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ABSTRACT: This article deals with the observer synthesis for uncertain nonlinear systems affected by un-
known inputs. In order to design such an observer, the nonlinear system is represented under the multiple model
(MM) formulation with unmeasurable premise variables. A proportional integral observer (PIO) is considered
and used for fault diagnosis using banks of observer to generate structured residuals. The Lyapunov method,
expressed through linear matrix inequality (LMI) formulation, is used to describe the stability analysis and to
the observer synthesis. An application to a model of Wastewater Treatment Plant (WWTP) is considered.

1 INTRODUCTION

In the field of the observer/controller synthesis, the
extension of linear methods to nonlinear systems is
generally a difficult problem. The multiple model
(Murray-Smith and Johansen 1997) has received a
special attention in the last two decades, in order to
overcome this difficulty. Then the MM approach is
a mean to deal with nonlinear systems and to design
observer for such systems and is a convex combina-
tion of linear submodels. In this paper, the multiple
model formulation is obtained by applying a method
proposed in (Nagy et al. 2010). Only the general steps
of this technique are reminded in this paper.

Most of the existing works, dedicated to MM in
general and to observer design based on MM in
particular, are established for MM with measurable
premise variables (inputs/outputs), that represents a
simplified situation (Tanaka and Wang 2001), (Marx
et al. 2007). The MM under study in this paper is more
general and involves unmeasurable premise variables
depending on the state variables -frequently met in
practical situations- that are not always accessible.

A proportional integral observer approach for un-
certain nonlinear systems with unknown inputs pre-
sented under a MM form with unmeasurable premise
variables is proposed in this paper. The state and un-
known input estimation given by this observer is made
simultaneously and the influence of the model uncer-
tainties is minimized through aL2 gain. The conver-
gence conditions of the state and unknown input es-
timation errors are expressed through LMIs (Linear

Matrix Inequalities) (Tanaka and Wang 2001) by us-
ing the Lyapunov method and theL2 approach.

The variable estimation results are then used for
fault diagnosis using banks of observer to generate
structured residuals. Several techniques can be used
to cope with the fault detection and isolation (FDI)
problem, among them observer-based techniques are
largely recognized (Patton et al. 2000), (Ding 2008).
Observers are employed in a FDI framework in or-
der to provide an estimation of the interesting signals
to be monitored e.g. the outputs, the faults, etc. The
FDI of the system is carried out by testing the time-
evolution of some residual signals provided by the ob-
server. This is realized through a comparison between
system extracted signals and estimated signals. Actu-
ator and sensor faults are treated.

Using these theoretical results, the diagnosis is per-
formed for a wastewater treatment process (WWTP)
modeled by an ASM1 model (Weijers 2000). The
measures used for simulation process are those of the
european program benchmark Cost 624. The choice
of the known/unknown inputs, the measures and the
real conditions is made by taking into account the
properties of the Bleesbruck treatment station from
Luxembourg. The numerical simulation results for the
proposed application show good state and unknown
inputs estimation performances and allow the sensors
and actuators fault detection.

The paper presents, in section 2, the proposed PI
observer. Then, the sensor and actuator fault detection
and isolation of the WWTP is realized is section 3,
where the estimation results are also given.



Notation 1. The symbol∗ in a block matrix denotes
the blocks induced by symmetry. For any square ma-
trix M, S(M) is defined byS(M) = M +MT .

2 PROPORTIONAL INTEGRAL OBSERVER

2.1 Modelling nonlinear systems

Generally, a nonlinear system is given under the fol-
lowing state representation:

ẋ(t) = f (x(t),u(t),d(t)) (1a)

y(t) = Cx(t)+Gd(t) (1b)

wherex∈R
n is the state variable,u∈R

m is the input
vector,d∈R

q is the unknown input,y∈R
ℓ the output

vector, f ∈ R
n and the matricesC andG are known

matrices of appropriate dimensions.
The multiple model structure allows to represent

nonlinear dynamic systems (1) into a convex combi-
nation of linear submodels as follows:

ẋ(t) =
r

∑
i=1

µi(x,u) [(Ai +∆Ai(t))x(t)

