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Elliptic periods for finite fields∗

Jean-Marc Couveignes†and Reynald Lercier‡§

July 31, 2008

Abstract

We construct two new families of basis for finite field extensions. Bases in the first fam-
ily, the so-calledelliptic bases, are not quite normal bases, but they allow very fast Frobenius
exponentiation while preserving sparse multiplication formulas. Bases in the second family,
the so-callednormal elliptic basesare normal bases and allow fast (quasi-linear) arithmetic.
We prove that all extensions admit models of this kind.

1 Introduction

The main computational advantage of normal basis for a finitefield extensionFqd/Fq is that they
allow fast exponentiation byq since it corresponds to a cyclic shift of coordinates, and itcan be
computed in timeO(d). There is a concern however about how difficult is multiplication in this
context.

Let α andβ be two elements inFqd with coordinates~α = (αi)06i6d−1 and~β = (βi)06i6d−1

in the given normal basis. Let(γi)06i6d−1 be the coordinates of the productα × β. Eachγi is
a bilinear form in~α and ~β. The number of non-zero terms inγi does not depend oni because
thed corresponding tensors are cyclic shifts of each others. This number of terms is called the
complexityC of the normal basis. Multiplication with the straightforward algorithm can be done
with 2dC operations (dC when coefficients of the bilinear formsγi are all±1). It was shown
by Mullin, Onyszchuk, Vanstone and Wilson [16] that the complexity C is at least2d − 1. This
bound is reached by the so-called optimal normal bases. But such optimal normal bases only
exist for very special extensions. As a general fact, normalbases with bounded complexity are
not known to exist, unless the degreed takes very special and sparse values.

Normal bases with low complexity usually are constructed using Gauss periodsas in work
by Ash, Blake and Vanstone [2] or Gao and Lenstra [11]. The construction usesr-th roots of
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unity wherer = kd + 1 is prime. It requires thatq generates the unique quotient of orderd of
(Z/rZ)∗. The parameterk is very important and should be kept as small as possible, because the
complexity of the normal basis is bounded by(d−1)k+d and is not expected to be much smaller
[10, Theorem 4.1.4]. Optimal normal bases occur whenk = 1 or k = 2. This corresponds to
very sparse values ofd. In general, forq a prime, assuming the Extended Riemann Hypothesis,
it has been shown by Adleman and Lenstra [1] that there existsa k and ar as above withr =
O(d4(log(dq))2). This is unfortunately of no use when bounding the complexity. In some cases,
there is nok at all [22, Satz 3.3.4]. We shall not survey all the variants and improvements for this
method. We just quote works by Christopoulou, Garefalakis,Panario and Thomson [7] where
traces of optimal normal bases are shown to have a reasonablecomplexity in some special cases.
Wan and Zhou show [21] that the dual of type I optimal normal bases have good complexity too.

Gao, von zur Gathen and Panario show [12] that fast multiplication methods (like FFT) can be
adapted to normal bases constructed with Gauss periods. They give a multiplication algorithm in
such a normal basis with complexityO(dk log(dk) log | log(dk)|). This is a considerable progress
for Gauss normal bases with boundedk. But in the general case,k being only upperbounded by
O(d3(log(dq))2), this is just too large.

In his thesis [10] Gao presented a new way of constructing normal bases with low complexity.
In Gao’s construction, the Lucas torus and its isogenies play an important, though implicit, role.
Gao thus constructs more normal bases with low complexity. In our work, we consider the re-
maining algebraic groups of dimension one: elliptic curves. Since there are many elliptic curves,
we can enlarge significantly the number of cases where a normal basis with fast multiplication
exists.

In order to state our results, we shall need the following definition wherevℓ stands for the
valuation associated to the primeℓ.

Definition 1 Letp be a prime andq a power ofp. Letd > 2 be an integer.
We denote bydq the unique positive integer such that for every primeℓ

• vℓ(dq) = vℓ(d) if ℓ is prime toq − 1,
• vℓ(dq) = 0 if vℓ(d) = 0,
• vℓ(dq) = max(2vℓ(q − 1) + 1, 2vℓ(d)) if ℓ divides bothq − 1 andd.

For example, ifd = 14 andq = 654323 thenq − 1 = 2.19.67.257 anddq = 23.7.
Note thatdq = d wheneverd is prime toq − 1.

We now can state our first result.

Theorem 1 To every couple(q, d) with q a prime power andd > 2 an integer anddq 6 q
1

2 ,
one can associate a normal basisΘ(q, d) of the degreed extension ofFq such that the following
holds:

• There exist a positive constantK and an algorithm that multiplies two elements given in the
basisΘ(q, d) at the expense of5d2+2dmultiplications and5d2+4d additions/subtractions
in Fq. The amount of necessary memory is6 Kd log q bits.
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There is also a fast arithmetic version of Theorem 1.

Theorem 2 To every couple(q, d) with q a prime power andd ≥ 2 an integer anddq 6 q
1

2 ,
one can associate a normal basisΘ(q, d) of the degreed extension ofFq such that the following
holds:

• There exist a positive constantK and an algorithm that multiplies two elements given in
the basisΘ(q, d) at the expense ofKd log d log | log d| operations inFq.

• There exists an algorithm that divides two elements given inthe basisΘ(q, d) at the expense
of

Kd(log d)2 log | log d|
operations inFq.

The basisΘ(q, d) that appears in Theorem 1 and Theorem 2 has a multiplication tensor that
mainly consists of5 convolution products. We also construct a basisΩ(q, d) having a sparse
multiplication tensor. Sparsity is useful when using such constrained devices as circuits. Further,
this basisΩ(q, d) allows a faster elementary multiplication algorithm thanΘ(q, d). It is not quite
a normal basis but exponentiation byq is still done in linear time.

Theorem 3 To every couple(q, d) with q a prime power andd ≥ 2 an integer anddq 6 2q
1

2 ,
one can associate a basisΩ(q, d) of the degreed extension ofFq such that the following holds:

• There exist a positive constantK and an algorithm that computes theq-th power of an
element given in basisΩ(q, d) at the expense ofd− 1 multiplications and2d− 3 additions
in Fq. The amount of necessary memory is6 Kd log q bits.

• There exists an algorithm that multiplies two elements given in basisΩ(q, d) at the expense
of (31d2 +6d)/12 multiplications,d2/12 inverses and(37d2 +30d)/12 additions/subtrac-
tions inFq. The amount of necessary memory is6 Kd log q bits.

The following result is valid without any restriction.

Theorem 4 To every couple(q, d), one can associate a modelΞ(q, d) of the degreed extension
of Fq such that the following holds :

There exists a positive constantK such that the following is true :

• Elements inFqd are represented by vectors with less thanKd(log d)2(log(log d))2 compo-
nents inFq.

• Addition (resp. substraction) of two elements inFqd requires less than

Kd(log d)2(log(log d))2

additions (resp. substractions) inFq.
• Exponentiation byq consists in a circular shift of the the coordinates.
• There exists an algorithm that multiplies two elements at the expense of

Kd(log d)3| log(log d)|3

multiplications/additions/substractions inFq.
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• There exists an algorithm that divides two elements at the expense of

Kd(log d)4| log(log d)|3

multiplications/additions/substractions inFq.

So, for every finite field extension, there exists a model thatallows both fast multiplication
and fast application of the Frobenius automorphism.

In Section 2, we recall simple relations between low degree elliptic functions. We show in
Section 3 that evaluation of such functions at a well chosen divisor produces an almost normal
basis for the residue field. Relations between elliptic functions result in nice multiplication for-
mulas in this basis. Such bases have similar properties to those constructed by Gao in his thesis:
they have low complexity. This is shown in Subsection 3.3. InSection 4, we construct normal
bases allowing fast (quasi-linear) multiplication. We show in Section 5 that an elliptic basis ex-
ists for any degreed extension ofFq providedd is not too large. We explain in Subsection 5.2
what to do whend is large. In Subsection 5.4, we introduce a polynomial basisthat can be related
efficiently to the elliptic (normal) basis. We deduce a fast inversion algorithm for elliptic normal
bases.

We further support our claims with extensive experiments using the computational algebra
systemMAGMA [4]. We developed for this task a package, namedELLBASIS, the sources of
which are available on the web page of the second author.

