On the unknown input observer design: a decoupling class approach with application to sensor fault diagnosis
Souad Bezzaoucha, Benoît Marx, Didier Maquin, José Ragot

To cite this version:
Souad Bezzaoucha, Benoît Marx, Didier Maquin, José Ragot. On the unknown input observer design: a decoupling class approach with application to sensor fault diagnosis. 1st International Conference on Automation and Mechatronics, CIAM’2011, Nov 2011, Oran, Algeria. pp.CDROM. hal-00630390

HAL Id: hal-00630390
https://hal.science/hal-00630390
Submitted on 8 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the Unknown Input Observer Design : a Decoupling Class
Approach with Application to Sensor Fault Diagnosis

Souad Bezzaoucha, Benoît Marx, Didier Maquin, José Ragot

Abstract— This paper addresses fault diagnosis for observer-
based residual generators for linear discrete-time systems sub-
ject to unknown input. The proposed approach is a new method
allowing to characterize a class of unknown inputs from which
the estimation error is decoupled. This contribution is divided
into two parts. The first one concerns the design of the UIO
satisfying either an exact decoupling or an \(\mathcal{L}_2 \)-attenuation of the
unknown input to the state estimation error. The second part
is dedicated to the implementation of a bank of such observers
for sensor fault detection and isolation.

I. INTRODUCTION

Due to an increasing demand for higher performances,
safety and reliability, fault diagnosis for uncertain systems
with Unknown Input (UI) has received considerable interest.
Since in many cases a part of the system input is inaccessible
(e.g. plant disturbance or actuator failure), a conventional
observer that requires the knowledge of all inputs cannot be
used directly; then Unknown Input Observers (UIOs) were
developed to estimate the state of uncertain systems despite
the existence of UIs or disturbances [3], [1], [6], [9], [10],

Classically, the state estimation of a system subject to UI
can be obtained by means of the so-called UIO. The goal
of the UIO is to provide state reconstruction of the system
with some robustness with respect to possible UI. Design
of UIO has been extensively investigated in the literature and is
based either on the decoupling such that the estimation error
do not depend on the UI [22] [11] [6], or on the synthesis
of an Integral Observer for the estimation of disturbances
[20] [12] [13]. These strategies frequently require structural
and rank constraints on the system matrices.

In this paper, the proposed strategy consists to decom-
pose any UI into two terms. The first one is a sum of
exponential functions from which the state estimates can be
exactly decoupled. For a given system, the class of the UI
satisfying that property is clearly established. The effect of
the remaining part of the UI on the state estimates is then
attenuated in an \(\mathcal{L}_2 \) framework.

Then, the proposed UIO design will be applied to
investigate a sensor fault detection and isolation problem.
A method based on the design of an observer bank will be
used. This approach uses the proposed observer in a bank
of observers. Residues corresponding to each observer are
generated and defined in such a way to detect the fault
occurrence; coupled with a residual analysis methods, the
faulty instrument (sensor in the considered case) is identified.

Different schemes of bank observers can be used for
fault diagnosis (Dedicated Observer Scheme, Generalized
Observer Scheme...), see [4] [14] [7]. In this paper, a
Generalized Observer Scheme (GOS) is applied. The bank
consists of \(N + 1 \) observers that include \(N \) fault observers
and one normal condition observer. The \(i^{th} \) observer is
driven by all inputs and \(N − 1 \) outputs of the system
and generates the corresponding residual vector \(r_i \). Then,
these residual vectors are evaluated for fault detection and
localisation.

This paper is organised as follows : Section II presents
a second order system to introduce the decoupling strategy
and the Unknown Input Class for exact decoupling notion and
how to generate this class. Section III is a generalization
of the second section. In section IV, we introduce the
notion of partial decoupling and the linear matrix inequalities
conditions to ensure the \(\mathcal{L}_2 \) attenuation of the UI effect on
state estimates. In order to improve the obtained results, a
pole assignment is also implemented. However, the usual linearization approaches are not suitable
to the present problem since BMIs (Bilinear Matrix Inequali-
ties) are to be dealt with. A gain adjustment technique is then
applied. This synthesis linearize the inequalities by fixing one
of the unknown variable [16]. This kind of procedure can be
found in the centrage-XY procedure [15], the D-K iteration
mentioned in [19] or Yamada’s approach [21].
In section V, simulations are presented to show the efficiency
of the proposed approach. And finally, in the last section, as
an application, a residual generator design in a case of a
sensor fault is addressed.

