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Galois invariant smoothness basis∗

Jean-Marc Couveignes†and Reynald Lercier‡

August 18, 2011

Abstract

This text answers a question raised by Joux and the second author about the computation
of discrete logarithms in the multiplicative group of finite fields. Given a finite residue field
K, one looks for a smoothness basis for K∗ that is left invariant by automorphisms of K. For
a broad class of finite fields, we manage to construct models that allow such a smoothness
basis. This work aims at accelerating discrete logarithm computations in such fields. We
treat the cases of codimension one (the linear sieve) and codimension two (the function field
sieve).

To Gilles Lachaud, on the occasion of his 60th birthday

1 Motivation
We look for finite fields that admit Galois invariant smoothness basis. It is known that such
basis accelerate the calculation of discrete logarithms. We first recall this observation by Joux
and Lercier in section 2 and we give a first example of this situation in section 3. We recall
in section 4 the rudiments of Kummer and Artin-Schreier theories. These theories produce the
known examples of such smoothness basis. We then show in section 5 that the only extensions
admitting Galois invariant flags of linear spaces are given by those two theories. In section 6,
we consider a more general setting: specialization of isogenies between algebraic groups. We
deduce a first non trivial example of Galois invariant smoothness basis in section 7. In the next
section 8, we show that elliptic curves produce a range of such invariant basis, provided the
degree of the field is not too large.

In section 9, we recall the principles of fast sieving algorithms (the number field sieve and the
function field sieve). We show in section 10 that our approach can be adapted to these algorithms.
A detailed example is given in section 11. We finish with a few remarks and questions about the
relevance of our method.
∗Research supported by the French Délégation Générale pour l’Armement, Centre d’Électronique de

l’Armement and by the Fonds National pour la Science (ACI NIM).
†Institut de Mathématiques de Toulouse, Université de Toulouse et CNRS.
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2 A remark by Joux and Lercier
We recall in this section the principle of a simple algorithm for computing discrete logarithms
in the multiplicative group of a finite field Fq where q = pd and d ≥ 2. See [7] for a survey on
discrete logarithm computation.

The finite field Fq is seen as a residue field Fp[X]/(A(X)) where A(X) ∈ Fp[X] is a degree
d unitary irreducible polynomial. We set x = X mod A(X). Let k be an integer such that
0 ≤ k ≤ d− 1 and let Vk ⊂ Fq be the Fp-vector space generated by 1, x, . . . , xk. So V0 = Fp ⊂
V1 ⊂ . . . ⊂ Vd−1 = Fq and Vk × Vl ⊂ Vk+l if k + l ≤ d− 1.

One looks for multiplicative relations between elements of Vκ for some integer κ. For exam-
ple, if one takes κ = 1, the relations we are looking for take the form∏

i

(ai + bix)ei = 1 ∈ Fq (1)

where the ai and bi lie in Fp. We collect such relations until we obtain a basis of the Z-module
of relations between elements in Vκ.

How do we find relations like relation (1) ? Assume again κ = 1. The simplest form of
the sieving algorithm picks random triplets (ai, bi, ei) and computes the remainder r(X) of the
Euclidean division of

∏
i(ai + biX)ei by A(X). So

r(X) ≡
∏
i

(ai + biX)ei mod A(X)

where r(X) is a more or less random polynomial in Fp[X] with degree ≤ d− 1.
We hope r(X) decomposes as a product of polynomials with degree smaller than or equal to

κ = 1. If this is the case, we find r(X) =
∏

j(a
′
j + b′jX)e

′
j and we obtain a relation∏

i

(ai + bix)ei

∏
j

(a′j + b′jx)−e
′
j = 1

of the expected form. One says that Vκ is the smoothness basis.
Joux and Lercier notice in [3] that, if there exists an automorphism a of Fq such that a(x) =

ux + v with u, v ∈ Fp, then the action of a on equation (1) produces another equation of the
same kind. Since the efficiency of discrete logarithm algorithms depends on the number of such
equations one can produce in a given amount of time, one wishes to know when such useful
automorphisms exist. We also wonder how to generalize this observation.

We stress that a acts both on equations and factors of the form ai+bix. Rather than increasing
the number of equations, such an action may be used to lower the number of factors involved in
them. If a is the n-th power of the Frobenius automorphism, we obtain for free

a(a+ bx) = (a+ bx)p
n

= v + a+ ubx

So we can remove v+a+ubx out of the smoothness basis and replace it everywhere by (a+bx)p
n .

This way, we only keep one element in every orbit of the Galois group acting on Vκ. As a

2



consequence, the size of the linear system we must solve is divided by the order of the group
generated by a. If a generates the full Galois group of Fq/Fp, then the number of unknowns is
divided by d, the degree of the finite field Fq.

Our concern in this text is to find models for finite fields for which the automorphisms respect
the special form of certain elements. For example, if the finite field is given as above, the elements
are given as polynomials in x. Any element z of the finite field has a degree: This is the smallest
integer k such that z ∈ Vk. The degree of a0 + a1x + · · · + akx

k is thus k provided 0 ≤ k < d
and ak 6= 0 (and by convention, deg 0 = 0 ). The degree is sub-additive, deg(w×z) ≤ deg(w)+
deg(z).

The question raised boils down to asking if this degree function is preserved by the automor-
phisms of Fq. It is worth noticing that the interest of the degree function in this context comes
from the following properties.

• The degree is sub-additive (and often even additive): The degree of the product of two non
zero elements is the sum of the degrees of either elements provided this sum is < d.

• The degree sorts nicely the elements of Fq: There are qn elements of degree < n if 1 ≤
n ≤ d.

• There exists a factoring algorithm that decomposes some elements in Fq as products of
elements with smaller degrees (e.g. with degree ≤ κ). The density of such κ-smooth
elements is not too small.

In this article, we look for such degree functions on finite fields having the extra property that
they are Galois invariant: Two conjugate elements have the same degree.

3 A first example
Here is an example provided by Joux and Lercier. Take p = 43 and d = 6, so q = 436, and set
A(X) = X6 − 3 which is an irreducible polynomial in F43[X]. So Fq is seen as the residue field
F43[X]/(X6 − 3).

One checks that p = 43 is congruent to 1 modulo d = 6, so φ(x) = x43 = (x6)7 × x =
37x = ζ6x where ζ6 = 37 = 37 mod 43 is a primitive sixth root of unity. Since the Frobenius φ
generates the Galois group, one can divide by 6 the size of the smoothness basis.

In the second example provided by Joux and Lercier (and coming from XTR of type T30)
one takes p = 370801 and d = 30 with A(X) = X30−17. This time, p is congruent to 1 modulo
d = 30 and φ(x) = xp = x30×12360 × x = ζ30x where ζ30 = 1712360 mod p = 172960 mod p.
As a consequence, one can divide by 30 the size of the smoothness basis.

We are here in the context of Kummer theory. In the next section we recall the basics of
this theory, that classifies cyclic extensions of Fp with degree d dividing p − 1. Artin-Schreier
theory is the counterpart for cyclic p-extensions in characteristic p and we sketch it as well. Both
theories are of very limited interest for our purpose. We shall need to consider the more general
situation of an algebraic group with rational torsion.
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4 Kummer and Artin-Schreier theories
The purpose here is to classify cyclic extensions of degree d ≥ 2 of a field K with characteristic
p in two simple cases.

• Kummer case: p is prime to d and K contains a primitive d-th root of unity;

• Artin-Schreier case: d = p.

Kummer theory. We follow Bourbaki [1, A V.84]. According to Kummer theory, if p is prime
to d and K contains a primitive d-th root of unity, then every degree d cyclic extension of K is
generated by a radical.

Assume K is embedded in some algebraic closure K̄. To every a in K∗/(K∗)d (which we
may regard as an element in K∗), we associate the field L = K(a

1
d ) where a

1
d is any root of

Xd − a in K̄.
The map x 7→ xd is an epimorphism from the multiplicative group K̄∗ onto itself. The kernel

of this epimorphism is the group of d-th roots of unity. The roots of Xd − a lie in the inverse
image of d by this epimorphism.

