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Semantic Agent for Distributed Knowledge
M anagement

Julien Subercaze and Pierre Maret!

I ntroduction and motivation

At the beginning of the decade, the Agent Medidtedwledge Management
workshops series [23, 1, 13] as well as Bonifadioeoretical approach [3] layed
the foundations of a new field of distributed knedde management based upon
the agent paradigm. The agent based approach srayldeatures for knowledge
management. The local management of knowledge éytagllows going beyond
the limitations of centralized knowledge managema@ihius, knowledge can be
maintained in each agent at a coarse-grained lewtl,different representations.
Interactions between agents permit us to take attwount the social aspect of
knowledge and are well suited to represented orgtiohal memories [9]. Van
elst also outlined the importance of pro- activentss knowledge management
[22].

In the mean time, the publishing of the agent rcgain 2003 [17] pointed out
the lack of connection between multi-agent systanmts semantic web technolo-
gies. Since then, many applications and framewdrkge been developed to
bridge this gap. Semantic web languages and toels@v widely used to repre-
sent agents' knowledge. TAGA [25] uses OWL and RBKnowledge represen-
tation in the field of a trading agent competitiaising a FIPA compliant frame-
work. AgentOWL [15] extends JADE agents with OWLppaort for their
knowledge Base (KB). It also introduces an OWL kasemantic agent model.
Knowledge agents, introduced by [2], are used @onain specific web search. In
this application, agents' KBs are represented inFRBDF is also used in
CORESE [8] which is a semantic web search enginedgorate knowledge de-
veloped within the COMMA (Corporate Memory Managemthrough Agents)
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European IST project. The JADE framework, whicltusrently the most used in
research and industry supports natively RDF remtasg agents' knowledge.
These examples show us that semantic web techeslagée widely used for rep-
resenting agent knowledge, and that we can clesalye that the connection be-
tween agent-based knowledge management and semaiiticas been made.

However, this example presents the use of seméottithe representation of
agent's knowledge and not for the dynamic parth&f &agent: its behavior.
Katasonov proposed a Semantic Agent Programminguage (S-APL) [14],
based on BDI reasoning, in which agent behaviorsareantically described. Be-
haviors remain programmed in JAVA but are descrilbeBDF syntax. A closed-
world reasoner (CWHR) is used for BDI support. S-APL has three mainwdra
backs. First the reasoning is restricted to thesedoworld assumption whereas
semantic web languages such as OWL make the oped assumption. Secondly
each new function in S-APL has to be programmedAWA, which reduces the
interoperability between agents. An agent havingesmew functions will not be
able to transfer its behavior to another agentesithe latter does not own the
JAVA code implementing the functions. Using thigpegach, agent behavior pro-
gramming is not taking advantage of the semantic t@ehnologies and limits in-
teroperability.

Our motivation is to program agent behavior usiegantic web standards us-
ing a finite number of actions that will be usedbidld complex behaviors. This
language should not refer explicitly to a lowerdelanguage and should support
open world reasoning. The latest advances in #id &f semantic web have en-
abled rule languages supporting open world reagomfe base our approach on
the use of semantic rule language to program sécnagénts. We aim at design-
ing agents having a knowledge base and behavierdegsesented using the same
syntax. The use of OWL for knowledge base and sémauies for behavior al-
lows this feature. In the next section we firstcdiss the choice of the semantic
rule language that will be used to program agemdsthen present the design of an
agent programming language and the resulting agehitecture. In section 1.3
we describe the resulting ontological agent mo8ektion 1.4 shows a practical
example of a SAM behavior and details the differgteps of its execution. Sec-
tion 1.5 concerns the implementation of the SAMi@iygpe. We discuss in section
1.6 the perspectives of application of semanticneggén distributed knowledge
management. Our conclusions are presented in Becfio