+(Bi +∆Bi(t))u(t)+Eid(t)] (2a)

y(t) =Cx(t)+Gd(t) (2b)

the matricesAi, Bi, Ei, C and G are known real
and constant matrices of appropriate dimensions ex-
cepted∆Ai(t) and∆Bi(t), denoting the time varying
system uncertainties, that satisfy the following equa-
tions ((Marx et al. 2007), (Nagy et al. 2010) and ref-
erences in)

∆Ai(t) = Ma
i Fa(t)N

a
i , with FT

a (t)Fa(t) ≤ I (3a)

∆Bi(t) = Mb
i Fb(t)N

b
i , with FT

b (t)Fb(t) ≤ I (3b)

where bothFa(t)∈R
f1× f1 andFb(t)∈R

f2× f2 are un-
known and time varying. The functionsµi(x,u) rep-
resent the weights of the linear submodels{Ai,Bi,Ei}
and they have the following convexity properties:

r

∑
i=1

µi(x,u) = 1, µi(x,u) ≥ 0, ∀(x,u) ∈ R
n×R

m (4)

One can note that the activating functionsµi depend
on the system state that is not available to the mea-
surement.
In the sequel, the following assumption is made:

Assumption 1. The unknown input is constant :

ḋ(t) = 0 (5)

It is well known in proportional integral observer
(PIO) design that, although this assumption is needed
for the theoretical proof of the estimation error con-
vergence, it can be relaxed in practical applications
(Koenig and Mammar 2002). For instance, one will
see, in section 3, that good estimation results are ob-
tained even with time varying unknown input.

2.2 Proportional integral observer design

In order to estimate both the system state and the un-
known input, the following PIO is proposed:

˙̂x(t) =
r

∑
i=1

µi(x̂(t),u(t))
(
Ai x̂(t)+Biu(t)+Ei d̂(t)

+LP
i (y(t)− ŷ(t))

)
(6a)

˙̂d(t) =
r

∑
i=1

µi(x̂(t),u(t))LI
i (y(t)− ŷ(t)) (6b)

ŷ(t) =Cx̂(t)+Gd̂(t) (6c)

The observer design reduces to finding the gainsLP
i

andLI
i such that the state and unknown input estima-

tion error obey to a stable generating system.

Theorem 1. The observer(6) estimating the state
and unknown input of the system(2) and minimiz-
ing theL2-gain γ of the known and unknown inputs
on the state and unknown input estimation error is
obtained by finding symmetric positive definite ma-
trices P1 ∈ R

(n+nd)×(n+nd) and P2 ∈ R
n×n, matrices

P j ∈ R
(n+nd)×ny and positive scalarsε1i and ε2i that

minimize the scalarγ under the following LMI con-
straints

Mi j < 0, i, j = 1, . . . , r (7)

whereMi j is defined by

Mi j =




Φ11
i j Φ12

i j 0 Φ14
i j P1M

a
i P1M

b
i

∗ Φ22
i j P2Bi P2Ei P2Ma

i P2Mb
i

∗ ∗ Φ33
i j 0 0 0

∗ ∗ ∗ −γInd 0 0
∗ ∗ ∗ ∗ −ε1iI f1 0
∗ ∗ ∗ ∗ ∗ −ε2iI f2




(8)

with

Φ11
i j =In+nd +S(P1A j −P jC), Φ12

i j =P1(Ãi − Ã j),

Φ14
i j =P1(Ẽi − Ẽ j),

Φ22
i j =ε1iN

aT
i Na

i +S(P2Ai), Φ33
i j =ε2iN

bT
i Nb

i − γInu



The overlined and tilded matrices are defined by

C = [C G] , Ai =

[
Ai Ei
0 0

]
, Ãi =

[
Ai
0

]
,

Ẽi =

[
Ei
0

]
, M

a
i =

[
Ma

i
0

]
, M

b
i =

[
Mb

i
0

]

The observer gains are then obtained by:

L j =

[
LP

j
LI

j

]
= P−1

1 P j

Proof. Let us define an augmented state and its es-

timate byxa(t) =

[
x(t)
d(t)

]
and x̂a(t) =

[
x̂(t)
d̂(t)

]
respec-

tively. The augmented state estimation error is defined
by ea(t) = xa(t)− x̂a(t). Using (2a) and (5), the sys-
tem and observer equations can be respectively writ-
ten as

ẋa(t) =
r

∑
i=1

µi(xa(t),u(t))
[
(Ai +∆Ai(t))xa(t)