II. ILLUSTRATIVE EXAMPLE

To begin with, the procedure is introduced with the help of
a simple example being a second order system. The different
steps leading to the Unknown Input Class for exact decoupling
are detailed. Consider a second order system described by :

\[
\begin{align*}
 x_{k+1} &= Ax_k + Bu_k + DN_{k-1} \\
 y_k &= Cx_k + e\eta_{k-1}
\end{align*}
\]

(1)

where \(x_k \in \mathbb{R}^2 \), \(u_k \in \mathbb{R} \), \(\eta_k \in \mathbb{R} \) and \(y_k \in \mathbb{R} \) are the system
state, input, unknown input and the output vector respecti-
vely. The system matrices are real valued, constant and of
appropriate dimensions :
In order to find the solution \(\eta_k \) assuring the previous conditions, it is imposed that polynomials \(N_1(q) \) and \(N_2(q) \) have the same roots. However, before that, it should also be checked if some solutions are common to \(D(q) \) and \(N_1(q) \) (or \(N_2(q) \)). That leads to:

\[
q_0 = \frac{\bar{a}_{21} \bar{d}_1 - \bar{a}_{11} \bar{d}_2}{\bar{d}_2},
\]

which is a common root between \(N_1(q), N_2(q) \) and \(D(q) \). Thus condition (9) is reduced to:

\[
(q - \lambda_1)(q - \lambda_2) \eta_k = 0
\]

The solution is given by an UI being the sum of two exponential functions:

\[
\eta_k = A_1 \lambda_1^k + A_2 \lambda_2^k
\]

where coefficients \(A_1 \) and \(A_2 \) are arbitrarily set. Finally, the choice of the observer values \(\lambda_1 \) and \(\lambda_2 \) (4) gives the UI class assuring the exact decoupling of the state error from \(\eta_k \) for any values of the coefficients \(A_1 \) and \(A_2 \).

III. RECONSTRUCTION ERRORS : DISTURBANCES DECOUPLING

Let us now return to the general case by using the following system equations:

\[
\begin{align*}
\begin{bmatrix} x_{k} \\ x_{2k} \end{bmatrix} &= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_{k-1} \\ x_{2k-1} \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \\
C &= [c_1 \\ c_2] \\
D &= \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}
\end{align*}
\]

The proposed Proportional Integral Observer (PIO) of gain \(K \) and the UIO depending on an auxiliary variable \(z_k \in \mathbb{R} \) are respectively given by the following equations:

\[
\begin{align*}
\dot{x}_{k+1} &= Ax_k + Bu_k + D \dot{y}_{k-1} + Ky_k \\
\dot{y}_k &= Cx_k + e \dot{y}_{k-1} \\
\dot{y}_{k} &= y_k - \hat{y}_k \\
z_{k+1} &= \gamma \dot{y}_k + \lambda_1 z_k \\
\dot{\eta}_{k+1} &= \gamma z_k + \lambda_2 \dot{\eta}_k
\end{align*}
\]

with:

\[
K = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}
\]

It can be noted that the UIO has a filter structure with as an input the output reconstruction error \(\hat{y}_k \). The filter parameters \(\gamma, \lambda_1, \lambda_2 \) allow to modify the gain and time constants of the UIO. Depending on the value of the UIO parameters, we can have either a proportional observer, an integral or a multiple integral observer. In this particular case, the choice \(\lambda_1 = 1 \) or \(\lambda_2 = 1 \) introduces the two integrators in this filter structure.