Acknowledgments: We thank Cécile Dartyge, Guillaume Hanrot, Gerald Tenenbaum and Jie
Wu for pointing Iwaniec’s result on Jacobsthal’s problem tous.

2 Linear and quadratic relations among elliptic functions

In this section, we study the simplest elliptic functions: those with degree2. We prove simple
linear and quadratic relations between these functions. The monography [20] by J. Silverman
contains all the necessary background about elliptic curves.

Let K be a field and letE be an elliptic curve overK. We assumeE is given by some
Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 .

We setx = X/Z, y = Y/Z andz = −x/y = −X/Y , and we find

x =
1

z2
− a1

z
− a2 − a3z +O(z2) ,

y = − 1

z3
+
a1

z2
+
a2

z
+ a3 +O(z) .

The involutionP = (x, y) 7→ −P = (x,−y − a1x− a3) transformsz into

z(−P ) =
x

y + a1x+ a3
= −z − a1z

2 − a2
1z

3 − (a3
1 + a3)z

4 +O(z5) .
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If A is a geometric point onE, we denote byτA the translation byA. We denote byzA =
z ◦ τ−A the composition ofz with the translation by−A. We definexA andyA in a similar way.
The composition ofzA with the involution fixingA is−zA−a1z

2
A−a2

1z
3
A−(a3

1 +a3)z
4
A +O(z5

A).
The composition of1/zA with the involution fixingA is−1/zA + a1 + a3z

2
A +O(z3

A).

If A andB are two distinct geometric points onE, we denote byuA,B the function onE
defined as

uA,B =
yA − y(A−B)

xA − x(A−B)
.

It has polar divisor−[A] − [B]. It is invariant by the involution exchangingA andB,

uA,B(A+B − P ) = uA,B(P ) .

Its Taylor expansion atA is uA,B = −1/zA − xA(B)zA + (yA(B) + a3)zA
2 +O(z3

A) .

If C is any third geometric point, we setΓ(A,B,C) = uA,B(C). This is the slope of the
secant (resp. tangent) toE going throughC − A andA − B. It is well defined for any three
pointsA, B, C such that#{A,B,C} > 2. It is finite if and only if#{A,B,C} = 3. We check

Γ(−A,−B,−C) = −Γ(A,B,C) − a1. (1)

The Taylor expansions ofuA,B atA andB are

uA,B = − 1

zA
− xA(B)zA + (yA(B) + a3)z

2
A +O(z3

A)

=
1

zB

− a1 + xA(B)zB + (yA(B) + a1xA(B))z2
B +O(z3

B).

As a consequenceuB,A = −uA,B − a1, xB(A) = xA(B) andyB(A) = −yA(B)− a1xA(B)− a3

and examination of Taylor expansions atA, B andC shows that

uA,B + uB,C + uC,A = Γ(A,B,C) − a1 (2)

and
Γ(A,B,C) = uB,C(A) = uC,A(B) = uA,B(C) = −uB,A(C) − a1. (3)

We deduce

uB,C = uB,C(A) − (xA(C) − xA(B))zA + (yA(C) − yA(B))z2
A +O(z3

A).

By comparison of Taylor expansions atA, B andC we prove

uA,BuA,C = xA + uB,C(A)uB,C − u2
B,C(A) − a1uA,B + xA(B) + xA(C) + a2

or, derived from Equation (2),

uA,BuA,C = xA + Γ(A,B,C)uA,C + Γ(A,C,B)uA,B + a2 + xA(B) + xA(C). (4)
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Indeed,

(− 1

zA

− xA(B)zA + (yA(B) + a3)z
2
A)(− 1

zA

− xA(C)zA + (yA(C) + a3)z
2
A) +O(z2

A)

=
1

z2
A

+ xA(B) + xA(C) − (yA(B) + yA(C) + 2a3)zA +O(z2
A).

So,uA,BuA,C−xA+a1uA,B−xA(B)−xA(C)−a2 cancels atA and its polar divisor is−[B]−[C].
Its residue atB is−uA,B(C). This proves Equation (4).

In the same vein, we prove

u2
A,B = xA + xB − a1uA,B + xA(B) + a2 . (5)

Indeed,

u2
A,B = (− 1

zA
− xA(B)zA + (yA(B) + a3)z

2
A)2 +O(z2

A)

=
1

z2
A

+ 2xA(B) − 2(yA(B) + a3)zA +O(z2
A)

and similarly

u2
A,B = (

1

zB
− a1 + xA(B)zB + (yA(B) + a1xA(B))z2

B)2 +O(z2
B)

=
1

z2
B

− 2a1

zB

+ a2
1 + 2xA(B) + 2yA(B)zB +O(z2

B) .

Sou2
A,B − xA − xB + a1uA,B = xA(B) + a2.

Here are more explicit formulas. ForA andB distinct,

uA,B =































































−uO,A − a1 if B = O ,

y+y(B)+a1 x(B)+a3

x−x(B)
if A = O,

a1 y(A)−3 x(A)2−2 a2 x(A)−a4

2 y(A)+a1 x(A)+a3

− a1x+a3+2 y(A)
x−x(A)

if B = −A ,

y(B)+y(A)+a1 x(A)+a3

x(B)−x(A)

+ (x(B)−x(A))(y+a1x+a3)+(y(B)−y(A))x+y(A)x(B)−y(B)x(A)
(x−x(A))(x−x(B))

otherwise.

Especially, whenA = O, providedB andC are distinct and non-zero, we have

Γ(O,B,C) =











−3 x(B)2+a1 (y(B)+a1x(B)+a3)+2 a2 x(B)+a4

2 y(B)+a1 x(B)+a3
if C = −B ,

y(C)+y(B)+a1x(B)+a3

x(C)−x(B)
otherwise.

(6)

These formulae can be derived from the definition ofΓ(A,B,C) as a slope, using the explicit
form of the addition law on elliptic curves.
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3 Elliptic bases for finite fields extensions

In this section, we use elliptic functions to construct interesting bases for many finite field exten-
sions.

AssumeE is an elliptic curve over a finite fieldK = Fq and letd > 2 be an integer. Let
t ∈ E(Fq)[d] be a rational point of orderd. We callT the group generated byt. Letφ : E → E
be the Frobenius endomorphism. Letb ∈ E(K̄) be a point such thatφ(b) = b+ t. Sob belongs
to E(L) whereL is the degreed extension ofK. We denote byE ′ the quotientE/T and by
I : E → E ′ the quotient isogeny. We also assumedb 6= O ∈ E. We seta = I(b) and check
a ∈ E ′(Fq). For another use of Kummer theory of elliptic curves in orderto construct efficient
representations for finite fields, see [9].

3.1 The elliptic basisΩ

We denote byΩ the system(ωk)k∈Z/dZ defined as

ω0 = 1 andωk = uO,kt(b) ∈ L for k 6= 0 mod d .

Lemma 1 With the above notation, the systemΩ = (ω0, ω1, . . . , ωd−1) is aK basis ofL.

Proof. Indeed, let theλk for k ∈ Z/dZ be scalars inK such that
∑

k∈Z/dZ
λkωk = 0. The

functionf = λ0+
∑

06=k∈Z/dZ
λkuO,kt cancels atb and also at all itsd conjugates overK (because

f is defined overK). Butf has no more thand poles (the points inT ). If f is non-zero, its divisor
is (f)0 − (f)∞ with (f)0 =

∑

t∈T [b + t] and(f)∞ =
∑

t∈T [t]. We deduced × b is zero inE.
But this is impossible by hypothesis. Examination of poles shows that allλk are zero.

�

We call such a basis asΩ anelliptic basis. It enjoys nice properties as we shall see.

We set
Γk,l = Γ(O, kt, lt) ∈ K

for any distinct non-zerok, l ∈ Z/dZ. For anyk ∈ Z/dZ, we set furthermoreξk = xkt(b) ∈ L.
If k 6= 0 mod d, we setνk = xO(kt) ∈ K andρk = yO(kt) ∈ K too.