+(Bi +∆Bi(t))u(t)
]

(9a)

y(t) = Cxa(t) (9b)

with :

Bi =

[
Bi
0

]
, ∆Ai(t) = M

a
i Fa(t)N

a
i , N

aT
i =

[
NaT

i
0

]
,

∆Bi(t) = M
b
i Fb(t)N

b
i , N

bT
i =

[
NbT

i
0

]
(10)

and

˙̂xa(t) =
r

∑
j=1

µ j(x̂a(t),u(t))
[
A j x̂a(t)+B ju(t)

+L j (y(t)− ŷ(t))
]

(11a)

ŷ(t) =Cx̂a(t) (11b)

One should note that in (9) the activating functions
depend onxa(t), whereas they depend on ˆxa(t) in (11)
and then the comparison of the statexa (9a) and its re-
construction (11a) seems to be difficult. In order to
cope with the difficulty of expressing the augmented
state estimation error in a tractable way, (9a) is re-
written, based on the property (4). Consequently, the
augmented state estimation error obeys to the follow-
ing nonlinear system

[
ėa(t)
ẋ(t)

]
=

r

∑
i=1

r

∑
j=1

µi(xa(t),u(t))µ j(x̂a(t),u(t))

{[
A j −L jC Ãi − Ã j + ∆̃Ai(t)

0 Ai +∆Ai(t)

][
ea(t)
x(t)

]

+

[
∆Bi(t) Ẽi − Ẽ j

Bi +∆Bi(t) Ei

][
u(t)
d(t)

]}
(12a)

ea(t) =[In+nd 0]

[
ea(t)
x(t)

]
(12b)

where

∆̃Ai(t) =

[
∆Ai(t)

0

]
(13)

The candidate Lyapunov function for (12) is

V(xa(t),x(t)) =

[
ea(t)
x(t)

]T [
P1 0
0 P2

][
ea(t)
x(t)

]
(14)

whereP1 andP2 are symmetric positive definite ma-
trices. The objective is to find the gains̄L j of the
observer that minimize theL2-gain from the known
and unknown inputsu(t) and d(t) to the state and
fault estimation errorea(t). It is well known (Boyd

et al. 1994) that theL2-gain from

[
u(t)
d(t)

]
to ea(t) is

bounded byγ if

V̇(ea(t),x(t))+eT
a (t)ea(t)−γ2(uT(t)u(t)+dT(t)d(t)) < 0 (15)

With some Schur complements and definingP j =

P1L j andγ = γ2, the previous inequality becomes

r

∑
i=1

r

∑
j=1

µi(xa(t))µ j(x̂a(t))Mi j < 0 (16)

It follows that (15) is satisfied if the LMI (7) holds,
which achieves the proof.

3 DIAGNOSIS FOR WASTEWATER
TREATMENT PLANT

3.1 Diagnosis based on bank observers

In this section the PI observer is used to perform
fault diagnosis, which consists in generating residu-
als based on redundancy principle. In this context, the
comparison between output measured signals and es-
timated output signals - by using an observer- is done.
The residual, that is the difference between these two
signals, must, therefore, be different from zero when
a fault occurs and zero otherwise. However, the devia-
tion between the model and the plant is influenced not



only by the presence of the fault but also by the mod-
eling error, noise or other perturbations. Thus, some
detection thresholds are fixed in order to avoid false
alarms, these thresholds being fixed by taking into ac-
count the modeling error range.

A residual structuration is often needed in order
to efficiently realize the fault detection and isolation.
This task consists in constructing residuals so that
each one is sensitive to a known subset of faults and
insensitive to the others. In order to do this, a bank of
observers will be used, each one using a part of avail-
able information of the system.

