of T(1, k), or, equivalently, over the volume of the
quotient T(1, k)R/T(1, k).

15.2.5 Proposition Let k ≥ 12 be an even integer. Then we have:

log Vol (T(1, k)R/T(1, k)) =
1
2

log |discrT(1, k)| ≤ k2

24
log k.

Proof As T1, . . . , Tn is a Z-basis of T(1, k), we have:

Vol(T(1, k)R/T(1, k)) = |det(f(T1), . . . , f(Tn))|.

Using Deligne’s bound |ap(fj)| ≤ 2p(k−1)/2 of [Del2] as we used the Weil
bounds in the proof of Lemma 11.1.1 we get:

(15.2.6)
|(f(Ti))j | = |ai(fj)| ≤ σ0(i)i(k−1)/2

≤ 2·i1/2i(k−1)/2 = 2·ik/2.

Hence the square of the length of f(Ti) is at most 4nik. This implies:

|det(f(T1), . . . , f(Tn))| ≤
n∏
i=1

(
2·ik/2·

√
n
)

= 2n·(n!)k/2·nn/2.
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Hence:

log Vol(T(1, k)R/T(1, k)) ≤ n log 2 +
k

2
log(n!) +

n

2
log n

≤ n log 2 +
kn

2
log n− kn

2
+
k

2
+
n

2
log n,

where we have used that log n! ≤ n log n − n + 1. Simple estimates
for k > 24 and direct checks in the remaining cases give the result (the
only non-trivial case being k = 24, in which case the discriminant equals
2632144169. �

The next ingredient to be used in our proof of Theorem 15.2.1 comes from
analytic number theory: an effective prime number theorem for number
fields, under the assumption of GRH. The effectivity just alluded to means
that for all real numbers x in a specified interval such as (2,∞) an estimate
for the number of prime ideals of norm at most x of an arbitrary number
field K is given, whereas the usual prime number theorem is, for each K, a
different asymptotic statement.

15.2.7 Theorem (Weinberger) For K a number field and x a real number
let π(x,K) denote the number of maximal ideals m of the ring of integers
OK of K with #(OK/m) ≤ x. For x > 2 in R let lix =

∫ x
2 (1/ log y)dy.

Then there exists c1 in R such that for every number fieldK for which GRH
holds, and for every x > 2 one has:

|π(x,K)− lix| ≤ c1

√
x log

(∣∣∣discr(OK)xdimQ K
∣∣∣) .

Weinberger states this result in [Wei4] (it is the lemma on page 181, and
says that it is proved in more generality in [Wei3] (probably on page 328,
just after (4.4)).

15.2.8 Corollary There exist c2 and c3 in R such that for every number
field K for which GRH holds and for every x in R such that:

x > c2·(log |discr(OK)|)2·(log(1 + log |discr(OK)|))2, and

x > c3·(dimQK)2·(1 + log dimQK)4

we have:

π(x,K) ≥ 1
2

x

log x
.
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Proof Let K be a number field for which GRH holds, and let x ∈ R>2.
We write dK for |discr(OK)| and nK for dimQK. Then Theorem 15.2.7
says that:

π(x,K) ≥ li(x)− c1x
1/2 log(dKxnK )

≥ x− 2
log x

− c1x
1/2 log(dKxnK )

=
x

log x

(
1− 2

x
− c1(log x)(log dK)

x1/2
− c1nK(log x)2

x1/2

)
.

In order to estimate the last term of the previous line, one uses the substitu-
tions x = y4 and y = n

1/2
K z. For the one but last term, one uses x = y2 and

y = 2c1(log dK)z if dK 6= 1. �

In order to find an element of T(1, k) from sufficiently many of its images
modulo maximal ideals, we will need a lower bound on the length of a short-
est non-zero vector in the intersection of the maximal ideals. The following
lemma gives a general, well known lower bound in the context of orders in
number fields.