2 http://lwww.w3.0rg/2000/10/swap/doc/cwm.html



Building agents with semantic rules

Semantic rules are an important part of the Sematigb project. Figure 1.1
shows the current status of specification in then&@gic Web layer cake. The
logic part, which is of primary interest for us,ssll work in progress. This part
describes the semantic rule languages. Curremthythfs layer, two proposals are
pending. The most well known one is the Semanti® \Rele Language (SWRL.)
[12]; it is based on a combination of the OWL-DLthvihe RuleML language.
The second proposal is the Web Rule Language (WHRiltiative that was in in-
fluenced by the Web Service Modeling Language WSMihereas WRL is at a
draft stage, the semantic web community is focugimgesearch towards SWRL.
Indeed, software such as Protédgéellet and Jessalready provide support for
SWRL. Due to these advances in implementatiors itaw possible to develop
agents based on semantic rules. Thus our choiceatigtwent to SWRL for the
design of the Semantic Agent Model (SAM). SWRL prgs two main advan-
tages compared to other rule languages. First Bectus an OWL based lan-
guage, it allows writing the rules in terms of OWhncepts (i.e. classes, individu-
als, properties and data values). To these OWLeanutecthe SWRL specification
adds several built-ins functions for comparisonathmstrings and time [12]. From
a more agent programming point of view, conceptthefagent knowledge base
can be directly treated in the rule language withass of expressivity.

3 http://www.w3.org/Submission/SWRL/

4 http://www.w3.org/Submission/WRL/

5 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
6 http://clarkparsia.com/pellet/

7 http://herzberg.ca.sandia.gov/jess/
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Fig 1.1 TheSemantic Web Layer Cake

The second benefit of SWRL resides in its logieainfdations. SWRL com-
bines OWL-DL (decidable version of OWL) with Rule akkup Language
(RuleML). Thus, it can be roughly considered as tinéon of Horn-Logic and
OWL based on the description logic SHOIN. Consetlyethe expressivity of
SWRL comes at the price of decidability [19]. SWRLnot decidable (SWRL
full). However, a subset called DL Safe SWRL rukeslecidable. For the agent
development and for reasoning, DL Safe SWRL rukesraore expressive com-
pared to other rule languages. Indeed, most ofuleebased agents are based on
Prolog supporting Horn Clauses. Researches arertlyrgoing on for imple-
menting DL reasoning in Prolog but none is curseatlailable for agents. Practi-
cal advantages for using Description Logic in thedf of Multi-Agent Systems
(MAS) has been shown in [18], especially in thédfief information retrieval.

Architecture design

Programming agent behavior using a rule languagebeacarried out in two
ways. The first way consists in extending a logiegpamming language in order
to support traditional agent features (i.e. mesgaagsing, threading, etc.). The
second way consists in building a layered archirectising the rule language at
an upper layer. Some agent features are delegat@dotver layer. In this type of
architecture, the lower level language (i.e. J&+&+,etc.) is commonly used to
handle communication, file access, thread managgrmten The main idea behind
this approach is to reuse the required featuresviil@s that are already imple-
mented in another language and to define an agpreter to support a particu-
lar architecture, such as BDI for instance. Therditure shows examples of both
approaches. Clark et al. [7] follows the first apgrh by extending Qu-Prolog
with multi-threading support and inter-thread mggeseaommunication. However,



this approach is not scalable and does not comjilytie Agen Communication
Language (ACL) as specified by the FFPEIPA-ACL is currently recognized as
the standard for agent communication and ensutesoperability between MAS
frameworks. S-APL that we discussed in the previsestion follows the same
approach but some direct calls to JAVA functions directly inserted into the
rules.

SAM Architecture

Standard MAS languages rely on the second appradagntO, the first agent
dedicated language, which is an implementationh@h@&m's Agent Oriented Pro-
gramming was developed on top of LISP. SimilarlpP8, 3APL-m, JA- SON
and the BDI agent system Jadex are based on JAVAaf2hitecture follows the
same approach. The specificity of our approach rely on a finite number of ac-
tions, in order to ensure interoperability of agéhehaviors.

