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Abstract Numerical and experimental realizations of quantum control are
closely connected to the properties of the mapping from the control to the
unitary propagator [14]. For bilinear quantum control problems, no general
results are available to fully determine when this mapping is singular or not.
In this paper we give sufficient conditions, in terms of elements of the evo-
lution semigroup, for a trajectory to be non-singular. We identify two lists
of “way-points” that, when reached, ensure the non-singularity of the control
trajectory. It is found that under appropriate hypotheses one of those lists
does not depend on the values of the coupling operator matrix.
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1 Introduction

Manipulating the evolution of physical systems at the quantum level has been a
longstanding goal from the very beginnings of laser technology. Investigations
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in this area accelerated after the introductions of (optimal) control theory
tools [11], which greatly contributed to the first positive experimental results,
see [3,13,16,4,5,10,12] and references herein.

Consider a quantum system in the presence of a control field ǫ(t) ∈ R, t ≥
0. In the electric dipole approximation and in the density matrix formulation,
the underlying time-dependent density matrix ρ(t) satisfies the Liouville-von
Neumann equation

i
∂

∂t
ρ(t) = [H0 − ǫ(t)µ, ρ(t)] (1)

ρ(t = 0) = ρ0

where H0 is the field-free Hamiltonian (including the potential) and µ is the
dipole moment of the system. In the analysis, we will suppose that the system
contains N levels, thus, H0, µ and ρ(t) are all N ×N Hermitian matrices. In
the following, for simplicity, we further assume that H0 and µ are real and
symmetric matrices. Moreover, to avoid trivial settings, the dipole moment
operator µ is assumed to have zero trace, i.e.,

Tr(µ) = 0. (2)

In the following we adopt the notation isu(N) to denote the set of all complex
N×N Hermitian matrices with zero trace. Recall that ρ(t) = U(t, 0)ρ(0)U∗(t, 0),
where the unitary propagator U(t, 0) ∈ U(N), t ≥ 0 is the solution of the time-
dependent Schödinger equation

i
∂

∂t
U(t, 0) =

(

H0 − ǫ(t)µ
)

U(t, 0) (3)

U(t = 0, 0) = IN .

The control goal can be expressed in terms of a (self-adjoint) operator O in
that the corresponding functional to be optimized (maximized) is 〈O〉(T ) =

Tr
(

ρ(T )O
)

. Accordingly, a maximum value of 〈O〉(T ) indicates that the con-

trol is of optimal quality and vice-versa.
At the heart of a good understanding of any quantum control problem, in-

cluding the efficiency, accuracy, and stability of quantum control experiments
as well as simulations, lies essential features of the control landscape, depict-
ing the functional dependence of the observable on the control field, i.e. the
mapping: ǫ(t) 7→ 〈O〉(T ). The slopes (gradient) and the curvatures (Hessian)
are key characteristics of the control landscape. In particular, the topologies
at and around the critical points, in which the slopes vanish, can shed im-
portant light on the questions, for example, of what makes quantum control
experiments (simulations) apparently “easy to perform” and why quantum
control beats the “curse of dimensionality” (i.e., overcomes the anticipated
exponentially growing effort required when searching over increasing numbers
of control variables) [9]. A thorough study of the underlying control land-
scape should give insight into the classes of future feasible quantum control
experiments, especially those involving complex molecules and materials.
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2 Motivation: landscape analysis and beyond

The search procedures optimize the control quality 〈O〉(T ) with respect to
variations in the control ǫ(t). The mapping ǫ(t) 7→ 〈O〉(T ) is the composition
of two maps: a control map ǫ(t) 7→ U(T, 0) and a ”kinematic” map U(T, 0) 7→
〈O〉(T ). A key issue is whether there exist critical points that are suboptimal
solutions. To analyse the critical points it is expedient to consider these two
maps separately.

Previous analyses [14] have investigated the mapping from the propagator
to the observable i.e. U(T, 0) 7→ 〈O〉(T ); the critical points correspond to the
equation

δ〈O〉(T )

δU(T, 0)
= 0. (4)

Assuming controllability hypothesis [2,15], this equation is satisfied if and only
if

[U∗(T, 0)OU(T, 0), ρ(0)] = 0, (5)

i.e, we obtain a necessary and sufficient condition for the kinematic critical
points [7]. The optimization ”lanscape”, when looked upon in terms of this so
called ”kinematic” mapping, is therefore exempt of suboptimal critical points.