Sensor fault detection

In this case, the output of the system has the form:

y(t) = Cx(t)+Du(t)+δ (t)

whereδ (t) is a sensor fault vector. An intermedi-
ate observer scheme -derived from the Dedicated Ob-
server Scheme (DOS) (Patton et al. 2000)- is used
for residual structuring. This scheme uses two outputs
amongℓ outputs of the system (see figure 1 forℓ = 4).
In general, the acronymPIO i j means a proportional
integral observer of the form (6) that uses only the
outputsi and j in state estimation process. The resid-
uals are defined by:

r i, j(t) = yi(t)− ŷi, j(t), i = 1, ..., ℓ, j ∈ Iobs (17)

where the indexi refers the outputs and the indexj
indicates the observer used to reconstruct the referred
outputs. Thus,yi(t) (resp. ˆyi, j(t)) is theith component
of y(t) (resp. ˆy j(t) the output estimation delivered by
the jth observer) and

Iobs= {12, 13, · · · , 1ℓ, 23, 24, · · · ,2ℓ, · · · , (ℓ−1)ℓ}

Let us defineIi the index set of observers using the
outputyi and I ī the index set of observers that does
not uses the outputyi. The following alarmsai(t) as-
sociated toδi(t) for all i = 1, · · · , ℓ are defined as:

rb i, j(t) =

{
0, if

∣∣r i, j(t)
∣∣ ≤ threshold

1, if
∣∣r i, j(t)

∣∣ > threshold
(18a)

ai(t) =∏
j∈I ī


rb i, j(t)

ℓ

∏
k=1
k6= j

r̄bk, j(t)


 (18b)

Actuator fault detection
In this case, the state of the system is given by:

ẋ(t) =
r

∑
i=1

µi(x(t),u(t)+η(t))[Aix(t)+Bi(u(t)+η(t))] (19)

whereη(t) is an actuator fault vector.
The same principle as previously allows the detection
and isolation of the actuator faults. A dedicated ob-
server scheme will be used in this case, where theith

Figure 1: DOS bank observer for sensor fault detection

observer use theith input and all outputs. The other
inputs are considered as unknown input and conse-
quently a bank of PIO is synthesized. The alarms as-
sociated to actuator faults can be similarly defined as
in (18).

3.2 Process description

The activated sludge wastewater treatment is widely
used and studied in the last two decades (Henze et al.
1987), (Alex et al. 1999), (Olsson and Newell 1999),
(Smets et al. 2006), (Boulkroune 2009). It consists in
mixing wastewater with a bacteria mixture in order to
degrade the pollutants contained in the water.
The polluted water circulates in an aeration basin in
which the bacterial biomass degrades the polluted
matter. Micro-organisms gather together in colonial
structures called flocs and produce sludges. The
mixed liqueur is then sent to a clarifier where the sep-
aration of the purified water and the flocs is made by
gravity. A fraction of the settled sludges is recycled
towards the reactor to maintain its capacity of purifi-
cation. The purified water is thrown back in the natu-
ral environment.

Only a part of the European program Cost 624
Benchmark (Alex et al. 1999) is considered. Usu-
ally, a configuration with a single tank with a set-
tler/clarifier is used. The data used for simulation are
generated with the complete ASM1 model (n = 13)
(Henze et al. 1987), in order to represent a realistic
behavior of a WWTP. In order to ease the obtaining of
the MM representation, the observer design is based
on a reduced model (n = 6) (Weijers 2000):

ẊDCO(t) = − 1
YH

[ϕ1(t)+ϕ2(t)]

+(1− fP)(ϕ4(t)+ϕ5(t))+D1(t)

ṠO(t) = YH−1
YH

ϕ1(t)+ YA−4.57
YA

ϕ3(t)+D2(t)



ṠNH(t) = −iXB[ϕ1(t)+ϕ2(t)]−

(
iXB+

1
YA

)
ϕ3(t)

+(iXB− fP iXP)[ϕ4(t)+ϕ5(t)]+D3(t)

ṠNO(t) =
YH −1
2.86YH

ϕ2(t)+
1
YA

ϕ3(t)+D4(t)

ẊBH(t) = ϕ1(t)+ϕ2(t)−ϕ4(t)+D5(t)

ẊBA(t) = ϕ3(t)−ϕ5(t)+D6(t) (20)

where the process kineticsϕi(t) (i = 1, · · · ,5) and
the input/output balancesDi(t) (i = 1, · · · ,6) can be
found in (Weijers 2000). For limited space reasons,
only ϕ1(t) andD1(t) are given as follows:

ϕ1(t) =
µHXDCO(t)

KDCO+XDCO(t)
SO(t)

KOH +SO(t)
XBH(t) (21)

D1(t) =
qin(t)

V

[
XDCO,in(t)−XDCO(t)

]
(22)

