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Abstract. Effective management of maintenance in buildings can have
a significant impact on the total life cycle costs and on the building energy
use. Nevertheless, the building maintenance scheduling problem has been
infrequently studied. In this paper, we present constraint-based schedul-
ing models for the building maintenance scheduling problem, where each
activity has a set of alternative resources. We consider two different mod-
els, one using basic constraints, and the other using our new and modified
global constraints, which handle alternative disjunctive resources for each
activity to allow propagation before activities are assigned to resources.
We evaluate these models on randomly generated problems and show
that while the basic model is faster on smaller problems, the global con-
straint model scales better.

Keywords: Building maintenance scheduling, optional activities, alter-
native resources, disjunctive global constraint

1 Introduction

The operation of large-scale buildings is a significant commercial cost. Subopti-
mal performance of heating and ventilation systems wastes energy and impacts
on the productivity of occupants. Maintenance for large buildings is estimated
to consume each year 2% of the total replacement cost of the building [2], with
improved maintenance offering up to 20% reductions in the annual energy cost
[3]. Effective management of the maintenance process involves solving a schedul-
ing problem with multiple maintenance engineers, interrelated activities, and
complex costs on resource use and delays of activities.

Constraint Programming (CP) is one of the most successful techniques for
solving scheduling problems with much of its success based on the use of global
scheduling constraints, which enable efficient propagation based on commonly
occurring problem substructures. In many practical problems, there are multi-
ple discrete resources, and each activity may be executed by any one of a subset
of those resources. However, the most successful constraint filtering techniques
assume that resources are already assigned to activities before problem solving
begins. Some global constraints do model resources where activities are optional,



but these do not take account of the fact that each activity must eventually be
scheduled on some resource. In this paper, we consider the problem of build-
ing maintenance scheduling. We develop two different models, one using simple
constraints, and the other using global constraints representing the alternative
resources and optional activities. In the latter model , we use a modified version
of the disjunctive global constraint and a new global constraint useResources,
which enables modelling resource requirements of activities, i.e., use k of n re-
sources. Finally, we evaluate the two different models and implementations on
randomly generated building maintenance scheduling problems. We show that
while the basic model is faster on smaller problems, the global constraint model
scales better.

The rest of this paper is organized as follows: Section 2 gives description
for the application problem, while Section 3 provides the necessary background
for the work presented in this paper. Models developed for the building mainte-
nance scheduling problem are discussed in Section 4 and the specification of our
global constraints is presented in Section 5. Section 6 provides the experimental
evaluation. Finally, Section 7 concludes with a summary and outline for future
work.

2 Problem Description

The building maintenance scheduling problem involves a set of maintenance ac-
tivities, which must be carried out by a set of maintenance engineers with the aim
to assign for every activity a start time and an engineer such that all constraints
are satisfied and the associated operating costs are minimized. Generally, main-
tenance activities are either planned or reactive. Planned maintenance is carried
out at predetermined time intervals to prevent degradation or failure of build-
ing components and systems, while reactive maintenance is carried out at short
notice in response to reported faults, thus making the scheduling problem dy-
namic. Emergency maintenance is a special case of reactive maintenance that
causes threat to health and safety and is usually related to a gas (e.g., gas leak),
electricity, or water problem.

Typically, a maintenance schedule should satisfy a variety of constraints.
For example, some constraints define inter-dependency relations that might oc-
cur between activities including concurrency, precedence, and non-overlapping.
Concurrency constraints may require a set of activities to be conducted at the
same time, while precedence constraints ensure that one set of activities should
conclude before another set starts. Non-overlapping constraints restrict a set of
activities from overlapping during their execution, to ensure continued safe op-
eration. Additionally, some activities have required skills, and thus can only be
carried out by a qualified staff. Furthermore, maintenance involves disruption to
the building occupants, and thus activities may be restricted to specified time
windows, which might differ over the scheduling horizon. For example, one ac-
tivity might have the time window (Mon - Wed, 09:00 - 12:00), while another
activity could only be executed during one of the following intervals: (Tues, 11:00



- 14:00), or (Thur, 15:00 - 17:00). Hence, activities might have irregular time win-
dows. Finally, engineers execute one activity at a time and have specified skills,
limits on their working hours, and windows on their availability, e.g., engineers
cannot be assigned activities during their lunch breaks.

