Critical points of the optimal quantum control landscape: a propagator approach - Archive ouverte HAL
Article Dans Une Revue Acta Applicandae Mathematicae Année : 2012

Critical points of the optimal quantum control landscape: a propagator approach

Tak-San Ho
  • Fonction : Auteur
  • PersonId : 911830
Herschel Rabitz
  • Fonction : Auteur
  • PersonId : 911831

Résumé

Numerical and experimental realizations of quantum control are closely connected to the properties of the mapping from the control to the unitary propagator. For bilinear quantum control problems, no general results are available to fully determine when this mapping is singular or not. In this paper we give suffcient conditions, in terms of elements of the evolution semigroup, for a trajectory to be non-singular. We identify two lists of "way-points" that, when reached, ensure the non-singularity of the control trajectory. It is found that under appropriate hypotheses one of those lists does not depend on the values of the coupling operator matrix.
Fichier principal
Vignette du fichier
linear_independence_mu_v9.pdf (125.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00630263 , version 1 (08-10-2011)
hal-00630263 , version 2 (03-02-2012)

Identifiants

Citer

Tak-San Ho, Herschel Rabitz, Gabriel Turinici. Critical points of the optimal quantum control landscape: a propagator approach. Acta Applicandae Mathematicae, 2012, 118 (1), pp.49-56. ⟨10.1007/s10440-012-9677-3⟩. ⟨hal-00630263v2⟩
237 Consultations
225 Téléchargements

Altmetric

Partager

More