15.2.9 Lemma LetK be a number field, n its dimension asQ-vector space,
A ⊂ K an order, i.e., a subring of finite index in the ring of integers of K,
and I ⊂ A a non-zero ideal. We equipKR := R⊗K with the inner product
induced from the standard inner product on Cn, where KR is embedded in
Cn via all distinct σi : K → C. We consider A and I as a lattices in KR.
Then we have:

µ1(I) ≥
√
n·#(A/I)1/n,

where µ1(I) is the length of a shortest element of I − {0}.

Proof Let x ∈ I be non-zero. Then A·x ⊂ I , and we have:

|x1| · · · |xn| = |NK/Q(x)| = #(A/A·x) ≥ #(A/I).

The inequality between geometric and arithmetic mean gives:

(
|x1|2 · · · |xn|2

)1/n ≤ |x1|2 + · · ·+ |xn|2

n
=
‖x‖2

n
.



bookarxiv March 18, 2010

396 CHAPTER 15

Combining the last two inequalities gives:

‖x‖ ≥
√
n·|NK/Q(x)|1/n ≥ #(A/I)1/n,

which finishes the proof. �

The next result summarises the standard approach for using the LLL-
algorithm for the “closest or nearest vector problem”. For more details on
lattice reduction we refer to [Le-Le-Lo], [Len3] and [Coh, §2.6].

15.2.10 Proposition Let n ≥ 0 and let L be a free Z-module of finite
rank n, equipped with a positive symmetric bilinear form b : L × L → Z.
We view L as a lattice in the R-vector space LR equipped with the inner
product given by b, and for x in LR we put ‖x‖ := (b(x, x))1/2. Let L′ be
a submodule of finite index of L, and let µ1(L′) be the length of a shortest
non-zero element of L′. Let t be an element of L such that:

‖t‖ < 2−(n+1)/2µ1(L′).

Let e = (e1, . . . , en) be an “LLL-reduced basis” of L′: if e∗ = (e∗1, . . . , e
∗
n)

denotes the orthogonal R-basis of LR obtained from e by letting e∗i be the
orthogonal projection of ei to the orthogonal complement of the subspace of
LR generated by {ej | j < i} (i.e., by the Gram-Schmidt orthogonalisation
process), and µi,j := b(ei, e∗j )/b(e

∗
j , e
∗
j ), then we have:

|µi,j | ≤
1
2

for 1 ≤ j < i ≤ n, and

‖e∗i ‖2 ≥
(

3
4
− µ2

i,i−1

)
‖e∗i−1‖2 for 1 < i ≤ n.

Then t is the shortest element of t+ L′, and for any x in t+ L′ we recover
t as follows:

• put xn := x;

• for i going down from n to 1 let xi−1 := xi − [b(xi, e∗i )/b(e
∗
i , e
∗
i )]ei,

where, for y in Q, [y] denotes the largest of the (one or two) integers
nearest to y;

• then t = x0.
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Proof We claim that the orthogonal block:

B :=

{∑
i

λie
∗
i | − 1/2 ≤ λi < 1/2

}

is a fundamental domain for L′ acting on LR by translations. Indeed, for
x in LR and the xi as above, x0 is in B and x − x0 is in L′, and more-
over, B and LR/L

′ have the same volume, namely
∏
i ‖e∗i ‖. By the defin-

ing properties of an LLL-reduced basis we have, for i in {2, . . . , n}, that
‖e∗i ‖2 ≥ (1/2)‖e∗i−1‖2. Also, as e∗1 = e1, we have ‖e∗1‖ ≥ µ1(L′). It
follows that for all i:

‖e∗i ‖ ≥ 2−(i−1)/2‖e1‖ ≥ 2−(i−1)/2µ1(L′),

and, in particular:

‖e∗i ‖ ≥ 2−(n−1)/2µ1(L′).

Hence, for any x in LR not in B we have:

‖x‖ ≥ min
i
‖e∗i ‖/2 ≥ 2−(n+1)/2µ1(L′).

�

We can now finally prove Theorem 15.2.1. We split it in three parts: descrip-
tion of the algorithm, proof of its correctness, and running time analysis.

