
On the Unknown Input Observer Design : a Decoupling Class

Approach with Application to Sensor Fault Diagnosis

Souad Bezzaoucha, Benoît Marx, Didier Maquin, José Ragot

Abstract— This paper addresses fault diagnosis for observer-
based residual generators for linear discrete-time systems sub-
ject to unknown input. The proposed approach is a new method
allowing to characterize a class of unknown inputs from which
the estimation error is decoupled. This contribution is divided
into two parts. The first one concerns the design of the UIO
satisfying either an exact decoupling or an L2-attenuation of the
unknown input to the state estimation error. The second part
is dedicated to the implementation of a bank of such observers
for sensor fault detection and isolation.

I. INTRODUCTION

Due to an increasing demand for higher performances,

safety and reliability, fault diagnosis for uncertain systems

with Unknown Input (UI) has received considerable interest.

Since in many cases a part of the system input is inaccessible

(e.g. plant disturbance or actuator failure), a conventional

observer that requires the knowledge of all inputs cannot be

used directly ; then Unknown Input Observers (UIOs) were

developed to estimate the state of uncertain systems despite

the existence of UIs or disturbances [3], [1], [6], [9], [10],

[11].

Classically, the state estimation of a system subject to UI

can be obtained by means of the so-called UIO. The goal

of the UIO is to provide state reconstruction of the system

with some robustness with respect to possible UI. Design of

UIO has been extensively investigated in the literature and is

based either on the decoupling such that the estimation error

do not depend on the UI [22] [11] [6], or on the synthesis

of an Integral Observer for the estimation of disturbances

[20] [12] [13]. These strategies frequently require structural

and rank constraints on the system matrices.

In this paper, the proposed strategy consists to decom-

pose any UI into two terms. The first one is a sum of

exponential functions from which the state estimates can be

exactly decoupled. For a given system, the class of the UI

satisfying that property is clearly established. The effect of

the remaining part of the UI on the state estimates is then

attenuated in an L2 framework.

Then, the proposed UIO design will be applied to

investigate a sensor fault detection and isolation problem.

A method based on the design of an observer bank will be

used. This approach uses the proposed observer in a bank

of observers. Residues corresponding to each observer are
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generated and defined in such a way to detect the fault

occurrence ; coupled with a residual analysis methods, the

faulty instrument (sensor in the considered case) is identified.

Different schemes of bank observers can be used for

fault diagnosis (Dedicated Observer Scheme, Generalized

Observer Scheme,..), see [4] [14] [7]. In this paper, a

Generalized Observer Scheme (GOS) is applied. The bank

consists of N + 1 observers that include N fault observers

and one normal condition observer. The ith observer is

driven by all inputs and N − 1 outputs of the system

and generates the corresponding residual vector ri
k. Then,

these residual vectors are evaluated for fault detection and

localisation.

This paper is organised as follows : Section II presents

a second order system to introduce the decoupling strategy

and the Uknown Input Class for exact decoupling notion and

how to generate this class. Section III is a generalization

of the second section. In section IV, we introduce the

notion of partial decoupling and the linear matrix inequalities

conditions to ensure the L2 attenuation of the UI effect on

state estimates. In order to improve the obtained results, a

pole assignment is also implemented.

However, the usual linearization approaches are not suitable

to the present problem since BMIs (Bilinear Matrix Inequali-

ties) are to be dealt with. A gain adjustment technique is then

applied. This synthesis linearize the inequalities by fixing one

of the unknown variable [16]. This kind of procedure can be

found in the centrage-XY procedure [15], the D-K iteration

mentionned in [19] or Yamada’s approach [21].

In section V, simulations are presented to show the efficiency

of the proposed approach. And finally, in the last section, as

an application, a residual generator design in a case of a

sensor fault is addressed.

II. ILLUSTRATIVE EXAMPLE

To begin with, the procedure is introduced with the help of

a simple example being a second order system. The different

steps leading to the Uknown Input Class for exact decoupling

are detailed. Consider a second order system described by :
{

xk+1 = Axk +Buk +Dηk−1

yk = Cxk + eηk−1
(1)

where xk ∈ R
2, uk ∈ R, ηk ∈ R and yk ∈ R are the system

state, input, unknown input and the output vector respecti-

vely. The system matrices are real valued, constant and of

appropriate dimensions :



xk =

[

x1k

x2k

]

A =

[

a11 a12

a21 a22

]

B =

[

b1

b2

]

C =
[

c1 c2

]

D =

[

d1

d2

]

(2)