Let nowΦ : F̄q → F̄q be theq-Frobenius automorphism. We havexO(b) = ξ0 andΦ(ξ0) =
xO(φ(b)) = xO(b+ t) = x−t(b) = ξ−1. There existd scalars(κk)06k6d−1 in K such that

ξ0 =
∑

06k6d−1

κkωk. (7)

We have fork 6= 0, 1 mod d,

Φ(ωk) = uO,kt(φ(b)) = uO,kt(b+ t) = u−t,(k−1)t(b)

= uO,(k−1)t(b) − uO,−t(b) + Γ(0,−t, (k − 1)t)

= ωk−1 − ω−1 + Γ−1,k−1 (8)
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using Equation (2). Similarly

Φ(ω1) = uO,t(b+ t) = u−t,O(b) = −ω−1 − a1 andΦ(ω0) = ω0 . (9)

Equations (8) and (9) show that the action of Frobenius is expressed very easily in an elliptic
basis.

As far as multiplication is concerned, we setA = O,B = kt andC = lt in Equation (4), and
we evaluate atb. We find, fork andl distinct and non-zero inZ/dZ,

ωkωl = ξ0 + Γ−k,−lωk + Γk,lωl + νk + νl + a2 . (10)

In the same vein, from Equation (5), we obtain for any non-zero k in Z/dZ,

ω2
k = ξ0 − a1ωk + ξk + νk + a2 . (11)

So, if we multiply twoK-linear combinations of theω’s, we quickly get a linear combination of
theω’s andξ’s using Equations (10) and (11). We then reduce (eliminate all the ξk) using the
expression ofξ0 in the basisΩ given by Equation (7). We also use Equation (8) to deduce the
expressions of allξk’s in the basisΩ.

We don’t need to store all constantsΓk,l. Equation (6) allows to recalculate all thesed2

quantities from theνk andρk. Moreover, we use in the following that only a small amount of
these coefficients has to be computed due to symmetry relations (3) and (1) and invariance by
translation.

Example. Let K = F7 andd = 5, we first consider the elliptic curveE of order10 defined by
y2 + xy + 5 y = x3 + 3 x2 + 3 x+ 2 . The pointt = (3, 1) generates a subgroupT ⊂ E of order
5, and withE ′ = E/T defined byy2 + xy + 5 y = x3 + 3 x2 + 4 x+ 6 , we find

I : (x, y) 7→
(

x5 + 2 x2 + 5 x+ 6

x4 + 3 x2 + 4
,

(x6 + 4 x4 + 3 x3 + 6 x2 + 3 x+ 4) y + 3 x5 + x4 + x3 + 3 x2 + 4 x+ 1

x6 + x4 + 5 x2 + 6

)

.

Let nowa = (4, 2), we defineL with the irreducible polynomial(τ 5 + 2 τ 2 + 5 τ + 6)− 4 (τ 4 +
3 τ 2 + 4) = τ 5 + 3 τ 4 + 4 τ 2 + 5 τ + 4 , and we setb = (τ : τ 4756).

We find

(uO,kt)k∈Z/dZ =

(

1,
y + 2

x+ 4
,
y + 2

x+ 3
,

y

x+ 3
,
y + 6

x+ 4

)

,

so that,
Ω = (1, τ 10884, τ 11164, τ 9837, τ 15166) .
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3.2 A cell decomposition of the torus

Equations (1) and (3) show that the quantityΓ(A,B,C) is covariant for the symmetric groupS3

and even forS3 × {1,−1}. It is also invariant by translation,

Γ(A+ P,B + P,C + P ) = Γ(A,B,C).

Altogether,Γ is covariant for the groupE(K̄) ⋊ (S3 × {1,−1}).
These covariance properties are useful when computing theΓk,l: we divide by12 the amount

of work. Since in that case,A = 0, B = kt andC = lt lie in the groupT =< t >, a cyclic
group or orderd, it makes sense to study the action of(Z/dZ) ⋊ (S3 × {1,−1}) on the group
(Z/dZ)3. In particular, we are interested in fundamental domains for this action. It turns out that
it is more natural to study first the action ofR3 ⋊ (S3 × {1,−1}) on R3. In this subsection we
justify the choice of fundamental domain that is made in Subsection 3.3.

Let ψ : R3 → C be the map that sends the triplet(a, b, c) onto a + bρ + cρ2 whereρ =
exp(2iπ/3). This is a group homomorphism. Its kernel is the diagonal subgroup ofR3. The
groupS3 × {1,−1} acts onR3 and we have the following covariance formulas

ψ(a, c, b) = ψ(a, b, c) ,

ψ(c, a, b) = ρψ(a, b, c) ,

ψ(−a,−b,−c) = −ψ(a, b, c) .

So the mapψ induces a bijection between the quotient ofR3 by R ⋊ (S3 × {1,−1}) and the
quotient ofC byµ6 ×{1, conj} whereµ6 is the group of sixth roots of unity andconj is complex
conjugation.

The image ofZ3 ⊂ R3 by ψ is the ring of Gaussian integers. SinceZ3 is normalized by
S3 × {1,−1}, the mapψ induces a morphism̃ψ : U3 → T0 whereU = R/Z is the unit circle
andT0 = C/(Z + ρZ) the complex torus with zero modular invariant. This mapψ̃ is covariant.
We denote byΛ the latticeZ + ρZ. For anyd > 2 an integer, we denote byU[d] thed-torsion
group ofU andT0[d] the one ofT0. We denote byψd the map fromU[d]3 to T0[d] induced byψ̃.

Let k and l be two elements inU and letz = kρ + lρ2 ∈ T0 the image of(0, k, l) by ψ̃.
We compute the stabilizer ofz in µ6 × {1, conj}. It is clear thatz = z̄ mod Λ if and only if
k = l mod 1. The set of fixed points by complex conjugation is the circle made of real points
in T0. In the same manner we show that−ρz̄ = z mod Λ if and only if z lies on the circle
with equationk = 2l mod 1. Similarly ρ2z̄ = z mod Λ if and only if l = 0 mod 1. And
−z̄ = z mod Λ if and only if k = −l mod 1. And ρz̄ = z mod Λ if and only if k = 0 mod 1.
At last−ρ2z̄ = z mod Λ if and only if 2k = l mod 1.

The only fixed point ofz mod Λ 7→ −ρz mod Λ is 0. The same is true forz mod Λ 7→
−ρ2z mod Λ.

The mapz mod Λ 7→ ρz mod Λ has three fixed points, namely0, (ρ−ρ2)/3 and its opposite.
These are the fixed points ofz mod Λ 7→ ρ2z mod Λ also. Altogether, these three points form the
intersection of the three circles with equationsk = 2l mod 1, l = 2k mod 1 andl = −k mod 1.

The complementary set of the six circles above consists of12 triangles. Each of these trian-
gles (with its boundary) is a fundamental domain for the action ofµ6 × {1, conj} on the torus.
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ρ

k

ρ2

l

k = l

k
=

−
l

l = 2k

k =
2l

Figure 1: Cell decomposition of the torus

The intersection of such a triangle withT0[d] gives a fundamental domain for the action ofµ6 ×
{1, conj} onT0[d]. This is also a fundamental domain for the action of(Z/dZ)⋊ (S3 ×{1,−1})
on (Z/dZ)3.

3.3 Complexities

Given an elliptic basisΩ = (ωk)k∈Z/dZ, we now focus on the complexity of algorithms for
computing the Frobenius or the multiplication of two elements. To be as efficient as possible, and
since operands of the algorithms are already of sized log q, we assume that any precomputation,
the storage of which does not exceedO(d log q), is possible.

We first have the following result.

Lemma 2 Let α =
∑d−1

i=0 αiωi ∈ L. Then there exists algorithms that computeΦ(α) and
Φ−1(α) at the expense ofd − 1 multiplications and2d − 3 additions inK, among which are
one multiplication and one addition because of the coefficient a1.

Proof. Plugging Equation (8) and Equation (9) in
∑d−1

i=0 αiΦ(ωi) or
∑d−1

i=0 αiΦ
−1(ωi) proves

the correctness of Algorithm 3.1 and Algorithm 3.2. And, once precomputed theΓd−1,j ’s and
Γj,d−1’s, the complexity is obvious.

�

Multiplying two elements in such a basis can be done with goodcomplexity too.