In the following, the state and UI estimation errors are expressed as function of the UI. Since the system and its observer are linear, the time shift operator \(q(qf_z = f_{z+1}) \) is adequate to express the reconstruction errors:

\[
\begin{align*}
\dot{x}_k &= x_k - \dot{x}_k \\
\dot{\eta}_k &= \eta_k - \dot{\eta}_k
\end{align*}
\]

From equations (1), (3) and (4), the state reconstruction error of the UI is given by:

\[
\begin{align*}
\begin{bmatrix} \dot{x}_{1k} \\ \dot{x}_{2k} \end{bmatrix} &= \begin{bmatrix} N_1(q) \\ N_2(q) \end{bmatrix} \eta_k \\
\begin{bmatrix} \dot{N}_1(q) \\ \dot{N}_2(q) \end{bmatrix} &= \begin{bmatrix} \dot{a}_{11} - a_{11}k_1c_1 \\ \dot{a}_{12} - a_{12}k_1c_2 \\ \dot{a}_{21} - a_{21}k_2c_1 \\ \dot{a}_{22} - a_{22}k_2c_2 \\ \dot{d}_1 - d_1k_1e \\ \dot{d}_2 - d_2k_2e \end{bmatrix}
\end{align*}
\]

with:

\[
\begin{align*}
\dot{a}_{11} &= a_{11} - k_1c_1 \\
\dot{a}_{12} &= a_{12} - k_1c_2 \\
\dot{a}_{21} &= a_{21} - k_2c_1 \\
\dot{a}_{22} &= a_{22} - k_2c_2 \\
\dot{d}_1 &= d_1 - k_1e \\
\dot{d}_2 &= d_2 - k_2e
\end{align*}
\]

From (6), conditions for the estimation errors to be independent from the UI can easily be derived. Then, the UI family satisfying an exact decoupling is solution of:

\[
\begin{align*}
\begin{bmatrix} N_1(q) \\ N_2(q) \end{bmatrix} \eta_k &= 0 \\
\begin{bmatrix} N_1(q) \end{bmatrix} \dot{\eta}_k &= 0
\end{align*}
\]

where polynomials \(N_1(q) \) and \(N_2(q) \) have the same roots. However, before that, it should also be checked if some solutions are common to \(D(q) \) and \(N_1(q) \) (or \(N_2(q) \)). That leads to:

\[
q_0 = \frac{\bar{a}_{21} \bar{d}_1 - \bar{a}_{11} \bar{d}_2}{\bar{d}_2}
\]

which is a common root between \(N_1(q), N_2(q) \) and \(D(q) \). Thus condition (9) is reduced to:

\[
(q - \lambda_1)(q - \lambda_2) \eta_k = 0
\]

The solution is given by an UI being the sum of two exponential functions:

\[
\eta_k = A_1 \lambda_1^k + A_2 \lambda_2^k
\]

where coefficients \(A_1 \) and \(A_2 \) are arbitrarily set. Finally, the choice of the observer values \(\lambda_1 \) and \(\lambda_2 \) (4) gives the UI class assuring the exact decoupling of the state error from \(\eta_k \) for any values of the coefficients \(A_1 \) and \(A_2 \).
That gives the state estimation error:
\[\hat{x}_k = (qI_n - \Lambda)^{-1}Dq^{-1}\eta_k - (qI_n - \Lambda)^{-1}Dq^{-1}(q - \lambda)^{-1}\gamma\eta_k \]
(20)
By replacing this expression in (18), we have:
\[z_k = Z^{-1}\Lambda\eta_k \]
(21)
with:
\[\Lambda = \Gamma C(qI_n - \Lambda)^{-1}D + \Gamma e \]
\[Z = q(qI_n - \Lambda) + \Lambda (q - \lambda)^{-1}\gamma \]
(22)
Finally, replacing (21) in (16) and (20) leads to:
\[\begin{align*}
\hat{\eta}_k &= (q - \lambda)^{-1}\gamma Z^{-1}\Lambda\eta_k \\
\hat{x}_k &= (qI_n - \Lambda)^{-1}Dq^{-1}\left[1 - (q - \lambda)^{-1}\gamma Z^{-1}\Lambda\right]\eta_k
\end{align*} \]
(23)
The UI estimation error becomes:
\[\hat{\eta}_k = \left[1 - (q - \lambda)^{-1}\gamma Z^{-1}\Lambda\right]\eta_k \]
From (23) the state estimation error decoupling condition from the UI can be written as:
\[(qI_n - \Lambda)^{-1}Dq^{-1}\left[1 - (q - \lambda)^{-1}\gamma Z^{-1}\Lambda\right]\eta_k = 0 \]
(24)
In order to decouple the state from the UI and assure its exact estimation, the following condition has to be verified:
\[\left[1 - (q - \lambda)^{-1}\gamma Z^{-1}\Lambda\right]\eta_k = 0 \]
(25)
Equation (25) may be extended as \(N(q)\eta_k = 0 \). Solving this last equation gives roots defining the UI class that ensure an exact decoupling of the estimation error from the UI. This class is written as: \(\sum_i A_i\lambda_i \), where the \(\lambda_i \) correspond to the roots of (25) and \(A_i \) are totally free parameters.

