
HAL Id: hal-00630360
https://hal.science/hal-00630360

Submitted on 9 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Agent for Distributed Knowledge Management
Julien Subercaze, Pierre Maret

To cite this version:
Julien Subercaze, Pierre Maret. Semantic Agent for Distributed Knowledge Management. Atilla Elçi,
Mamadou Tadiou Koné and Mehmet A. Orgun (Eds). Semantic Agent Systems. Foundations and
Applications, Springer, pp.47-63, 2011, Studies in Computational Intelligence, N.344, �10.1007/978-3-
642-18308-9�. �hal-00630360�

https://hal.science/hal-00630360
https://hal.archives-ouvertes.fr


Semantic Agent for Distributed Knowledge 
Management 

Julien Subercaze and Pierre Maret1 

Introduction and motivation 

 
At the beginning of the decade, the Agent Mediated Knowledge Management 

workshops series [23, 1, 13] as well as Bonifacio's theoretical approach [3] layed 
the foundations of a new field of distributed knowledge management based upon 
the agent paradigm. The agent based approach enables key features for knowledge 
management. The local management of knowledge by agents allows going beyond 
the limitations of centralized knowledge management. Thus, knowledge can be 
maintained in each agent at a coarse-grained level, with different representations. 
Interactions between agents permit us to take into account the social aspect of 
knowledge and are well suited to represented organizational memories [9]. Van 
elst also outlined the importance of pro- activeness for knowledge management 
[22]. 

In the mean time, the publishing of the agent roadmap in 2003 [17] pointed out 
the lack of connection between multi-agent systems and semantic web technolo-
gies. Since then, many applications and frameworks have been developed to 
bridge this gap. Semantic web languages and tools are now widely used to repre-
sent agents' knowledge. TAGA [25] uses OWL and RDF as knowledge represen-
tation in the field of a trading agent competition, using a FIPA compliant frame-
work. AgentOWL [15] extends JADE agents with OWL support for their 
knowledge Base (KB). It also introduces an OWL based semantic agent model. 
Knowledge agents, introduced by [2], are used for domain specific web search. In 
this application, agents' KBs are represented in RDF. RDF is also used in 
CORESE [8] which is a semantic web search engine for corporate knowledge de-
veloped within the COMMA (Corporate Memory Management through Agents) 

                                                           
1 Julien Subercaze 

Laboratoire Hubert Curien, Saint-Etienne F-42000, France e-mail: julien.subercaze@univ-st-
etienne.fr 

Pierre Maret 

Laboratoire Hubert Curien, Saint-Etienne F-42000, France e-mail: pierre.maret@univ-st-
etienne.fr 



2  

European IST project. The JADE framework, which is currently the most used in 
research and industry supports natively RDF  representing agents' knowledge. 
These examples show us that semantic web technologies are widely used for rep-
resenting agent knowledge, and that we can clearly state that the connection be-
tween agent-based knowledge management and semantic web has been made. 

However, this example presents the use of semantic for the representation of 
agent's knowledge and not for the dynamic part of the agent: its behavior. 
Katasonov proposed a Semantic Agent Programming Language (S-APL) [14], 
based on BDI reasoning, in which agent behavior are semantically described. Be-
haviors remain programmed in JAVA but are described in RDF syntax. A closed-
world reasoner (CWM2) is used for BDI support. S-APL has three main draw-
backs. First the reasoning is restricted to the closed world assumption whereas 
semantic web languages such as OWL make the open world assumption. Secondly 
each new function in S-APL has to be programmed in JAVA, which reduces the 
interoperability between agents. An agent having some new functions will not be 
able to transfer its behavior to another agent since the latter does not own the 
JAVA code implementing the functions. Using this approach, agent behavior pro-
gramming is not taking advantage of the semantic web technologies and limits in-
teroperability. 

Our motivation is to program agent behavior using semantic web standards us-
ing a finite number of actions that will be used to build complex behaviors. This 
language should not refer explicitly to a lower level language and should support 
open world reasoning. The latest advances in the field of semantic web have en-
abled rule languages supporting open world reasoning. We base our approach on 
the use of semantic rule language to program semantic agents. We aim at design-
ing agents having a knowledge base and behavior base represented using the same 
syntax. The use of OWL for knowledge base and semantic rules for behavior al-
lows this feature. In the next section we first discuss the choice of the semantic 
rule language that will be used to program agents and then present the design of an 
agent programming language and the resulting agent architecture. In section 1.3 
we describe the resulting ontological agent model. Section 1.4 shows a practical 
example of a SAM behavior and details the different steps of its execution. Sec-
tion 1.5 concerns the implementation of the SAM prototype. We discuss in section 
1.6 the perspectives of application of semantic agents in distributed knowledge 
management. Our conclusions are presented in section 1.7.  