In short, our approach results in the layered &chire (Fig.1.2) :

1. Knowledge Base
2. Engine

3. MAS Framework and low level actions

8 http://www.fipa.org/repository/aclspecs.html
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Fig. 1.1: SAM Agent architecture

Knowledge Base

The knowledge base is the upper layer of the SAshitacture. The knowl-
edge base contains the knowledge of the agent whicbur approach, is com-
posed of static knowledge and behavior. Agent biehsware expressed using
SWRL rules. As SWRL is based upon OWL, Terms @&/L concepts) of the
knowledge base are directly manipulated in thestuleerms of the knowledge
base can appear in both antecedent and conseduiet mles. A formal specifi-
cation of the rule syntax is given in section 1.2.5

Engine

As SWRL built-ins do not cover all the requiremefds agent programming,
we have introduced additional low level actiongd(Bxyer) and a link between the
rules and these actions. This link is given by ddi@ layer, which is the control
structure that interfaces the rules contained & khowledge base and the low
level actions. Rules from the knowledge base adebyethe engine, one at a time.
If a rule requires a call to low level actions, trggine layer carries out this call.



Low level actions and MAS Framework

This layer contains the implementation of the l@wdl actions that are com-
plementary to SWRL built-ins. An extensive listtbEse actions is given in sec-
tion 1.3. Notice that these actions are introduaednstances of OWL class Ac-
tions in the syntax of the rules (1st layer). Comivation between agents relies
on an existing MAS framework. Messages are stredtfmllowing the FIPA-ACL
standard, and consequently the MAS framework haset&-IPA compliant (our
implementation is based upon JADE which is FIPA ptiamt). Messages from
other agents are received through the MAS framewtirén converted into an
OWL representation and finally added to the knogketase.

Control Structure

Rule-based agents constitute an important patteofésearch on MAS. In [11],
Hindriks et al. define the requirements for a miaimgent programming language
that includes rules and goals. They also definethdtization tools that were ap-
plied to three standard agent programming languag@ENT-0[21], AgentS-
peak(L)[20] (that was later implemented and extende JASONI[4]) and
3APL[10]. Their definition of an agent program fgwal directed agents includes a
set of rules called the rule base of the agentyTdentify rule ordering as a cru-
cial issue in rule-based agents. However, thisgmtssus with the following prob-
lem: when several rules from the rule set can kelfithere must be an order to
determine the sequence of execution of those r8leshe order in which the rules
will be sorted must be defined. Hindriks et al.][btoposed that all rules fall into
one of the following categories: reactive(R), meand(M), failure(F) and opti-
mization(O) with an order based on intuition :

R>F>M>0

As SWRL doesn't support rule ordering, we are atsafronted with the same is-
sue. However, instead of deciding an arbitrary grde have decided to use an-
other model of behavior, a slightly modified versiof the Extended Finite State
Machine (EFSM) model [6]. EFSM guarantees the etk@cwof only one rule at a
time. In EFSM, transitions between states are eseck using IF statements. A
transition is fired when trigger conditions areigalOnce the transition has been
fired, the machine is brought from the currentestatthe next state and the set of
specified operations are performed. Our choice isse a finite number of actions
(called atomic actions) to fulfill basic MAS reqeiments. We differentiate two
kinds of atomic actions, external and internaletnal actions have an effect on
the agent internal knowledge Base.
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Fig. 1.2 SAM Agent Interpreter

External actions are the interactions of the agétfiin its environment. These ac-
tions include environment perception, action ondhgironment, message recep-
tion and emission. External actions are not inaluieSWRL built-ins whereas a
subset of internal actions is. In section 1.3 wiitlehe list of atomic actions that
are not SWRL built- ins. A deterministic EFSM isestriction of EFSM in which
there is at most one possible transition for edate sand set of triggering condi-
tions. We used this restriction to ensure that ame rule can be triggered at a
time. A pseudo code algorithm for the interpresedéfined in algorithm 1.

Algorithm 1: SAM Interpreter

begin

CurrentState +— sBegin

while CurrentState £ sEND do

temp +— nextStateValue()

if temp # currentState then
remove Property(currentState, stateValue)
actionList «— get ActionList()
if executeAction(actionList) then
addProperty(current State, temp)
else addProperty(currentState, errorState)

end

Execution Stack



The behavior of an agent can be seen as progracutexkby a computer. In
the same manner as for computer programs, ageavioelshould be able call sub
behaviors. We designed an execution stack to mainkee history of behavior
calls, and the state of the behavior that issuect#iti. For example let us consider
an agent currently at the state A, and its curbattavior isGetinfq called with
the parameteBob. If the next action is to load the behaviearchPicturewith
the same paramet&oh, this behavior will become the current behaviod aill
be placed on top of the stack owgetinfa The figure 1.4 depicts the stack before
and after the transition. In the OWL implementatitime current behavior is set
with the propertyhasBehavioon the individuaturrentBehavior

GetInformation Bob Load behaviour SearchPicture Begin
SearchPicture with
input: Bob GetInformation A Bob

Fig. 1.3 Stack Evolution after loading of a behavior
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SAM interpreter : Activity diagram
Red : call to reasoner
Green : call to low level actions .