The simplified model involves the following six
components: the chemical oxygen demand (COD)
XDCO, oxygenSO, heterotrophic biomassXBH, am-
moniaSNH, nitrateSNO and autotrophic biomassXBA.
The inert components (SI , XI , XP) and the alkalinity
(Salk) are not considered. The dynamic of the sus-
pended organic nitrogen (XND) and the ammonia pro-
duction from organic nitrogen (SND) is neglected.
In conformity with the benchmark of the european
program Cost 624 (Alex et al. 1999) and with the
real time condition of a wastewater treatment plant -
Bleesbruck from Luxembourg- the output vector con-
sidered here is:

y(t) = [XDCO(t), SO(t), SNH(t), SNO(t)]T (23)

the known input vector is:

u(t) = [XDCO,in(t), qa(t)]
T (24)

and the unknown input vector is:

d(t) = [SNH,in(t), XBH,in(t)]
T (25)

The variablesqin and qa represent the input and
the air flow of the bioreactor. The stoichiometric and
growth/decay kinetic parameters are those of (Olsson
and Newell 1999).

Multiple model representation

Since the transformation of the nonlinear system (20)
into a MM does not constitutes the main objective
of the paper, and for lack of space, only the essen-
tial points are given in the following. For more details

on this procedure the reader is referred to (Nagy et al.
2010).
Considering the process (20), it is natural to define the
following premise variables since they mainly con-
tribute to the definitions of the system nonlinearity:

z1(x,u) = qin(t)
V

z2(x,u) = XDCO(t)
KDCO+XDCO(t)

SO(t)
KOH+SO(t)

z3(x,u) = XDCO(t)
KDCO+XDCO(t)

SNO(t)
KNO+SNO(t)

KOH
KOH+SO(t)

z4(x,u) = 1
KOA+SO(t)

SNH(t)
KNH,A+SNH(t)XBA(t)

(26)

The system (20) can be written in a quasi-LPV
form ẋ(t) = A(x,u)x(t)+B(x,u)u(t)+E(x,u)d(t) with ma-
tricesA(x,u), B(x,u) andE(x,u) expressed by using
the premise variables previously defined:

A(x,u) =




a11 0 0 0 a15 a16
0 a22 0 0 a25 0
0 a32 −z1(u) 0 a35 a36
0 a42 0 −z1(u) a45 0
0 0 0 0 a55 0
0 a62 0 0 0 a66




B(u) =




z1(u) 0
0 K SO,sat
0 0
0 0
0 0
0 0




, E(u) =




0 0
0 0

z1(u) 0
0 0
0 z1(u)
0 0




(27)

where:

a11(x,u) = −z1(x,u)

a15(x,u) = − µH
YH

z2(x,u)+(1− fP)bH −
µH ηNOg

YH
z3(x,u)

a16(x,u) = (1− fP)bA

a22(x,u) = −z1(x,u)−K qa−
4.57−YA

YA
µAz4(x,u)

a25(x,u) = (YH−1)µH
YH

z2(x,u)

a32(x,u) = −(iXB+ 1
YA

)µAz4(x,u)

a35(x,u) = (iXB− fP iXP)bH − iXBµH z2(x,u)

−iXBµH ηNOgz3(x,u)

a36(x,u) = (iXB− fP iXP)bA

a42(x,u) = 1
YA

µAz4(x,u)

a45(x,u) = YH−1
2.86YH

µH ηNOgz3(x,u)

a55(x,u) = µH z2(x,u)−bH +z1(x,u)
[

fW(1+ fR)
fR+ fW

−1
]

+µH ηNOgz3(x,u)

a62(x,u) = µAz4(x,u)

a66(x,u) = z1(x,u)
[

fW(1+ fR)
fR+ fW

−1
]
−bA

The decomposition ofzj , j = 1, · · · ,4 (26) is realized
by using the convex polytopic transformation:

zj(x,u) = Fj,1(zj(x,u))zj,1+Fj,2(zj(x,u))zj,2 (28)

The scalarszj,1 and zj,2 are respectively the min-
ima and the maxima ofzj(x,u) and the functions



Fj,1(zj(x,u)) andFj,2(zj(x,u)) are given by:

Fj,1(zj(x,u)) =
zj(x,u)−zj,2

zj,1−zj,2
(29)

Fj,2(zj(x,u)) =
zj,1−zj(x,u)

zj,1−zj,2
(30)