IV. PARTIAL DECOUPLING OBSERVER

In the previous section, it was detailed how to find the class of UI ensuring an exact decoupling of the UI in respect to the state estimation error. In the following section, a general case with an UI that does not satisfy the decoupling condition is considered. In this case, the problem is solved by attenuating the effect (transfer) of the UI to the estimation error and propose linear matrix inequalities to determine the observer gain so that the estimated state asymptotically tends to the real one. In addition to the two previous cases (exact and partial decoupling), we also have a third one, which is a mix between the two solutions. In fact, any UI may be decomposed into a sum of two terms \(\eta_k = \eta_k^u + \eta_k^a \). The first term corresponds to the exact decoupling term obtained as explained in section III, and the second one is the approximation term onto \(\mathcal{L}_2 \) attenuation is applied. In subsection A, we only present the attenuation approach; but in the simulation section the combined approach will be illustrated.

A. \(\mathcal{L}_2 \) ATTENUATION

System and observer equations are given by:
\[\begin{align*}
\dot{\hat{x}}_{k+1} &= \Lambda\hat{x}_k + D\hat{\eta}_{k-1} \\
\dot{\hat{\eta}}_k &= \eta_k - \lambda \eta_k - \gamma\eta_k + \lambda\hat{\eta}_{k-1} \\
z_{k+1} &= \Gamma C\hat{x}_k + \Gamma e\hat{\eta}_{k-1} + A\eta_k
\end{align*} \]
(26)
The corresponding matrix form is given by:
\[\begin{align*}
e_{k+1} &= A_1 e_k + B_1 \eta_k^a
\end{align*} \]
(27)
with:
\[A_1 = \begin{bmatrix} \Lambda & D & 0 & 0 \\
\lambda & 0 & -\gamma & 1 \\
\Gamma C & \Gamma e & \Lambda & 0 \\
0 & 0 & 1 & 0 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0 \\
1 - \lambda \\
0 \\
0 \end{bmatrix}, \\
e_k = \begin{bmatrix} \hat{\eta}_{k-1} \\
z_k \\
\hat{\eta}_{k-1} \end{bmatrix}, \quad \eta_k^a = \begin{bmatrix} \eta_k \\
\eta_{k-1} \end{bmatrix} \]
(28)
In particular, (27) gives the UI influence on the estimation errors. To focus on the impact of the UI on the state estimation \(\hat{x}_k \), a new observer output is considered:
\[\gamma_k = C_1 e_k \]
(29)
Considering the Real Bounded Lemma [2], the system (27) is stable and the \(\mathcal{L}_2 \) gain from \(\eta_k^a \) to \(\gamma_k \) is bounded by \(\| \gamma_k \| < \mu \) if there exists a positive symmetric matrix \(P \) and a positive scalar \(\mu \) such that the following condition holds:
\[\begin{bmatrix} A_1^T PA_1 - P & A_1^T PB_1 & C_1^T \\
B_1^T PA_1 & B_1^T PB_1 - \mu^2 I & 0 \\
0 & 0 & -\mu^2 I \end{bmatrix} < 0 \]
(30)
According to [8] and [18], the previous problem can be reformulated by searching a positive symmetric definite matrix \(P \), gains \(K \) and \(G \) such that:
\[\begin{bmatrix} -P & A_1^T PB_1 & C_1^T \\
B_1^T PA_1 & B_1^T PB_1 - \mu^2 I & 0 \\
0 & 0 & -\mu^2 I \end{bmatrix} < 0 \]
(31)
where \(A_1 \) defined in (28) with the help of (19), depends on \(K \). Due to this dependence, let us remark that inequality (31) is not linear. For that reason some transformations are needed to obtain LMIs.
Let us write the matrix \(A_1 \) such that:
\[A_1 = \Lambda_1 - RK\Gamma \]
(32)
with:
\[\Lambda_1 = \begin{bmatrix} A & D & 0 & 0 \\
0 & \lambda & 0 & -\gamma \\
\Gamma C & \Gamma e & \Lambda & 0 \\
0 & 0 & 1 & 0 \end{bmatrix}, \quad R = \begin{bmatrix} I \\
0 \\
0 \\
0 \end{bmatrix}, \quad \Gamma_1 = \begin{bmatrix} C & e & 0 & 0 \end{bmatrix} \]
(33)
Replacing A_1 by (32) in (31), we have:

\[
\begin{bmatrix}
-P & \bar{A}_1^T P B_1 & C_1^T & \bar{A}_1^T G & 0 \\
B_1^T P \bar{A}_1 & B_1^T P B_1 - \bar{P} & 0 & 0 & 0 \\
C_1 & 0 & -\bar{P} & 0 & 0 \\
G \bar{A}_1 & 0 & 0 & P - G - G^T & 0 \\
\end{bmatrix} + M^T N + N^T M < 0 \tag{34}
\]

with $M = \begin{bmatrix} -B_1^T K^T \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $N = \begin{bmatrix} B_1^T P R \\ 0 \\ GR \\ 0 \end{bmatrix}$ and $\bar{P} = \mu^2$.

Let us recall the following lemma [23]. Consider two real matrices Π and Λ with appropriate dimensions, for any positive matrix Σ the following inequality holds:

\[
\Pi^T \Lambda + \Lambda^T \Pi \leq \Pi^T \Sigma \Pi + \Lambda^T \Sigma^{-1} \Lambda \tag{35}
\]

Applying this lemma, (34) becomes:

\[
\begin{bmatrix}
-P & \bar{A}_1^T P B_1 & C_1^T & \bar{A}_1^T G & 0 \\
B_1^T P \bar{A}_1 & B_1^T P B_1 - \bar{P} & 0 & 0 & 0 \\
C_1 & 0 & -\bar{P} & 0 & 0 \\
G \bar{A}_1 & 0 & 0 & P - G - G^T & 0 \\
\end{bmatrix} + M^T \Sigma M + N^T \Sigma^{-1} N < 0 \tag{36}
\]

Applying Schur’s complement, we get:

\[
\begin{bmatrix}
-P & \bar{A}_1^T P B_1 & C_1^T & \bar{A}_1^T G & 0 \\
B_1^T P \bar{A}_1 & B_1^T P B_1 - \bar{P} & 0 & 0 & 0 \\
C_1 & 0 & -\bar{P} & 0 & 0 \\
G \bar{A}_1 & 0 & 0 & P - G - G^T & 0 \\
\end{bmatrix} < 0 \tag{37}
\]

At last, by congruence, (37) becomes:

\[
\begin{bmatrix}
-P & \bar{A}_1^T P B_1 & C_1^T & \bar{A}_1^T G & 0 \\
B_1^T P \bar{A}_1 & B_1^T P B_1 - \bar{P} & 0 & 0 & 0 \\
C_1 & 0 & -\bar{P} & 0 & 0 \\
G \bar{A}_1 & 0 & 0 & P - G - G^T & 0 \\
\end{bmatrix} < 0 \tag{38}
\]

with $F = \Sigma K$. The LMI must be solved in respect to P, G, F and the gain K is obtained by $K = \Sigma^{-1} F$.