Initialisation
Starting the JADE Agent

Load Knowledge Bass

Load first behaviour
Start the bahaviour

|
CurrantStata = Bagin
¥

Execute tra Lo
1 Read first stale Update the state
2 Execute SWRL Functions

X

CurrentState = END CurrentState <= END
No action
Read the execution stack slze Get list of low lavel actions
Stack siza <>0 Stack size = 0 Get the action to execute
Action
L—— Pop stack element \l,

Go to mext action Get aclion parameters

Exeacute the action

Fig. 1.4 : Interpreter activity diagram

L anguage Syntax

The syntax of the rule language that we designeaiign figure 1.2.5) is ex-
pressed in Extended Backus-Naur Form (EBNF). Thidax is based on the ex-
isting SWRL EBNF syntax as specified in [12]. SAMammar is included in the
SWRL grammar. In the antecedent of a SAM ridéantecedehit is manda-
tory to specify to which state the rule appliesisTik set up by thbasStateValue
property. The previous propertgurrentState ensures that the rule will be fired
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when the current state of the EFSM is the one tmhwthe rule applies. The sec-
ond part of the antecedent contains the triggecmgditions. In this part, condi-
tions under which the transition will be triggerae defined. The range of these
conditions is the knowledge base of the agent. & besditions are represented by
atom* which is not modified from the original SWHRipecification. Conditions
can test the validity of class belonging, propémsgween classes or between indi-
viduals, including received messages.

The rule consequent ternsAMconsequeptspecifies the destination state of
the transition and the sequence of atomic actiorisetexecuted. Each action has
different parameters. Parameters are passed wsmgropertieshasParameter-
NameandhasParameterValueThe first property applies to the action whichids
be executed and it specifies the name of the pdesuriehen properthasParame-
terValueis applied to the name of the parameter in oraepecify its value.

SAMrule ::= 'Implies (" [ URIreference |
{ annotation } SAMantecedent SAMconsequent ')
SAMantecedent: := currents e('i-variable’ )"’
hasState ue’ (*i-variable’ )}’ atom=
SEMconseguent: := hasNextState’ (fi-wvariable’ )’
hasActionList’ (a-list” )’ atoms
a-list 23
|
action ::= URIreference hasParameterName (a-name)
a-name : 1= hasParameterValue (i—object)
atom ::= description * (* i-object )’
| dataRange ' (¥ d-object ')
| individualvaluedPropertyID * (* i-object i-object *)’
| datavaluedPropertyID * (* i—object d-object *)*
| s #{* i-object i-object *)*
| erentFrom * {(* i-object i-object *)’
| n ‘(' builtinID { d-ebject } *}*
builtinID ::= URIreference
endlist := URIreference
i-chject ::= i-variable | individualID
d-object ::= d-variable dataliteral
i-variable ::= *I-variable (" URIreference ' )*
d-variable ::= 'D-variable (* URIreference ")’

Fig. 1.6 EBNF interpreted by SAM
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Semantic Agent Model

The architecture, the control structure and theyuage syntax we have just
presented before enable us to elaborate the sen@geiht model. Using the pre-
vious given architecture, we built an OWL repreagah of the agent with differ-
ent components (Figure 1.7. In accordance withptteious section, the model
holds a finite number of states and of atomic asti@s well as the parameters for
the actions. We defined two specials stas@gginandsEndthat specify the be-
ginning and end states of the EFSM. Every agestiatior must start witeBegin
and end withsEnd Environment interactions are described within theeived

messages queue.