By multiplying the functionsF
j,σ j

i
(zj(x,u)), ther =

16 weighting functionsµi(z(x,u)) (i = 1, · · · ,16) are
obtained:

µi(z) = F1,σ1
i
(z1)F2,σ2

i
(z2)F3,σ3

i
(z3)F4,σ4

i
(z4) (31)

The indexes σ j
i ∈ {1,2} and the quadruplets

(σ1
i , σ2

i , σ2
i , σ4

i ) represent the 16 combinations of
indexes 1 and 2. The constant matricesAi, Bi andEi
defining the 16 submodels, are determined by using
the matricesA(x,u), B(u), E(u) and the scalarsz

j,σ j
i
:

Ai = A(z1,σ1
i
,z2,σ2

i
,z3,σ3

i
,z4,σ4

i
) (32a)

Bi = B(z1,σ1
i
) (32b)

Ei = E(z1,σ1
i
), i = 1, ...,16, j = 1, ...,4 (32c)

Thus, the nonlinear model (20) is equivalently written
under the multiple model form (2), where∆Ai(t) =
∆Bi(t) = 0, i = 1, ...,16.

Uncertainties in the MM form of the ASM1 model

The MM form used for the ASM1 model was pre-
viously proposed. In the following, its structure is
slightly modified in order to take into account pa-
rameter uncertainties onbH and bA. These parame-
ters appear in the coefficientsa15, a16, a35, a36, a55
anda66 in (27), allowing to separate the uncertain part
∆A(t) from the known oneA(t) in (27). The parame-
ter variation onbH (resp.bA) is of 20% (resp. 25%)
of its nominal value, i.e.bH ∈ [0.25 ; 0.35] (resp.
bA∈ [0.04 ; 0.06]) (Chachuat 2001). The uncertainties
effect, taken into account in the matricesA+ ∆A(t),
can be written as:

∆A(t) =




0 0 0 0 0.2∆bH(t) 0.25∆bA(t)
0 0 0 0 0 0
0 0 0 0 0.2∆bH(t) 0.25∆bA(t)
0 0 0 0 0 0
0 0 0 0 0.2∆bH(t) 0
0 0 0 0 0 0.25∆bA(t)




(33)

Moreover the uncertain term is written under the
form ∆A(t) = MaFa(t)Na with the matrices:

Ma =

[
0.2 0 0.2 0 0.2 0
1 0 1 0 0 1

]T

(34)

Fa(t) =

[
∆bH(t) 0

0 ∆bA(t)

]
(35)

Na =

[
0 0 0 0 1 0
0 0 0 0 0 0.25

]
(36)

whereFa(t) has the following property:

FT
a (t)Fa(t) ≤ I

3.3 Results and discussions

The data used for simulation are generated with the
complete ASM1 model (n = 13) (Henze et al. 1987),
in order to represent a realistic behavior of a WWTP.
Even if the observer design is based on a MM form of
the reduced ASM1 model (n = 6) it will be seen that
the estimation results are satisfactory.
Applying the Theorem 1, the observer (6) is designed
by finding positive scalarsε1i , ε2i (i = 1, ...,16), pos-
itive definite matricesP1 and P2 and matricesP̄j
( j = 1, · · · ,16) -that are not given here due to
space limitation- such that the convergence condi-
tions, given in Theorem 1 hold. The value of the atten-
uation rate from the known and unknown inputsu(t)
andd(t) to the state and fault estimation errorea(t)
is γ̄ = 1.52. A comparison between the actual state
variables, the unknown inputs and their respective es-
timates is depicted in the figure 2.
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Figure 2: Real state and unknown inputs (doted line) and their
estimations using the PIO (solid line)

In order to diagnose the wastewater treatment plant,
the reduced model (20) is used for observer design
with the measured outputs defined in (23). Some
faults affecting the reactor outputs are simulated as
follows:

• δ1 affects y1 = XDCO in time period
(0.25;0.75)[days]

• δ2 affectsy2 = SO in time period(2.25;2.75)[days]

• δ3 affectsy3 = SNH in time period(1;1.5)[days]

• δ4 affectsy4 = SNO in time period(3;3.25)[days]



