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In this note, we provide an original proof of the comparison theorem for multidimensional Brownian BSDEs in the case where at each line k the generator depends on the matrix variable Z only through its row k.

Introduction

The comparison theorem for Backward SDEs (BSDEs for short) is a result which allows to compare the solutions of two BSDEs whenever you can compare their terminal conditions and generators. Although the comparison theorem holds true for Lipschitz BSDEs in the Brownian one dimensional case (see [START_REF] Peng | A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation[END_REF]), it needs stronger assumptions in the other cases.

In the Brownian multidimensional case, Hu and Peng [START_REF] Hu | On the comparison theorem for multidimensional BSDEs[END_REF] give a necessary and sufficient condition for the comparison theorem. Their result is based on the viability property for BSDEs studied in Buckdahn et al. [START_REF] Buckdahn | Viability property for a backward stochastic differential equation and applications to partial differential equations[END_REF] where the authors give an necessary and sufficient condition to ensure that the component Y stays in a given set. However, this approach uses analytical arguments and hence imposes a continuity assumption on the generator w.r.t. the time variable t.

In this note, we provide a comparison theorem for Lipschitz multidimensional Brownian BSDEs whose generator depends at each line k on the variable Z only through its line k :

f k (t, y, z) = f k (t, y, z k ) , (t, y) ∈ [0, T ] × R n , z =    z 1 . . . z n    ∈ R n×d .
For this, we introduce a random measure and show that the process constructed by choosing the component w.r.t. this random measure is solution to a BSDE with jumps. We then use existing comparison results for BSDES with jumps to state our main result. An important feature is that our result holds without supposing any continuity assumption on the generator w.r.t. the time variable t.

The rest of the note is organised as follows. In the next section we give the framework and state our result. In Section 3 we recall under which assumptions the comparison theorem for BSDEs with jumps holds. The last section is dedicated to the proof of our main result.

The comparison theorem for multidimensional BS-DEs

Let (Ω, A, P) be a probability space endowed with a standard d-dimensional Brownian motion (W (t)) t≥0 and let F = (F(t)) t≥0 be the P-completion of the filtration generated by (W (t)) t≥0 . We fix a terminal time T > 0 and an integer n ≥ 1. Throughout this note, we denote by -S 2 F the set of F-adapted continuous processes Y valued in R n such that

Y S 2 := E sup t∈[0,T ] |Y (t)| 2 < ∞ , -L 2 F the set of F-predictable processes Z valued in R n×d such that Z L 2 := E T 0 |Z(t)| 2 dt < ∞ .
We then consider two functions f 1 and

f 2 from Ω × [0, T ] × R n × R d×n to R n , which are F-progressive ⊗B(R n ) ⊗ B(R n×d )
-measurable, and two random variables ξ 1 and ξ 2 which are F T -measurable. We introduce the following assumptions.

(H1) ξ 1 and ξ 2 are square integrable:

E [|ξ i | 2 ] < ∞ , i = 1, 2 ,
(H2) f 1 (., 0, 0) and f 2 (., 0, 0) are square integrable:

E T 0 |f i (t, 0, 0)| 2 dt < ∞ , i = 1, 2 ,
(H3) there exists a constant L such that P-a.s. we have

|f i (t, y, z) -f i (t, y ′ , z ′ )| ≤ L(|y -y ′ | -|z -z ′ |) , i = 1, 2 .
for all (t, y, y ′ , z, z

′ ) ∈ [0, T ] × [R n ] 2 × [R n×d ] 2 .
For i = 1, 2, we consider the BSDE

Y i (t) = ξ i + T t f i (s, Y i (s), Z i (s))ds - T t Z(s)dW (s) , 0 ≤ t ≤ T . (2.1)
We denote by the partial ordering relation on

R n : for y 1 , y 2 ∈ R n , we have y 1 y 2 iff y k 1 ≥ y k 2
, for all k = 1, . . . , n. We also need an additional assumption on the form of the dependence of the generator f w.r.t. the unknown Z.

(H4) f 1 and f 2 depends on the last variable z at each line k only through the line k of z:

f k i (t, y, z) = f k i (t, y, z k ) , i = 1, 2 , for all (t, y) ∈ [0, T ] × R n and z =    z 1 . . . z n    ∈ R d×n .
Finally, we introduce an assumption which can be interpreted as a monotonicity condition of the generator w.r.t. the variable y.