 

                                                           
2 http://www.w3.org/2000/10/swap/doc/cwm.html 



3 

 

Building agents with semantic rules 

 
Semantic rules are an important part of the Semantic Web project. Figure 1.1 

shows the current status of specification in the Semantic Web layer cake. The 
logic part, which is of primary interest for us, is still work in progress. This part 
describes the semantic rule languages. Currently, for this layer, two proposals are 
pending. The most well known one is the Semantic Web Rule Language (SWRL)3 
[12]; it is based on a combination of the OWL-DL with the RuleML language. 
The second proposal is the Web Rule Language (WRL4) initiative that was in in-
fluenced by the Web Service Modeling Language WSML. Whereas WRL is at a 
draft stage, the semantic web community is focusing its research towards SWRL. 
Indeed, software such as Protégé5, Pellet6 and Jess7 already provide support for 
SWRL. Due to these advances in implementation, it is now possible to develop 
agents based on semantic rules. Thus our choice naturally went to SWRL for the 
design of the Semantic Agent Model (SAM). SWRL presents two main advan-
tages compared to other rule languages. First because it is an OWL based lan-
guage, it allows writing the rules in terms of OWL concepts (i.e. classes, individu-
als, properties and data values). To these OWL concepts, the SWRL specification 
adds several built-ins functions for comparisons, math, strings and time [12]. From 
a more agent programming point of view, concepts of the agent knowledge base 
can be directly treated in the rule language without loss of expressivity.  

                                                           
3 http://www.w3.org/Submission/SWRL/ 
4 http://www.w3.org/Submission/WRL/ 
5 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab 
6 http://clarkparsia.com/pellet/ 
7 http://herzberg.ca.sandia.gov/jess/ 



4  

 
Fig 1.1 TheSemantic Web Layer Cake 
 
The second benefit of SWRL resides in its logical foundations. SWRL com-

bines OWL-DL (decidable version of OWL) with Rule Markup Language 
(RuleML). Thus, it can be roughly considered as the union of Horn-Logic and 
OWL based on the description logic SHOIN. Consequently the expressivity of 
SWRL comes at the price of decidability [19]. SWRL is not decidable (SWRL 
full). However, a subset called DL Safe SWRL rules is decidable. For the agent 
development and for reasoning, DL Safe SWRL rules are more expressive com-
pared to other rule languages. Indeed, most of the rule-based agents are based on 
Prolog supporting Horn Clauses. Researches are currently going on for imple-
menting DL reasoning in Prolog but none is currently available for agents. Practi-
cal advantages for using Description Logic in the field of Multi-Agent Systems 
(MAS) has been shown in [18], especially in the field of information retrieval.   

 

Architecture design 

 
Programming agent behavior using a rule language can be carried out in two 

ways. The first way consists in extending a logic programming language in order 
to support traditional agent features (i.e. message passing, threading, etc.). The 
second way consists in building a layered architecture using the rule language at 
an upper layer. Some agent features are delegated to a lower layer. In this type of 
architecture, the lower level language (i.e. Java, C++,etc.) is commonly used to 
handle communication, file access, thread management, etc. The main idea behind 
this approach is to reuse the required features for MAS that are already imple-
mented in another language and to define an agent interpreter to support a particu-
lar architecture, such as BDI for instance. The literature shows examples of both 
approaches. Clark et al. [7] follows the first approach by extending Qu-Prolog 
with multi-threading support and inter-thread message communication. However, 



5 

this approach is not scalable and does not comply with the Agen  Communication 
Language (ACL) as specified by the FIPA8. FIPA-ACL is currently recognized as 
the standard for agent communication and ensures interoperability between MAS 
frameworks. S-APL that we discussed in the previous section follows the same 
approach but some direct calls to JAVA functions are directly inserted into the 
rules. 