An optimized building maintenance schedule is one that satisfies all con-
straints while minimizing the associated operating costs including maintenance
and energy costs. Energy costs are associated with the delayed scheduling of
maintenance for components consuming excess amounts of energy if they are
faulty, e.g., heaters. Maintenance costs correspond to cost overheads as a re-
sult of scheduling activities out of contracted working hours and penalties due
to scheduling activities beyond their contracted response time windows. A re-
sponse time window states when an activity should be carried out according to a
service level agreement (SLA). Typically, the SLA defines an expected minimal
level of service and may specify financial penalties for the service provider in case
the service falls below the minimal level, e.g., failing to address a serious failure
in a timely manner. Reactive maintenance may have energy cost associated with
it, while planned and reactive maintenance may both incur maintenance costs.
We consider scheduling activities within a time-frame of one week.

3 Background

Building maintenance scheduling problems have been infrequently studied in
the literature. To the best of our knowledge, this problem is investigated in only
one paper [11]. It presents a building maintenance system that uses RFID in
maintenance management and includes a scheduling module. This module uses
mathematical programming in scheduling planned maintenance activities, while
minimizing the total maintenance time. The scheduling module, however, pro-
vides schedules for planned maintenance only. Additionally, no details are given
regarding problem modelling and handling of different constraints including re-
strictions of unary resources and temporal constraints.

Constraint-based scheduling models typically involve rich representations of
both activities and resources. Activities are usually modelled using three vari-
ables representing their start, end, and duration, with [est, lct] representing the
time window in which an activity executes, where est and [lct are the activity
earliest start and latest completion times, respectively. A coherent activity time
window is one that satisfies lct — est > minimum duration. Disjunctive global
constraints are usually used to model unary resources (i.e., with unit capacity)
[5]. This constraint ensures that non-interruptible activities executing over a
unary resource are sequenced such that they do not overlap at any time interval.
Several filtering algorithms are used in the disjunctive constraint including Edge
Finding [8], Not-First/Not-Last [18], Detectable Precedence [18], and Overload
Checking [19]. We will call these algorithms the disjunctive resource filtering
algorithms.

The disjunctive resource filtering algorithms assume that all activities to be
scheduled on the resource are known in advance, but in many problems each



activity has a choice of resources, and thus the set of activities allocated to each
resource is not fixed until those choices are made. One possible way to handle
alternatives is by modelling optional activities as proposed by Beck and Fox
[6]. Optional activities can be classified into two categories: schedule-based, in
which an activity may be omitted from the final schedule (e.g. due to different
plans being selected), and resource-based, in which the activity is optional for
the resource, but must be included on some resource in the final schedule (e.g.
courses allocated to a classroom in a timetable). For both categories, we can
maintain a binary allocation variable e} = {0, 1} for each activity ¢ and resource
r. When e = 1, then activity ¢ is allocated to resource r and is said to be
regular over that resource; when e is not yet assigned a value, ¢ is optional over
r; finally, an activity ¢ is disabled over r if e is set to zero. We focus in this
paper on resource-based optional activities.

Some researchers have studied scheduling problems with alternative resources.
In [9], Focacci et al. presented a general job shop scheduling problem with se-
quence dependent setup times and alternative resources. They use a constraint
called alternative resources to apply reasoning over activities with alternative
resources. A modified version of this constraint is also presented in [19] to solve
scheduling problems with alternative resources. Additionally, some disjunctive
resource filtering algorithms have been extended to accommodate reasoning over
optional activities. In [17], Vilim et al. proposed extensions to detectable prece-
dence, not-first /not-last, and overload checking with time complexity O(nlogn).
These algorithms use efficient special data structures, called @ — X trees that al-
low “what if” reasoning over different sets of activities. Furthermore, Kuhnert
proposed in [12] an extended version of edge finding that handles optional ac-
tivities with time complexity O(n?). In these extended versions, an optional
activity is disabled over a resource if it causes its overloading, i.e., no feasible
sequencing for activities over the resource exists as activities cannot be processed
within their time windows. Additionally, the extended reasoning enables regular
activities to modify the time windows of other regular and optional activities
over the resource. However, the opposite is not true as optional activities could
later be disabled during problem solving. These extended algorithms apply to
resource-based and schedule-based optional activities.