Proof [of Theorem 15.2.1]

Description of the algorithm

Let k and n be given, with the factorisation of n =
∏
p p

vp(n) in prime
factors. Let T := T(1, k), and let r be its rank. Proposition 15.2.3 tells
us that r ≤ k/12 and that (T1, . . . , Tr) is a Z-basis of T. Using modular
symbols algorithms (see Chapter 8 of [Ste2]), one computes the Z-algebra
structure of T, i.e., one computes TiTj as linear combinations of the Tl, with
1 ≤ i, j, l ≤ r. The identity (2.2.11) gives us:

Tn =
∏
p|n

Tpvp(n) , Tpi = TpTpi−1 − pk−1Tpi−2 ,
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where p is prime and i ≥ 2. Hence the computation of Tn is reduced to that
of the Tp for the primes p dividing n.

Let now p be a prime dividing n. Using a factorisation algorithm as
in [Le-Le-Lo], we factor the Q-algebra TQ =

∏
iKi as a product of fields.

In fact, in all cases that we know of, the number of factors Ki is at most
one (see [Fa-Ja]). For each i, let Ai be the image of T in Ki. The Ai are
computed as Z-algebra, and the surjections T → Ai are described by the
images of the Tj for j ≤ r. These morphisms embed T into

∏
iAi. The

computation of Tp is reduced to that of its images in the Ai.
Let K be one of the factors Ki, let A be Ai, let nK := dimQK and let

dA := |discr(A)|. We define:

(15.2.11) BA := c·((log dA)2 + n2
K + nK ·k· log p),

for c a suitable absolute constant. For all primes l with:

6(k − 1) < l < BA·(logBA)4

we compute the maximal ideals of A/lA, and order them by their norms:
#(A/m1A) ≤ #(A/m2A), etc. Then we take j minimal such that:

(15.2.12) #(A/m1 · · ·mj) >
(

2(nK+1)/2·2·p(k−1)/2
)nK

.

For each of the mi with i ≤ j, we compute the Galois representation ρmi as
in Theorem 14.1.1, and a Frobenius element ρmi(Frobp) at p as described
in Section 15.1. Then we have the images of Tp in all T/mi for 1 ≤ i ≤ j.

We compute a Z-basis e′ = (e′1, . . . , e
′
nK

) of m1 · · ·mj , starting from
the Z-basis of A that is part of the description of A, adding the congruence
condition modulo the mi’s one by one. The LLL-algorithm gives us an
LLL-reduced basis e of m1 · · ·mj .

Let Tp denote the image of Tp in
∏
i≤j A/mi. We compute a preimage

T ′p in A of Tp, adding the congruence conditions one by one. We compute
Tp itself with the algorithm of Proposition 15.2.10.

Correctness of the algorithm

We will now show that the computation works, and that it gives the correct
result, if the constant c in (15.2.11) is large enough.
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The first thing that we have to show is that there are distinct maximal
ideals m1, . . . ,mj of A, whose residue characteristics are between 6(k−1)
and BA·(logBA)4, not equal to p, and such that (15.2.12) holds. We note
that for each l in that range there is at least one maximal ideal m in A/lA,
and that #(A/m) is at least l. According to Corollary 10.1 in Section I.2.6
of [Ten], for sufficiently large real numbers x, the sum

∑
l≤x log(l) is at

least x/2. So, indeed, taking all l between 6(k − 1) and a constant times
nK ·k· log p implies that the required mi exist. We observe that the choice
of BA is sufficiently large for this.

The second point where an argument is needed is that the ρmi are ei-
ther reducible, or have image containing SL2(A/mi), so that they can be
computed by the algorithm of Theorem 14.1.1. But this is guaranteed by
Theorem 2.5.18.

The third point is that in the situation where we invoke the algorithm of
Proposition 15.2.10, the assumptions of that proposition hold. That means
that we must check that ‖Tp‖ is strictly less than 2−(nK+1)/2·µ1(m1 · · ·mj).
By Deligne’s bound of [Del2], we know that ‖Tp‖ ≤

√
nK ·2·p(k−1)/2.

Lemma 15.2.9 says that µ1(m1 · · ·mj) ≥
√
nK ·(#(A/m1 · · ·mj))1/nK .

Hence the required inequality follows from (15.2.12). This finishes the
proof of the correctness of the algorithm.