The proposed Proportional Integral Observer (PIO) of gain

K and the UIO depending on an auxiliary variable zk ∈ R

are respectivelly given by the following equations :






x̂k+1 = Ax̂k +Buk +Dη̂k−1 +Kỹk

ŷk = Cx̂k + eη̂k−1

ỹk = yk − ŷk

(3)

{

zk+1 = γ1ỹk +λ1zk

η̂k+1 = γ2zk +λ2η̂k
(4)

with :

K =

[

k1

k2

]

It can be noted that the UIO has a filter structure with as an

input the output reconstruction error ỹk. The filter parameters

γ1, γ2, λ1 and λ2 allow to modify the gain and time constants

of the UIO. Depending on the value of the UIO parameters,

we can have either a proportional observer, an integral or a

multiple integral observer. In this particular case, the choice

λ1 = 1 or λ2 = 1 introduces the two integrators in this filter

structure.

In the following, the state and UI estimation errors are

expressed as function of the UI. Since the system and its

observer are linear, the time shift operator q (q fk = fk+1), is

adequate to express the reconstruction errors :

x̃k = xk − x̂k

η̃k = ηk − η̂k
(5)

From equations (1), (3) and (4), the state reconstruction error

of the UI is given by :
{

x̃1k =
N1(q)
D(q) ηk

x̃2k =
N2(q)
D(q) ηk

(6)















N1(q) = (q−λ1)(q−λ2)(ã12d̃2 − ã22d̃1 +qd̃1)
N2(q) = (q−λ1)(q−λ2)(ã21d̃1 − ã11d̃2 +qd̃2)
D(q) = ((q−λ1)(q−λ2)+ γe)((q− ã11)(q− ã22)− ã12ã21)
+γc1(ã12d̃2 − ã22d̃1 +qd̃1)+ γc2(ã21d̃1 − ã11d̃2 +qd̃2)

(7)

with : 





























ã11 = a11 − k1c1

ã12 = a12 − k1c2

ã21 = a21 − k2c1

ã22 = a22 − k2c2

d̃1 = d1 − k1e

d̃2 = d2 − k2e

(8)

From (6), conditions for the estimation errors to be inde-

pendent from the UI can easily be derived. Then, the UI

familly satisfying an exact decoupling is solution of :
{

N1(q)
D(q) ηk = 0
N2(q)
D(q) ηk = 0

(9)

In order to find the solution ηk assuring the previous condi-

tions, it is imposed that polynomials N1(q) and N2(q) have

the same roots. However, before that, it should also be

checked if some solutions are common to D(q) and N1(q)
(or N2(q)).
That leads to :

q0 =
ã21d̃1 − ã11d̃2

d̃2

(10)

which is a common root between N1(q), N2(q) and D(q).
Thus condition (9) is reduced to :

(q−λ1)(q−λ2)ηk = 0 (11)

The solution is given by an UI being the sum of two

exponential functions :

ηk = A1λ k
1 +A2λ k

2 (12)

where coefficients A1 and A2 are arbitrarily set. Finally, the

choice of the observer values λ1 and λ2 (4) gives the UI

class assuring the exact decoupling of the state error from

ηk for any values of the coefficients A1 and A2.

III. RECONSTRUCTION ERRORS : DISTURBANCES

DECOUPLING

Let us now return to the general case by using the

following system equations :
{

xk+1 = Axk +Buk +Dηk−1

yk = Cxk + eηk−1
(13)

Vectors xk ∈ R
n, uk ∈ R

m, ηk ∈ R and yk ∈ R
p are the

system state, input, unknown input and the output vectors

respectively. The system matrices A ∈ R
n×n, B ∈ R

n×m,

D ∈ R
n×1, C ∈ R

p×n et e ∈ R
p×1 are known real values.

The proposed system observer of gain K and the UIO are

respectivelly given by the following equations :






x̂k+1 = Ax̂k +Buk +Dη̂k−1 +Kỹk

ŷk = Cx̂k + eη̂k−1

ỹk = yk − ŷk

(14)

{

zk+1 = Γỹk +Λzk

η̂k+1 = γzk +λη̂k
(15)

with appropriate dimensions : zk ∈R
q, K ∈R

n×p, Γ ∈R
q×p,

γ ∈ R
1×q, Λ ∈ R

q×q and λ ∈ R.