The field K(a
1
d ) may not be isomorphic to K[X]/(Xd − a). It is when a has order d in the

group K∗/(K∗)d. On the other hand, if a lies in (K∗)d then K[X]/(Xd − a) is the product of d
copies of K.

Let’s come back to the case when a has order d in K∗/(K∗)d. The degree d extension L/K

is Galois since, if we set b = a
1
d , we have

Xd − a = (X − b)(X − bζd)(X − bζ2
d) . . . (X − bζd−1

d )

where ζd is a primitive d-th root of unity. The Galois group of L/K is made of transformations
an : x 7→ xζnd and the map n 7→ an is an isomorphism from the group Z/dZ onto Gal(L/K).

To avoid distinguishing too many cases, one follows Bourbaki [1, A V.84]. Rather than a
single element in K∗/(K∗)d one picks a subgroup H of K∗ containing (K∗)d and one forms the
extension K(H

1
d ) by adding to K all d-th roots of all elements in H . To every automorphism a

in Gal(K(H
1
d )/K), one associates an homomorphism ψ(a) from H/(K∗)d to the group µd(K)

of d-th roots of unity. The homomorphism ψ(a) is defined by

ψ(a) : θ 7→ a(θ
1
d )

θ
1
d

where θ
1
d is one of the d-th roots of θ. The map a 7→ ψ(a) is an isomorphism from the

Gal(K(H
1
d )/K) onto Hom(H/(K∗)d, µd(K)). This presentation of Kummer theory constructs

abelian extensions of K with exponent dividing d.
In the case we are interested in, the field K = Fq is finite. Any subgroup H of K∗ is cyclic.

In order to have µd in K, one assumes that d divides q−1. We set q−1 = md. The group (K∗)d

has order m. The quotient K∗/(K∗)d is cyclic of order d. It is natural to take H = K∗. We find
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the unique degree d cyclic extension L of K. It is generated by a d-th root of a generator a of
K∗.

Set b = a
1
d and L = K(b). The Galois group Gal(L/K) is generated by the Frobenius φ and

the action of φ on b is given by φ(b) = bq, so

ζ =
φ(b)

b
= bq−1 = am

is a d-th root of unity that depends on a. The map a 7→ ζ is an isomorphism of K∗/(K∗)d onto
µd(K) which is nothing but exponentiation by m.

The limitations of this construction are clear: It requires primitive d-th roots of unity in K.
Otherwise, one may jump to some auxiliary extension K′ = K(ζd) of K, that may be quite
large. One applies Kummer theory to this bigger extension and one obtains a degree d cyclic
extension L′/K′. Descent can be performed using resolvants (see [6, Chapter III.4]) at a serious
computational expense. We shall not follow this track.

Example. Coming back to the first example one finds q = p = 43, p − 1 = 42, d = 6,
m = 7, a = 3 and φ(b)/b = am = 37 mod 43.

Artin-Schreier theory. We follow Bourbaki [1, A V.88]. If p is the characteristic of K, then
any cyclic degree p extension of K is generated by the roots of a polynomial of the form

Xp −X − a = ℘(X)− a = 0

where a ∈ K and the expression ℘(X) = Xp −X plays a similar role to Xd in Kummer theory.
The map x 7→ ℘(x) defines an epimorphism from the additive group K̄ onto itself. The kernel
of this epimorphism is the additive group of the prime field Fp ⊂ K̄.

Let a be an element of K/℘(K) (that we may see as an element of K in this class). One
associates to it the extension field L = K(b) where b ∈ ℘−1(a). If a has order p in K/℘(K), the
extension L/K has degree p and is Galois since we have

Xp −X − a = (X − b)(X − b− 1)(X − b− 2) . . . (X − b− (p− 1)).

The Galois group is made of transformations of the form an : x 7→ x+ n and the map n 7→ an is
an isomorphism from the group Z/pZ onto Gal(L/K).

Again, if one wishes to construct all abelian extensions of K with exponent p one follows
Bourbaki [1, A V.88]. One takes a subgroup H of (K,+) containing ℘(K) and one forms the
extension K(℘−1(H)). To every automorphism a in Gal(K(℘−1(H))/K), one associates an
homomorphism ψ(a) from H/℘(K) onto the additive group Fp of the prime field. The homo-
morphism ψ(a) is defined by

ψ(a) : θ 7→ a(c)− c
where c belongs to ℘−1(θ), the fiber of ℘ above θ.

The map a 7→ ψ(a) is an isomorphism from the Galois group Gal(K(℘−1(H))/K) onto
Hom(H/℘(K),Fp).
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In our case, the field K = Fq is finite of characteristic p. We set q = pf . The morphism
℘ : Fq → Fq has kernel Fp and the quotient Fq/℘(Fq) has order p. The unique degree p extension
L of Fq is generated by b ∈ ℘−1(a) where a ∈ Fq − ℘(Fq). The Galois group Gal(L/K)
is generated by the Frobenius φ and φ(b) − b belongs to Fp. The map a 7→ φ(b) − b is an
isomorphism from K/℘(K) onto Fp.

Let us make this isomorphism more explicit. We have φ(b) = bq where q = pf is the order
of K = Fq. One computes

φ(b)− b = bq − b = (bp)p
f−1 − b = (b+ a)p

f−1 − b since ℘(b) = bp − b = a.

So bpf − b = bp
f−1 − b+ ap

f−1 . Iterating, we obtain

φ(b)− b = bp
f − b = a+ ap + ap

2

+ · · ·+ ap
f−1

.

The isomorphism from K/℘(K) onto the additive group Fp is nothing but the absolute trace.

Example. Take p = 7 and f = 1, so q = 7. The absolute trace of 1 is 1, so we set K = F7

and A(X) = X7 − X − 1 and we set L = F77 = F7[X]/(A(X)). Setting x = X mod A(X),
one has φ(x) = x+ 1.

5 Invariant linear spaces of a cyclic extension
Let us recall that the question raised in section 2 concerns the existence of automorphisms that
stabilize a given smoothness basis. We saw that smoothness basis are usually made using flags of
linear spaces. Therefore, one wonders if, for a given cyclic extension L/K, there exists K-vector
subspaces of L that are left invariant by the Galois group of L/K.

Let d ≥ 2 be an integer and L = K[X]/(Xd − r) a Kummer extension. For any integer k
between 0 and d− 1, let Lk = K⊕Kx⊕ · · · ⊕Kxk be the K-vector subspace generated by the
k + 1 first powers of x = X mod Xd − r. The Lk are invariant under Galois action since for a,
a K-automorphism of L, there exists a d-th root of unity ζ ∈ K such that

a(x) = ζx

and a(xk) = ζkxk. One has a flag of K-vector spaces, V0 = K ⊂ V1 ⊂ · · · ⊂ Vd−1 = L,
respected by Galois action. So the “degree” function is invariant under this action. This is exactly
what happens in the two examples of section 2. If the smoothness basis is made of irreducible
polynomials of degree ≤ κ, then it is acted on by the Galois group.

If now L = K[X]/(Xp−X − a) is an Artin-Schreier extension, for every integer k between
0 and p− 1, we call Vk = K⊕Kx⊕ · · · ⊕Kxk the K-vector space generated by the k + 1 first
powers of x = X mod Xp −X − a. The Vk are globally invariant under Galois action. Indeed,
if a is a K-automorphism of L, then there is a n ∈ Fp such that a(x) = x+ n, so

a(xk) = (x+ n)k =
∑

0≤`≤k

( k` )nk−`x`.
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We find again a flag of K-vector spaces, V0 = K ⊂ V1 ⊂ · · · ⊂ Vp−1 = L, that is fixed
by Galois action. This time, the Galois action is no longer diagonal but triangular. For cyclic
extensions of degree a power of p, Witt-Artin-Schreier theory also produces a flag of Galois
invariant vector spaces. See the beginning of Lara Thomas’s thesis [8] for an introduction with
references.