Running time analysis

We show the two claims on the running time. We also indicate at the ap-
popriate places that the algorithm is deterministic.

Let k, and n =
∏
p p

vp(n) be given. The computation of the Hecke algebra
T := T(1, k), i.e., of the products TiTj as Z-linear combinations of the Tl,
with 1 ≤ i, j, l ≤ r, using modular symbols as in Chapter 8 of [Ste2], is
deterministic and is done in time polynomial in k. Multiplication of two
elements of T can be done in time polynomial in k and the maximum of
the heights of the coordinates of the elements with respect to the Z-basis
T = (T1, . . . , Tr). Lemma 4.2.7 and (15.2.6) give that the heights of the
coordinates of Tm (with m ∈ Z>0) with respect to T are O(k3(log(km))).
Hence the computation of Tn from the Tp for p dividing n is done in time
polynomial in k and log n. The number of primes dividing n is at most
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log2 n, and each of them is at most n. Let p be a prime dividing n.
Factorisation as in [Le-Le-Lo] is a deterministic polynomial time algo-

rithm, hence we do get the factorisation TQ =
∏
iKi and the surjections

T→ Ai ⊂ Ki in time polynomial in k.
The number of factors Ki is at most r ≤ k/12. Let A be one of the Ai.

As the morphism T→
∏
iAi is injective, we have:∏

i

discr(Ai) ≤ discr(T) ≤ (k2 log k)/12.

Therefore, the number BA as in (15.2.11) is O(k2·((k log k)2 + log n)).
For l a prime number, the computation of the maximal ideals of A/lA

can be done deterministically in time polynomial in l and nK as follows
(compare with Algorithm 3.4.10 of [Coh], “Berlekamp for small primes”).
Take i ∈ Z≥1 such that li ≥ nK . The product I of the maximal ideals of
A/lA is the subspace of x with xl

i
= 0. This can be computed with linear

algebra over Fl. One computes, again with linear algebra, the sub-algebra
(A/lA)′ of elements x with xl = x. This algebra is isomorphic to Fdl for
some d. If d > 1, then for any x in (A/lA)′ that is not in Fl there is an a
in Fl such that (x− a)l−1 is a non-trivial idempotent in (A/lA)′. Repeating
this procedure splits (A/lA)′ completely. The maximal ideal corresponding
to an elementary idempotent ι of (A/lA)′ is then (1− ι)I .

We conclude that the computation of all maximal ideals of the A/lA, for
all primes l with 6(k − 1) < l < BA·(logBA)4 can be done deterministi-
cally in time polynomial in k and log n. We can order them by their norms
during their computation. Then we have m1, . . . ,mj such that (15.2.12)
holds. As #(A/mi) ≥ 2 for all i, we have:

j ≤ nK ·((nK + 3)/2 + (k − 1)(log2 p)/2) = O(k2 log n).

Let m be one of the mi, where i ≤ j. Then #(A/m) ≤ lnK , where l is the
largest prime with l < BA·(logBA)4. A rough estimate gives that there is
an absolute constant such that:

#(A/mA) ≤ (c·k5 log n)k/6.

The running time for computing the Galois representation ρm, is therefore
bounded by a fixed power of (c·k5 log n)k/6. For fixed k, this is of polyno-
mial size in log n. Assuming GRH for K, we get a much smaller estimate
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for #(A/m) as follows. We use the fact that if a is inR>e, and x > 2a log a,
then x/ log x > a (to prove this, use that x 7→ x/ log x is increasing on
R>e, and that e/ log e > 2). We let x = BA·(logBA)4. Then x satisfies the
two hypotheses of Corollary 15.2.8 (assuming the constant c of (15.2.11)
large enough with respect to c2 and c3), and therefore (here we use GRH!)
π(x,K) ≥ x/2 log x. But then π(x,K) ≥ BA/2, i.e., there are at least
BA/2 maximal ideals of OK with #(OK/m) ≤ x. Now OK/A is finite,
of order at most d1/2