Lemma 3 Let α =
∑d−1

i=0 αiωi ∈ L andβ =
∑d−1

i=0 βiωi ∈ L. Then there exists an algorithm
that computes the productα× β at the expense of

10



Algorithm 3.1 ELLIPTICFROBENIUS

Frobenius of an element given in an elliptic basis.

INPUT : ~α = (αi)06i6d−1 such thatα =
∑d−1

i=0 αiωi ∈ L.

OUTPUT : ~γ = (γi)06i6d−1 such thatγ =
∑d−1

i=0 γiωi = Φ(α) ∈ L.

return (α0 − a1α1 +
∑d−1

j=2 αjΓd−1,j−1, α2, . . . , αd−1,−
∑d−1

j=1 αj)

Algorithm 3.2 ELLIPTICFROBENIUSINVERSE

Inverse Frobenius of an element given in an elliptic basis.

INPUT : ~α = (αi)06i6d−1 such thatα =
∑d−1

i=0 αiωi ∈ L.

OUTPUT : ~γ = (γi)06i6d−1 such thatγ =
∑d−1

i=0 γiωi = Φ−1(α) ∈ L.

return (α0 +
∑d−2

j=1 αjΓj,d−1 − a1αd−1,−
∑d−1

j=1 αj , α1, . . . , αd−2)

• (37 d2 + 30 d − 7ε − 60)/12 additions,(32 d2 + 42 d − 2ε − 48)/12 multiplications and
(d2 − ε)/12 inversions inK,

whereε = 12, 1, 4, 9, 4, 1 respectively ford = 0, . . . , 5 mod 6, among which are(d2 + 12d −
ε− 24)/12 additions and(d2 + 36 d− ε− 48)/12 multiplications because of the coefficienta1,
(d2 − ε)/12 additions because of the coefficienta3.

Proof. We prove the correctness of Algorithm 3.3 and establish its complexity.

Correctness.Equations (4) and (5), fork 6 l, yield

ωk ωl = ωl ωk =







ωl if k = 0 ,
ξ0 + a2 − a1ωk + Φ−k(ξ0) + νk ω0 if l = k andk > 0 ,
ξ0 + a2 − a1ωk + Γk,l (ωl − ωk) + (νk + νl)ω0 otherwise .

And we have,

α× β =

d−1
∑

k=0

d−1
∑

l=0

αkβlωkωl = (

d−1
∑

k=1

αk)(

d−1
∑

l=1

βl)(ξ0 + a2)

+

(

(

d−1
∑

k=1

αk)(

d−1
∑

l=1

βlνl) + (

d−1
∑

k=1

αkνk)(

d−1
∑

l=1

βl)

)

ω0

+ α0β0ω0 +
d−1
∑

k=1

αk βk (Φ−k(ξ0) − νk ω0) +
d−1
∑

k=1

(αkβ0 + βkα0)ωk

− a1

∑

0<k,l<d

αkβlωk +
∑

0<k,l<d

k 6=l

Γk,lαkβl(ωl − ωk) . (12)
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Algorithm 3.3 ELLIPTICMULTIPLICATION

Product of two elements given in an elliptic basis.

INPUT : ~α = (αi)06i6d−1 and~β = (βi)06i6d−1 such thatα =
∑d−1

i=0 αiωi, β =
∑d−1

i=0 βiωi ∈ L.

OUTPUT : ~γ = (γi)06i6d−1 such thatγ =
∑d−1

i=0 γiωi = α × β ∈ L.

1. sa := 0 ; sb := β1 ; γ0 := 0 ; γ1 := −a1sbα1 ;
2. for k := 2 to d − 1 do sa+:= αk−1 ; sb+:= βk ; γk := −a1(sbαk + saβk) ;
3. sa+:= αd−1 ; (γ0, . . . , γd−1)+:= sasb (κ0 + a2, κ1, . . . κd−1) ;
4. s′a :=

∑d−1
i=1 αiνi ; s′b :=

∑d−1
i=1 βiνi ; γ0 +:= sas

′
b + s′asb ;

5. for k := 1 to d − 1 do
6. δ := αkβk ; γ0+:= δ ((Φ−k(ξ0))0 − νk) ; γk−:= δ

∑d−1
l=1 κl;

7. for l := 1 to k − 1 do γl+:= δ κ(d−k+l) mod d;
8. for l := k + 1 to d − 1 do γl+:= δ κ(d−k+l) mod d;
9. (γ0, . . . , γd−1) +:= (α0β0, α1β0 + α0β1, . . . , αd−1β0 + α0βd−1) ;
10. if d mod 3 = 0 then
11. g := −(3 ν2

2d/3 + 2a2ν2d/3 + a4)/(2ρ2d/3 + a1ν2d/3 + a3) − a1 ;

12. δ := g (α2d/3βd/3 + αd/3β2d/3) ; γ2d/3 −:= δ ; γd/3 +:= δ ;
13. for k := 2 to ⌊(2d − 1)/3⌋ by 2 do
14. l := k/2 ; g := (ρl + ρk + a1νk + a3)/(νl − νk) ;
15. i1, i2 := 2 l, d − l ; j1, j2 := d − 2 l, l ;
16. δ12 := g (αi1 βj2 + αj2 βi1) ; δ21 := g (αi2 βj1 + αj1 βi2) ; δ22 := g (αi2 βj2 + αj2 βi2) ;
17. γi1 −:= δ12 ; γi2 −:= δ21 + δ22 ; γj1 +:= δ21 ; γj2 +:= δ12 + δ22 ;
18. for k := ⌊1 + d/2⌋ to ⌊(2d − 1)/3⌋ do
19. l := 2k mod d ; g := (ρl + ρk + a1νk + a3)/(νl − νk) ;
20. i1, i2 := k, (2d − 2k) mod d ; j1, j2 := (2k) mod d, d − k;
21. δ11 := g (αi1 βj1 + αj1 βi1) ; δ22 := g (αi2 βj2 + αj2 βi2) ; δ12 := g (αi1 βj2 + αj2 βi1) ;
22. γi1 −:= δ11 + δ12 ; γi2 −:= δ22 ; γj1 +:= δ11 ; γj2 +:= δ22 + δ12 ;
23. for k := 3 to ⌊(2d − 1)/3⌋ do
24. for l := max(1, 2k − d + 1) to ⌊(k − 1)/2⌋ do
25. g := (ρl + ρk + a1νk + a3)/(νl − νk) ;
26. i1, i2, i3 := k, d − l, d − k + l ; j1, j2, j3 := d − k, l, k − l;
27. δ12 := g (αi1 βj2 +αj2 βi1) ; δ13 := g (αi1 βj3 +αj3 βi1) ; δ21 := g (αi2 βj1 +αj1 βi2) ;
28. δ23 := g (αi2 βj3 +αj3 βi2) ; δ31 := g (αi3 βj1 +αj1 βi3) ; δ32 := g (αi3 βj2 +αj2 βi3) ;
29. γi1 −:= δ12 + δ13 ; γi2 −:= δ21 + δ23 ; γi3 −:= δ31 + δ32 ;
30. γj1 +:= δ21 + δ31 ; γj2 +:= δ12 + δ32 ; γj3 +:= δ13 + δ23 ;
31. return (γi)06i6d−1

12



The first two terms of this sum are computed at steps 3. and 4. ofthe algorithm. The three next
terms are computed in steps 5. to 9. Especially, steps 5. to 8.correspond to the action ofΦ−k on
ξ0 (the quantity(Φ−k(ξ0))0, at step 4., is the first coordinate ofΦ−k(ξ0) written in basisΩ).

The constantsΓk,l satisfied 12 symmetry relations and we take advantage of themto compute
the two last terms of the sum. More precisely, fork andl distinct and non-zero inZ/dZ, we have

{

Γk,l = Γ−l,−k = Γk,k−l = Γl−k,−k = Γl−k,l = Γ−l,k−l ,
Γl,k = Γ−k,−l = Γk−l,k = Γ−k,l−k = Γl,l−k = Γk−l,−l ,

andΓk,l = −Γl,k − a1 .