One may wonder if Galois invariant flags of vector spaces exist for other cyclic field exten-
sions. Assume L/K is a degree d cyclic extension where d is prime to the characteristic p. Let
φ be a generator of the Galois group C =< φ >= Gal(L/K). According to the normal basis
theorem [4, Theorem 13.1.], there exists a w in L such that

(w, φ(w), φ2(w), . . . , φd−1(w))

is a K-basis of L. Therefore L, as a K[C]-module, is isomorphic to the regular representation.
The order d of C being prime to the characteristic, the ring K[C] is semi-simple according to
Maschke theorem [4, Theorem 1.2.]. The characteristic polynomial of φ acting on the K-vector
space L is Xd − 1. This is a separable polynomial in K[X].

To every K-irreducible factor f(X) ∈ K[X] of Xn − 1, there corresponds a unique irre-
ducible characteristic subspace Vf ⊂ L, invariant by φ. The characteristic polynomial of φ
restricted to Vf is f . According to Schur’s lemma [4, Proposition 1.1.], any K[C]-submodule of
L is a direct sum of some Vf .

Assume there exists a complete flag of K-vector spaces, each invariant by φ, V0 = K ⊂ V1 ⊂
· · · ⊂ Vd−1 = L, where Vk has dimension k. Then all irreducible factors of Xd − 1 must have
degree 1. So K contains primitive roots of unity and we are in the context of Kummer theory. To
every Galois invariant flag, there corresponds an order on d-th roots of unity (or equivalently on
the associated characteristic spaces in L). There are d! such flags.

The flags produced by Kummer theory are of the following form:

V1 ⊂ V1 ⊕ Vζ ⊂ V1 ⊕ Vζ ⊕ Vζ2 ⊂ . . .

⊂ V1 ⊕ Vζ ⊕ Vζ2 ⊕ · · · ⊕ Vζd−2 ⊂ V1 ⊕ Vζ ⊕ Vζ2 ⊕ · · · ⊕ Vζd−2 ⊕ Vζd−1

where ζ is a primitive d-th root of unity and Vζ is VX−ζ , the eigenspace associated to ζ .
Among the d! flags that are φ-invariants, only ϕ(d) come from Kummer theory. They corre-

spond to the ϕ(d) primitive roots of unity. These flags enjoy a multiplicative property: If k ≥ 0
and l ≥ 0 and k + l ≤ d− 1, then Vk × Vl ⊂ Vk+l.

The conclusion of this section is thus rather negative. If we want to go further than Kummer
theory, we cannot ask for Galois invariant flags of vector subspaces.

6 Specializing isogenies between commutative algebraic groups
Kummer and Artin-Schreier theories are two special cases of a general situation that we now
describe. Our aim is to produce nice models for a broader variety of finite fields.
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Let K be a field and G a commutative algebraic group over K. Let T ⊂ G(K) be a non
trivial finite group of K-rational points in G and let

I : G→ H

be the quotient isogeny of G by T . Let d ≥ 2 be the cardinality of T which is also the degree of
I . Assume there exists a K-rational point a on H such that I−1(a) is irreducible over K. Then
every point b ∈ G(K̄) such that I(b) = a defines a cyclic degree d extension L of K: We set
L = K(b) and we notice that the geometric origin of this extension results in a nice description
of K-automorphisms of L.

Let t be a point in T and let ⊕G stand for the addition law in the algebraic group G. Let ⊕H

stand for the addition law in H. We denote by 0G the unit element in G and 0H the one in H.
The point t⊕Gb verifies

I(t⊕Gb) = I(t)⊕HI(b) = 0H⊕Ha = a.

So t⊕Gb is Galois conjugated to b and all conjugates are obtained that way from all points t
in T . So we have an isomorphism between T and Gal(L/K), which associates to every t ∈ T
the residual automorphism

b ∈ I−1(a) 7→ b⊕Gt.

Now, assuming the geometric formulae that describe the translation P 7→ P⊕Gt in G are
simple enough, we obtain a nice description of the Galois group of L over K.

Kummer and Artin-Schreier theories provide two illustrations of this general geometric situ-
ation.

The algebraic group underlying Kummer theory is the multiplicative group Gm over the base
field K. The isogeny I is the multiplication by d:

I = [d] : Gm → Gm.

One can see the group Gm as a sub-variety of the affine line A1 with z-coordinate. The
inequality z 6= 0 defines the open subset G ⊂ A1. The origin 0G has coordinate z(0G) = 1. The
group law is given by

z(P1⊕GmP2) = z(P1)× z(P2).

Here we have H = G = Gm and the isogeny I can be given in terms of the z-coordinates by

z(I(P )) = z(P )d.

Points in the kernel of I have for z-coordinates the d-th roots of unity. The inverse image
by I of a point P in G is made of d geometric points having for z-coordinates the d-th roots of
z(P ). Translation by an element t of the kernel of I , P 7→ P⊕Gmt, can be expressed in terms of
z-coordinates by

z(P⊕Gmt) = z(P )× ζ

where ζ = z(t) is the d-th root of unity associated by z to the d-torsion point t.
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As far as Artin-Schreier theory is concerned, the underlying algebraic group is the additive
group Ga over the base field K, identified with the affine line A1 over K. A point P on Ga is
given by its z-coordinate. The origin 0G has coordinate z(0G) = 0 and the group law is given by

z(P1⊕GaP2) = z(P1) + z(P2).

The degree p isogeny I is ℘ : Ga → Ga, given in terms of z-coordinates by

z(℘(P )) = z(P )p − z(P ).

Here again H = G. The z-coordinates of points in the kernel of ℘ are the elements of the
prime field Fp. The inverse image by I of a point P in G is made of p geometric points whose
z-coordinates are the p roots of the equation Xp−X = z(P ). Translation by an element t in the
kernel of I , P 7→ P⊕Gat, can be expressed in terms of z-coordinates by

z(P⊕Gat) = z(P ) + τ where τ = z(t) ∈ Fp .

7 A different example
We plan to apply the generalities in the previous section to various algebraic groups. We guess
every commutative algebraic group may bring its contribution to the construction of Galois in-
variant smoothness basis. Since we look for simple translation formulae, we expect the simplest
algebraic groups to be the most useful. We start with the most familiar algebraic groups (after
Gm and Ga): These are the dimension 1 tori. Let K be a field with characteristic different from
2 and let D be a non zero element in K. Let P1 be the projective line with projective coordinates
[U, V ]. Let u = U

V
be the associated affine coordinate. We denote by G the open subset of P1

defined by the inequality
U2 −DV 2 6= 0.

To every point P of G, we associate its u-coordinate, possibly infinite but distinct from√
D and −

√
D. The unit element in G is the point 0G with projective coordinates [1, 0] and

u-coordinate∞. For P1 6= 0G and P2 6= 0G, the addition law is given by

u(P1⊕GP2) =
u(P1)u(P2) +D

u(P1) + u(P2)
and u(	GP1) = −u(P1).

We now assume that K = Fq is a finite field and D ∈ F∗q is not a square in Fq. The group
G(Fq) has order q + 1 and the corresponding values of u lie in Fq ∪ {∞}. The Frobenius
endomorphism, φ : G→ G, [U, V ]→ [U q, V q], is nothing but multiplication by −q. Indeed, let
P be a point with projective coordinates [U, V ]. The projective coordinates of R = [q]P are the
coordinates in (1,

√
D) of

(U + V
√
D)q = U q −

√
DV q

because D is not a square in Fq. So R has coordinates [U q,−V q] and it is the inverse of φ(P ).
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We pick an integer d ≥ 2 such that the d-torsion G[d] is Fq-rational. This is equivalent
to the condition that d divides q + 1. We set q + 1 = md. Let I be the multiplication by
d isogeny, I = [d] : G → G, with kernel the cyclic group G[d] of order d. The quotient
G(Fq)/I(G(Fq)) = G(Fq)/G(Fq)d is cyclic of order d.