Agents

Execution stack

This agent name : String
.... . String

1

<<j >>

110

S

I |

<<realize>> 1 :
I

1

<<realize>>

‘ Input l ‘ Output

Behaviour

Current State [>

State

Rules

name : String

Action List

Fig. 1.7: The Semantic Agent Model

tions by layer).

1
0.*

Actions

name : String

/\ /\
Internal Actions External Actions

As mentioned, possible actions that are not SWRIlt-ims are divided into
two categories: internal and external actions. Heeedetail the different atomic
actions that are required in both categories (leiduB presents the different ac-
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Internal Actions External Actions

v Assertions
v'Comparisons

SWRL v Maths
Fonctions v string

v Boolean
v Date, time, duration
v URI
v'Creation
v Classes
 Individual v'Send messages
Low Level . v'Receive messages
. v Relations . .
Functions v'Platform interaction

v Modification : idem
v Deletion :idem

Fig. 1.8 : Actions by layer

Internal Actions: agent knowledge is expressed using OWL concefasses,
properties, individuals and data value. For eacitept, three basic operations are
needed: creation, modification, deletion. Unfortigha only the first one is sup-
ported by SWRL built in. SWRL supports assertioh daes not support negation.
In practical terms, it is possible to assert thatpprties apply to individuals or
classes in the rule consequent. The following exarigptaken from the SWRL
proposal document and shows the assertion of thke ymoperty by composing
parent and brother properties:

parent(?x, 7y) A brother(?y,7z) = uncle(?x,72) (1.1)

However the following rules (2,3) are not possiblece SWRL neither sup-
ports negation as a failure (2) nor non-monotoyi(3). Hence it is not possible to
withdraw information using the rule consequent.

—Person(?r) = NonHuman(?x) (1.2)
parent(?z, 7y) A brother(?y,72) = —aunt(?xr,7z) (1.3)

As only creation is possible using SWRL (at a higlesel), we define addi-
tional actions at lower level:

« maodify/remove property
« modify/remove class belonging from a resource

« modify/delete individual
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» modify/delete datarange property

Internal actions, belonging to SWRL built-ins areeuted by the rule engine.
Other internal actions, the low level actions aked by the agent interpreter.

External Actions refer to the agents' interactions with their emwinent. We
restrict our scope to software agents that evaivani electronic environment. In-
teractions are then limited to message exchangegebr agents. We rely on the
FIPA ACL specification for the message structufesceived messages are stored
in the message list. In the agent's KB, messagepldrin a lisReceivedMessages
that is an instance of OWLList. Eventually there &wvo basic external actions,
sendMessagand receiveMessagefFollowing the ACL specification, forging a
message requires several parameters; among theoamweite sender, receiver,
ontology used, performative and so on. From thasels actions, it is possible to
build complex interactions between actions. Fotainse FIPA ACL specifies an
extensive communicative act library including quanswer, contracting, pro-
posal, subscribing. Different fields of the message represented in the OWL
knowledge Base using properties, hasPerformative, hasContent, hasSender

Defining new actions

The agent model contains a finite list of basidaas for communication and
knowledge base management purpose. In SAM therevarapproaches to define
new actions. The first is to extend the set of labdé of low level actions. The
second one is to define new actions by combinieggttisting ones.

Defining new atomic as n-
guage. This apj ' et au-
thors. It should eton Jlar
approach consists . de-

. sut 5 .
noted these actions as cor i By 5 is
a kind iS“I‘”t‘:‘iﬁ*i’ﬁEose action ( s e \ rred

. ) spointyWi

erformative Query 0 d fine ne |Atomic Action Cin::no:ea n as
far.agentsi.behaviors. Con SM.
These rules sh y b subClassOf subClassOf i5a ore
these rules are red \ but
they are instan ec| imema [T External ot | thE
rule ;de’ahchester Synt# Action Action ion is

[ value | i i , o

T Fig. 1.9 Ontology of the actions in SAM

A ha

Fig. 1.10 Illustrative example (a), Scenario
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the following. Let us assume that the agent isdira transition between state A
and B. During this transition a com- posed actialted comp is to be executed.
First the engine removes the rules of the curreftakior from the knowledge
base and stores them using a string representdti@nengine also keeps tracks of
the current state and transition sequence thaewesuted.