(H5) f i satisfies the following monotonicity condition: there exit two constants

C 2 > C 1 > 0 and a map δ from Ω×[0, T ]×[R n ] 2 ×R n×d to [C 1 , C 2 ] k which is F-predictable⊗B(R n )⊗ B(R n ) ⊗ B(R n×d ) such that f ℓ i (t, y, z) -f ℓ i (t, y ′ , z) ≤ k∈K δ k (t, y, y ′ , z)(y k -y ′ k ) , ℓ = 1, . . . , n , for all (t, y, y ′ , z) ∈ [0, T ] × [R n ] 2 × R n×d .
We provide an example of a generator satisfying the previous assumption. Suppose that f i admits partial derivatives w.r.t. y k , k = 1, . . . , n, such that

∂f ℓ i ∂y k (t, y, z) ∈ [C 1 , C 2 ] , k, ℓ = 1, . . . , n , (2.2) 
for all (t, y, z) ∈ [0, T ] × R n × R n×d , then f i satisfy (H5). Indeed, we have

f ℓ i (t, y, z) -f ℓ i (t, y ′ , z) = n k=1
f ℓ i (t, y ′1 , . . . , y ′k-1 , y k , . . . , y n , z)f ℓ i (t, y ′1 , . . . , y ′k , y k+1 , . . . , y n , z) .

Then using the mean value theorem and (2.2), we get

f ℓ i (t, y, z) -f ℓ i (t, y ′ , z) = n k=1 δ k (t, y, y ′ , z)(y k -y k ′ ) , with δ k (t, y, y ′ , z) ∈ [C 1 , C 2 ]. Hence (H5) is satisfied.
Notice that we can extend this example to the case where the generator f is less regular. To this end we replace condition (2.2) by the following one

f ℓ i (t, y 1 , . . . , y k-1 , x, y k+1 , . . . , y n , z) -f ℓ i (t, y 1 , . . . , y k-1 , x ′ , y k+1 , . . . , y n , z) x -x ′ ∈ [C 1 , C 2 ] , (2.3) for all x, x ′ ∈ R such that x = x ′ . If f ℓ i (t, y 1 , . . . , y k-1 , ., y k+1 , . . . , y n , z) satisfy (2.
3) for all (t, y 1 , . . . , y k-1 , y k+1 , . . . , y n , z) ∈ [0, T ]×R n-1 ×R n×d , and all ℓ = 1, . . . , n, then f i satisfy (H5). Indeed, we write as previously

f ℓ i (t, y, z) -f ℓ i (t, y ′ , z) = n k=1
f ℓ i (t, y ′1 , . . . , y ′k-1 , y k , . . . , y n , z)f ℓ i (t, y ′1 , . . . , y ′k , y k+1 , . . . , y n , z) .

Then from (2.3) we have

f ℓ i (t, y ′1 , . . . , y ′k-1 , y k , . . . , y n , z) -f ℓ i (t, y ′1 , . . . , y ′k , y k+1 , . . . , y n , z) ≤ (C 1 1 y k <y ′k + C 2 1 y ′k ≤y k )(y k -y ′k ) .
Taking δ k (t, y, y ′ , z) = C 1 1 y k <y ′k + C 2 1 y ′k ≤y k we get (H5).

We now state the main result of this note.

Theorem 2.1 (Comparison Theorem). Suppose that (H1)-(H4) hold and that f 1 of f 2 satisfies (H5). Suppose also that P-a.s.

ξ 1 ξ 2 and f 1 f 2 . Then if (Y i , Z i ) ∈ S 2 F × L 2 F is solution of (2.1) for i = 1, 2, we have Y 1 (t)
Y 2 (t) , 0 ≤ t ≤ T , Pa.s.

Remark 2.1. An important feature of our result is that it relax the continuity assumption of the generator w.r.t the time variable t used in [START_REF] Hu | On the comparison theorem for multidimensional BSDEs[END_REF].

Remark 2.2. Under Assumptions (H4) and (H5), the necessary and sufficient condition given by Theorem 2.1 in [START_REF] Hu | On the comparison theorem for multidimensional BSDEs[END_REF] is satisfied. Indeed, suppose w.l.o.g that (H5) holds true for f 1 .