To extend the landscape analysis beyond the kinematic setting, i.e. to in-
vestigate the dependence on the control itself, we need to analyse the solutions
of the following critical point condition [9]

δ〈O〉(T )

δǫ(t)
= 0. (6)

The solutions of this equation are among the critical points of the control map
ǫ(t) 7→ U(T, 0); it was shown in [17] that this mapping is nonsingular when all
matrix entries of the dipole moment

µ̂(t) = U∗(t, 0)µU(t, 0), (7)

as functions of t ∈ [0, T ], are linearly independent (to the extent possible), or
equivalently if the dipole moment matrices µ̂(t)’s span the space of all zero-
traced Hermitian matrices isu(N).

In previous works, it has always been assumed that “full controllability”
implies “fully linear independence” of the dipole moment matrix entries. An
assertion of the linear independence of dipole moment matrix entries is also
essential for understanding the landscape of unitary transformation control
problem [8]. In this paper, we present a rigorous analysis of this assertion
and identify properties of the trajectory, in terms of the propagators, that
are sufficient to ensure the linear independence of entries of µ̂(t). In addition,
the analysis of which controls correspond to a non-singular mapping ǫ(t) 7→
U(T, 0) or ǫ(t) 7→ 〈O〉(T ) is also relevant, e.g., for stabilization purposes, error
cancellation, maintaining coherence, etc.
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3 Dipole dependent way-points

Denote by L the Lie algebra generated by −iH0 and −iµ as a sub-algebra
of u(N). We will suppose that the system is density matrix controllable, or
equivalently

L = su(N) or L = u(N). (8)

Note that when the system is density matrix controllable, then it is also wave
function controllable, cf [1,6].

Theorem 1 Under assumptions (2) and (8) there exists a set {U1, ..., U2N2−2N}
of unitary propagators (that we will call the set of ”way-points”) such that if
U(t, 0) visits all of them i.e. U(tk, 0) = Uk for some times tk, k = 1, ..., 2N2 − 2N
the components fij(t) of the matrix µ̂(t) in (7) are linearly independent as
functions of time.

Consequently, under the hypotheses (2) and (8) for T sufficiently large
a control field ǫ(t), t ∈ [0, T ] exists such that functions fij(t) are linearly
independent (or equivalently such that µ̂(t) spans the set of all zero-traced
Hermitian matrices).

Remark 1 Note that here there is no information required on the structure
of the matrices H0 or µ.

Proof Since the Hermitian matrix µ has zero trace it cannot be a constant
and thus it has at least two different eigenvalues λ1 and λ2.

Let us begin by some general conventions: for any i 6= j and any matrix
M we denote by M<i,j> its 2× 2 sub-matrix formed by the i-th and j-th rows
and columns:

M<i,j> =

(

Mii Mij

Mji Mjj

)

. (9)

Moreover, when we alter the N ×N identity matrix by putting in the i-th and
j-th rows and columns a given 2 × 2 matrix D, we will denote the resultant
N ×N matrix by D<i,j> :

D<i,j> =

i j
























1
0

0

0

0

0
1

0

0

0

0
0

D11

D21

0

0
0

D12

D22

0

0
0

0

0

1

























i

j

(10)

We choose Uk in the following way: let l = 1, ..., N(N−1)
2 index the couples

(i, j), i, j = 1, ..., N with i < j.

- U4l+1 is such that
(

µ̂(t4l+1)
)

<i,j>
=

(

λ1 0
0 λ2

)

;
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- U4l+2 = U4l+1

(

0 1
1 0

)<i,j>

. Then
(

µ̂(t4l+2)
)

<i,j>
=

(

λ2 0
0 λ1

)

and all

other entries are identical to those of µ̂(t4l+1).

- U4l+3 = 1
2U4l+1

(

1 1
−1 1

)<i,j>

. Then

(

µ̂(t4l+3)
)

<i,j>
=

1

2

(

λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2

)

(11)

and all other entries are identical to those of µ̂(t4l+1).

- U4l+4 = 1
2U4l+1

(

i 1
1 i

)<i,j>

. Then

(

µ̂(t4l+4)
)

<i,j>
=

1

2

(

λ1 + λ2 (λ2 − λ1)i
(λ1 − λ2)i λ1 + λ2

)

(12)

and all other entries are identical to those of µ̂(t4l+1).
Note that all µ̂(tk) = U∗

kµUk are Hermitian (and of zero trace). Let us take
a zero trace Hermitian matrix Z such that

〈Z, µ̂(tk)〉 = 0, ∀k = 1, ..., 4N. (13)

where we used the canonical scalar product of Hermitian matrices 〈A,B〉 =
Tr(A∗B) = Tr(AB). We recall also the definition of the norm induced by this
scalar product ‖A‖ =

√

〈A,A〉.