 

SAM Architecture 

 
Standard MAS languages rely on the second approach. Agent0, the first agent 

dedicated language, which is an implementation of Shoham's Agent Oriented Pro-
gramming was developed on top of LISP. Similarly, 3APL, 3APL-m, JA- SON 
and the BDI agent system Jadex are based on JAVA. Our architecture follows the 
same approach. The specificity of our approach is to rely on a finite number of ac-
tions, in order to ensure interoperability of agents' behaviors.  

In short, our approach results in the layered architecture (Fig.1.2) : 

1. Knowledge Base 

2. Engine 

3. MAS Framework and low level actions 

                                                           
8 http://www.fipa.org/repository/aclspecs.html 



6  

 

Fig. 1.1 : SAM Agent architecture 

Knowledge Base 

The knowledge base is the upper layer of the SAM architecture. The knowl-
edge base contains the knowledge of the agent which, in our approach, is com-
posed of static knowledge and behavior. Agent behaviors are expressed using 
SWRL rules. As SWRL is based upon OWL, Terms (i.e. OWL concepts) of the 
knowledge base are directly manipulated in the rules. Terms of the knowledge 
base can appear in both antecedent and consequent of the rules. A formal specifi-
cation of the rule syntax is given in section 1.2.5. 

Engine 

As SWRL built-ins do not cover all the requirements for agent programming, 
we have introduced additional low level actions (3rd layer) and a link between the 
rules and these actions. This link is given by a middle layer, which is the control 
structure that interfaces the rules contained in the knowledge base and the low 
level actions. Rules from the knowledge base are red by the engine, one at a time. 
If a rule requires a call to low level actions, the engine layer carries out this call. 



7 

Low level actions and MAS Framework  

This layer contains the implementation of the low level actions that are com-
plementary to SWRL built-ins. An extensive list of these actions is given in sec-
tion 1.3. Notice that these actions are introduced as instances of OWL class Ac-
tions in the syntax of the rules (1st layer). Communication between agents relies 
on an existing MAS framework. Messages are structured following the FIPA-ACL 
standard, and consequently the MAS framework has to be FIPA compliant (our 
implementation is based upon JADE which is FIPA compliant). Messages from 
other agents are received through the MAS framework, then converted into an 
OWL representation and finally added to the knowledge base. 

 

Control Structure 

 
Rule-based agents constitute an important part of the research on MAS. In [11], 

Hindriks et al. define the requirements for a minimal agent programming language 
that includes rules and goals. They also defined formalization tools that were ap-
plied to three standard agent programming languages AGENT-0[21], AgentS-
peak(L)[20] (that was later implemented and extended in JASON[4]) and 
3APL[10]. Their definition of an agent program for goal directed agents includes a 
set of rules called the rule base of the agent. They identify rule ordering as a cru-
cial issue in rule-based agents. However, this presents us with the following prob-
lem: when several rules from the rule set can be fired, there must be an order to 
determine the sequence of execution of those rules. So the order in which the rules 
will be sorted must be defined. Hindriks et al. [11] proposed that all rules fall into 
one of the following categories: reactive(R), means-end(M), failure(F) and opti-
mization(O) with an order based on intuition : 

 
R > F > M > O 

 
As SWRL doesn't support rule ordering, we are also confronted with the same is-
sue. However, instead of deciding an arbitrary order, we have decided to use an-
other model of behavior, a slightly modified version of the Extended Finite State 
Machine (EFSM) model [6]. EFSM guarantees the execution of only one rule at a 
time. In EFSM, transitions between states are expressed using IF statements. A 
transition is fired when trigger conditions are valid. Once the transition has been 
fired, the machine is brought from the current state to the next state and the set of 
specified operations are performed. Our choice is to use a finite number of actions 
(called atomic actions) to fulfill basic MAS requirements. We differentiate two 
kinds of atomic actions, external and internal. Internal actions have an effect on 
the agent internal knowledge Base.  



8  

 
Fig. 1.2 SAM Agent Interpreter 
 

External actions are the interactions of the agent within its environment. These ac-
tions include environment perception, action on the environment, message recep-
tion and emission. External actions are not included in SWRL built-ins whereas a 
subset of internal actions is. In section 1.3 we detail the list of atomic actions that 
are not SWRL built- ins. A deterministic EFSM is a restriction of EFSM in which 
there is at most one possible transition for each state and set of triggering condi-
tions. We used this restriction to ensure that on   one rule can be triggered at a 
time. A pseudo code algorithm for the interpreter is defined in algorithm 1. 