By following the same steps as in the previous section, the

state and UI reconstruction errors are expressed ; we get from

equation (15) with the time operator q :

η̂k = (q−λ )−1γzk (16)

(qIq −Λ)zk = Γỹk (17)

which leads to :

[(qIq −Λ)+Γe(q−λ )−1q−1γ ]zk = ΓCx̃k +Γeq−1ηk (18)

The state error dynamics is obtained from (13) and (14) :

x̃k+1 = Ax̃k +Dη̃k−1

A = A−KC

D = D−Ke

(19)



That gives the state estimation error :

x̃k = (qIn −A)−1Dq−1ηk − (qIn −A)−1Dq−1(q−λ )−1γzk

(20)

By replacing this expression in (18), we have :

zk = Z
−1

Ληk (21)

with :

Λ = ΓC(qIn −A)−1D+Γe

Z = q(qIq −Λ)+Λ(q−λ )−1γ
(22)

Finally, replacing (21) in (16) and (20) leads to :

{

η̂k = (q−λ )−1γZ
−1

Ληk

x̃k = (qIn −A)−1Dq−1
[

1− (q−λ )−1γZ
−1

Λ

]

ηk

(23)

The UI estimation error becomes :

η̃k =
[

1− (q−λ )−1γZ
−1

Λ

]

ηk

From (23) the state estimation error decoupling condition

from the UI can be written as :

(qIn −A)−1Dq−1
[

1− (q−λ )−1γZ
−1

Λ

]

ηk = 0 (24)

In order to decouple the state from the UI and assure its

exact estimation, the following condition has to be verified :

[

1− (q−λ )−1γZ
−1

Λ

]

ηk = 0 (25)

Equation (25) may be extended as
N(q)
D(q)ηk = 0. Solving this

last equation gives roots defining the UI class that ensure an

exact decoupling of the estimation error from the UI. This

class is written as : ∑i Aiλi where the λi correspond to the

roots of (25) and Ai are totally free parameters.

IV. PARTIAL DECOUPLING OBSERVER

In the previous section, was detailed how to find the class of

UI ensuring an exact decoupling of the UI in respect to the

state estimation error. In the following section, a general case

with an UI that does not satisfy the decoupling condition is

considered. In this case, the problem is solved by attenuating

the effect (transfer) of the UI to the estimation error and

propose linear matrix inequalities to determinate the observer

gain so that the estimated state asymptotically tends to the

real one.

In addition to the two previous cases (exact and partial de-

coupling), we also have a third one, which is a mix between

the two solutions. In fact, any UI may be decomposed into a

sum of two terms ηk = ηd
k +ηa

k . The first term corresponds

to the exact decoupling term obtained as explain in section

III, and the second one is the approximaion term onto L2

attenuation is applied. In subsection A, we only present

the attenuation approach ; but, in the simulation section the

combined approach will be illustrated.

A. L2 Attenuation

System and observer equations are given by :






x̃k+1 = Ax̃k +Dη̃k−1

η̃k = ηk −ληk−1 − γzk−1 +λη̃k−1

zk+1 = ΓCx̃k +Γeη̃k−1 +Λzk

(26)

The corresponding matrix form is given by :

ek+1 = A1ek +B1ηa
k (27)

with :

A1 =









A D 0 0

0 λ 0 −γ
ΓC Γe Λ 0

0 0 1 0









B1 =









0 0

1−λ
0 0

0 0









,

ek =









x̃k

η̃k−1

zk

zk−1









ηa
k =

[

ηk

ηk−1

]

(28)

In particular, (27) gives the UI influence on the estimation

errors. To focus on the impact of the UI on the state

estimation x̃k, a new observer output is considered :

gk =C1ek (29)

with : C1 =
(

I 0 0 0
)

.

Considering the Real Bounded Lemma [2], the system (27) is

stable and the L2 gain from ηa
k to gk is bounded by

‖gk‖2
‖ηa

k
‖

2
<

µ if there exists a positive symmetric matrice P and a positive

scalar µ such that the following condition holds :




AT
1 PA1 −P AT

1 PB1 CT
1

BT
1 PA1 BT

1 PB1 −µ2I 0

C1 0 −µ2I



< 0 (30)

According to [8] and [18], the previous problem can be

reformulated by searching a positive symmetric definite

matrice P, gains K and G such that :








−P AT
1 PB1 CT

1 AT
1 GT

BT
1 PA1 BT

1 PB1 −µ2I 0 0

C1 0 −µ2I 0

GA1 0 0 −G−GT +P









< 0

(31)

where A1 defined in (28) with the help of (19), depends

on K. Due to this dependence, let us remark that inequality

(31) is not linear. For that reason some transformations are

needed to obtain LMIs.