In [19], the alternative resources constraint considers a set of T" activities and
R resources, with the following filtering rules:

vt€T7v7"€Rtl S{ n St :®:>Rt = Rt\{T}, (].)
VteTVreR: S NS #0= ST =8 n S, (2)
VteT: Sp=8.0( |J SN (3)

(”’GRt)

For every activity ¢, S; represents a non-empty finite of potential start times,
while R, is a non-empty finite set of alternative resources. Additionally, for each



activity ¢ € T and every alternative resource r € R;, a non empty finite set of
alternative start times S; := S; is defined.

The aforementioned rules are generally triggered whenever S; or S is changed.
In rule (1), if no possible start times for an activity ¢ are left over a resource r,
then 7 is removed from the set of alternative resources. In (2), modifications ap-
plied to the main possible start times are propagated to its alternatives. Finally,
rule (3) propagates updates applied over alternative possible start times to the
main possible start times whenever one of these alternatives (i.e., S}) is updated.
Throughout this paper, we will refer to these rules by the alternative resources
filtering rules and use (=) in their procedural specification, while using (—) and
(<) in logical constraints.

The scheduling problem with alternative resources is solved in [19] using a
number of scheduling constraints including the disjunctive constraint, a sweeping
algorithm, which performs global overload checking, and the alternative resource
constraint. However, the sweeping algorithm is computationally expensive; its
time complexity is O(n?). Additionally, the disjunctive constraint used in [19]
and the scheduling constraints used in [9] do not use the extended disjunctive
resource filtering algorithms proposed in [17,12]. Furthermore, to the best of
our knowledge, no previous work has investigated constraint-based modelling of
resource requirements for activities that are allocated a set of resources selected
among alternatives.

4 Building Maintenance Scheduling Models

In this section, we discuss the models developed for the building maintenance
scheduling problem. We first start with the basic model in Section 4.1, followed
by the global constraint model in Section 4.2. In both models, we handle multi-
objective optimization through the weighted objectives technique. Weighted ob-
jectives combines different objective functions into a single one through a linear
weighted summation of these objectives. Scalar weights of objectives are specified
according to their relative importance [15].

4.1 The Basic Model

This model is based on [4]. The building maintenance scheduling problem con-
sists of a set of activities T = {1...n} and a set of engineers R = {1....m}. For
each activity ¢ € T, we define the following variables: start; is the start time
for the activity, with a domain of integers ensuring time windows are obeyed; d;
is the activity duration 2; end; is the end time for the activity, with a domain
of integers ensuring time windows are obeyed; ¢; is the assigned engineer, with
a domain of integers, subset from R, ensuring that only engineers with the re-
quired skills can be assigned; z; is the cost resulting from scheduling activity

3 Durations of activities are generally considered as variables. In our problem in-
stances, however, we assume activity duration to be a constant integer regardless
of which engineer is assigned the activity.



at its chosen start time; s; is an auxiliary variable linking the start time to an
array of costs. Finally, a variable p represents the total cost of the schedule.
Constants included in the model for each activity i are as follows: dt; is
an array of start times such that each value in the domain of start; appears
exactly once in this array; tcost; is an array of costs, of the same length as dt;,
representing the cost of each start time.
For each activity ¢« € T, we define the following constraint:

start; + d; = end; (4)

Since the start time windows and costs in building maintenance scheduling are
irregular, we use for each activity ¢ the two parallel arrays dt; and tcost; such
that if dt;[index] = t,, where ty is the start time value and index is its position
in the array , then the cost of starting activity ¢ at time ¢, is tcost;[index]. We
represent this using the two element constraints:

element(s;, dt;, start;) (5)

element(s;, tcost;, x;) (6)

The element(I, S, X) constraint states that S[I] = X. Additionally, for each pair
of activities ¢ and j, such that i # j, we define the disjunctive constraint which
ensures that two activities cannot be executed at the same time by the same
engineer:

¢i = c¢j — (end; < start;) V (end; < start;) (7)
Depending on the problem instance, we also add constraints of the following
types:

Concurrency : start; = start; (8)
Precedence : end; < start; (9)

Non — overlapping : (end; < start;) V (end; < start;) (10)
VS, AllDif ferent({c; : i € S}) (11)

The first three constraint types represent inter-dependency relations that might
occur between activities. Additionally, for each maximal set S of concurrent
activities, the redundant constraint in (11) is defined to restrict concurrent ac-
tivities to be assigned to different engineers. We then specify total cost of the
schedule as:

p=)Y m (12)
ieT
Finally, the objective function is to minimize p.