 

 
 

Execution Stack 



9 

 
The behavior of an agent can be seen as program executed by a computer. In 

the same manner as for computer programs, agent behavior should be able call sub 
behaviors. We designed an execution stack to maintain the history of behavior 
calls, and the state of the behavior that issued the call. For example let us consider 
an agent currently at the state A, and its current behavior is GetInfo, called with 
the parameter Bob. If the next action is to load the behavior SearchPicture with 
the same parameter Bob, this behavior will become the current behavior and will 
be placed on top of the stack over GetInfo. The figure 1.4 depicts the stack before 
and after the transition. In the OWL implementation, the current behavior is set 
with the property hasBehavior on the individual currentBehavior.   

 

 
Fig. 1.3 Stack Evolution after loading of a behavior 



10  

 

Fig. 1.4 : Interpreter activity diagram 

Language Syntax 

 
The syntax of the rule language that we designed (given in figure 1.2.5) is ex-

pressed in Extended Backus-Naur Form (EBNF). This syntax is based on the ex-
isting SWRL EBNF syntax as specified in [12]. SAM grammar is included in the 
SWRL grammar. In the antecedent of a SAM rule (SAMantecedent) it is manda-
tory to specify to which state the rule applies. This is set up by the hasStateValue 
property. The previous property, currentState, ensures that the rule will be fired 



11 

when the current state of the EFSM is the one to which the rule applies. The sec-
ond part of the antecedent contains the triggering conditions. In this part, condi-
tions under which the transition will be triggered are defined. The range of these 
conditions is the knowledge base of the agent. These conditions are represented by 
atom* which is not modified from the original SWRL specification. Conditions 
can test the validity of class belonging, property between classes or between indi-
viduals, including received messages. 

 
The rule consequent term (SAMconsequent) specifies the destination state of 

the transition and the sequence of atomic actions to be executed. Each action has 
different parameters. Parameters are passed using two properties, hasParameter-
Name and hasParameterValue. The first property applies to the action which is to 
be executed and it specifies the name of the parameter. Then property hasParame-
terValue is applied to the name of the parameter in order to specify its value. 

 

 



12  

Semantic Agent Model 

 
The architecture, the control structure and the language syntax we have just 

presented before enable us to elaborate the semantic agent model. Using the pre-
vious given architecture, we built an OWL representation of the agent with differ-
ent components (Figure 1.7. In accordance with the previous section, the model 
holds a finite number of states and of atomic actions, as well as the parameters for 
the actions. We defined two specials states, sBegin and sEnd that specify the be-
ginning and end states of the EFSM. Every agent's behavior must start with sBegin 
and end with sEnd. Environment interactions are described within the received 
messages queue. 

 
Fig. 1.7: The Semantic Agent Model 
 
As mentioned, possible actions that are not SWRL built-ins are divided into 

two categories: internal and external actions. Here we detail the different atomic 
actions that are required in both categories (Figure 1.8 presents the different ac-
tions by layer). 



13 

 

Fig. 1.8 : Actions by layer 
 
Internal Actions: agent knowledge is expressed using OWL concepts: classes, 

properties, individuals and data value. For each concept, three basic operations are 
needed: creation, modification, deletion. Unfortunately only the first one is sup-
ported by SWRL built in. SWRL supports assertion but does not support negation. 
In practical terms, it is possible to assert that properties apply to individuals or 
classes in the rule consequent. The following example is taken from the SWRL 
proposal document and shows the assertion of the uncle property by composing 
parent and brother properties:     

 

 
 
However the following rules (2,3) are not possible since SWRL neither sup-

ports negation as a failure (2) nor non-monotonicity (3). Hence it is not possible to 
withdraw information using the rule consequent. 

 
As only creation is possible using SWRL (at a higher level), we define addi-

tional actions at lower level:  

• modify/remove property 

• modify/remove class belonging from a resource 

• modify/delete individual 



14  

• modify/delete datarange property 

 

Internal actions, belonging to SWRL built-ins are executed by the rule engine. 
Other internal actions, the low level actions are called by the agent interpreter. 