All of these relations can be proved thanks to Equation (3) and Equation (1). For instance, to
check thatΓk,l = Γl−k,−k, we start fromΓ(O, kt, lt) = uO,kt(b+kt)+ukt,lt(b+kt)+ult,O(b+kt),
and we findΓ(O, kt, lt) = u−kt,O(b) + uO,(l−k)t(b) + u(l−k)t,−kt(b) = Γ(O, (l− k)t,−kt) .

k

l
1 d−1

1

d−1

Γk,l

Γl,k

Γ−l,−k

Γ−k,−l

Γ−k,l−k

Γl−k,−k

Γk−l,k

Γk,k−l

Γl,l−k

Γl−k,l

Γk−l,−l

Γ−l,k−l

Figure 2: Symmetry relations on the coefficientsΓk,l (d = 42)

We use first thatΓk,l = −Γl,k − a1 and we rewrite the last two terms of Equation (12) as
follows,

−a1

d−1
∑

k=1

(βk

k−1
∑

l=1

αl + αk

k
∑

l=1

βl)ωk +
∑

0<l<k<d

Γk,l(αkβl + αlβk)(ωl − ωk) .

The first term of this sum is computed at at steps 1. and 2. of thealgorithm. To compute the last
term, we consider in turn each orbit of the action defined by the symmetries on the coefficients
Γk,l. We choose as a fundamental domain for this action the triangle delimited by the circles
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l = 1, k = 2 l mod d andl = 2 k mod d (cf. Figure 2). It is cumbersome, but not difficult, to
check that any point of this domain, outside the two circlesk = 2 l mod d andl = 2 k mod d,
has an orbit of exactly12 points: we compute only once the constantΓk,l corresponding to these
12 points and we calculate accordingly their contribution to the productα × β. These are steps
23. to 30. of the algorithm.

Points on the linek = 2 l mod d have orbits of only6 points. We precisely haveΓ2 l,l =
Γ−l,−2 l = Γ−l,l = −Γl,2 l − a1 = −Γ−2 l,−l − a1 = −Γl,−l − a1 , and this yield steps 13. to 17. of
the algorithm. Similarly, points on the linel = 2 k mod d have orbits of only6 points too. We
haveΓk,2k = Γ−2 k,−k = Γk,−k = −Γ2 k,k − a1 = −Γ−k,−2k − a1 = −Γ−k,k − a1 and this yield
steps 18. to 22. of the algorithm.

Finally, whend is divisible by 3, the two circlesk = 2 l mod d andl = 2 k mod dmeet at the
exceptional point(2d/3, d/3), which is on thek + l = 0 mod d line too. This point has an orbit
of only 2 points,i.e. Γ2d/3,d/3 = −Γd/3,2d/3 − a1 . This yields steps 10. to 12. of the algorithm.

Complexity.We precompute thed constantsνk andρk, the constantΓ2d/3,d/3 if d mod 3 = 0,
thed coordinates in the basisΩ of ξ0, their sum

∑d−1
l=1 κl, κ0 + a2 and theω0-coordinates of all

Φk(ξ0) − νk for 0 6 k 6 d− 1.
Then, Steps 1.-2. need3d − 7 additions and3d − 4 multiplications inK (among which are

d − 2 additions and3d − 4 multiplications because ofa1), Step 3. needsd + 1 additions and
d+ 1 multiplications inK, Step 6. needsd− 1 additions and2d− 2 multiplications inK, Steps
7.-8. needd2 − 2d + 1 additions andd2 − 2d + 1 multiplications inK, Step 9. needs2d − 1
additions and2d − 1 multiplications inK, Steps 11.-12. need3 additions and3 multiplications
in K if d is a multiple of 3 (and cost nothing otherwise), Steps 13.-17. consist in⌊(d − 1)/3⌋
iterations and Steps 18.-22. consist in⌊(d−5+6ε′)/6⌋ (whereε′ = 0 if d mod 6 = 0 andε′ = 1
otherwise), each of them needs16 additions,11 multiplications and1 inversion inK (among
which are1 addition,1 multiplication because ofa1 and1 addition because ofa3), and finally,
Steps 23.-30. consist in⌊d2/12⌋ − ⌊d/2⌋ + ε′′ iterations (whereε′′ = 0 if d mod 6 = 1, 5 and
ε′′ = 1 otherwise), each of them needs25 additions,12 multiplications and1 inversion inK

(among which are1 addition,1 multiplication because ofa1 and1 addition because ofa3).
Adding all these complexities yields the complexity announced.

�

Depending on the characteristic ofK, it is classical to consider the reduced Weierstrass
Model to define elliptic curves. We give in Table 3 precise complexities for these cases, all
obtained with Lemma 3.

4 Elliptic normal bases

In this section, we assume that we are in the situation of Section 3. SoE is an elliptic curve over
a finite fieldK = Fq andd > 2 is an integer. Lett ∈ E(Fq)[d] be a rational point of orderd. We
call T the group generated byt. Letφ : E → E be the Frobenius endomorphism. Letb ∈ E(K̄)
be a point such thatφ(b) = b + t. So,b belongs toE(L) whereL is the degreed extension of
K. We denote byE ′ the quotientE/T and byI : E → E ′ the quotient isogeny. We also assume
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Condition Model Add. Mult. Inv.

Char(K) 6= 2, 3 Y 2 = X3 + a4X + a6

Char(K) = 3, jE 6= 0 Y 2 = X3 + a2X
2 + a6

35 d2+18 d−5 ε−36
12

jE = 0 Y 2 = X3 + a4X + a6
31 d2+6 d−ε

12
d2−ε
12

Char(K) = 2 jE 6= 0 Y 2 + XY = X3 + a2X
2 + a6

6 d2+5 d−ε−10
2

jE = 0 Y 2 + a3Y = X3 + a4X + a6
6 d2+3 d−ε−6

2

Figure 3: Elliptic multiplication complexities

db 6= O ∈ E. We seta = I(b) and checka ∈ E ′(Fq). We further assume there exists one point
R in E(Fq) such thatdR 6= 0.

We construct a normal basis forL, the degreed = #T extension ofK. In this basis, the
product of two elements can be computed at the expense of5 convolution products between
vectors of dimensiond. Such bases may be preferred to the ones constructed in Section 3 when
d is large enough, depending on the implementation context.

4.1 The elliptic normal basisΘ

We start with a lemma concerning the sum
∑

k∈Z/dZ
ukt,(k+1)t.

Lemma 4 The sum
∑

k∈Z/dZ
ukt,(k+1)t is a constantc ∈ K. If the characteristicp of K divides

the degreed, thenc 6= 0.

Proof. The sum
∑

k∈Z/dZ
ukt,(k+1)t is invariant by translations inT . So it can be seen as a func-

tion onE ′ = E/T . As such, it has no more than one pole. Therefore it is constant.
Assume nowp dividesd and

∑

k∈Z/dZ
ukt,(k+1)t = 0. The sum

∑

k∈Z/dZ
kukt,(k+1)t is thus

invariant by translations inT . So it can be seen as a function onE ′ = E/T . As such, it has
no more than one pole. Therefore it is constant. However, seen as a function onE, this sum
∑

k∈Z/dZ
kukt,(k+1)t has a pole atO. A contradiction.

�

So at least one of the two following conditions holds: eitherd is prime top or c 6= 0. In any
case, there exist two scalarsa 6= 0 andb in K such thatac + db = 1. For k ∈ Z/dZ we set
uk = aukt,(k+1)t + b andxk = xkt.

We denote byΘ the system(θk)k∈Z/dZ defined asθk = uk(b). We have
∑

k∈Z/dZ
θk = 1 ∈ K.

andΦ(θk) = θk−1.

Lemma 5 With the above notation, the system(u0, u1, . . . , ud−1) is a basis of

L = L(
∑

k∈Z/dZ

[kt]).
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The systemΘ = (θ0, θ1, . . . , θd−1) is aK basis ofL.

Proof. Indeed, let theλk for k ∈ Z/dZ be scalars inK such that
∑

k∈Z/dZ
λkθk = 0. The

functionf =
∑

k∈Z/dZ
λkuk cancels atb and also at all itsd conjugates overK (becausef is

defined overK). But f has no more thand poles (the points inT ). If f is non-zero, its divisor is
(f)0 − (f)∞ with (f)0 =

∑

t∈T [b+ t] and(f)∞ =
∑

t∈T [t]. We deduced × b is zero inE. But
this is impossible by hypothesis. Sof is constant equal to zero. This implies allλk’s are equal
(look at poles). Since the sum of allθk’s is non-zero, this implies that allλk’s are null.