Let a be a generator of G(Fq) and b a geometric point in the fiber of I above a. Let u(b) be
the u-coordinate of b and set L = K(u(b)). This is a degree d extension of K = Fq. So L = Fqd .

The Galois group of Fqd/Fq is isomorphic to G[d]: For any a ∈ Gal(Fqd/Fq), the difference
a(b)	G b is in G[d] and the pairing

(a, a) 7→ a(b)	G b

defines an isomorphism of Gal(Fqd/Fq) onto Hom(G(Fq)/(G(Fq))d,G[d]).
Here Gal(Fqd/Fq) is cyclic of order d generated by the Frobenius φ. The pairing (φ, a) equals

φ(b)	G b. Remember that φ(b) = [−q]b in G. So

(φ, a) = [−q − 1]b = [−m]a. (2)

We obtain an exact description of Galois action on I−1(a). It is given by translations of the
form P 7→ P⊕Gt with t ∈ G[d]. If we denote by τ the affine coordinate of t and by u the
coordinate of P then the action is given by

u 7→ τu+D

u+ τ
,

which is rather nice since it is a rational linear transform.
We form the polynomial

A(X) =
∏

b∈I−1(a)

(X − u(b))

annihilating the u-coordinates of points in the inverse image of a by I . This is a degree d poly-
nomial with coefficients in K = Fq. It is irreducible in Fq[X] because a generates G(Fq). We
have L = K[X]/(A(X)) = Fqd .

The exponentiation formulae in G give the explicit form of A(X). One has

(U +
√
DV )d =

∑
0≤2k≤d

( d
2k )Ud−2kV 2kDk +

√
D

∑
1≤2k+1≤d

(
d

2k+1

)
Ud−2k−1V 2k+1Dk.

So,

u([d]P ) =

∑
0≤2k≤d u(P )d−2k ( d

2k )Dk∑
1≤2k+1≤d u(P )d−2k−1

(
d

2k+1

)
Dk

.

And
A(X) =

∑
0≤2k≤d

Xd−2k ( d
2k )Dk − u(a)

∑
1≤2k+1≤d

Xd−2k−1
(

d
2k+1

)
Dk.
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We set x = X mod A(X). Since every Fq-automorphism of Fqd transforms x into a linear
rational fraction of x, it is natural to define for every integer k such that k ≥ 0 and k < d the
subset

Vk = {u0 + u1x+ u2x
2 + · · ·+ ukx

k

v0 + v1x+ v2x2 + · · ·+ vkxk
| (u0, u1, . . . , uk, v0, v1, . . . , vk) ∈ K2k+2} .

One has Fq = V0 ⊂ V1 ⊂ · · · ⊂ Vd−1 = Fqd and the Vk are Galois invariant. Further, it is
clear that Vk×Vl ⊂ Vk+l provided k+ l ≤ d−1. Again we find a flag of Galois invariant subsets
of L = Fqd . But these subsets are no longer vector spaces.

If we define the degree of an element of L to be the smallest integer k such that Vk contains
this element, then the degree is Galois invariant and sub-additive, deg(wz) ≤ deg(w) + deg(z).
The degree this times takes values between 0 and dd−1

2
e. It is a slightly less informative function

than in the Kummer or Artin-Schreier cases (it takes twice less values).

Example. Take p = q = 13 and d = 7. So m = 2. Let D = 2 which is not a square in F13.
We look for some a = U+

√
2V such that U2−2V 2 = 1 and a has order p+1 = 14 in F13(

√
2)∗.

For example U = 3 and V = 2 are fine. The u-coordinate of 3 + 2
√

2 is u(a) = 3
2

= 8. One can
write the polynomial

A(X) = X7 + 3X5 + 10X3 + 4X − 8(7X6 + 5X4 + 6X2 + 8).

Formula (2) predicts the Frobenius action. We set t = [−m]a = [−2]a so u(t) = 4 and Frobenius
operates by translation by t, so Xp = 4X+2

X+4
mod A(X).

So we have made a small progress: We can now treat extensions of Fq of degree dividing
q + 1. Unfortunately this condition is just as restrictive (though different) as the one imposed by
Kummer theory. What do we do if the degree does not divide q + 1 nor q − 1 ?

We must diversify the algebraic groups we use. The next family to consider is made of elliptic
curves.

8 Residue fields of divisors on elliptic curves
We now specialize the computations in section 6 to the case where G is an elliptic curve. Take
K = Fq a finite field for which we want to construct a degree d ≥ 2 extension where d is prime to
the characteristic p of Fq. Here G = E is an ordinary elliptic curve over Fq. We denote by φ the
Frobenius endomorphism of E. Let i be an invertible ideal in the endomorphism ring End(E) of
E. Assume i divides φ − 1 and End(E)/i is cyclic of order d ≥ 2. So E(Fq) contains a cyclic
subgroup T = Ker i of order d.

Let I : E → F be the degree d cyclic isogeny with kernel T . The quotient F (Fq)/I(E(Fq))
is isomorphic to T . Take a in F (Fq) such that a mod I(E(Fq)) generates this quotient. The fiber
I−1(a) is an irreducible divisor. This means that the d geometric points above a are defined on
a degree d extension L of K and permuted by Galois action. We denote by B = I−1(a) the
corresponding prime divisor.

11



Since L is the residue extension of E at B, we can represent elements of L in the following
way: If f is a function on E with polar divisor disjoint to B, we denote by f mod B ∈ L the
residue of f at B.

For f a function in Fq(E), the degree of f is the number of poles of f counted with multi-
plicities. For every k ≥ 0 we call Fk the set of degree ≤ k functions in Fq(E), having no pole at
B. We denote by Vk the corresponding set of residues in L,

Vk = {f mod B|f ∈ Fk}.

We have V0 = V1 = K ⊂ V2 ⊂ · · · ⊂ Vd = L (Riemann-Roch) and Vk × Vl ⊂ Vk+l. It is
clear also that Fk is Galois invariant since composition by a translation from T does not affect
the degree of a function. Therefore Vk is invariant under the action of Gal(L/K).

If we want to test whether an element z of L is in Vk, we look for a function f in Fk such that
f = z (mod B). This is an interpolation problem which is hardly more difficult than in the two
previous cases (polynomials for Kummer and rational fractions for the torus). We look for f as
a quotient of two homogeneous forms of degree dk+1

3
e, which can be done with linear algebra.

One can choose a smoothness basis consisting of all elements f mod B in Vκ for a given κ.
Factoring an element z = f mod B of L boils down to factoring the divisor of f as a sum of
prime divisors of degree ≤ κ.

What conditions are sufficient for an elliptic curve to exist with all the required properties ?
Since the number of Fq-rational points on the elliptic curve is divisible by d, the size q of the
field cannot be too small, that is

q + 2
√
q + 1 > d.

Assume d is odd and there exists a squarefree multiple D of d such that D 6≡ 1 mod p and

q + 1− 2
√
q < D < q + 1 + 2

√
q.

There exists an ordinary elliptic curve E over Fq having D rational points over Fq and trace
t = q + 1 − D. The ring Z[φ] is integrally closed locally at every odd prime dividing D. The
larger ring End(E) has the same property. The ideal (φ − 1) of End(E) has a unique degree d
factor i. The quotient End(E)/i is cyclic and i is invertible in End(E).

Given q and φ (a quadratic integer) as above, one can find an elliptic curve E/Fq by exhaus-
tive search or using complex multiplication theory.