Let us write the matrix A1 such that :

A1 = A1 −RKB1 (32)

with :

A1 =









A D 0 0

0 λ 0 −γ
ΓC Γe Λ 0

0 0 1 0









R =









I

0

0

0









B1 =
[

C e 0 0
]

(33)



Replacing A1 by (32) in (31), we have :








−P A
T

1 PB1 CT
1 A

T

1 GT

BT
1 PA1 BT

1 PB1 −µI 0 0

C1 0 −µI 0

GA1 0 0 P−G−GT









+MT N+NT M < 0

(34)

with M =









−B
T
1 KT

0

0

0









T

, N =









0

BT
1 PR

0

GR









T

and µ = µ2

Let us recall the following lemma [23]. Consider two real

matrices Π and Λ with appropriate dimensions, for any

positive matrix Σ the following inequality holds :

ΠT Λ+ΛT Π ≤ ΠT ΣΠ+ΛT Σ−1Λ (35)

Applying this lemma, (34) becomes :









−P A
T

1 PB1 CT
1 A

T

1 GT

BT
1 PA1 BT

1 PB1 −µI 0 0

C1 0 −µI 0

GA1 0 0 P−G−GT









+

MT ΣM+NT Σ−1N < 0 (36)

Applying Schur’s complement, we get :
















−P A
T

1 PB1 CT
1 A

T

1 GT B
T
1 KT 0

BT
1 P BT

1 PB1 −µI 0 0 0 BT
1 PR

C1 0 −µ 0 0 0

GA1 0 0 −G−GT +P 0 GR

KB1 0 0 0 −Σ−1 0

0 RT PB1 0 RT GT 0 −Σ

















<0

(37)

At last, by congruence, (37) becomes :
















−P A
T

1 PB1 CT
1 A

T

1 GT B
T
1 FT 0

BT
1 P BT

1 PB1 −µI 0 0 0 BT
1 PR

C1 0 −µ 0 0 0

GA1 0 0 −G−GT +P 0 GR

FB1 0 0 0 −ΣT 0

0 RT PB1 0 RT GT 0 −Σ

















< 0

(38)

with F = ΣK. The LMI must be solved in respect to P, G,

F and the gain K is obtained by K = Σ−1F .

B. Pole Assignment

The minimization of the attenuation factor µ may result

in slow dynamics of the state estimation error. This problem

can be solved by pole assignment of the closed loop system

in a specified region. The considered region is a disk centred

at (q,0) with radius α . Thus, the condition to answer this

constraint is given by the following : find P = PT > 0 and

Q = QT > 0 such that the following LMI [5] holds :
[

−αQ −qQ+QA1 −GC

(−qQ+QA1 −GC)T −αP

]

< 0 (39)

with G = QK. We have to solve this LMI regarding to Q and

G then we deduce K. Thus, to ensure the stabilty and pole

assignment, the conditions (38) and (39) must be fulfilled

simultaneously.

C. Gain Ajustement

From matrices F and G definitions, there is a dependence

between the two LMIs (38) and (39). Then we have to

solve simultaneously these two LMIs which can be noted

LMI1(P,K) and LMI2(Q,K). The proposed method is based

on an ajustment technique allowing to set some variables

and calculate others in an iterative way. More precisely, if the

gain K is fixed, we solve LMI1(P,K) regarding to P. Then we

solve LMI2(Q,K) regarding to Q and K and use the obtained

result K for the next iteration (see table 1). This procedure

was chosen in reason of its simplicity, but one should be

aware that no optimality or convergence guarantee is given.

However, since our study goal is to find a solution to the

given conditions, an optimal solution is not a necessity.

Iterative optimisation for gain K :

1) Set i = 0. Choose a stabilisable value K0. Put

K(i) = K0.

2) L2 attenuation : Find P(i+1) > 0 solution of

LMI1(P,K(i)).
3) Pole assignment : Find Q(i+1) and K(i+1) solution

of LMI2(Q,K) .

4) Stopping condition :

– If ||K(i+1) − K(i)|| < ε stop the algorithm :

K f inal = K(i+1).

– Else, set i = i+1 and go back to step 2.

Table1 : Adjustment algorithm

V. SIMULATIONS

Consider the system (13) described by :

A =













0.6 −0.2 −0.1 0.1 0

−0.1 0.7 −0.1 0.1 −0.1

0.4 0 0.9 0.5 −0.3

0 0.2 0 0.8 −0.2

−0.1 0.2 0 0 0.5













D =













0.2

−0.3

0.1

0.1

0.2













C =





1 0 0 1 0

0 0 0 0 1

0 1 1 0 0



B =













−0.3 −0.4

0.5 −0.4

−0.1 0.6

−0.2 0.7

0.2 0.1













e =





−1.5

−1.5

−1.5





with the observer parameters :