External Actions refer to the agents' interactions with their environment. We 
restrict our scope to software agents that evolve in an electronic environment. In-
teractions are then limited to message exchanges between agents. We rely on the 
FIPA ACL specification for the message structures. Received messages are stored 
in the message list. In the agent's KB, messages are put in a list ReceivedMessages 
that is an instance of OWLList. Eventually there are two basic external actions, 
sendMessage and receiveMessage. Following the ACL specification, forging a 
message requires several parameters; among them we can cite sender, receiver, 
ontology used, performative and so on. From those simple actions, it is possible to 
build complex interactions between actions. For instance FIPA ACL specifies an 
extensive communicative act library including query-answer, contracting, pro-
posal, subscribing. Different fields of the message are represented in the OWL 
knowledge Base using properties, i.e. hasPerformative, hasContent, hasSender. 

Defining new actions 

 

The agent model contains a finite list of basic actions for communication and 
knowledge base management purpose. In SAM there are two approaches to define 
new actions. The first is to extend the set of available of low level actions. The 
second one is to define new actions by combining the existing ones.  

Defining new atomic actions require implementing them in a low level lan-
guage. This approach is then of low interoperability and is discouraged by the au-
thors. It should be applied only in case of an extension of the model. The regular 
approach consists in defining new actions as a sequence of atomic ones. We de-
noted these actions as composed actions (Fig. 1.9). Actually, behavior of agents is 
a kind of composed action since it is composed by a sequence of actions, triggered 
by transition. To define new composed actions, we use the same representation as 
for agents’ behaviors. Composed actions are a set of rules that represent an EFSM. 
These rules should only be active when the composed actions is called. Therefore 
these rules are not stored as SWRL rules in the knowledge base of the agent but 
they are instances of the class Rule and their value is a string representation of the 
rule (In Manchester Syntax9). The process of execution of a composed action is 



15 

the following. Let us assume that the agent is firing a transition between state A 
and B. During this transition a com- posed action called comp is to be executed. 
First the engine removes the rules of the current behavior from the knowledge 
base and stores them using a string representation. The engine also keeps tracks of 
the current state and transition sequence that was executed. 

 

The engine sets the current state of the agent to an intermediate state sBegin. 
Then it extracts the string representation of the rules from comp and adds them to 
the knowledge base. The composed action is then executed following the same 
way as an agent behavior. Once the action finished, the engine removes the rules 
and sets back the agent’s behavior context. Note that this process is recursive and 
a composed action can call another composed action.   

Example 

To illustrate the mechanism behind semantic agents, we take a simple example 
and process the several steps of the execution. The example has following content: 
start the agent Alice, register it with the directory facilitator of the framework, and 
send a query to the agent Bob. If a received message is from Bob and if this mes-
sage has the performative answer then Alice adds the content of the answer into its 
knowledge base. The resulting EFSM is depicted in figure 1.10. The left column 
of the figure describes the low level atomic actions executed during a transition. 
Triggering conditions, contained in the antecedent of the rule, are on the right side 
of the picture. The first transition is conditions free. If Alice is in the sBegin state 
then the transition to the state A will occur. Actions related to the transition are 
executed as a sequence. The next actions are executed only if the previous suc-
ceeded. The action registerDF is executed first. If it is successful (returns true) a 
message with the query performative   and containing a query is sent to agent Bob. 
The rule used to describe this transition is presented below in a human readable 
syntax : 



16  

 

 

Within the architecture, the engine checks whether a transition occurs in re-
questing the NextState value to the knowledge base . If this value is different from 
the CurrentState then a transition is enabled. Then the engine retrieves the values 
of ActionSequence, with the respectives parameters. ActionSequence is a linked-
list (Fig.1.11) in which each item has the hasParameterName property. The value 
of the parameter is specified in the hasParameterValue property. The structure of 
the list of actions follows the OWL model depicted in figure 1.7. The Sendmes-
sage instruction is linked to its parameters using properties as described in figure 
1.11. The second transition contains triggering conditions regarding the received 
message. As Alice sent a query to Bob, the next step of Alice's behavior may be to 
handle the answer from Bob. Thus, we specify a condition on received messages 
to ensure that Bob is the sender and that the message is of type Answer: 

 



17 

 

 

We will now detail the interactions between the different layers in the architec-
ture during the execution of the first transition. 