Since f 1 f 2 , we have

-4 y -, f 1 (t, y + + y ′ , z) -f 2 (t, y ′ , z ′ ) ≤ -4 y -, f 1 (t, y + + y ′ , z) -f 1 (t, y ′ , z ′ ) ≤ -4 n k=1 [y k ] -f k 1 (t, y + + y ′ , z k ) -f k 1 (t, y ′ , z k ) -4 n k=1 [y k ] -f k 1 (t, y ′ , z k ) -f k 1 (t, y ′ , z ′ k )
From the Lipschitz property of f 1 and the inequality ab ≤ 1 2 a 2 + 2b 2 for a, b ∈ R, we get

-4 n k=1 [y k ] -f k 1 (t, y ′ , z k ) -f k 1 (t, y ′ , z ′ k ) ≤ 2 n k=1 1 y k <0 |z k -z ′ k | 2 + 8|y -| 2 . (2.4)
Then using assumption (H5) we have

-4 y -, f 1 (t, y + + y ′ , z) -f 1 (t, y ′ , z) ≤ 0 . (2.5)
Combining (2.4) and (2.4) we get

-4 y -, f 1 (t, y + + y ′ , z) -f 2 (t, y ′ , z ′ ) ≤ 2 n k=1 1 y k <0 |z k -z ′ k | 2 + 8|y -| 2 ,
which is the necessary and sufficient condition for comparison given in [START_REF] Hu | On the comparison theorem for multidimensional BSDEs[END_REF].

Comparison for BSDEs with jumps

We consider a Poisson random measure µ on R + × K with K := {1, . . . , n}. We assume that this random measure µ is independent of (W (t)) t≥0 . We denote by G = (G(t)) t≥0 the P-augmentation of the filtration generated by F and µ. We suppose that µ is of the form

µ([0, t] × B) = ℓ≥1 1 [0,t]×B (τ ℓ , ζ ℓ ) , t ≥ 0 , B ⊂ K , (3.6) 
where (τ ℓ ) ℓ≥1 is nondecreasing sequence of G-stopping times and ζ ℓ is a G(τ ℓ )-measurable random variable for each ℓ ≥ 1.

We assume that µ admits a compensator of the form λ(k)dt with λ(k) > 0 for all k ∈ K and we denote by μ the compensated measure associated to µ:

μ([0, t] × B) = µ([0, t] × B) -t k∈K λ(k)1 B (k) , t ≥ 0 , B ⊂ K .
We then consider the following spaces:

-S 2 G the set of G-adapted càdlàg processes Y valued in R such that Y S 2 < ∞ , -L 2 G the set of G-predictable processes Z valued in R d such that Z L 2 < ∞ , -L 2 G,λ the set of processes U from Ω × [0, T ] × K to R such that U (k, .) is G-predictable for all k ∈ K and U L 2 λ := E T 0 k∈K |U (t, k)| 2 λ(k)dt < ∞ .
We consider two functions g 1 and g

2 from Ω × [0, T ] × R × R d × R n to R n , which are G- progressive ⊗B(R) ⊗ B(R d ) ⊗ B(R n )-
measurable, and two random variables η 1 and η 2 which are G T -measurable.

We then introduce the following assumptions (H'1) η 1 and η 2 are square integrable:

E [|η i | 2 ] < ∞ , i = 1, 2 ,
(H'2) g 1 (., 0, 0, 0) and g 2 (., 0, 0, 0) are square integrable:

E T 0 |g i (t, 0, 0, 0)| 2 dt < ∞ , i = 1, 2 ,
(H'3) there exists a constant L such that P-a.s. we have

|g i (t, y, z, u) -g i (t, y ′ , z ′ , u ′ )| ≤ L(|y -y ′ | + |z -z ′ | + |u -u ′ |) , i = 1, 2 . for all (y, y ′ , z, z ′ , u, u ′ ) ∈ [R] 2 × [R d ] 2 × [R n ] 2 .
For i = 1, 2, we consider the BSDE with jumps

Y i (t) = η i + T t g i (s, Y i (s), Z i (s), U i (s, .))ds - T t Z(s).dW (s) - T t K U (s, k)μ(dk, ds) , 0 ≤ t ≤ T . (3.7)
We finally introduce a monotonic assumption of the generator used by Royer [START_REF] Royer | Backward stochastic differential equations with jumps and related non-linear expectations[END_REF] to get comparison result for BSDEs with jumps.