The engine sets the current state of the agenh tatarmediate stateBegin
Then it extracts the string representation of tiles from comp and adds them to
the knowledge base. The composed action is theougee following the same
way as an agent behavior. Once the action finistredengine removes the rules
and sets back the agent’s behavior context. Natethlis process is recursive and
a composed action can call another composed action.

Example

To illustrate the mechanism behind semantic agerdsake a simple example
and process the several steps of the executioneXdmaple has following content:
start the agent Alice, register it with the diregtéacilitator of the framework, and
send a query to the agddoh. If a received message is frddob and if this mes-
sage has the performative answer then Alice addsdhtent of the answer into its
knowledge base. The resulting EFSM is depictedgaré 1.10. The left column
of the figure describes the low level atomic adi@xecuted during a transition.
Triggering conditions, contained in the anteceddrihe rule, are on the right side
of the picture. The first transition is conditiofise. If Alice is in thesBeginstate
then the transition to the statewill occur. Actions related to the transition are
executed as a sequence. The next actions are edecnly if the previous suc-
ceeded. The actioregisterDF is executed first. If it is successful (returnsely a
message with the query performative and contgiaigquery is sent to agent Bob.
The rule used to describe this transition is priestibelow in a human readable
syntax :
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CurrentState(7r)
N hasStateValue(x, sBegin)
A NextState(?y)

= hasStateValue(y, A)
N hasContents( ActionSequence, register DF')
A hasNext(ActionSequence, item)
A hasContents(item, SendMessage)
A hasParameter N ame(SendM essage, Sender)
N hasParameterValue(SendT o, Bob)
. same with other parameters

N hasNext(item, endList)

Within the architecture, the engine checks whetndransition occurs in re-
guesting théNextStatesalue to the knowledge base . If this value ifedént from
the CurrentStatethen a transition is enabled. Then the enginéekats the values
of ActionSequengewith the respectives parametefstionSequences a linked-
list (Fig.1.11) in which each item has thasParameterNamproperty. The value
of the parameter is specified in thasParameterValugroperty. The structure of
the list of actions follows the OWL model depictiedfigure 1.7. TheSendmes-
sageinstruction is linked to its parameters using @mies as described in figure
1.11. The second transition contains triggeringditioms regarding the received
message. Adlice sent a query tBoh, the next step oAlice'sbehavior may be to
handle the answer froob. Thus, we specify a condition on received messages
to ensure thaBobis the sender and that the message is of Ayyssver:
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CurrentState(?r)

A hasStateValue(x, A)
A NextState(7y)
A hasReceived(?2)
N hasPer formative(z, Answer)
A hasSender(z, Bob)
N hasContent(z, Tw)

= hasStateV alue(y, sEnd)
A hasContents{ ActionSequence, AddInvidual)
A hasNext(ActionSequence, endList)
A hasParameter N ame( AddInvidual, name)
A hasParameterV alue(name, w)

We will now detail the interactions between thdeatié#nt layers in the architec-
ture during the execution of the first transition.

[ Bob ] [ Query ] | Select ?x from.. I

hasParameterValue hasParameterValue hasParameterValue
[ SendTo ] [ Performative ] Content
hasParametN meterNam hasParameterName
RegisterDF SendMessage
hasContent hasContent

{RegisterDF,
Sendmessage}

{Sendmessage}

hasNext

Fig. 1.11 Illustrative example (b), ActionList data structure

Execution Phase
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Representing the action execution on a timelinkfdhg the architecture as in
Section 1.2.1 is represented in Figurel.12. lofedl Algorithm 1. The SAM en-
gine firstly enquires of a rule triggering, in tluase, the knowledge Base query re-
turnsNextState= A. As A !=sBegin the engine retrieves the current list of actions
containing RegisterDF and SendMessageActions are performed sequentially.
First RegisterDFis executed and if it returns true thBendMessages be exe-
cuted. When both actions succeeded, the curret® sfathe agent is updated to
NextStatevalue; in this case it is state A.