 

 

Execution Phase 



18  

 

Representing the action execution on a timeline following the architecture as in 
Section 1.2.1 is represented in Figure1.12. It follows Algorithm 1. The SAM en-
gine firstly enquires of a rule triggering, in this case, the knowledge Base query re-
turns NextState = A. As A != sBegin, the engine retrieves the current list of actions 
containing RegisterDF and SendMessage. Actions are performed sequentially. 
First RegisterDF is executed and if it returns true then SendMessage is be exe-
cuted. When both actions succeeded, the current state of the agent is updated to 
NextState value; in this case it is state A. 

 

 

Implementation 

 

We have developed a JAVA interpreter that communicates with the knowledge 
Base using the Protege-OWL API 10 Pellet is used in combination with Jena 11 as 
a SWRL reasoner. The JADE framework is used for the low level external actions. 
The framework handles agent registration, service discovery and message passing. 
It also provides an environment that is FIPA-ACL compliant. One implementation 
issue we encountered was that OWL does not support RDF lists. An OWL equiva-
lent called OWLList has been developed and is used to represent action sequences 
and the queue of received messages. A first version of the open-source prototype 



19 

is available online 12. Besides the validation of our model, the implementation 
prototype presents some limitations. Nowadays the status of SWRL reasoners is 
not satisfying because none of them fully support the SWRL specification. We 
have used Pellet as a SWRL reasoner, since it is currently the most advanced 
open- source implementation of SWRL. As developments stands at the moment, 
several  important features are not supported by Pellet, for instance some SWRL 
built-ins are not yet available. The implementation results show the feasibility of 
the proposal and we intend to further develop the prototype to make it fully suit-
able for the development of applications. Semantic Web technologies is a field 
where advances take place. Current restrictions on SWRL support should no 
longer be an issue since advances in the field of the Semantic Web technologies 
occur very rapidly and regularly. Finally, this implementation of the prototype al-
lowed us to validate our approach and to identify the limitations.   

Perspectives 

 

One of the primary advantages of agent based knowledge management over the 
classical centralized approach is the proactiveness of the agents [22]. Proactive-
ness is the ability of agents to initiate changes and to take initiatives. It is opposite 
to the reactive approach where agents react to stimulus or changes in their envi-
ronment. Concretely, in the agent design, the proactiveness is implemented in dif-
ferent agent behaviors. The benefit of semantic agent programming is to enable 
the semantic description and exchange of the agents’ behaviors. Thus, agents 
evolving in cooperative environments are able to learn behaviors from other 
agents. In common knowledge management frameworks the nature of knowledge 
exchanges between agents is limited to static knowledge. Semantic agent pro-
gramming our proposal allows agents to share not only static knowledge but also 
dynamic knowledge insofar as agents are able to exchange their own behaviors.  

This ability opens a broad scope of applications and questions. In the same way 
as for static knowledge exchanges, behaviors exchanges are subject to trust and 
security issues. Moreover, behaviors are executed by the agents and the execution 
of a malicious behavior could lead to serious security is- sues. We believe that ex-
isting cryptographic and trust mechanisms can easily be adapted to the exchanges 
of semantic behaviors. 

 From a larger point of view, this approach takes the opposite of the current 
software as a service trend. In the service approach, providers share (or sell) the 
use of their services, but not the implementation of the service. With the semantic 



20  

behavior exchange approach, agents share the implementation of the service. 
Clearly this approach is valuable in cooperative environment, for example when 
agents belong to the same organizations. Several studies have shown that reactive 
and proactive agents lead to the same performance among organizations [16, 24, 
5].   

The consequence of semantic behavior sharing on proactive agents is impor-
tant. Agents are now able to learn behaviors from other agents and to recombine, 
evaluate, modify these behaviors to enhance their proactive capabilities. These 
missing abilities were not taken into account in former studies and we believe it 
can greatly improve the performance of proactive agents.    

 

Conclusion 

In this chapter, we presented how the next generation of Semantic Web tech-
nologies can be applied in MAS programming. We discussed the limitations of 
current semantic approach and noticed the lack of semantic programming for 
agents' behaviors. State of the art frameworks are limited in terms of interoperabil-
ity. To bridge this gap, we designed agent architecture to support behavior pro-
gramming with semantic rules using a finite number of actions, identical for each 
agent. This approach allows the sharing of behaviors between agents, without re-
lying on a specific lower level language. We detailed the three layer architecture, 
the language syntax and the interpreter. Afterwards we discussed the advantages 
of semantic agent programming in terms of knowledge management especially in 
the field of proactive cooperative agents.  

 

 

 



21 

 

 



22  

 

 

 

 


