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Abstract This paper studies the intertemporal equilibrium of a barter econ-
omy populated with a continuum of �nitely-lived overlapping generations.
Assuming isoelastic preferences and zero endowments at the beginning and
the end of the individuals�life-span, it proves the existence of an Hopf bifur-
cation and provides su¢ cient conditions on parameters for its occurrence.
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1 Introduction

This paper investigates the long-run �uctuations that may emerge in station-

ary OLG economies. To this end, we follow Demichelis and Polemarchakis

[5] who study a continuous-time model with a continuum of �nitely-lived

individuals1. The intertemporal equilibrium is shown to be the solution of

a functional di¤erential equation of mixed-type (MFDE). By extending this

model to isoelastic preferences, the MFDE is nonlinear. The proof of the ex-

istence of long-run �uctuations then relies on Rustichini [10] and Benhabib

and Rustichini [2]: it uses the linearized MFDE that characterizes the local

motion of the economy and looks for solutions which have Hopf bifurcation

values. Assuming zero discounting and a speci�c endowment distribution,

we show that there exist some sets of parameters such that a barter economy

exhibits a cycle on the neighborhood of a steady state. An elasticity of in-

tertemporal substitution lower than one and zero endowments at beginning

and end of the individuals�life-span are su¢ cient conditions to obtain this

result. This paper consequently shows that an increase in the frequency of

trade during the individual� life-span does not eliminate the possibility of

endogenous �uctuations in OLG economies2.

The sketch of the paper is as follows. Section 2 presents an overlapping-

generations model with continuous trading and �nitely-lived individuals. Sec-

1The pioneer OLG model of this kind is due to Cass and Yaari [4].
2Note that this issue is usually debated in discrete time environment: see notably

Aiyagari [1] and Ghiglino and Tvede [6] in a framework with many generations and [8],
[7] and [9] in models with two generations.
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tion 3 characterizes the intertemporal equilibrium of a barter economy and

analyses the existence and uniqueness properties of the steady state. Section

4 studies the spectral decomposition of the linearized dynamics in the neigh-

borhood of a steady state and gives su¢ cient conditions for the existence of

an Hopf bifurcation.

2 The model

Time is continuous and has a �nite starting point; let t � 0 denote the

time index. Individuals live for an interval of time of length 1. They only

derive utility from consumption and have isoelastic preferences and no time

discount. Let c (s; t) � 0 denotes the consumption of an individual who born

at time s as of time t. Hence, the intertemporal utility of an individual who

born at time s � 0, denoted as u (s), is:

u (s) =

Z s+1

s

c (s; t)1�
1
�

1� 1
�

dt (1)

where � > 0 stands for the elasticity of intertemporal substitution. During

a lifetime, an age-dependent endowment is received; it is denoted w (t� s)

and satis�es:

w (t� s) =
�
w (t) if t 2 [s+ �; s+ �]
0 otherwise

(2)

with 0 � � < � � 1. Individuals have access to a competitive asset mar-

ket that yields the interest rate r (t). Let a (s; t) denotes the real wealth of

an individual who born at time s as of time t. The instantaneous budget
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constraint is therefore:

@a (s; t)

@t
= r (t) a (s; t) + w (t� s)� c (s; t) (3)

Individuals are born with no �nancial assets and cannot die indebted. There-

fore, initial and terminal conditions write:

a (s; s) = 0 (4)

a (s; s+ 1) � 0 (5)

It is assumed that a (s; t) and c (s; t) are C1
�
R2+
�
and that r (t) and w (t� s)

are continuous for all t 2 [s; s+ 1]. The individual program is to maximize

(1) subject to (3), (4) and (5).