4.2 The Global Constraint Model

In addition to the basic model above, we consider another model, which uses
global constraints to capture known relationships between activities and re-
sources, in an attempt to improve propagation. Firstly, we add the allocation
variables. For each activity ¢ € T and for every engineer r € R, we define a
binary variable e}, to indicate whether the activity ¢ is assigned to engineer r. If
engineer r is not qualified for the activity (i.e., is not among the set of alternative
T is set to zero. This requires a channeling

engineers with the required skills), el
constraint (13), which links ¢; with the e]:

VieT,NreR:c=r<e =1 (13)

Secondly, we remove all constraints of type (7), which only propagate once ac-
tivities have been assigned to engineers, and instead add two global constraints:

Vr € R: AltDisj([starty, .., starty,],[d1, .., dy], [endy, .., end,], [e], .., eT]) (14)

Vi € T : useResources(1, start;, d;, end;, [e},.....]"], R) (15)

K3

For each engineer, the alternative disjunctive constraint (14) lists all activities
which could possibly be executed by that engineer, and ensures that if they are
assigned to the engineer then they do not overlap. Additionally, the useResources
constraint (15) ensures that each activity must be eventually assigned to exactly
one engineer. We use two separate global constraints that reason about alter-
native resources to accommodate the use of hypothetical domains and enable
modelling heterogeneous resource requirements as explained in Section 5.

Finally, we add a cumulative constraint (16) to enable early propagation over
the domains of start time variables, where h; is a unit height for activity i. As
little pruning can take place until activities are assigned a resource, it is possible
that multiple activities could be assigned the same start time during search
even though they are sharing some resources. Hence, the cumulative constraint
restricts the number of activities taking the same start time to be at most equal
to the total number of engineers.

cumulative([starty, ...startr), [d1, ..., dr), [end; ..., endT], [h1, .., hr], m) (16)

5 The Global Constraints

In this section, we present our modifications to the alternative disjunctive con-
straint (the one that includes the extended disjunctive resource filtering algo-
rithms) and introduce our new global constraint useResources. Note that these
constraints are not specific to our building maintenance scheduling problem, and
can be applied to any scheduling problem involving alternative resources.



5.1 The Alternative Disjunctive Constraint

Scheduling problems with alternative resources can be defined as follows:

Definition 1 “There is a set of activities T = {1...n} and a set of resources
R = {1.....m}. Every activity i € T has a set of alternative resources A C R,
where |A| > 1. Furthermore, for every i € T and for every r € R, a boolean
variable e} is defined to reflect the status of activity i over resource r. We must
allocate for every activity i a resource r such that: ¥i,j € T,Vr € R : (e] =
D A(ef =1) — (end; < start;) V (end; < start;)”.

Alternative resources filtering rules discussed in [19] do not use binary al-
location variables to represent the activity status over its alternative resources.
These binary variables are commonly used to represent alternatives as shown in
Section 3. They are also used in the extended disjunctive resource filtering algo-
rithms proposed in [17,12]. Hence, we modify the alternative resources filtering
rules to enable an easy integration with the extended disjunctive resource fil-
tering algorithms and to ensure compatibility with the useResources constraint
discussed in Section 5.2.

Considered from the resource point of view, a subset of the activities may be
scheduled on the resource. This leads to the following definition for the alterna-
tive disjunctive constraint : AltDisj([starty, .., starty), [d1, .., d,], [endy, .., end,],
[eT,..,er]). The straightforward specification for the constraint would require,
for each possible activity on the resource, a new variable start] representing the
possible start times for the activity on that resource. However, this creates two
problems. First, if filtering on the resource removes all possible start times for the
optional activity, that creates an empty domain, which will cause backtracking,
even though no inconsistency has been discovered. Instead, an optional activity
should be disabled over the resource, and thus the internal solver behavior should
be modified. Additionally, introducing these alternative variables and domains
modifies the constraint network, and thus interferes with reformulation methods
and search heuristics, particularly those based on degree.

To overcome these drawbacks, we introduce hypothetical domains. A hypo-
thetical domain Dh] represents the time window of an optional activity i over
an alternative resource r. Initially, Dh] = Dm,; = [est;,lct;]. Dm,; represents
bounds for activity ¢ main time window, which reflects a unified view for dif-
ferent time windows available over the activity alternative resources. We use
bounds representation for hypothetical domains rather than a domain of values
as the extended disjunctive resource filtering algorithms apply bound consistency
reasoning. This representation also enables reasoning on variable durations.