�

We call such a basis asΘ anelliptic normal basis.

If k, l ∈ Z/dZ andk 6= l, l + 1, l − 1 mod d, then

ukul ∈ L

whereL = L(
∑

k∈Z/dZ
[kt]) is theK-vector space generated by allum for m ∈ Z/dZ. Further

uk−1uk + a
2xk ∈ L andu2

k − a
2xk − a

2xk+1 ∈ L .

So if (αk)06k6d−1 and(βk)06k6d−1 are two vectors inKd, we have

(
∑

k

αkuk)(
∑

k

βkuk) = a
2
∑

k

αkβk(xk + xk+1) − a
2
∑

k

αk−1βkxk − a
2
∑

k

βk−1αkxk mod L

= a
2
∑

k

(αk − αk−1)(βk − βk−1)xk mod L. (13)

Example. Let us continue the example of section 3,i.e. K = F7 andd = 5. We find

(ukt,(k+1)t)k =

(

5 y + 3

x+ 4
,
5 y + 3 x2 + 4

x2 + 5
,

4

x+ 3
,
y (2 x+ 8) + 3 x3 + 15 x

(x2 + 5) (x+ 4)
,
2 y + 2 x+ 6

x+ 4

)

,

so thatc = 3, a = 5, b = 0, and

Θ = (τ 8083, τ 13159, τ 16285, τ 9529, τ 6163) .

4.2 Change of coordinates

Thanks to Equation (2), theθ’s can be given in the basis(ωk)k as

θk =







aω1 + bω0 if k = 0,
−aω−1 − a1aω0 + bω0 if k = d− 1,
aωk+1 − aωk + aΓk,k+1 ω0 + bω0 otherwise.
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Inversely, we setλk =
∑k

i=1 Γi,i+1 and we observe thatc = λd−2 − a1. We obtain

ωk =



















































d−1
∑

i=0

θi if k = 0,

a
−1θ0 − ba

−1
∑d−1

i=0 θi if k = 1,

−a
−1θ−1 + (ba

−1 − a1)
d−1
∑

i=0

θi if k = −1,

a
−1

k−1
∑

i=0

θi − (kba
−1 + λk−1)

d−1
∑

i=0

θi otherwise.

This shows that one can compute the change of variable fromΩ to Θ, and back, at the expense
of O(d) operations inK.

4.3 Complexities

We exhibit an algorithm with quasi-linear complexity to multiply two elements given in an ellip-
tic normal basis. As often with FFT-like algorithms, it consists in evaluations and interpolations.

Notation. If ~α = (αi)06i6d−1 and ~β = (βi)06i6d−1 are two vectors of lengthd we denote by
~α ⋆j

~β =
∑

i αiβj−i the j-th component of the convolution product. We denote byσ(~α) =

(αi−1)i the cyclic shift of~α. We denote by~α ⋄ ~β = (αiβi)i the component-wise product and by
~α ⋆ ~β = (~α ⋆i

~β)i the convolution product.

4.3.1 Reduction

Given a linear combination of theξ’s we may want to reduce it: express it as a linear combination
of theθ’s.

Let~ι = (ιi)06i6d−1 be the vector inKd such thatξ0 =
∑

06k6d−1 ιkθk.

ξi = Φ−i(ξ0) =
∑

06k6d−1

ιkΦ
−i(θk) =

∑

06k6d−1

ιkθk+i =
∑

06k6d−1

ιk−iθk.

Let ~α = (αi)06i6d−1 and~β = (βj)06j6d−1 be vectors inKd such that
∑

06i6d−1

αiξi =
∑

06j6d−1

βjθj .

We want to express theβj ’s as linear expressions in theαi’s.
∑

06i6d−1

αiξi =
∑

06i6d−1

αi

∑

06k6d−1

ιk−iθk

=
∑

k

θk

∑

i

αiιk−i =
∑

k

(~ι ⋆k ~α)θk. (14)

We deduce~β = ~ι ⋆ ~α. So ~β is the convolution product of~ι and~α.

17



4.3.2 Evaluation

Let (αi)06i6d−1 be scalars inK. Let R ∈ E(K) − E[d] be aK-rational point onE such that
dR 6= 0.

We want to evaluatef =
∑

06i6d−1 αixi at allR + jt for 0 6 j 6 d − 1. We setβj =
f(R+ jt). We have

βj =
∑

06i6d−1

αixi(R+ jt) =
∑

06i6d−1

αix0(R + (j − i)t) = ~α ⋆j ~xR

where~xR = (x0(R + kt))06k6d−1. So,

~β = ~xR ⋆ ~α.

Similarly, we want to evaluatef =
∑

06i6d−1 αiui at allR + jt for 0 6 j 6 d − 1. We set
βj = f(R+ jt). We have

βj =
∑

06i6d−1

αiui(R+ jt) =
∑

06i6d−1

αiu0(R + (j − i)t) = ~α ⋆j ~uR

where~uR = (u0(R+ kt))06k6d−1. So,

~β = ~uR ⋆ ~α. (15)

4.3.3 Interpolation

Let R ∈ E(K) − E[d] be aK-rational point onE such thatdR 6= 0. The evaluation map
f 7→ (f(R+ jt))06j6d−1 is a bijection fromL ontoK

d.

Given theβj = f(R + jt) we want to compute theαi such thatf =
∑

06i6d−1 αiui. Since
~β = ~uR ⋆ ~α we just need to compute once for all the inverse−→uR

(−1) of ~uR for the convolution
product. This inverse exists because the evaluation map is bijective.

4.3.4 Multiplication

Let ~α = (αi)06i6d−1 and~β = (βi)06i6d−1 be two vectors inKd. We want to multiply
∑

i αiθi

and
∑

i βiθi.

We define four functions onE,

A =
∑

i

αiui , B =
∑

i

βiui ,

C = a
2
∑

i

(αi − αi−1)(βi − βi−1)xi ,

D = AB − C .
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The product we want to compute isA(b)B(b) = C(b) +D(b).
From Equation (13), we deduce thatD is in L. From Equation (14), we deduce that the

coordinates inΘ of C(b) are given by the vector

~ι ⋆
(

a
2(~α− σ(~α)) ⋄ (~β − σ(~β))

)

.

According to Equation (15), the evaluation ofA at the points(R + jt)j is given by the vector
~uR⋆~α. The evaluation at these points ofD is (~uR⋆~α)⋄(~uR⋆~β)−~xR⋆(a

2(~α−σ(~α))⋄(~β−σ(~β))).
If we ⋆ multiply this late vector on the left by−→uR

(−1) we obtain the coordinates ofD in the basis
(u0, . . . , ud−1). These are also the coordinates ofD(b) in the basisΘ.

Altogether, we have proved what follows.

Lemma 6 The multiplication tensor for normal elliptic bases of typeΘ is

(a2~ι) ⋆
(

(~α− σ(~α)) ⋄ (~β − σ(~β))
)

+

−→uR
(−1) ⋆

(

(~uR ⋆ ~α) ⋄ (~uR ⋆ ~β) − (a2~xR) ⋆
(

(~α− σ(~α)) ⋄ (~β − σ(~β))
))

It consists in5 convolution products,2 component-wise products,1 addition and3 subtrac-
tions between vectors of sized, the degree of the extension.

Note that convolution products can be computed at the expense ofO(d log d log | log d|) op-
erations inK using algorithms due to Schönhage and Strassen [18], Schönhage [17], and Cantor
and Kaltofen [5].

Note also that it is standard to use elliptic curves (and evencurves of higher genera) to bound
the bilinear complexity of multiplication. One should mention in particular work by Chudnowsky
[8], Shokrollahi [19], Ballet [3], Chaumine [6]. The tensorwe produce here is not competitive
with theirs from the point of view of bilinear complexity. But this tensor is symmetric enough to
allow fast application of the Frobenius automorphism.