Lemma 1 The optimal consumption pro�le satis�es:

c (s; t) =

R s+�
s+�

w (z) e�
R z
s r(u)dudzR s+1

s
e�(1��)

R z
s r(u)dudz

e�
R t
s r(u)du (6)

Proof: The �rst order conditions are:

@c (s; t)

@t
= �r (t) c (s; t) (7)

and a (s; s+ 1) = 0. Integrating forward condition (3), and using the second

optimal condition yields:Z s+1

s

c (s; z) e�
R z
s r(u)dudz =

Z s+�

s+�

w (z) e�
R z
s r(u)dudz (8)

Replacing (7) in (8) gives c (s; s) and consequently (6). �
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The demographic structure is in overlapping generations. Each individual

belongs to a cohort whose size is normalized to 1. There is no population

growth and, at each point of time, a new cohort enters the economy since the

oldest one leaves it. Hence, the aggregate counterpart, x (t), of any individual

variable, x (s; t) ; is obtained by integrating over the birth date, such that:

x (t) =

Z t

t�1
x (s; t) ds (9)

Assume there exists a single non storable good and that the aggregate endow-

ment equals the size of the population; then:
R t
t�1w (t� s) ds = 1. Replacing

the endowment distribution rule given by (2) yields: w (t) = 1= (� � �). Us-

ing (6), the aggregate consumption, denoted c (t), hence satis�es:

c (t) =
1

(� � �)

Z t

t�1

R s+�
s+�

e�
R z
s r(u)dudzR s+1

s
e�(1��)

R z
s r(u)dudz

e�
R t
s r(u)duds (10)

There is no money in this economy and assets are constituted by consumption

loans. The aggregate wealth is denoted a (t); using (3), (4) and the optimal

condition: a (s; s+ 1) = 0, its dynamics writes:

da (t)

dt
= r (t) a (t) + 1� c (t) (11)

3 Equilibrium and steady states

De�nition 1 An equilibrium with perfect foresight is a function F (t) =

(c (t) ; a (t) ; r (t)), F : R+ ! R2+ � R, C1 (R+) such that (i) individuals max-

imize their utility subject to the budget constraint, (ii) the aggregate con-

sumption equals the aggregate endowment (i.e. c (t) = 1), and (iii) the

aggregate asset is zero (i.e. a (t) = 0).
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Using (3), it can be inferred from de�nition 1, that an equilibrium reduces

to a function r (t).

De�nition 2 A steady state equilibrium is a triplet (c; a; r) that satis�es:

(i) c = � (r) and a = (c� 1) =r, (ii) c = 1 and a = 0; where function

� : R! R++ is such that:

� (r) =

R 1
0
e�rzdz

(� � �)

R �
�
e�rzdzR 1

0
e�(1��)rzdz

(12)

Property 1 A steady state interest rate is a r that satis�es � (r) = 1 if

r 6= 0 and �0 (r) = 0 if r = 0.

Proof: For r 6= 0, the property is an immediate implication of de�nition 2;

for r = 0; just observe that � (0) = 1 and use l�Hôpital�s Rule. �

Lemma 2 r = 0 is a steady state interest rate if and only if �+ � = 1.

Proof: Replace r = 0 in �0 (r) and use property 1 to conclude. �

Corollary 1 The individual consumption is age-independant if and only if

�+ � = 1.

Lemma 3 There exist (�; �; �) such that there is no steady-state equilibrium.

Proof: It can be easily shown that there is no solution r 6= 0 such that

� (r) = 1 if � = 0 and � 2 (0; 1� �] or if � = 1 and � 2 [�; 1). �

Lemma 4 There exist (�; �; �) such that there are multiple steady-state equi-

libria.
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Proof: Suppose � = 1 � � and recall with lemma 2 that r = 0 is a steady

state; it can be easily shown that there exist at least two other solutions

r 6= 0 such that � (r) = 1 if � 2 (�; 2� (1� �)). �

4 Endogenous cycles

The equilibrium satis�es the following non linear dynamics:

1

(� � �)

Z t

t�1

R s+�
s+�

e�
R z
s r(u)dudzR s+1

s
e�(1��)

R z
s r(u)dudz

e�
R t
s r(u)duds = 1 (13)

In this section, it is the local dynamics around steady-state r� which is stud-

ied; it is the one of x (t) de�ned such that r(t) = r� + �x(t).