We denote

(

x y
y∗ z

)

= Z<i,j>; since 〈Z, µ̂(tk)〉 = 0 for k = 4l+ 1, ..., 4l+ 4

it follows that 〈Z<i,j>, (µ̂(tk))<i,j>〉 is the same for k = 4l+ 1, ..., 4l+ 4. The
consequence is that λ1x+λ2z = λ2x+λ1z which together with λ1 6= λ2 implies

x = z. Moreover we also have λ1x+λ2x = 1
2

(

2(λ1+λ2)x+(λ1 −λ2)(y+ y∗)
)

thus y + y∗ = 0. Additionally, we have λ1x + λ2x = 1
2

(

2(λ1 + λ2)x + (λ1 −

λ2)i(y
∗ − y)

)

, thus y = y∗. From y + y∗ = 0 and y = y∗ we infer that y = 0

and obtain Z<i,j> = xI2 (I2 is the 2 × 2 unit matrix). Since this is true for
arbitrary i < j we obtain Z = xIN . But, since Tr(Z) = 0 it follows Z = 0,
q.e.d.

For the second part of the conclusion we use the fact that under the hy-
potheses (2) and (8) the system is controllable thus for T sufficiently large
a control field ǫ(t), t ∈ [0, T ] exists such that functions fij(t) are linearly
independent.

4 Dipole independent way-points

The result of the previous section can be interpreted as follows: as long as
the control field ensures that the propagator will visit some specific unitary
transformations, then the required linear independence of the time-dependent
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elements of µ̂(t) is satisfied. Note that this set of unitary transformations (i.e.,
propagators) explicitly depends on the dipole moment. In the laboratory, pro-
cedures have been designed that are able to control the quantum evolution
even in the absence of precise information on the dipole [11]. It is therefore
possible in principle to experimentally find a control passing through a spec-
ified list of propagators when this list does not depend on the dipole entries.
A universal procedure can therefore be implemented that will ensure the non-
singularity of the mapping ǫ(t) 7→ U(T, 0) even when the dipole is unknown.
Beyond the question of the landscape analysis, such a procedure can be useful
in additional circumstances when the mapping is required to be non-singular,
e.g. for stabilization purposes, etc. We will therefore investigate the following
circumstance: suppose that the system is controllable and thus one can exper-
imentally implement arbitrary propagators U ∈ SU(N). Can we find a list of
propagators (as in the previous section) which are independent of the precise
values of entries of µ ?

Theorem 2 Under assumptions (2) and (8) there exists a set of ”way-points”
W ⊂ SU(N) independent of µ such that if U(t, 0) visits all propagators in W

(i.e. for all Uk ∈ W there exists tk with U(tk, 0) = Uk) the components fij(t)
of the matrix µ̂(t) in (7) are linearly independent as functions of time.

Proof We denote for any U ∈ SU(N):

CU = {(Z, µ) ∈ (isu(N))2 | ‖Z‖ = ‖µ‖ = 1, T r(ZU∗µU) 6= 0}. (14)

This set is open because its complement is the solution of a linear equation in
the entries of the matrices Z and µ.

We prove now that for any Z, µ ∈ isu(N) of unit norm there exists a
U ∈ SU(N) such that Tr(ZU∗µU) 6= 0. To see this, diagonalize Z and µ:
Z = U∗

1D1U1 and µ = U∗

2D2U2 with U1, U2 unitary and D1, D2 diagonal; we
will denote by dak the k-th diagonal entry of Da. Recall that since Z, µ are

zero-traced
∑N

k=1 d
a
k = 0 for a = 1, 2. Therefore, in each set (dak)

N
k=1 there are

some elements that are strictly negative and some strictly positive. We will
also suppose that the diagonalization is done in such a way that the diagonal
elements are ordered from the lowest (that is strictly negative) to the highest,
which is strictly positive. Then,

Tr(ZU∗µU) = Tr(U∗

1D1U1U
∗U∗

2D2U2U) = Tr(D1V
∗D2V ) (15)

with V = U2UU∗

1 ∈ SU(N). Take now U such that V is a permutation matrix
corresponding to permutation σ. Then

Tr(D1V
∗D2V ) =

N
∑

k=1

d1kd
2
σ(k). (16)

If
∑N

k=1 d
1
kd

2
σ(k) = 0 for any permutation σ then it follows in particular that

∑N

k=1 d
1
kd

2
k =

∑N

k=1 d
1
kd

2
N−k, but the first member is always superior to the
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second with the equality implying that one of the vectors dak is constant which
leads to a contradiction with the zero-trace hypothesis.