A , hence there are at most (1/2)· log2 dA distinct primes
dividing #(OK/A), and hence at most (nK/2)· log2 dA maximal ideals of
A where A and OK differ. Similarly, there are at most 6(k−1)nK maximal
ideals of A with residue characteristic at most 6(k − 1). The definition of
BA in equation (15.2.11) implies that:

x

2 log x
− nK

2 log2 dA
− 6knK > nK

(
nK + 1

2
+ 1 +

k − 1
2

log2 p

)
,

assuming the absolute constant c large enough. Let I be the product of the
maximal ideals m in A with #(A/m) ≤ x and with residue characteristic
at least 6(k − 1). Using that for all m containing I we have #(A/m) ≥ 2
we get:

#(A/I) >
(

2(nK+1)/2·2·p(k−1)/2
)nK

.

The definition of j, see (15.2.12), implies that for every i ≤ j, we have
#(A/mi) ≤ x. As we have already noticed above, x is of size polynomial
in k and log n. Summarising: if we assume GRH for K, then running time
for the computation of ρm is polynomial in k and log n.

The computation of a Frobenius element ρm(Frobp), given ρm, is deter-
ministic and has running time polynomial in k and log n; see the proof of
Theorem 15.1.1.

At this point we have computed the images of Tp in the A/mi, for all
i ≤ j. The computation of a Z-basis e′ of m1 · · ·mj can be done in time
polynomial in k and log n. One starts with the basis of A that is part of
its description, and computes successively Z-bases of m1, m1m2, etc. At
the ith step, the maximum of the absolute values of the coordinates of the
elements of our temporary basis with respect to the basis of A gets at most
nK li times larger, where li is the characteristic of A/mi. It follows that the
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absolute values of the coordinates of the e′i with respect to the basis ofA are
at most njK ·#(A/m1 · · ·mj), which is of size polynomial in k and log n.

The LLL -algorithm gives us an LLL-reduced basis e of m1 · · ·mj in
time polynomial in k and log n, see [Le-Le-Lo], [Len3] or [Coh, §2.6].

A preimage T ′p inA of the image Tp of Tp in
∏
i≤j A/mi can be computed

in time polynomial in k and log n as follows. One lifts the image of Tp
in A/m1 to an element Tp,1 of A, with small coordinates with respect to
the Z-basis of A, then one adjusts Tp,1 with an element of m1 with small
coordinates with respect to the Z-basis that was already computed, to get the
correct image in A/m2, etc. The size of the coordinates of T ′p with respect
to the Z-basis of A is polynomial in k and log n.

The algorithm of Proposition 15.2.10 then computes Tp for us, in time
polynomial in k and log n. �

Proof [of Corollary 15.2.2] Let k ≥ 0, and let f be inMk(SL2(Z),Z). We
are given the integers k and the ai(f) for 0 ≤ i ≤ k/12, and a positive inte-
ger n together with its factorisation into primes. We are to compute an(f).

If Mk(SL2(Z),Z) is zero, then so is f , and we have an(f) = 0. If k = 0,
then f is a constant power series, hence an(f) = 0. So, we may and do
assume that k ≥ 4, and that k is even.

Let Ek be the Eisenstein form of weight k and level one normalised as in
Example 2.2.3. Note that the coefficients ai(Ek) are rational numbers, not
necessarily integers. Let g := f − a0(f)·Ek in Sk(SL2(Z),Q). Then we
have:

f = a0(f)·Ek + g, hence an(f) = a0(f)an(Ek) + an(g).

As the factorisation of n into primes is given, we can compute the coeffi-
cient:

an(Ek) = − 2k
Bk

σk−1(n) = − 2k
Bk

∏
p|n

(
1 + pk−1 + · · ·+ p(k−1)vp(n)

)
in time polynomial in k and log n. Hence it remains to compute an(g).

Let T denote the Hecke algebra T(1, k) acting on Sk(SL2(Z),Z). Recall
that its rank is at most k/12. Via the perfect pairing from (2.4.9):

Sk(SL2(Z),Z)× T −→ Z, (h, t) 7→ a1(th)
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we view g as the element in HomZ-Mod(T,Q) that sends t to a1(tg). We
then have, by (2.2.12):

ar(g) = g(Tr) for all r ≥ 1.