The use of hypothetical domains limits the number of variables that need
to be created. Secondly, when an activity becomes regular over a resource, its
hypothetical time window is reflected over the main time window (i.e., e =1 =
Dm; := Dm; N DAhY) and the alternative disjunctive constraint references the
activity main time window instead of its hypothetical one. Hence, propagation
on a resource filters the hypothetical domain and transfer to the main domain
once the activity becomes regular. Finally, when a hypothetical domain becomes



empty or incoherent, the CP solver sets the corresponding binary allocation
variable to zero.

We modify the alternative resources filtering rules to enable using hypothet-
ical domains and binary allocation variables. The first two rules are redefined as
follows:

VieT: e ={0,1} A |Dh] N Dm;| < min(d;)=e] :=0 (17)

7

VieT: e ={0,1} A |Dh] N Dm;| > min(d;) = Dh} := Dhi N Dm,
(18)

These action rules are triggered whenever the domain of one of the activity
variables (start, end, or duration) is modified, initialized or values are removed
from its domain, and thus the main time window is updated. They are also
triggered when a hypothetical domain is updated by the extended disjunctive
resource filtering algorithms, where min(d;) is the minimum duration of activity
1. For example, if the domain of an activity related variable is reduced to a
singleton, rule (18) updates the hypothetical domain. After that, rule (17) is
checked to ensure that the time window for the updated hypothetical domain is
still consistent and if this is not the case, then the activity is disabled over its
alternative resource. To illustrate, we assume having an activity 1 with variables
start; = [5—9], end; = [7—11], and d; = 2. Hence, Dm; = [5—11]. Additionally,
we assume that this activity has two alternative resources and its hypothetical
domain over the first resource is Dhi = [5 — 11] and is Dh? = [8 — 11] over the
second resource. During problem solving, if start; is assigned the value 5, then
activity 1 is disabled over the alternative resource 2. Note that when values are
removed from the domain of an activity related variable, a hypothetical domain
is updated only if the removed value contributes to its boundaries. Additionally,
the extended disjunctive resource filtering algorithms are triggered as normal
when the hypothetical domains and/or main domains are modified.

5.2 Allocation Constraint: useResources

The representation of alternative resources through binary variables mandates
the use of constraints to ensure that resource requirements are satisfied. Addi-
tionally, an activity might have different time windows over different resources,
and thus it is necessary to ensure that their updates are propagated back to
the activity main time window. Typically, every resource maintains hypotheti-
cal domains corresponding to its optional activities and it does not retain any
information related to other hypothetical domains for these activities over other
alternative resources. Additionally, the alternative resources filtering rule (3)
could be generalized to represent heterogeneous resource requirements such that
an activity could be allocated to k resources selected among a given subset of al-
ternatives instead of one resource. Hence, to simplify problem modelling and gain



in flexibility, this rule is defined in a separate new global constraint called useRe-
sources. Therefore, an activity could specify different resource requirements like
for example a demand for ki workers and k; machines.

The constraint is defined for an activity ¢ and a requirement 1 < k < m
as follows: useResources(k, start;,d;, end;, [e}, ...... e”], R). This constraint in-
tegrates the boolean sum constraint >, e/ =kor di=1.m ¢/ > k defined
over the binary allocation variables. Additionally, it includes the filtering rule
that aggregates deductions emerging from alternative time windows until re-
source requirement is satisfied. Let minp(k,vall) be the k-th minimum of vall
among a subset P from the set of resources R. For example, the third minimum
of the set {1,2,2,3} is 2. Rule (19) is the modified version of rule (3) and is
applied when a single resource is needed. Rule (20) is used when it is required
to allocate k resources.

VieT, k=1: Dm;:=Dm;n | | Db} (19)
l€e}
VieT, k>1: Dm;:=Dm;N {{r&ir}(k,estz)ﬁlréai((k,lct;) (20)

In addition, the framework offers a great flexibility since many types of resource
requirements could be integrated by defining new constraints interacting with
hypothetical domains.

6 Experimental Evaluation

We have developed the presented models in Choco [13]; an open source Java
constraint solver, which provides access to recent implementations for a wide
range of global constraints. The flexibility of its scheduling component reduces
the implementation effort, while providing satisfactory results in solving job-
shop and open-shop scheduling problems as shown in the fourth international
CSP solver competition [1] and it demonstrates a satisfactory performance with
dedicated approaches as shown in [14,10]. The basic model is relatively straight-
forward, and maps exactly onto Choco primitives. The global constraint model,
however, uses two global constraints. The alternative disjunctive constraint is
already available in Choco, but without hypothetical domains, the integrated
alternative resources filtering rules presented in Section 5.1, and no filtering is
carried out, by the extended disjunctive resource filtering algorithms, over the
time window of an optional activity until it becomes regular. We implement the
modified alternative disjunctive constraint, the useResources constraint, and the
extended edge finding filtering algorithm [12].