Knowledge .
N
G " 8 | 5% <
3 o =~ & 8 50
n o < o 9 B 2 T W
2 S = 3 W = T +
U @ Cwm| &3 a8
Z > <> =3 o wn
w
Engine
Q
w
go 28
5 & 5%
Atomic i
Actions

Fig. 1.12 Illustrative example (¢), Flow chart of the transition from Begin to A

I mplementation

We have developed a JAVA interpreter that commuagavith the knowledge
Base using the Protege-OWL API 10 Pellet is usembmbination with Jena 11 as
a SWRL reasoner. The JADE framework is used fotdtelevel external actions.
The framework handles agent registration, serviseodery and message passing.
It also provides an environment that is FIPA-ACLrgiiant. One implementation
issue we encountered was that OWL does not suRiaktlists. An OWL equiva-
lent called OWLLIst has been developed and is tieedpresent action sequences
and the queue of received messages. A first vexsidhe open-source prototype
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is available online 12. Besides the validation af model, the implementation
prototype presents some limitations. Nowadays theis of SWRL reasoners is
not satisfying because none of them fully suppbet BWRL specification. We
have used Pellet as a SWRL reasoner, since itriemtly the most advanced
open- source implementation of SWRL. As developsatands at the moment,
several important features are not supported IligtPér instance some SWRL
built-ins are not yet available. The implementatiesults show the feasibility of
the proposal and we intend to further develop tleegtype to make it fully suit-
able for the development of applications. Semawieb technologies is a field
where advances take place. Current restrictionsS@RL support should no
longer be an issue since advances in the fielth@fSemantic Web technologies
occur very rapidly and regularly. Finally, this ileamentation of the prototype al-
lowed us to validate our approach and to identigylimitations.

Per spectives

One of the primary advantages of agent based kuigwlenanagement over the
classical centralized approach is the proactivenéshe agents [22]. Proactive-
ness is the ability of agents to initiate changebta take initiatives. It is opposite
to the reactive approach where agents react taiktgnmor changes in their envi-
ronment. Concretely, in the agent design, the pingaress is implemented in dif-
ferent agent behaviors. The benefit of semantimtageogramming is to enable
the semantic description and exchange of the agbsetsaviors. Thus, agents
evolving in cooperative environments are able tardebehaviors from other
agents. In common knowledge management framewbeksature of knowledge
exchanges between agents is limited to static kexbgd. Semantic agent pro-
gramming our proposal allows agents to share nigt static knowledge but also
dynamic knowledge insofar as agents are able thagxge their own behaviors.

This ability opens a broad scope of applicatiors guestions. In the same way
as for static knowledge exchanges, behaviors exgsaare subject to trust and
security issues. Moreover, behaviors are execugatidbagents and the execution
of a malicious behavior could lead to serious sicis- sues. We believe that ex-
isting cryptographic and trust mechanisms can easiladapted to the exchanges
of semantic behaviors.

From a larger point of view, this approach takes ¢pposite of the current
software as a service trend. In the service apprgawviders share (or sell) the
use of their services, but not the implementatibthe service. With the semantic
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behavior exchange approach, agents share the iraptation of the service.

Clearly this approach is valuable in cooperativeimmment, for example when

agents belong to the same organizations. Severdiesthave shown that reactive
and proactive agents lead to the same performamoa@ organizations [16, 24,

5].

The consequence of semantic behavior sharing oactive agents is impor-
tant. Agents are now able to learn behaviors fréneroagents and to recombine,
evaluate, modify these behaviors to enhance theiaghive capabilities. These
missing abilities were not taken into account imfer studies and we believe it
can greatly improve the performance of proactivends)

Conclusion

In this chapter, we presented how the next gemegratf Semantic Web tech-
nologies can be applied in MAS programming. We wlised the limitations of
current semantic approach and noticed the lackeafasitic programming for
agents' behaviors. State of the art frameworkdirareed in terms of interoperabil-
ity. To bridge this gap, we designed agent architecto support behavior pro-
gramming with semantic rules using a finite numbkactions, identical for each
agent. This approach allows the sharing of behawetween agents, without re-
lying on a specific lower level language. We detithe three layer architecture,
the language syntax and the interpreter. Afterwavdsdiscussed the advantages
of semantic agent programming in terms of knowleghgmagement especially in
the field of proactive cooperative agents.
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