Example. Let p = q = 11, and d = D = 7, so t = 5 and φ2 − 5φ + 11 = 0. The elliptic
curve E with equation y2 + xy = x3 + 2x + 8 has complex multiplication by Z[

√
−19+1

2
]. The

discriminant of Z[φ] is−19, so End(E) = Z[φ]. The ideal i = (φ−1) is invertible and its kernel
T is the full group of Fq-rational points on E. The kernel of the degree 7 isogeny I : E → F
is the group of rational points on E and for any non zero a ∈ F (F11), the fiber B = I−1(a) is
irreducible.
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9 Sieving algorithms and surfaces
There exists a family of algorithms for factoring integers and computing discrete logarithms that
rely on intersection theory on algebraic or arithmetic surfaces. These algorithms are known as
the number field sieve, the function field sieve, etc. The core of these algorithms is illustrated
on the front page of the book [5]. In this section, we present the ideas underlying this family of
algorithms in a rather general setting. This will help us to describe our construction in the next
section 10. The sieving algorithm invented by Joux and Lercier in [2] for computing discrete
logarithms will serve as a nice illustration for these ideas.

Let Fp be the field with p elements where p is prime. Let S be a smooth projective reduced,
absolutely irreducible surface over Fp. Let A and B be two absolutely irreducible curves on S.
Let I be an irreducible sub-variety of the intersection A ∩ B. We assume that A and B meet
transversely at I and we denote by d the degree of I. The residue field of I is Fp(I) = Fq with
q = pd.

We need a pencil (linear or at least algebraic and connected) of effective divisors on S. We
denote it by (Dλ)λ∈Λ where Λ is the parameter space.

We fix an integer κ and we look (at random) for divisors Dλ in the pencil, such that both
intersection divisors D ∩ A and D ∩ B are disjoint to I and κ-smooth (they split as sums of
effective Fq-divisors of degree ≤ κ).

We define an equivalence relation≡I on the set of divisors on S not meeting I: We sayD ≡I
0 if and only if D is the divisor of a function f and f is constant modulo I. The equivalence
classes for this relation are parameterized by points in some algebraic group denoted Pic(S, I).
This algebraic group is an extension of Pic(S) by a torus TI of dimension d− 1.

One similarly defines the algebraic groups Pic(A, I) and Pic(B, I). These are generalized
jacobians of A and B respectively. The natural (restriction) morphisms Pic(S, I) → Pic(A, I)
and Pic(S, I)→ Pic(B, I) induce the identity on the torus TI .

Let N be an integer that kills the three groups Pic0(S)(Fp), Pic0(A)(Fp), and Pic0(B)(Fp).
Let λ and µ be two parameters in Λ corresponding to the divisors Dλ and Dµ in our pencil. We
assume that Dλ ∩ A, Dµ ∩ A, Dλ ∩ B, and Dµ ∩ B are smooth and disjoint to I.

LetDλ∩A =
∑

ai, Dµ∩A =
∑

bj , Dλ∩B =
∑

ck andDµ∩B =
∑

dl be decompositions
as sums of effective divisors on A and B with degree ≤ κ. The divisor Dλ −Dµ is algebraically
equivalent to zero and N(Dλ −Dµ) is principal.

Let f be a function on S with divisor N(Dλ − Dµ). We fix a smooth divisor X on A
(resp. Y on B) with degree 1. For every i and j, let αi and βj be functions on A with divisors
N(ai−deg(ai)X) and N(bj−deg(bj)X). Similarly, for every k and l, let γk and δl be functions
on B with divisors N(ck − deg(ck)Y ) and N(dl − deg(dl)Y ). There exist two multiplicative
constant c and c′ in F∗p such that

f ≡ c.

∏
i αi∏
j βj
≡ c′.

∏
k γk∏
l δl

mod I.

This congruence can be regarded as a relation in the group TI(Fp) = F∗q/F∗p. The factors
in the first fraction belong to the smoothness basis on the A side: They are residues modulo I
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of functions on A with degree ≤ κ. Similarly, the factors in the second fraction belong to the
smoothness basis on the B side: They are residue modulo I of functions on B with degree ≤ κ.

Joux and Lercier take S/Fp to be S = P1×P1 the product of P1 with itself over Fp. To avoid
any confusion we call C1 = P1/Fp the first factor and C2 = P1/Fp the second factor. Let O1 be a
rational point on C1 and U1 = C1 − O1. Let x be an affine coordinate on U1 ∼ A1. We similarly
choose O2, U2 and y an affine coordinate on U2.

They chooseA to be the Zariski closure in S of the curve in U1×U2 with equation y = f(x)
where f is a polynomial with degree df in Fp[x]. As for B, they choose the Zariski closure in S
of the curve with equation x = g(y) where g is a polynomial with degree dg in Fp[y].

The Néron-Severi group of a product of two smooth algebraically irreducible projective
curves is Z times Z times the group of homomorphisms between the jacobians of the two curves.
See [9, Mumford’s appendix to Chapter VI]. The Hurwitz formula for the intersection of two
classes is also given in this appendix.

Here the Néron-Severi group of S is Z×Z. The algebraic equivalence class of a divisor D is
given as its bidegree (dx(D), dy(D)) where dx(D) = D.(C1 × O2) and dy(D) = D.(O1 × C2).
The intersection form is given by the formula

D.E = dx(E)dy(D) + dx(D)dy(E).

The bidegree of A is (df , 1) and the bidegree of B is (1, dg). So A.B = 1 + dfdg and the
intersection of A and B is made of the point O1 × O2 and the dfdg points of the form (α, f(α))
where α is one of the dfdg roots of g(f(x))− x.

Let h(x) be a simple irreducible factor of the later polynomial and let d be its degree. We
take I to be the zero dimensional and degree d corresponding variety. The residue field Fp(I) is
finite of order q where q = pd.

To finish with, we need a pencil of effective divisors (Dλ)λ∈Λ on S. It is standard to take for
Λ the set of polynomials λ in Fp[x, y] with given bidegree (ux, uy) where ux and uy are chosen
according to p and q. The corresponding divisor Dλ to λ is the Zariski closure of the zero set of
λ. It has bidegree (ux, uy) too.

We fix an integer κ and look for divisors Dλ such that the two intersection divisors Dλ ∩ A
and Dλ ∩ B are disjoint to I and κ-smooth. For example, if λ(x, y) is a polynomial in x and y,
the intersection of Dλ and A has degree dfuy + ux. Its affine part is given by the roots of the
polynomial λ(x, f(x)) = 0. Similarly, the intersection of Dλ and B has degree uy + uxdg. Its
affine part is given by the roots of the polynomial λ(g(y), y)) = 0. Joux and Lercier explain how
to choose ux, uy and κ according to p and d.

10 Finite residue fields on elliptic squares
In this section we try to conciliate the generic construction in section 9 and the ideas developed
in section 8. We would like the automorphisms of Fp(I) to be induced by automorphisms of the
surface S. So let E be an ordinary elliptic curve over Fp and let i be an invertible ideal in the
endomorphism ring End(E). We assume that i divides φ − 1 and End(E)/i is cyclic of order
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d ≥ 2. SoE(Fq) contains a cyclic subgroup T = Ker i of order d. Let I : E → F be the quotient
by Ker i isogeny and let J : F → E be such that φ− 1 = J ◦ I .

We take for S the product E × E and to avoid any confusion, we call E1 the first factor and
E2 the second factor. Let O1 be the origin on E1 and O2 the origin on E2.

We use again the description of the Néron-Severi group of a product of two curves as given
in [9, Appendix to Chapter VI]. This time, the Néron-Severi group of S is Z×Z×End(E). The
class (d1, d2, ξ) of a divisor D consists of the bidegree and the induced isogeny. More precisely,
d1 is the intersection degree of D and E1 × O2, d2 is the intersection degree of D and O1 × E2,
and ξ is the homomorphism from E1 to E2 induced by the correspondence associated with D.

Let α and β be two endomorphisms of E and let a and b be two Fp-rational points on E. We
take A to be the inverse image of a by the morphism from E × E to E that maps (P,Q) onto
α(P ) − Q. Let B be the inverse image of b by the morphism from E × E onto E that sends
(P,Q) onto P − β(Q).