Example. In the setting of the examples of Section 3 and Section 4,i.e. K = F7 andd = 5,
we first precompute, withR = (1, 2) a point of order 10 onE,

~ι = (0, 5, 5, 1, 0), ~uR = (4, 1, 5, 1, 4), −→uR
(−1) = (2, 2, 0, 4, 0) and~xR = (1, 5, 5, 1, 2) .

Now, we are going to multiply
∑

i αiθi and
∑

i βiθi with ~α = (6, 3, 6, 1, 2) and~β = (2, 6, 6, 4, 2) .

We first easily find~α − σ(~α) = (4, 4, 3, 2, 1), ~β − σ(~β) = (0, 4, 0, 5, 5) and thus(~α − σ(~α)) ⋄
(~β − σ(~β)) = (0, 2, 0, 3, 5) .

Therefore,

(a2~ι) ⋆
(

(~α− σ(~α)) ⋄ (~β − σ(~β))
)

= (6, 0, 4, 5, 5) ,

(~uR ⋆ ~α) ⋄ (~uR ⋆ ~β) = (0, 4, 0, 3, 0) ,

(a2~xR) ⋆
(

(~α− σ(~α)) ⋄ (~β − σ(~β))
)

= (1, 1, 0, 1, 4) .
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It remains to compute

−→uR
(−1) ⋆ ((~uR ⋆ ~α) ⋄ (~uR ⋆ ~β) − (a2~xR) ⋆ ((~α− σ(~α)) ⋄ (~β − σ(~β)))) = (4, 5, 4, 0, 1) ,

and finally, we obtain

(
∑

i

αiθi) × (
∑

i

βiθi) = 3 θ0 + 5 θ1 + 1 θ2 + 5 θ3 + 6 θ4 .

5 Beyond Gauss periods

Complexity estimates in Subsection 3.3 and Subsection 4.3.4 suggest that an elliptic basis may
be preferred to standard normal basis.

In this section we first show that the main condition for the existence of an elliptic basis is
that the degree should not be too large. This is explained in Subsection 5.1. If this condition
is not fulfilled, we may translate the field extension along a small auxiliary base change. This
is explained in Subsection 5.2. We recall in Subsection 5.3 that fast inversion using Lagrange’s
theorem and addition chains is possible in the context of elliptic normal bases. In Subsection 5.4
we associate a well chosen polynomial basis to any elliptic basis. We explain how to fast change
coordinates between either bases. This gives a quasi-linear division algorithm for elliptic bases.

5.1 Existence conditions for elliptic bases

Let q be a power of a primep. Given a finite fieldFq and an integerd > 2, we want to construct
an elliptic basis for the degreed extension ofFq.

We first need some easy properties of thedq (cf. Definition 1).

Lemma 7 Letp be a prime andq a power ofp. Letd > 2 be an integer.

• If d is prime toq − 1 thendq = d.
• If q − 1 is squarefree thendq 6 d3.
• In any casedq 6 d2(q − 1)2.
• If f > 1 is an integer prime todϕ(d) thendqf = dq.

We can now give a sufficient condition for the existence of an elliptic basis. The necessary
background about elliptic curves over finite fields can be found in chapter 5 of Silverman’s book
[20].

Lemma 8 Letp be a prime andq a power ofp. Letd ≥ 2 be an integer. We assume that

dq 6 2
√
q .

Then, there exists an elliptic curveE overFq, a pointt of orderd in E(Fq) and a pointb in
E(F̄q) such thatφ(b) = b+ t and the order ofb is a multiple ofd2. In particulardb 6= 0.
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Proof. There are at least too consecutive multiples ofdq in the interval[q+1−2
√
q, q+1+2

√
q].

One of them is not congruent to1 modulop. We callM = λdq this integer and we sett =
q + 1 −M and∆ = t

2 − 4q. LetO be the maximal order inQ(
√

∆). There exists an ordinary
elliptic curveE overFq such thatE hasM points overFq andEnd(E) = O . Let ℓ be a prime
divisor ofd. We seteℓ = vℓ(d).

Assume first thatℓ is prime toq − 1.
It cannot divide bothq+ 1− t andt

2 − 4q. Soℓ is prime tot
2 − 4q and is unramified inZ[φ] and

in End(E). If ℓ were inert, it would divide bothφ− 1 and its conjugatēφ− 1 and also the trace
Tr(φ−1) = t−2. Sinceℓ dividesq+1− t this would imply thatℓ dividesq−1, a contradiction.
Soℓ splits inZ[φ]. Let l = (ℓ, φ− 1) be the ideal inEnd(E) aboveℓ and containingφ− 1. This
prime ideal dividesφ − 1 exactlye times, wheree ≥ eℓ is the valuation ofM at ℓ. Let λ be
the unique root of(X + 1)2 − t(X + 1) + q in Zℓ that is congruent to0 moduloℓ. Theℓ-adic
valuation ofλ is e. The kernel ofle+eℓ is cyclic of orderℓe+eℓ. The Frobeniusφ acts on this group
as multiplication by1 + λ. Let bℓ be a generator of this group. We settℓ = φ(bℓ) − bℓ and we
check thattℓ has orderℓeℓ and isFq-rational. Indeedtℓ is left invariant byφ becausee > eℓ.

Assume nowℓ dividesq − 1.
Sovℓ(M) ≥ vℓ(dq) > 2vℓ(q − 1). We check

t
2 − 4q = (q − 1)2 +M2 − 2M(q + 1) = (q − 1)2 +O(ℓs)

wheres = vℓ(M) > 2vℓ(q − 1) if ℓ is odd, ands = vℓ(M) + 2 > 2vℓ(q − 1) + 2 if ℓ = 2.
We deducet2 − 4q is a square inZℓ andℓ splits inEnd(E). Letλ1 andλ2 be the two roots of

(X + 1)2 − t(X + 1) + q in Zℓ. Sinceλ1λ2 = q + 1 − t = M , one of these two roots hasℓ-adic
valuation> eℓ. Assume for examplevℓ(λ1) = e1 > eℓ. Theℓe1+eℓ-torsion groupE[ℓe1+eℓ ] has a
cyclic subgroupV1 of orderℓe1+eℓ whereφ acts as multiplication by1 + λ1.

Let bℓ be a point of orderℓe1+eℓ in V1. We settℓ = φ(bℓ)− bℓ = λ1bℓ. This is a point of order
ℓeℓ. It is left invariant byφ becausee1 > eℓ. So againtℓ is inE[ℓeℓ ](Fq).

We now patch all these points together.
We sett =

∑

ℓ tℓ andb =
∑

ℓ bℓ. We haveφ(b) − b = t andt has orderd. The order of the point
b is a multiple of

∏

ℓ ℓ
2eℓ = d2. In particulardb 6= 0.

�

Lemma 9 Letp be a prime andq a power ofp. Letd ≥ 2 be an integer. We assume that

dq 6
√
q .

Then, there exists an elliptic curveE overFq, a pointt of orderd in E(Fq) and a pointb in
E(F̄q) such thatφ(b) = b + t and the order ofb is a multiple ofd2. In particular db 6= 0. There
is also a pointR in E(Fq) that such thatdR 6= 0.

Proof. We apply lemma 8 above top, q andd′ = 2d 6 2
√
q. We obtain an elliptic curveE, a

point t′ of orderd′ = 2d in E(Fq) and a pointb′ such thatφ(b′) = b′ + t′. We sett = 2t′, b = 2b′

andR = t and we are done.

�
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5.2 Base change

Let q be a prime power and letd be an integer. Ifd is too large we may not be able to construct
an elliptic basis for the degreed extension ofFq. We try to embedFq into some small degree
auxiliary extensionK = FQ with Q = qf then construct an elliptic basis for the degreed
extensionL of K. We shall need the following lemma.

Lemma 10 (Iwaniec) There exists a constantKIw > 1 such that the following is true.
Letk > 2 be an integer and letp1, p2, . . . ,pk be distinct prime integers. Letµi andµs be two

integers withµs − µi > KIwk
2(log k)2. LetI be the interval[µi, µs]. There is an integern in I

that is prime to everypi for i ∈ {1, 2, . . . , k}.

This lemma is proven by Iwaniec in [15].