B. Pole Assignment

The minimization of the attenuation factor μ may result in slow dynamics of the state estimation error problem. This problem can be solved by pole assignment of the closed loop system in a specified region. The considered region is a disk centred at $(q, 0)$ with radius α. Thus, the condition to answer this constraint is given by the following: find $P = P^T > 0$ and $Q = Q^T > 0$ such that the following LMI [5] holds:

\[
\begin{bmatrix}
-\alpha Q & -qQ + QA_1 - GC \\
(qQ + QA_1 - GC)^T & -\alpha P \\
\end{bmatrix} < 0 \tag{39}
\]

with $G = QK$. We have to solve this LMI regarding to Q and G then we deduce K. Thus, to ensure the stability and pole assignment, the conditions (38) and (39) must be fulfilled simultaneously.

C. Gain Adjustment

From matrices F and G definitions, there is a dependence between the two LMIs (38) and (39). Then we have to solve simultaneously these two LMIs which can be noted $LMI_1(P, K)$ and $LMI_2(Q, K)$. The proposed method is based on an adjustment technique allowing to set some variables and calculate others in an iterative way. More precisely, if the gain K is fixed, we solve $LMI_1(P, K)$ regarding to P. Then we solve $LMI_2(Q, K)$ regarding to Q and K and use the obtained result for K for the next iteration (see table 1).

This procedure was chosen in reason of its simplicity, but one should be aware that no optimality or convergence guarantee is given. However, since our study goal is to find a solution to the given conditions, an optimal solution is not a necessity.

Table 1 : Adjustment algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set $i = 0$. Choose a stabilisable value K_0. Put $K^{(i)} = K_0$.</td>
</tr>
<tr>
<td>2</td>
<td>\mathcal{L}_2 attenuation : Find $P^{(i+1)} > 0$ solution of $\text{LMI}_1(P, K^{(i)}).$</td>
</tr>
<tr>
<td>3</td>
<td>Pole assignment : Find $Q^{(i+1)}$ and $K^{(i+1)}$ solution of $\text{LMI}_2(Q, K)$</td>
</tr>
<tr>
<td>4</td>
<td>Stopping condition:</td>
</tr>
<tr>
<td></td>
<td>- If $</td>
</tr>
<tr>
<td></td>
<td>- Else, set $i = i + 1$ and go back to step 2.</td>
</tr>
</tbody>
</table>

Consider the system (13) described by:

\[
A = \begin{bmatrix}
0.6 & -0.2 & -0.1 & 0.1 & 0 \\
-0.1 & 0.7 & -0.1 & 0.1 & -0.1 \\
0.4 & 0 & 0.9 & 0.5 & -0.3 \\
0 & 0.2 & 0 & 0.8 & -0.2 \\
-0.1 & 0.2 & 0 & 0 & 0.5 \\
\end{bmatrix}, \quad D = \begin{bmatrix}
0.2 \\
0.1 \\
0.1 \\
0.2 \\
0.2 \\
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
\end{bmatrix}, \quad B = \begin{bmatrix}
-0.3 & -0.4 \\
0.5 & -0.4 \\
-0.1 & 0.6 \\
-0.2 & 0.7 \\
0.2 & 0.1 \\
\end{bmatrix}
\]

with the observer parameters:

\[
\Lambda = 0.33 \begin{bmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
\end{bmatrix}, \quad \lambda = 0.7 \\
\Gamma = 0.2 \begin{bmatrix}
1 & 1 & 1 \\
\end{bmatrix}, \quad \gamma = -0.4 \begin{bmatrix}
1 & 1 & 1 \\
\end{bmatrix}
\]

At the first step, let us determine the observer gain K with the proposed iterative algorithm. The obtained gain K and attenuation μ for a pole assignment in a disk centred at $(0.3, 0)$ with radius 0.2 are:

\[
K = \begin{bmatrix}
0.0662 & 0.3073 & -0.0162 \\
0.3557 & -0.6401 & -0.2057 \\
-0.3790 & 0.8853 & 0.8290 \\
0.5571 & -0.2525 & -0.2071 \\
-0.0666 & 0.6001 & 0.1166 \\
\end{bmatrix}, \quad \mu = 24.09 \tag{40}
\]
The second step consists of finding the UI class for an exact decoupling. Let us recall that the state decoupling condition from the UI with its exact estimation of the UI is given by (25). In this example, it corresponds to an UI composed of a linear combination of seven exponential functions: two roots of (25) are complex conjugate and the others have real values given by:

\[\lambda_1 = 1; \lambda_2 = 0.7; \lambda_3 = 0.83; \lambda_4 = 0.15; \lambda_5 = 0.5 \]