Assume 1 − βα = φ − 1. The intersection of A and B consists of points (P,Q) such that
(φ− 1)(P ) = b− β(a) and Q = α(P )− a.

We choose a and b such that there exists a point c in F (Fp) generating F (Fp)/I(E(Fp)) and
satisfying J(c) = b − β(a). Then the intersection between A and B contains an irreducible
component I of degree d.

The class of A is (αᾱ, 1, α). Indeed, the first coordinate of this triple is the degree of the
projection A → E2 onto the second component, that is the number of solutions in P to α(P ) =
Q + a for generic Q. This is the degree αᾱ of α. The second coordinate of this triple is the
degree of the projection A → E1 onto the first component, that is the number of solutions in Q
to Q = α(P )−a for generic P . This is 1. The third coordinate is the morphism in Hom(E1, E2)
induced by the correspondence A. This is clearly α. In the same way, we prove that the class of
B is (1, ββ̄, β̄).

Now let D be a divisor on S and (d1, d2, ξ) its class in the Néron-Severi group. The intersec-
tion degree of D and A is thus

D.A = d1 + d2αᾱ− ξᾱ− ξ̄α (3)

and similarly
D.B = d1ββ̄ + d2 − ξβ̄ − ξ̄β. (4)

We are particularly interested in the case where α and β have norms of essentially the same
size (that is the square root of the norm of φ − 2). We then obtain a similar behavior as the
algorithm in section 9 with an extra advantage: The smoothness bases on both A and B are
Galois invariant.

Indeed, let fA be a function with degree ≤ κ on A. A point on A is a couple (P,Q) with
Q = α(P )− a. So the projection on the first component Π1 : E1×E2 → E1 is an isomorphism.
There is a unique function f1 on E1 such that fA = f1 ◦ Π1. Assume now that (P,Q) is in
I ⊂ A. Then fα(P,Q) = f1(P ) is an element of the smoothness basis on A. We observe that
f1(P )p = f1(φ(P )) = f1(P + t) where t is in the kernel T of i. So f1(P )p is the value at P of
f1 ◦ τt where τt : E1 → E1 is the translation by t. Since f1 ◦ τt and f1 have the same degree, the
value of f1 ◦ τt at P is again an element in the smoothness basis.
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That way, one can divide by d the size of either smoothness basis on A and B.
As in section 9 we need a pencil of divisors on S with small class in the Néron-Severi group.

We choose small values for (d1, d2, ξ) that minimize the expressions in Eq. (3) and Eq. (4) under
the three contraints d1 ≥ 1, d2 ≥ 1 and

d1d2 ≥ ξξ̄ + 1. (5)

We look for effective divisors in the algebraic equivalence class c = (d1, d2, ξ). Recall O1 is
the origin onE1 andO2 the origin onE2. The graph G = {(P,Q)|Q = −ξ(P )} of−ξ : E1 → E2

is a divisor in the class (ξξ̄, 1,−ξ). The divisorH = −G+ (d1 + ξξ̄)O1×E2 + (d2 + 1)E1×O2

is in c. We compute the linear space

L(−G + (d1 + ξξ̄)O1 × E2 + (d2 + 1)E1 ×O2)

using the (restriction) exact sequence

0→ LS(−G + (d1 + ξξ̄)O1 × E2 + (d2 + 1)E1 ×O2)

→ LE1((d1 + ξξ̄)O1)⊗ LE2((d2 + 1)O2)→ LG(∆)

where ∆ is the divisor on G given by the intersection with

(d1 + ξξ̄)O1 × E2 + (d2 + 1)E1 ×O2.

This divisor has degree d1 + ξξ̄ + (d2 + 1)ξξ̄, so the dimension of the right hand term in the
sequence above is equal to this number.

On the other hand, the middle term has dimension (d1+ξξ̄)(d2+1), that is strictly bigger than
the dimension of the right hand term, because of Inequality (5). So the linear space on the left is
non zero and the divisor class is effective. Inequality (5) is a sufficient condition for effectivity.

In practice, one computes a basis for LE1((d1 + ξξ̄)O1) and a basis for LE2((d2 + 1)O2) and
one multiplies the two basis (one takes all products of one element in the first basis with one
element in the second basis.) This produces a basis for LE1((d1 + ξξ̄)O1)⊗ LE2((d2 + 1)O2).

One selects enough (more than d1 + ξξ̄ + (d2 + 1)ξξ̄) points (Ai)i on G and one evaluates
all functions in the above basis at all these points. A linear algebra calculation produces a basis
for the subspace of LE1((d1 + ξξ̄)O1) ⊗ LE2((d2 + 1)O2) consisting of functions that vanish
along G. For every function φ in the later subspace, the divisor of zeroes of φ contains G and the
difference (φ)0 − G is an effective divisor in the linear equivalence class ofH.

We have thus constructed a complete linear equivalence class inside c. To find the other linear
classes in c, we remind that E ×E is isomorphic to its Picard variety. So it suffices to replaceH
in the above calculation byH+E1×Z2−E1×O2 +Z1×E2−O1×E2 where Z1 and Z2 run
over E1(Fp) and E2(Fp) respectively.

11 Experiments
In this section, we give a practical example of the geometric construction of section 10. We
perform a discrete logarithm computation in F6119 . In such a field, Joux and Lercier algorithm

16



would handle a factor basis of irreducible polynomials of degree 2 over F61, in two variables.
Such a factor basis would have about 3600 elements. It turns out that in this case we can reduce
the factor basis to only 198 elements using the ideas given in the previous section.

Initialization phase. We set p = 61 and consider the plane projective elliptic curve E over
Fp with equation Y 2Z = X3 + 20XZ2 + 21Z3. It is ordinary with trace t = −14. The ring
generated by the Frobenius φ has discriminant −48. The full endomorphism ring of E is the
maximal order in the field Q(

√
−3).

Let β be the degree 3 endomorphism of E given by

β : E → E ,

(x : y : 1) 7→ (20x3+36x2+35x+40
(x+7)2

: y 58x3+59x2+12x+21
(x+7)3

: 1) .

We check β2 = −3 and we fix an isomorphism between End(E)⊗Q and Q(
√
−3) ⊂ C by

setting β =
√
−3. The Frobenius endomorphism is φ = −7 + 2

√
−3.

Let α be the degree 4 endomorphism defined by α = 1 + β = 1 +
√
−3. It can be given

explicitly by

α : E → E ,

(x : y : 1) 7→ (49x4+28x3+55x2+53x+27
(x+25)(x+27)2

: y 38x5+37x4+30x3+49x2+9x+46
(x+25)2(x+27)3

: 1) .

The endomorphism I = 1− βα has degree 19 and divides φ− 1. The kernel of I consists of
the following 19 rational points,

Ker I = {(0 : 1 : 0), (11 : ±13 : 1), (14 : ±19 : 1), (21 : ±8 : 1), (35 : ±15 : 1),
(40 : ±10 : 1), (41 : ±10 : 1), (45 : ±27 : 1), (48 : ±2 : 1), (51 : ±23 : 1)} .