The Ti with 1 ≤ i ≤ rank(T) form a Z-basis for T, by Proposition 15.2.3.
The products TiTj of these basis elements can be computed in time polyno-
mial in k.

The coefficients ai(Ek) for 0 ≤ i ≤ k/12 can be computed in time poly-
nomial in k from the standard formulas as given in Example 2.2.3. The co-
efficients ai(f) for 0 ≤ i ≤ k/12 are given. Hence the g(Ti) = ai(g) with
1 ≤ i ≤ rank(T) are computed in time polynomial in k and the maximum
of the log(1+ |ai(f)|) with 0 ≤ i ≤ k/12. Theorem 15.2.1 says that Tn can
be computed as Z-linear combination of the Ti with 1 ≤ i ≤ rank(T),
in time polynomial in k and log n. Applying g, viewed as element of
HomZ-Mod(T,Q), to this linear combination gives an(g) = g(Tn), in the
required time. �

15.3 AN APPLICATION TO QUADRATIC FORMS

In this section we apply our results on the computation of coefficients
of modular forms to theta functions of even, unimodular positive definite
quadratic forms over Z. According to Corollary 2.3.6, such a theta function
is a modular form on SL2(Z), of weight equal to half the dimension of the
space of the quadratic form.

In view of Example 2.3.10, Theorem 15.1.1 has the following conse-
quence.

15.3.1 Theorem There is a deterministic algorithm that on input an inte-
ger m > 0 together with its factorisation into primes gives the representa-
tion number rL(m) where L is the Leech lattice, in running time polynomial
in logm.

Let us now turn to arbitrary even unimodular lattices. We can then apply
Corollary 15.2.2 to prove the following result.
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15.3.2 Theorem Assume GRH. There is a deterministic algorithm that, on
input the rank nL and the integers rL(i) for 1 ≤ i ≤ nL/24 of an even uni-
modular lattice (L, b), and an integer m > 0 together with its factorisation
into primes, computes rL(m) in running time polynomial in nL and log(m).

Proof Let nL and the rL(i) for 1 ≤ i ≤ nL/24 be given. As L is
even and unimodular, nL is even (in fact, it is a multiple of 8, see [Ser5,
VII, §6]). Let k := nL/2. Then θL is in Mk(SL2(Z),Z). The coefficients
ai(θL) = rL(2i) with 0 ≤ i ≤ k/12 are given to us. The fact that the open
balls in LR centered at the x ∈ L and with radius 2−1/2 do not overlap gives
that for i with 0 ≤ i ≤ k/12 we have log(1 + rL(i)) ≤ k log(1 + k/6).
Corollary 15.2.2 then means that rL(m) = am/2(θL) can be computed in
the required time. �

Let us point out that Theorem 15.3.2 can be applied to the orthogonal direct
sum (L, b) of even unimodular lattices (Li, bi) for which the rLi(j) can be
computed in time polynomial in nLi and j. Indeed:

θL1 · · · θLr =
∑
x∈L

q(b1(x1,x1)+···+br(xr,xr))/2 =
∑
x∈L

qb(x,x)/2 = θL.

The coefficients ai(θL) with 0 ≤ i ≤ nL/24 can be computed in time
polynomial in nL by computing the product of the images of the θLi
in Z[[q]]/(qnL/24+1).
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Epilogue

Theorems 14.1.1 and 15.2.1 will certainly be generalised to spaces of cusp-
forms of arbitrarily varying level and weight. This is currently being worked
out for the probabilistic variants, and at least for square free levels (and for
level two times a square free number for reasons that will become clear be-
low). We describe some consequences of this current work. The reader
will understand what the consequences are of deterministic generalisations
to arbitrary levels and weights.

Computation of Galois representations

Peter Bruin will give, in his forthcoming PhD thesis (Summer 2010), a prob-
abilistic algorithm that on input positive integers k and N , with N square
free, and a surjective morphism f : T(2N, k) → F to a finite field, com-
putes ρf with probabilistic running time polynomial in k, N and #F. An
important new ingredient in his method, suggested by Couveignes, is to
be more flexible concerning the choice of the divisor D0 of Section 8.2.
His algorithm computes, for each x in V , the smallest integer dx such that
h0(X1(2N)Q,Lx(dx·∞)) = 1, and then represents x by the unique effec-
tive divisor Dx of degree dx on X1(2N)Q such that x = [Dx − dx·∞] in
J1(2N)(Q). This generalises the probabilistic variant of Theorem 14.1.1
that is described in Section 14.8.