An observer bank with six observers is conceived as
in figure 1. The analysis of the configuration of resid-
ualsr1,12, r2,12, · · · , r4,34 allows the detection and the
isolation of sensor faults (see figure 3). These residu-
als are zero if no fault or noise is present on the sen-
sors. Betweent = 0.25[days] et t = 0.75[days], the
residualsr j,12, r j,13 andr j,14 for j ∈ Iobs correspond
to the fault free case. This information is confirmed by
the residuals generated with the three others observers
(PIO 23, PIO 24, PIO 34) that allows the localiza-
tion of a fault ony1. Equivalently, for the time period
(3;3.25)[days], the residualsr j,14, r j,24 and r j,34 for
j ∈ Iobs correspond to the fault free case. This infor-
mation is confirmed by the residuals generated with
the three others observers (PIO 23, PIO 24, PIO 34)
that allows the localization of a fault ony4, and so on
for the other residuals. A signature table allowing to
correctly finalize the sensor fault detection and isola-
tion task is given in table 1. A “1” element indicates
that r i, j is sensitive to the faultδi while “0” indicates
that r i, j does not respond to the faultδi. Finally, the
symbol “?” indicates that no decision can be taken
only based on this residual.
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Figure 3: Residuals evolution - GOS for sensor fault detection

Further, the diagnosis technique is applied to detect
actuator faults considering the same reduced ASM1
model. Since the control vector is (24) we consider
respectively the faultsη1 and η2 affecting the two
actuators, according to:

η1(t) =

{
0.3XDCO,in(t), 0.5 < t < 1.0

0, otherwise (37)

η2(t) =

{
0.3qa(t), 2.5 < t < 3.0

0, otherwise (38)

An observer bank with two PIO is conceived. The
residuals are similarly constructed as in (17) fori =
1, · · · ,mand j = 1, · · · , ℓ. Here,m= 2 andℓ = 4. The
analysis of the configuration of residualsr i, j allows
the detection and the localization of actuator faults. In
figure 4, the residualsr1,1, r2,1, r3,1 andr4,1 generated
with the first observer indicate a fault between the in-
stants 0.5[days] and 1.0[days] which corresponds to a
fault affecting the controlXDCO,in. The fault affecting
qa is localized when analysing the residualsr1,2, r2,2,
r3,2 and r4,2 given by the second observer. The sim-
ulation results correspond to the theoretical signature
table 2.

Table 2: Theoretical signatures for actuator fault detection - DOS
PIO 1 PIO 2

r1,1 r2,1 r3,1 r4,1 r1,2 r2,2 r3,2 r4,2

η1 1 1 1 1 0 0 0 0
η2 0 0 0 0 1 1 1 1

4 CONCLUSION

A proportional integral observer adapted to uncer-
tain nonlinear systems affected by unknown inputs
is proposed in this paper. The nonlinear system is
equivalently represented by a multiple model with un-
measurable premise variables which is not intensively
studied in literature because observer design or stabil-
ity analysis are difficult problems for this kind of sys-
tems. An application to diagnosis based on the syn-
thesis of the proposed proportional integral observer
is realized. This theoretical points are then applied to
a realistic model of a wastewater treatment plant that
is characterized by parameter uncertainties and un-
known inputs. The numerical simulation results for
the proposed application show that sensor and actua-
tor fault detection can be performed as well by using
this type of observer.
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Table 1: Theoretical signature table for sensor fault detection - DOS with 2 outputs among 4
PIO 12 PIO 13 PIO 14 PIO 23 PIO 24 PIO 34

r1,12 r2,12 r3,12 r4,12 r1,13 r2,13 r3,13 r4,13 r1,14 r2,14 r3,14 r4,14 r1,23 r2,23 r3,23 r4,23 r1,24 r2,24 r3,24 r4,24 r1,34 r2,34 r3,34 r4,34

δ1 ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 1 0 0 0 1 0 0 0
δ2 ? ? ? ? 0 1 0 0 0 1 0 0 ? ? ? ? ? ? ? ? 0 1 0 0
δ3 0 0 1 0 ? ? ? ? 0 0 1 0 ? ? ? ? 0 0 1 0 ? ? ? ?
δ4 0 0 0 1 0 0 0 1 ? ? ? ? 0 0 0 1 ? ? ? ? ? ? ? ?
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Figure 4: Residual evolution using GOS schema for actuator fault detection
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