The number of prime divisors ofd isO(log d). We look for some integerf such that

• f is prime todϕ(d) ,
• dqf = dq 6 q

f

2 .

From Lemma 10, we find somef that is

O(logq dq + (log d)2(log(log d))2) = O((log d)2(log(log d))2).

In this context, we callΦq : F̄q → F̄q the absolute Frobenius ofFq andΦQ = Φf
q the Frobenius

of K. Once given an elliptic basis forL/K, we can compute efficiently the action ofΦQ. Let
F be an integer such that1 6 F 6 d − 1 andfF = 1 mod d. The restriction ofΦF

Q to Fqd is
Φq : Fqd → Fqd. We thus can compute efficiently the Frobenius action onFqd using the elliptic
basis forL/K.

Elements inFqd being represented and treated as elements inL, we have a slight loss of
efficiency: the size is multiplied byf . An element inFqd is represented byd logQ bits instead
of d log q.

5.3 Inversion using Lagrange’s theorem

We have constructed models for finite fields where addition, multiplication and Frobenius action
can be quickly computed. We should worry now about inversion.

The inverse ofα ∈ Fqd can be computed asαqd−2 because of Lagrange Theorem. This
exponentiation can be done at the expense ofO(log q + log d) multiplications inFqd using an
addition chain ford−1 and another addition chain forq−2. This is [14, Theorem 2] of Itoh and
Tsujii generalized in [13, Corollary 30] by von zur Gathen and Nöcker. The computation also
requiresO(log d) exponentiations by powers ofq.
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5.4 Moving to a polynomial basis and quasi-linear inversion

Using Lagrange’s theorem for inversion is one of the possible motivations for using normal bases
but it brings an extralog q factor in the complexity. This may harm iflog q is bigger than any
polynomial inlog d. So it makes sense to look for an inversion algorithm that uses less than e.g.
Kd(log d)2 log | log d| operations inFq whereK does not depend ond nor onq.

In this subsection we show that to any elliptic basis one can associate a polynomial r basis
such that changing coordinates between either bases can be done in quasi-linear time. This gives
another algorithm for fast multiplication in elliptic bases. More importantly, this allows fast
division in elliptic bases.

Let K = Fq, d, L,E, t andb be as in the beginning of Section 4. We further assume2db 6= 0.
This is guaranteed if we use Lemma 9 and ifd > 3. The unitary polynomial

Π(x) = (x− x(b))(x − x(b+ t)) · · · (x− x(b+ (d− 1)t)) ∈ K[x]

is then irreducible.
In order to simplify the presentation, we shall assume in thefollowing thatd is odd. There

exist a degree(d + 1)/2 unitary polynomialY1 ∈ K[x] and a degree6 (d − 3)/2 polynomial
Y0 ∈ K[x] such that the functionY1(x)−yY0(x) cancels atb, b+t,. . . ,b+(d−1)t. BesidesY1 and
Y0 are coprime andY1(x)− yY0(x) also cancels at−db. We precompute these two polynomials.

We denote byR ⊂ K(E) the ring of functions having no pole outside{O, t, 2t, . . . , (d−1)t}.
The idealb ⊂ R of the closed subset{b, b + t, b + 2t, . . . , b + (d − 1)t} is generated byΠ(x)
andY1(x) − yY0(x).

The system(1, uO,t, . . . , uO,(d−1)t) is a K-basis ofL1 = L(O + t + 2t + · · · + (d − 1)t)
and reduction modulob (evaluation atb) defines a bijectionǫ1 : L1 → K(b) = L. The system
(1, uO,t(b), . . . , uO,(d−1)t(b)) is the elliptic basisΩ.

The system(1, x, x2, . . . , xd−1) is free and generates a subspaceL2 of L((2d − 2)O). Re-
duction modulob (evaluation atb) defines a bijectionǫ2 : L2 → K(b) = L. The system
Ψ = (1, x(b), x(b)2, . . . , x(b)d−1) is aK-basis ofL. This is a polynomial basis.

In order to change coordinates fromΩ to Ψ and back1, we now explain how to quickly
evaluate the bijectionsǫ−1

2 ◦ ǫ1 andǫ−1
1 ◦ ǫ2.

FromΩ to Ψ.

Recall we have setνk = x(kt) for k ∈ Z/dZ. Equation (6) shows that there exist constants
sk = a1x(kt) + a3 + y(kt) in K such that for1 6 k 6 d− 1

uO,kt =
y + sk

x− νk
.

Any functionf in L1 is a combination

f = α0 +
∑

16k6d−1

αk
y + sk

x− νk

1Recall that changing coordinates fromΩ to Θ and back is done in linear time as explained in Subsection 4.2.
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with αk ∈ Fq for 0 6 k 6 d− 1. We set

D(x) =
∏

16k6(d−1)/2

(x− νk).

We can rewritef as(U(x) + yV (x))/D(x) whereU(x) andV (x) are polynomials inK[x]
with degree6 d−3

2
.

The numeratorU(x) + yV (x) can be computed at the expense ofO(d(log d)2 log | log d|)
operations inFq using a divide and conquer algorithm.

Now the functionf is congruent modulob to (U(x) +M(x)V (x))/D(x). There exists a
polynomialW (x) ∈ K[x] with degree6 d − 1 that is congruent to the later fraction modulo
Π(x). We compute it at the expense ofO(d(log d)2 log | log d|) operations inFq using standard
fast modular multiplication and inversion algorithms. This polynomialW (x) is nothing but
ǫ−1
2 (ǫ1(f)).

FromΨ to Ω.

Conversely, letW (x) ∈ L2 be a polynomial inK[x] with degree6 d − 1. We look for a
functionf = α0 +

∑

16k6d−1 αk(y + sk)/(x− νk) in L1 that is congruent toW (x) modulob.
Fork 6= 0 in Z/dZ we set

Dk(x) =
∏

16l6(d−1)/2, l 6≡±k mod d

(x− νl) = D(x)/(x− νk).

We assume we have precomputed theDk(νk) for 1 6 k 6 (d − 1)/2 using fast multipoint
evaluation of the derivativeD′(x) at the expense ofO(d(log d)2 log | log d|) operations inFq.

We first compute a degree6 d − 1 polynomialN(x) that is congruent toW (x)D(x)Y0(x)
moduloΠ(x). This is done at the expense ofO(d(log d)2 log | log d|) operations inFq using a
standard fast modular multiplication and reduction algorithm.

We have

N(x) ≡ D(x)Y0(x)f ≡ α0D(x)Y0(x) +
∑

16k6d−1

αkDk(x)(Y1(x) + skY0(x)) mod b.

The leftmost and rightmost terms in the above congruence arepolynomials inx with degree
6 d− 1. Therefore they are equal. SinceDk = D−k, we obtain

N(x) = α0D(x)Y0(x) +
∑

16k6(d−1)/2

(αk(Y1(x) + skY0(x)) + α−k(Y1(x) + s−kY0(x)))Dk(x).

We set

A0(x) =
∑

16k6(d−1)/2

(αksk + α−ks−k)Dk and A1(x) =
∑

16k6(d−1)/2

(αk + α−k)Dk (16)

and we obtain

24



N(x) = α0D(x)Y0(x) + A0(x)Y0(x) + A1(x)Y1(x).

We now reduce this identity moduloY1(x). Let N̂(x) ∈ K[x] be a polynomial with degree
6 (d− 1)/2 that is congruent toN(x)/Y0(x) moduloY1(x). We haveA0(x) = N̂(x)−α0D(x)
whereα0 is the only constant inK such thatN̂(x) − α0D(x) has degree6 (d− 3)/2. Once we
knowα0 andA0(x) we setA1(x) = (N(x) − α0D(x)Y0(x) − A0(x)Y0(x))/Y1(x).

From Equations (16) we deduce

αksk + α−ks−k = A0(νk)/Dk(νk),

αk + α−k = A1(νk)/Dk(νk).

This pair of equations allows us to compute all theαk from theA0(νk), A1(νk), andDk(νk)
at the expense ofO(d) operations inK. TheA0(νk) andA1(νk) are computed using a fast
multipoint evaluation algorithm at the expense ofO(d(log d)2 log | log d|) operations inFq.
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