Computing coefficients of modular forms

Concerning Theorem 15.2.1, Peter Bruin will obtain a probabilistic algo-
rithm that, assuming GRH, on input positive integers k, N and n, with N
squarefree, together with the factorisation of n into prime factors, the ele-
ment Tn of the Hecke algebra T(2N, k) in probabilistic running time poly-
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nomial in k, N and log n.

Lattices, sums of squares

This last result, applied to theta functions of lattices as in Section 15.3, will
have the following remarkable consequence that, assuming GRH, there is a
probabilistic algorithm that on input positive integers k and n, together with
the factorisation of n into prime factors, computes the number:

rZ2k(n) = #{x ∈ Z2k | x2
1 + · · ·+ x2

2k = n}

in time polynomial in k and log n.
For some small values of k there are well known explicit formulas for

the representation numbers rZ2k(n), owing their existence to the fact that
there are no non-CM cuspidal eigenforms on Γ1(4) of weight k. In order
to give these formulas, let χ : Z → C be the map obtained from the char-
acter (Z/4Z)× = {1,−1} ⊂ C×, by extending it by zero to Z/4Z and
composing the result with the reduction map Z→ Z/4Z. Then we have:

rZ2(n) = 4
∑
d|n

χ(d),

rZ4(n) = 8
∑
2-d|n

d+ 16
∑

2-d|(n/2)

d,

rZ6(n) = 16
∑
d|n

χ(n/d)d2 − 4
∑
d|n

χ(d)d2,

rZ8(n) = 16
∑
d|n

d3 − 32
∑

d|(n/2)

d3 + 256
∑

d|(n/4)

d3,

rZ10(n) = (4/5)
∑
d|n

χ(d)d4 + (64/5)
∑
d|n

χ(n/d)d4

+ (8/5)
∑

d∈Z[i], |d|2=n

d4.

For the history of these formulas, featuring, among others, Fermat, Eu-
ler, Lagrange, Legendre, Gauss, Jacobi and Liouville, we refer the reader
to [Mil2] and to Chapter 20 of [Ha-Wr].

In her forthcoming masters thesis (Summer 2010), Ila Varma will show
that there are no other values of k for which the theta function θZ2k = θ2k

Z ,
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where Z2k is equipped with the standard inner product, is a linear combina-
tion of Eisenstein series and cuspforms coming from Hecke characters.

We conclude that, even in the absence of formulas as above, one will be
able to compute the numbers rZ2k(n) as fast as if such formulas existed.
Often, theta functions are considered to be modular forms of which the co-
efficients are easy to compute, and hence useful for computing Hecke oper-
ators and coefficients of eigenforms. However, it seems that for coefficients
an(f) with n large, this will be the other way around, from now on.

Point counting on modular curves

Another consequence of Peter Bruin’s results mentioned above is that, again
assuming GRH, there will be a probabilistic algorithm that on input a
positive square free number n and a finite field Fq computes the number
#X1(n)(Fq) in time polynomial in n and log q. Indeed, this is a matter of
computing the element Tp (where p is the prime dividing q) in the Hecke
algebra T(n, 2) acting on the space S2(Γ1(n),Z).

Point counting in a more general context

The methods that we have used in this book can also be tried outside the
context of modular forms. Let us consider, for example, a smooth surface
S in P3

Q of degree at least 5, say. Letting l be a prime number, one has the
cohomology groups Hi(SQ,et,Fl) for 0 ≤ i ≤ 4, being finite dimensional
Fl-vector spaces with Gal(Q/Q)-action. It seems reasonable to suspect
that, again, there is an algorithm that on input a prime l computes these
cohomology groups, with their Gal(Q/Q)-action, in time polynomial in l.
Once such an algorithm is known, one also has an algorithm that, on input
a prime p of good reduction of S, gives the number #S(Fp) of Fp-valued
points of S in time polynomial in log p. This result would be of interest
because the known p-adic algorithms for finding such numbers have running
time exponential in log p.