Let S = E × E. We call E1 = E the first factor and E2 = E the second one. If P and Q are
independent generic points on E, then (P,Q) is a generic point on S. Let a on E be the point
with coordinates (52 : 24 : 1). LetA ⊂ S be the curve with equation α(P )−Q = a. Let b on E
be the point with coordinates (1 : 46 : 1). Let B ⊂ S be the curve with equation P − β(Q) = b.
The numerical class of A is (4, 1, 1 +

√
−3) and the numerical class of B is (1, 3,−

√
−3). Note

that b− β(a) = (57 : 11 : 1) is of order 38 and generates E(Fp) modulo the image of I .
Call I the intersectionA∩B. It consists of points (P,Q) such that (1− βα)(P ) = b− β(a),

Q = α(P )− a and thus (αβ − 1)(Q) = a− α(b). In terms of the affine coordinates (x1, y1) of
P and (x2, y2) of Q, this reads

x1 =

(
44 x2

4 + 12 x2
3 + 9 x2

2 + 46 x2 + 40
)
y2

x2
6 + 34 x2

5 + 41 x2
4 + 47 x2

3 + 7 x2
2 + 14 x2 + 58

+

x2
6 + 26 x2

5 + 25 x2
3 + 41 x2

2 + 19 x2 + 6
x2

6 + 34 x2
5 + 41 x2

4 + 47 x2
3 + 7 x2

2 + 14 x2 + 58
, (6)

y1 =

(
11 x2

7 + 2 x2
6 + 50 x2

5 + 59 x2
4 + 57 x2

3 + 30 x2
2 + 4 x2 + 14

)
y2

x2
9 + 51 x2

8 + 7 x2
7 + 32 x2

6 + 56 x2
5 + 48 x2

4 + 26 x2
3 + 49 x2

2 + 18 x2 + 41
+

46 x2
9 + 54 x2

8 + 2 x2
7 + 4 x2

6 + 52 x2
5 + 17 x2

4 + 60 x2
3 + 41 x2

2 + 48 x2 + 21
x2

9 + 51 x2
8 + 7 x2

7 + 32 x2
6 + 56 x2

5 + 48 x2
4 + 26 x2

3 + 49 x2
2 + 18 x2 + 41

, (7)
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or alternatively, x2, y2 can be given as functions of degree 8 and degree 12 in x1, y1.
The projection of I on E1 (resp. E2) yields a place P (resp. Q) of degree 19 defined in the

affine coordinates (x, y) by the equations

P = (x1
19 + 60 x1

18 + 25 x1
17 + 21 x1

16 + 23 x1
15 + 22 x1

14 + 49 x1
13 + 38 x1

12 + 30 x1
11 + 57 x1

10+

3 x1
9 + 15 x1

8 + 26 x1
7 + 17 x1

6 + 45 x1
5 + 30 x1

4 + 48 x1
3 + 55 x1

2 + 18 x1 + 35,

y1 + 12 x1
18 + 38 x1

17 + 5 x1
16 + x1

15 + 45 x1
14 + 42 x1

13 + 18 x1
12 + 34 x1

11 + 39 x1
10+

59 x1
9 + 16 x1

8 + 18 x1
7 + 16 x1

6 + 36 x1
5 + 11 x1

4 + 9 x1
3 + 48 x1

2 + 59 x1 + 8) ,

Q = (x2
19 + 25 x2

18 + 34 x2
17 + 46 x2

16 + 16 x2
15 + 14 x2

14 + 58 x2
13 + 52 x2

12 + 39 x2
11 + 48 x2

10+

18 x2
9 + 56 x2

8 + 41 x2
7 + 40 x2

6 + 11 x2
5 + 33 x2

4 + 55 x2
3 + 14 x2

2 + 5 x2 + 56,

y2 + 42 x2
18 + 40 x2

17 + 23 x2
16 + 41 x2

15 + 14 x2
14 + 12 x2

13 + 30 x2
12 + 50 x2

11 + 33 x2
10+

33 x2
9 + 60 x2

8 + 15 x2
7 + 54 x2

6 + 13 x2
5 + 17 x2

4 + 31 x2
3 + 50 x2

2 + 52 x2 + 3) .

The residue fields of these two places are isomorphic (both being degree 19 extensions of F61).
We fix an isomorphism between these two residue fields by setting

x2 7→ 2 x1
18 + 57 x1

17 + 21 x1
16 + 10 x1

15 + 54 x1
14 + 35 x1

13 + 45 x1
12 + 27 x1

11 + 41 x1
10+

55 x1
9 + 27 x1

8 + 36 x1
7 + 29 x1

6 + 50 x1
5 + 44 x1

4 + 18 x1
3 + 38 x1

2 + 51 x1 + 18 . (8)

Fixing this isomorphism is equivalent to choosing a geometric point in I.

Sieving phase. We are now going to look for “smooth” functions on S. We first explain what
we mean by smooth in this context. Let ε(x1, y1, x2, y2) be a function on S. We assume ε
does not vanish at I. Let Π1 : S = E1 × E2 → E1 be the projection on the first factor. The
restriction of Π1 to A is a bijection. So we can define a point on A by its coordinates (x1, y1).
Let Π2 : S = E1 × E2 → E2 be the projection on the second factor. The restriction of Π2 to B
is a bijection. So we can define a point on B by its coordinates (x2, y2).

Let ε1(x1, y1) (resp. ε2(x2, y2)) be the restriction of ε to A (resp. B). For example ε2(x2, y2)
is obtained by substituting x1, y1 as functions in x2, y2 in ε thanks to Eq. (6) and Eq. (7).

The function ε is said to be smooth if the divisors of ε1 and ε2 both contain only places of
small degree κ. In our example, we choose κ = 2. Let us remark at this point that thanks to the
isomorphism given by Eq. (8), the reduction modulo P of ε1 is equal to the reduction modulo Q
of ε2, and this yields an equality in F6119 .

To every non-zero function on S, one can associate a linear pencil of divisors. We define the
linear (resp. numerical) class of the function to be the linear (resp. numerical) class of the divisor
of its zeroes (or poles).

We shall be firstly interested in functions ε with numerical class (1, 0, 0). An effective divisor
in these classes is c×E2 where c is a place of degree 1 on E1 and it is not difficult to see that the
intersection degrees of such a divisor with A and B are 1 and 3. Functions with numerical class
(2, 0, 0) are obtained in the same way.

We found similarly functions ε in the class (0, 1, 0), derived from divisors E1 × c. The
intersection degrees are now 4 and 1. Functions with numerical class (0, 2, 0) are obtained in

18



the same way too. More interesting, the class (1, 1, 1) containing the divisors with equation
P = Q+ c, yields intersection degrees 3 and 4.

We finally consider the class (2, 2, 1) which is, by far, much larger than the previous classes.
The intersection degrees are 8 and 8. To enumerate functions in this class, we first build a basis
for the linear space associated to divisors of degree 3 on both E1 and E2. For instance, let us
consider LE1(3O1) and LE2(3O2), basis of which are given by {1, x1, y1} and {1, x2, y2}. We
then determinate that a basis for the subspace of LE1(3O1)⊗LE2(3O2), consisting of functions
that vanish along the graph G = {(P,Q), Q = −P}, is given by {y1 x2 +x1 y2, y1 +y2, x1−x2}.
An exhaustive enumeration of functions of the form y1 x2 + x1 y2 + λ(y1 + y2) + µ(x1 − x2),
with λ, µ ∈ Fp yields useful equations.

We give examples of such relations in Tab. 1.

Linear algebra phase. With our smoothness choice, the factor basis is derived from places
of degree one and two. Since we prefer functions to divisors, the factor basis will contain the
reduction modulo P , resp. Q, of functions the divisors of which are equal to 76(x1 + α, y1 +
β)−76(1/x1, y1/x

2
1), resp. 76(x2 +α, y2 +β)−76(1/x2, y2/x

2
2) (remember that in our example

#E(Fp) = 76). In this setting, the evaluation at P or Q of any smooth function can be easily
written as a product of elements of the factor basis.

It is worth recalling that the action of the Frobenius φ on the reduction of a function moduloP
orQ is equal to the reduction of a function, the poles and the zeros of which are translated by one
specific point of Ker I . In our example, this point is F1 = (11 : 48 : 1) for the reduction modulo
P and F2 = (45 : 34 : 1) for the reduction modulo Q. For instance, let us consider a function
g0 the divisor of which is equal to 76(x1 + 41, y1 + 8)− 76(1/x1, y1/x

2
1). Let us now consider a

function g6 which corresponds to (−41 : −8 : 1) + 6F1, that is a function with divisor equal to

76(x1 + 45, y1 + 17)− 76(1/x1, y1/x
2
1). We have then g6 = c.g0

p6f
1+p+p2+p3+p4+p5

for some c ∈
Fp, where f is a function the divisor of which is equal to 76F1 − 76(1/x1, y1/x

2
1).