(H'4) There exists two constants

C 4 ≥ C 3 > -1 and a map γ from Ω × [0, T ] × K × R × R d × [R n ] 2 to [C 3 , C 4 ] which is G-predicable ⊗B(R) ⊗ B(R d ) ⊗ B(R n ) ⊗ B(R n )-measurable such that P-a.s. g i (t, y, z, u) -g i (t, y, z, u ′ ) ≤ K γ y,z,u,u ′ (t, k) u(k) -u ′ (k) λ(dk) , for all (t, y, z, u, u ′ ) ∈ [0, T ] × I × R × R d × [R n ] 2 .
Under the previous assumptions we have the following comparison theorem (see Theorem 2.5 in [START_REF] Royer | Backward stochastic differential equations with jumps and related non-linear expectations[END_REF]).

Theorem 3.2. Suppose that (H'1)-(H'3) hold and that g 1 or g 2 satisfy (H'4). Suppose also that P-a.s.

η 1 ≥ η 2 and g 1 ≥ g 2 . Then if (Y i , Z i , U i ) ∈ S 2 G × L 2 G × L 2 G,λ is solution of (3.7) for i = 1, 2, we have Y 1 (t) ≥ Y 2 (t) , 0 ≤ t ≤ T , P -a.s. 4 Proof of Theorem 2.1 Let (Y i , Z i ) ∈ S 2 F × L 2 F be solution to (2.1) for i = 1, 2 and k ∈ K. To prove that Y k 1 (t) ≥ Y k 2 (t) , 0 ≤ t ≤ T , P -a.s.
we proceed in three steps.

Step 1. Construction of jump processes. Take µ a Poison random measure on R + × K of the form (3.6), independent of (W (t)) t≥0 with intensity λ defined by λ(k) = 2L for all k ∈ K, where L is the Lipschitz constant of f i , i = 1, 2. Consider the process (N (t)) t≥0 defined by

N (t) = k + t 0 K (k -N (t-))µ(dk, dt) , 0 ≤ t ≤ T .
Notice that since µ has the form (3.6), N is the process taking the value ζ ℓ on [τ ℓ , τ ℓ+1 ). Define also, for i = 1, 2, the processes Y i , Z i and U i by

Y i (t) = Y N (t) i (t) , Z i (t) = Z N (t-) i (t) , U i (t, k) = (Y k i (t) -Y N (t-) i (t-)) k∈K , 0 ≤ t ≤ T . (4.8) 
(at time t, the component is chosen as the value given by the process

N ) Since (Y i , Z i ) ∈ S 2 F × L 2 F , we easily check that (Y i , Z i , U i ) ∈ S 2 G × L 2 G × L 2 G,λ for i = 1, 2.
A straightforward computation shows that, for i = 1, 2, (Y i , Z i , U i ) satisfies (3.7) with η i = ξ N (T ) i and g i (t, y, z, u) = f N (t) i t, y + u(1), . . . , y + u(n), z -k∈K u(k)λ(k) , (4.9) for (t, y, z, u)

∈ [0, T ] × R × R d × R n .
Step 2. Comparison of the jump processes. Notice that since ξ 1 ξ 2 and f 1 f 2 we have η 1 ≥ η 2 and g 1 ≥ g 2 . Notice also that since f i satisfy (H1)-(H3), g i satisfy (H'1)-(H'3) for i = 1, 2. We prove that g i defined by (4.9), satisfy (H'4). Indeed, for (t, y, z, u, u ′ ) ∈ [0, T ] × R × R d × [R n ] 2 we have from (H5) and (4.9) g i (t, y, z, u)g i (t, y, z, u ′ ) ≤ 

  k∈K δ k (t, y + u, y + u ′ , z)(u(k)u ′ (k)) -k∈K (u(k)u ′ (k))λ(k) ≤ n k=1 γ y,z,u,u ′ (t, k)(u(k)u ′ (k))λ(k) with γ y,z,u,u ′ (t, k) = δ k (t,y+u,y+u ′ ,z) λ(k) -1 ∈ [C 3 , C 4 ] with C 4 = C 1 min k λ(k) -1 and C 3 = C 1 max k λ(k) -1 > -1.Hence g i satisfy (H'4) and we have Y 1 (t) ≥ Y 2 (t) , 0 ≤ t ≤ T , Pa.s.(4.10)

Step 3. Back to the continuous processes. Recall that the random measure is of the form

where (τ ℓ ) ℓ is an increasing sequence of G-stopping times and ζ ℓ in a G τ ℓ -measurable r.v. valued in K. Using (4.10), we have

for all t ∈ [0, T ]. Since the processes Y i , i = 1, 2, are continuous and k is arbitrary fixed we get the result.