Property 2 The characteristic function of x (t) is denotedQ(�) and satis�es:

Q(�) = �
R �
�
e(��r

�)sdzR �
�
e�r�zdz

+ (1� �)
R 1
0
e(��(1��)r

�)zdzR 1
0
e�(1��)r�zdz

+ �

R 1
0
e�r

�zdzR 1
0
e(�r���)zdz

(14)

Proof: Replace r(t) = r� + �x(t) in (13). Then do a Taylor expansion in

the neighborhood of � = 0 and rearrange using � (r) = 1. De�ne X(t) =R t
0
x (u) du. It yields:

X(t) =

R t
t�1 e

�r�(t�s)
�R s+�

s+� e
�r�(z�s)X(z)dz

(���) � (1��)
R s+1
s e�(1��)r

�(z�s)X(z)dzR 1
0 e

�r�zdz

�
ds

�
R 1
0
e�(1��)r�zdz

(15)

Finally, Q(�) is obtained by the following change of variable: x(t) = e�t and

rearranging using � (r) = 1. �

Lemma 5 The characteristic function Q(�) has an in�nity of complex roots

with negative real parts and an in�nity of complex roots with positive real

parts.
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Proof: Roots of Q(�) are asymptotic to those of the following equations3:

P1 (�) = ��
 
��2

Z 1

0

e�r
�zdz +

(1� �) e��(1��)r�R 1
0
e�(1��)r�zdz

!
(16)

P2 (�) = ��
 
��2

Z 1

0

e�r
�zdz +

(1� �) e��+�r�R 1
0
e�(1��)r�zdz

!
(17)

Asymptotically, roots of P1 (�) have a positive real part while those of P2 (�)

have a negative real part. �

Corollary 2 The dynamics is generically characterized by oscillations that

decrease in magnitude and eventually disappear.

Consider now the case � = 1�� and focus on the neighborhood of the steady

state r� = 0. The characteristic function (14) rewrites:

Q(�) = �
R 1��
�

e�zdz

(1� 2�) + (1� �)
�Z 1

0

e�zdz

�
+ �

1�R 1
0
e��zdz

� (18)

Lemma 6 There exist (�; �; �) such that there are pure imaginary roots

which are Hopf bifurcation values.

Proof: Let � = p+iq. The proof proceeds in two steps: (i) it supposes � = iq

and proves that for � < 2� (1� �), there exists a q > 0 such that Q(iq) = 0;

it hence de�nes (�0; �0 (�0)) the pair of parameters for which this root does

exist; (ii) it uses � as a bifurcation parameter and shows that there exists a

neighborhood of �0 such that dRe (Q (�)) =d� is not equal to zero.

(i) Replace � = iq in (18) and de�ne ~Q (q) such that:

~Q (q) =
cos (�q)� cos ((1� �) q)

1� 2� + (1� �) [cos (q)� 1]� �q
2

2
(19)

3See Bellman and Cooke (1963) p. 410.
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A Taylor expansion in the neighborhood of q = 0 yields:

~Q (q) =
q4

12

�
� (1� �)� �

2

�
+O

�
q6
�
> 0 (20)

Moreover, limq!+1 ~Q (q) = �1. Therefore, there exists a q > 0 such that
~Q (q) = 0.

(ii) From (18), it yields:

dRe (Q (�))

d�

����
�0

=
sin (q)

q

�
q2

2 (1� cos (q)) � 1
�

(21)

The roots of this latter function are those of sin (q) and cos (q) = 1 � q2=2.

They are the f2�+ k�; k 2 Zg[fq1; q2; q3; q4g, where q1; q2; q3 and q4 are the

4 roots of the following polynomial:�
1� q

2

2

�2
+

�
1�

(q � �
2
)2

2

�2
= 1 (22)

Since elements of f2� + k�; k 2 Zg [ fq1; q2; q3; q4g are independent with

respect to a0, there exists a0, such that a0 =2 f2�+k�; k 2 Zg[fq1; q2; q3; q4g.

�
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