We therefore obtain that ∪U∈SU(N)CU is a covering of the compact set
{(Z, µ) ∈ (isu(N))2 | ‖Z‖ = ‖µ‖ = 1} and thus one can extract a finite
covering i.e. a finite set W such that

∪U∈WCU = {(Z, µ) ∈ (isu(N))2 | ‖Z‖ = ‖µ‖ = 1}. (17)

This means that for any Z and µ in isu(N) (note that there is no need to
impose the norm condition) there exists U ∈ W such that Tr(ZU∗µU) 6= 0.
Expressed otherwise, for any µ ∈ isu(N) there does not exist Z ∈ isu(N) such
that Tr(ZU∗µU) = 0 for any U ∈ W. This implies that {U∗µU | U ∈ W}
form an independent set of vectors in isu(N), q.e.d. �

Remark 2 Theorem 2 only assures that such a set W exists but does not give
yet precise information on its size (which can be large) nor does it provide a
constructive approach to identify in practice W. The following result addresses
these questions upon imposing an additional constraint on the dipole µ.

Theorem 3 Under assumptions (2) and (8) and

µij 6= 0, ∀i 6= j. (18)

there exists a set of ”way-points” S ⊂ SU(N) such that if U(t, 0) visits all
propagators in S (i.e. for all Uk ∈ S there exists tk with U(tk, 0) = Uk) the
components fij(t) of the matrix µ̂(t) in (7) are linearly independent as func-
tions of time. Moreover the set S can be chosen to be the same for all coupling
operators µ satisfying the hypotheses (2), (8), (18).

Proof Suppose that the entries of µ̂(t) are not linearly independent i.e. a
matrix Z, Tr(Z) = 0 exists such that Z is orthogonal to all matrices U∗µU ,
∀U ∈ S, i.e., Tr(ZU∗µU) = 0 ∀U ∈ S.

Let us compute U∗µU : for µ =

(

µ11 µ12

µ21 µ22

)

(here µ11 is a 2×2 matrix, µ22

a N − 2×N − 2 matrix, etc.) and U = W<1,2> =

(

W 0
0 IN−2

)

U∗µU =

(

W ∗µ11W W ∗µ12

µ21W µ22

)

. (19)

A typical example of W is

(

cos(φ) sin(φ)
sin(φ) − cos(φ)

)

. The entries of W ∗µ11W will

contain terms of second order in cos(φ) and sin(φ): cos2(φ) = cos(2φ)+1
2 and

sin2(φ) = 1−cos(2φ)
2 , sin(φ) cos(φ) = sin(2φ)

2 ; the entries of W ∗µ12 and µ21W
will contain only first order terms in cos(φ) and sin(φ) while µ22 does not
depend on φ at all.

We recall that for any θ ∈ R the functions 1, cos(θ), sin(θ), cos(2θ), sin(2θ)
are linearly independent, which will be used in the following fashion
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Lemma 1 There exist five real values of θ, for instance Θ = {0, π/3, π/2, π, 3π/3}
such that

α1 + α2 cos(θ) + α3 sin(θ)

+α4 cos(2θ) + α5 sin(2θ) = 0 ∀θ ∈ Θ (20)

implies
α1 = ... = α5 = 0. (21)

We now introduce into the set S the matrices

Uθ,i;j =

(

0 cos(θ) + i sin(θ)
cos(θ)− i sin(θ) 0

)<i,j>

, (22)

for any i 6= j and θ ∈ Θ.
Since Tr(ZU∗

θ,i;jµUθ,i;j) = 0 ∀θ ∈ Θ by Lemma 1, the coefficients of sin 2θ
and cos 2θ in Tr(ZU∗µU) = 0 will be zero. The coefficient of sin 2θ turns out
to be µij(Zij + Zji) and that of cos 2θ is iµij(Zij − Zji). It follows from (18)
that Zij = Zji = 0.

Let us add to the set S the matrices

Vθ,i;j =

(

cos(θ) sin(θ)
sin(θ) − cos(θ)

)<i,j>

, (23)

for any i = 1, ..., N−1, j = i+1 and θ ∈ Θ. We use again Tr(ZV ∗

θ,i;jµVθ,i;j) = 0
∀θ ∈ Θ and identify the coefficients of sin 2θ and cos 2θ which are respectively
µij(Zii − Zjj) +

µii−µjj

2 (Zij + Zji) and −µij(Zij + Zji) +
µii−µjj

2 (Zii − Zjj).
We obtain Zii = Zjj . Since this is true for any i = 1, ..., N −1 from Tr(Z) = 0
it follows that Zii = 0 ∀i ≤ N .

Remark 3 Although the hypothesis (18) may seem strong we believe that it is
rather a technical requirement which could hopefully be relaxed in the future.

5 Conclusion and discussion

Following previous works in [14] which study the properties of the control
input-output map we investigate in this paper the singularity of the control to
propagator map through the study of the linear independence of entries of the
time-dependent coupling operator µ̂(t) (cf. (7)). We provide several sufficient
conditions in terms of the evolution semigroup points that are reached during
the propagation of Eq. (1). We expect that the criterion in (18) can be relaxed
to accommodate even more general coupling operators.
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