In this case, we choose a Lefschetz fibration from a blow-up of S to P1
Q,

and use the derived direct images of the constant sheaf Fl,S under this fi-
bration to compute the étale cohomology of SQ with Fl-coefficients. The
most complicated contribution then comes from the first derived image Fl,
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which is a locally constant sheaf of Fl-vector spaces of dimension r, say,
with r independent of l, on the open part U of P1

Q over which the fibration
is smooth. This open part U is independent of l as well, and it is the analog
of the open part of the j-line over which all modular curves are unramified.

For each l let Vl := IsomU (Frl ,Fl). These Vl play the role of the covers
X1(l) of the j-line, as, by definition, they trivialise the sheaves Fl. Each
cover Vl → U is finite Galois with group G = GLr(Fl), and H1(UQ,et,Fl)
is closely related to H1(Vl,Q,et,F

r
`) which sits in the l-torsion of the Jacobian

of the smooth projective model Vl of Vl. It is our hope that methods as in this
book (height bounds, approximations) can show that there is a polynomial
algorithm for computing these cohomology groups.

In [Ed-dJ-Sc] a first step in this program is taken, by proving, in the func-
tion field case, that, for varying l, the height of Vl is bounded by a fixed
power of l.

Modular forms of half integral weight

Much to our regret, we have nothing to say about modular forms of half inte-
ger weight. Nevertheless, it would be very interesting to be able to compute
coefficients of such modular forms, as they encode interesting arithmetic
information, such as class numbers.
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Astérisque No. 276 (2002), 161–188.

[Edi3] S.J. Edixhoven. Point counting after Kedlaya. Syllabus for the grad-
uate course “Mathematics of Cryptology”, at the Lorentz Center in
Leiden, September 2003. Available at:
www.math.leidenuniv.nl/˜edix/

oww/mathofcrypt/carls_edixhoven/kedlaya.pdf

[Elk] R. Elkik. Fonctions de Green, volumes de Faltings. Application aux
surfaces arithmétiques. Chapter III of [Szp].

[Eng] A. Enge. Elliptic curves and their applications to cryptography, an
introduction. Kluwer Academic Publishers, 1999. — N◦ 844.

[Fa-Ja] D.W. Farmer and K. James. The irreducibility of some level 1 Hecke
polynomials. Math. Comp. 71 (2002), no. 239, 1263–1270.

[Fa-Jo] G. Faltings, B.W. Jordan. Crystalline cohomology and GL(2, Q).
Israel J. Math. 90 (1995), no. 1-3, 1–66.

[Fa-Kr] H.M. Farkas and I. Kra. Riemann Surfaces. Springer Graduate
Texts in Mathematics 71, second edition, Berlin-New York 1991.

[Fal1] G. Faltings, Calculus on arithmetic surfaces, Ann. of Math. 119
(1984), 387–424.

[Fal2] G. Faltings. Lectures on the arithmetic Riemann-Roch theorem.
Notes taken by Shouwu Zhang. Annals of Mathematics Studies, 127.
Princeton University Press, 1992.

[Fis] T. Fisher. On 5 and 7 descents for elliptic curves. Available on the
author’s home page:
http://www.dpmms.cam.ac.uk/˜taf1000/



bookarxiv March 18, 2010

BIBLIOGRAPHY 415

[Fo-Ga-Ha] M. Fouquet, P. Gaudry and R. Harley. An extension of Satoh’s
algorithm and its implementation. J. Ramanujan Math. Soc. 15
(2000), no. 4, 281–318.
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de Mordell. Astérisque No. 127 (1985), Société Mathématique de
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[Vel] J. Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de
l’Académie de Sciences de Paris, Série A, 273:238–241, 1971.

[Vol] E.J. Volcheck. Computing in the jacobian of a plane algebraic curve.
In “Algorithmic number theory, ANTS I”, number 877 in lecture
notes in computer science, pages 221–233. Springer, 1994.
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