Thanks to this observation, we can thus divide by 19 the size of the factor basis, at the expense
in the linear algebra phase of entries equal to sums of powers of p. We finally have 4 meaningful
places of degree 1 and 92 meaningful places of degree 2 on each side, that is a total of 196 entries
in our factor basis. Of course, under the Galois conjugations, most of the relations obtained in
the sieving phase are redundant, but it does not really matter since it is not difficult to reduce the
sieving phase to the only meaningful relations.

We have

6119 − 1 = 22 · 3 · 5 · 229 · 607127818287731321660577427051.

We performed the linear algebra modulo the largest factor of 6119−1, that is the 99-bit integer
607127818287731321660577427051. This gives us the discrete logarithm in basis f mod I of
any element in the smoothness basis. For instance, if g is any function such that div g = 76 (x2

1 +
37x1 + 54, y1 + 41x1 + 16)− 152(1/x1, y1/x

2
1), we find that

g22·3·5·229 = (f 22·3·5·229)471821537021905592692223848756.
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Class div ε1 div ε2

(1, 0, 0) (x1 + 43, y1 + 33)− (x1 + 13, y1 + 59) (x2
2 +x2 +52, y2 +10x2 +37)+(x2 +12, y2 +

35)− (x2 +2, y2 +20)− (x2
2 +26x2 +39, y2 +

5 x2 + 27)
(2, 0, 0) (x2

1 + 56x1 + 34, y1 + 22x1 + 52) − 2 (x1 +
13, y1 + 59)

(x2
2+37 x2+53, y2+42 x2+58)+(x2

2+12 x2+
19, y2 + 52x2 + 43) + (x2

2 + 41x2 + 29, y2 +
33 x2+41)−2 (x2+2, y2+20)−2 (x2

2+26 x2+
39, y2 + 5 x2 + 27)

(0, 1, 0) (x2
1+4x1+12, y1+55x1+47)+(x2

1+45x1+
31, y1 +19 x1 +23)−(x1 +42, y1 +60)−(x1 +
36, y1 +15)−(x2

1 +60 x1 +25, y1 +36 x1 +26)

(x2 + 43, y2 + 33)− (x2 + 13, y2 + 59)

(0, 2, 0) (x2
1+26 x1+12, y1+12 x1+32)+(x2

1+48 x1+
6, y1+59)+(x2

1+53 x1+56, y1+42 x1+56)+
(x2

1+3 x1+38, y1+17 x1+36)−2 (x1+42, y1+
60) − 2 (x1 + 36, y1 + 15) − 2 (x2

1 + 60 x1 +
25, y1 + 36 x1 + 26)

(x2
2 + 24x2 + 39, y2 + 37x2 + 27) − 2 (x2 +

13, y2 + 59)

(1, 1, 1) (x1+2, y1+41)+(x2
1+26 x1+39, y1+56 x1+

34)−(x2
1+48 x1+6, y1+2)−(x1+52, y1+25)

(x2 + 17, y2 + 21) + (x2
2 + 57 x2 + 11, y2 +

33 x2) + (x2 + 55, y2 + 33) − (x2
2 + 49x2 +

42, y2 + 26)− (x2
2 + 3 x2 + 4, y2 + 30 x2 + 20)

(2, 2, 2) (x2
1+25x1+42, y1+5 x1+13)+(x2

1+30x1+
19, y1 + 52x1 + 42) + (x2

1 + 59x1 + 30, y1 +
28 x1+22)−2 (x2

1+48 x1+6, y1+2)−2 (x1+
52, y1 + 25)

(x2
2+30 x2+21, y2+50 x2+52)+(x2

2+41 x2+
8, y2 + 54 x2 + 58) + (x2

2 + 32 x2 + 20, y2 +
34 x2 + 28) + (x2

2 + 42 x2 + 49, y2 + 29 x2 +
51) − 2 (x2

2 + 49 x2 + 42, y2 + 26) − 2 (x2
2 +

3 x2 + 4, y2 + 30 x2 + 20)
(2, 2, 1) (x1+24, y1+33)+(x1+25, y1)+(x1+35, y1)+

(x1+60, y1+46)+(x2
1+33 x1+43, y1+3 x1+

34)+(x2
1 +53 x1 +53, y1 +24 x1 +33)− (x1 +

1, y1)−(x1+54, y1+4)−(x2
1+17 x1+19, y1+

41 x1 + 21) − (x2
1 + 51 x1 + 53, y1 + 44 x1 +

31)− (x2
1 + 55 x1 + 38, y1 + 38 x1 + 58)

(x2 +3, y2 +42)+(x2
2 +7 x2 +20, y2 +33 x2 +

46)+ (x2
2 +38 x2 +12, y2 +58 x2 +6)+ (x2

2 +
42 x2 + 35, y2 + 7 x2 + 41) − (x2 + 1, y2) −
(x2 +11, y2 +42)− (x2 +16, y2 +34)− (x2

2 +
26 x2 + 12, y2 + 49 x2 + 29) − (x2

2 + 47 x2 +
5, y2 + 7 x2 + 14)

(2, 2, 1) (x1 + 10, y1 + 23) + (x1 + 20, y1 + x1 + 30) +
(x1 + 29, y1 + 1) + (x1 + 41, y1 + x1 + 33) +
(x2

1+6x1+17, y1+25x1+16)+(x2
1+25x1+

12, y1+25 x1+47)−(x1+1, y1)−(x1+54, y1+
4)− (x2

1 +17 x1 +19, y1 +41 x1 +21)− (x2
1 +

51 x1 + 53, y1 + 44 x1 + 31) − (x2
1 + 55 x1 +

38, y1 + 38 x1 + 58)

(x2 +29, y2 +60)+ (x2 +36, y2 +15)+ (x2
2 +

15 x2+58, y2+41x2+39)+(x2
2+23x2+2, y2+

33 x2+7)+(x2
2+44 x2+33, y2+35 x2+28)−

(x2+1, y2)−(x2+11, y2+42)−(x2+16, y2+
34)−(x2 +50, y2 +13)−(x2

2 +26 x2 +12, y2 +
49 x2 + 29)− (x2

2 + 47 x2 + 5, y2 + 7 x + 14)

Table 1: Some relations collected in the sieving phase.
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12 Generalization and limitations
The construction in section 10 can and should be generalized.

Let E be again an ordinary elliptic curve over Fp and let i be an invertible ideal in the endo-
morphism ring End(E). We assume that i divides φ− 1 and End(E)/i is cyclic of order d ≥ 2.
Let F be the quotient of E by the kernel T of i and I : E → F the quotient isogeny.

The integer d belongs to the ideal i. Let u and v be two elements in i such that d = u + v
and (u) = ia1b1 and (v) = ia2b2 where a1, b1, a2, b2 are invertible ideals in End(E). We
deduce the existence of two elliptic curves E1 and E2 and four isogenies α1, β1, α2, β2, such that
β1α1 + β2α2 = I .

We represent all these isogenies on the (non commutative) diagram below.

E1
β1

  A
AA

AA
AA

E
I //

α1

>>}}}}}}}

α2   A
AA

AA
AA

F

E2

β2

>>}}}}}}}

We set S = E1 × E2. As for A we choose the image of (α1, α2) : E → S. And B is the
inverse image of f by β1 + β2 : S → F where f generates the quotient F (Fp)/I(E(Fp)). The
intersection of A and B is the image by (α1, α2) of I−1(f) ⊂ E. We choose u and v such that
a1, b1, a2, and b2, have norms close to the square root of d.

This construction is useful when the norm of i is much smaller than the norm of φ − 1.
So we managed to construct Galois invariant smoothness basis for a range of finite fields. Our
constructions go beyond the classical Kummer case. They are efficient when the degree d is
either below 4

√
q or in the interval ]q + 1− 2

√
q, q + 1 + 2

√
q[.
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