Then, the class of UI for an exact decoupling is given by:

\[\eta_k = a_k \lambda_1^k + A_2 \lambda_2^k + A_3 \lambda_3^k + A_4 \lambda_4^k + A_5 \lambda_5^k + A_6 \cos(\phi_k + \psi) \]

with:

\[a_k = \sqrt{\text{Re}(\lambda_k)^2 + \text{Im}(\lambda_k)^2} \text{ and } \cos(\phi) = \frac{\text{Re}(\lambda_k)}{2 \sqrt{\text{Re}(\lambda_k)^2 + \text{Im}(\lambda_k)^2}} \]

The UI is defined by:

\[\eta_k = 0.1 - 0.1(0.7)^k - 0.5(0.83)^k + 0.3(0.15)^k - 0.4(0.5)^k + 0.4(0.47)^k \cos(1.78k) \]

(42)

Finally, the considered UI \(\eta_k \) can be written as \(\eta_k = \eta^d_k + \eta^p_k \) where \(\eta^d_k \) corresponds to the UI for exact decoupling and \(\eta^p_k \) to the approximation error. The following figures are obtained for the initial conditions \(x_0 = (0.5 \ 0.1 \ 0.2 \ -0.1 \ 0)^T \) and \(\dot{x}_0 = (-0.5 \ 0.5 \ -0.4 \ 0.2 \ 0.2)^T \). Fig.1 shows the system inputs. Fig.2 represents the UIs (for the exact \(\eta_k = \eta^d_k \) and partial decoupling cases \(\eta_k = \eta^d_k + \eta^p_k \)) and their estimates and Fig 3. represents the system state and their estimate for both situations of exact and partial decoupling. In both situations, the state estimation is satisfactory.

\[\text{Fig. 1. System inputs} \]

Solving the LMIs (38) may cause slow dynamics of the observer, so an eigenvalue assignment in a D-region allows to increase the performances of the observer.

VI. RESIDUAL GENERATOR DESIGN

The residual generator design is addressed in this section. Based on the system structure, a bank of observers is then designed using the developed UIO in order to detect and isolate a sensor fault through the estimation of system outputs using measurable signals and the model of the system. The procedure is performed by analysing the time-evolution of the residual signals obtained by the comparison between the measured outputs and the estimated outputs [17] [7]. A GOS structure for the observer bank is adopted (Fig.4).

In theory, the residual signals (i.e. the output estimation error) are null under normal operating conditions of the system. The residual signal structuring, in order to generate appropriated fault indicators, can be obtained by replacing the use of only one observer by the use of a bank of observers where each observer is driven by a partial set of the available signals.

Let us consider the case of a sensor fault occurring at the first sensor of magnitude 1 in the time interval \(t \in [8, 15] \). For the simulation, a normally distributed noise of standard deviation equal to 0.1 is added to all the outputs whose magnitudes are varying between -5 and 8. The first row of Fig.5 represents the residuals under normal operating conditions with measurement noise. A fault signature localization method had been considered. By comparing the theoretical study (truth table) [17] [7] and the obtained residues (simulations), the faults susceptible to
be at the origin of the observed symptoms can be isolated (first sensor).

Summarising this section, an observer bank for residual generator was considered. From the obtained results we showed that the previously developed UIO can be used for the detection and isolation of faults when the system is subject to UIs, fault sensors and measurement noise.

VII. CONCLUSION AND PERSPECTIVES

This paper addresses new method to design observers with unknown inputs. The proposed approach is based on a partial decoupling of the state estimation from the UI without any rank constraints on the system matrix. The main result is about the way to find the UI class ensuring an exact decoupling. The proposed work can be extended to the nonlinear case, in particular, systems with Takagi-Sugeno representation.

REFERENCES