Λ = 0.33





1 1 1

0 1 1

0 1 1



 λ = 0.7

Γ = 0.2I3 γ =−0.4
[

1 1 1
]

At the first step, let us determine the observer gain K with

the proposed iterative algorithm. The obtained gain K and

attenuation µ for a pole assignment in a disk centred at

(0.3,0) with radius 0.2 are :

K =













0.0662 0.3073 −0.0162

0.3557 −0.6401 −0.2057

−0.3790 0.8853 0.8290

0.5571 −0.2525 −0.2071

−0.0666 0.6001 0.1166













µ = 24.09 (40)



The second step consists of finding the UI class for an exact

decoupling. Let us recall that the state decoupling condition

from the UI with its exact estimation of the UI is given by

(25). In this example, it corresponds to an UI composed of

a linear combination of seven exponential functions : two

roots of (25) are complex conjugate and the others have real

values given by :

λ1 = 1 ; λ2 = 0.7 ; λ3 = 0.83 ; λ4 = 0.15 ; λ5 = 0.5

λ6,7 = 0.085±0.23i

Then, the class of UI for an exact decoupling is given by :

ηd
k =A1λ k

1 +A2λ k
2 +A3λ k

3 +A4λ k
4 +A5λ k

5 +A6ak cos(φk+ψ)
(41)

with :

a =
√

Re(λ6)2 + Im(λ6)2 and cos(φ) = Re(λ6)
2

2
√

Re(λ6)2+Im(λ6)2

The UI is defined by :

ηk = 0.1−0.1(0.7)k −0.5(0.83)k+

0.3(0.15)k −0.4(0.5)k +0.4(0.47)k cos(1.78k) (42)

Finally, the considered UI ηk can be written as

ηk = ηd
k + ηa

k where ηd
k corresponds to the UI for

exact decoupling and ηa
k to the approximation er-

ror. The following figures are obtained for the initial

conditions x0 =
(

0.5 0.1 0.2 −0.1 0
)T

and x̂0 =
(

−0.5 0.5 −0.4 0.2 0.2
)T

. Fig.1 shows the system

inputs. Fig.2 represents the UIs (for the exact ηk = ηd
k and

partial decoupling cases ηk = ηd
k +ηa

k ) and their estimates

and Fig 3. represents the system state and their estimate

for both situations of exact and partial decoupling. In both

situations, the state estimation is satisfactory.

Fig. 1. System inputs

Solving the LMIs (38) may cause slow dynamics of the

observer, so an eigenvalue assignment in a D-region allows

to increase the performances of the observer.

VI. RESIDUAL GENERATOR DESIGN

The residual generator design is addressed in this section.

Based on the system structure, a bank of observers is then

designed using the developed UIO in order to detect and

isolate a sensor fault through the estimation of system outputs

using measurable signals and the model of the system. The

procedure is performed by analysing the time-evolution of

the residual signals obtained by the comparison between the

Fig. 2. UI and its estimate

Fig. 3. System states and their estimates : exact decoupling (left) L2-
attenuation (right)

measured outputs and the estimated outputs [17] [7]. A GOS

structure for the observer bank is adopted (Fig.4).

In theory, the residual signals (i.e. the output estimation

error) are null under normal operating conditions of the

system. The residual signal structuring, in order to generate

appropriated fault indicators, can be obtained by replacing

the use of only one observer by the use of a bank of observers

where each observer is driven by a partial set of the available

signals.

Let us consider the case of a sensor fault occuring at the

first sensor of magnitude 1 in the time interval t ∈ [8,15].
For the simulation, a normally distributed noise of standard

deviation equal to 0.1 is added to all the outputs whose

magnitudes are varying between −5 and 8. The first row

of Fig.5 represents the residuals under normal operating

conditions with measurement noise.

A fault signature localization method had been considered.

By comparing the theoretical study (truth table) [17] [7] and

the obtained residues (simulations), the faults susceptible to
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r31
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r33

Fig. 4. GOS Structure

Fig. 5. Residues of the bank observer

be at the origin of the observed symptoms can be isolated

(first sensor).

Summurising this section, an observer bank for residual

generator was considered. From the obtained results we

showed that the previously developped UIO can be used

for the detection and isolation of faults when the system

is subject to UIs, fault sensors and measurement noise.

VII. CONCLUSION AND PERSPECTIVES

This paper addresses new method to design observers

with unknown inputs. The proposed approach is based on

a partial decoupling of the state estimation from the UI

without any rank constraints on the system matrix. The main

result is about the way to find the UI class ensuring an

exact decoupling. The proposed work can be extended to

the nonlinear case, in particular, systems with Takagi-Sugeno

representation.
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