The extended disjunctive resource filtering algorithms are not idempotent.
They are executed in iterations in the alternative disjunctive constraint till no
further changes are found by any filtering algorithm, i.e., a fixed point is reached.
The order in which these algorithms are called is the one discussed in [14].



This order reduces the total solving time, with no effect on the resulting fixed
point, by minimizing the number of sorts required by the data structures. Our
experiments show that the extended edge finding algorithm is computationally
expensive. Hence we exclude this algorithm in our experimental evaluation.

In our experiments, we consider (M_1) to be the global constraint model
described in Section 4.2, while (M _2) is the basic model illustrated in Section
4.1. In both models, we use the variable ordering heuristic ModReg that uses
cost based reasoning to guide the search process towards the most viable course
[4], based on the Regret heuristic [16]. The regret is the additional cost to be
paid for a variable assignment over the cost lower bound if the variable is not
assigned the suggested value at its lower bound. The regret heuristic suggests
assigning the variable with the highest regret first so as to minimize the risk of
paying a higher cost if the best assignment becomes infeasible. In the context
of the maintenance scheduling problem, regret is calculated as the difference
in cost between the earliest and second earliest start times. Additionally, the
definition of the regret heuristic is extended in [4] by breaking ties through
selecting the variable corresponding to the activity with the minimum number
of time slots with zero cost or with minimum duration. This heuristic gives the
best performance in maintenance scheduling in [4]. The branching strategy used
in our models assigns for each selected activity, based on ModReg, the start time
variable followed by the engineer variable. Thus, domains of decision variables
in both models are enumerated such that the engineer with the earliest starting
time is assigned first.

We built a generator that randomly generates test cases with different prob-
lem sizes and constraint relations, where problem size is the number of activities
in each test case. We depend on randomly generated instances as energy in-
formation is not considered in real problems where a conventional first come
first serve scheduling mechanism is usually followed. However, the data used in
the generator depends on the information gathered from discussions with our
collaborators *.

In the random generator, we use a fixed number of engineers (15). The num-
ber of alternative engineers for each activity is generated randomly between one
and four. Their identifiers are also generated randomly between one and fifteen.
Activities participating in a dependency relation and those that are independent
have distributions shown in Table 1a in columns (dep) and (indep), respectively.
Additionally, the number of activities that could participate in a dependency
relation is generated randomly between two and four and the inter-dependency
relation type is also generated randomly.

Available time windows for activity execution are generated through two sep-
arate operations: the selection of days and selection of time frames within these
days. First, we generate randomly for every activity up to two separate ranges
of days per week and up to two separate time frames within every generated
range of days. For a single range of days, we choose either all five days Mon-Fri

4 Industrial partner Spokesoft, Civil Engineers, and the Building and Estates office at
University College Cork



(with probability 0.6), or a random sub-interval of Mon-Sun (with probability
0.4). If two separate ranges of days are required, then we generate randomly two
non-overlapping sub-intervals of Mon-Sun. One time frame is generated with
distributions 0.6 for a 09:00 - 17:00 time frame and 0.4 for a time frame that
is generated randomly between 09:00 - 20:00. The two separate time frames in-
volve the random generation of two non-overlapping time frames between 09:00
- 20:00.

The activity maintenance type (planned (plan), reactive (reac), and emer-
gency (emerg)) is generated with the distributions presented in Table 1la. The
response time window is generated randomly depending on the maintenance
type; a four hours response window is assumed for emergency, 1, 2, 3, 7, or 15
days for non-emergency reactive maintenance, and a period of up to 30 days
for planned maintenance. Note that, for response time windows greater than
one week, we consider only the part of the response time window, which is in-
cluded in the scheduling horizon. Expected durations for activities are generated
with distributions shown in Table 1a, where slot granularity is assumed to be 30
minutes. The excess amount of energy, if any, consumed by the malfunctioning
component per unit time is generated with distributions representing no excess
energy, low, medium or high energy levels as shown in Table 1b. Finally, missed
window refers to the time window already passed from the activity response time
before its scheduling. The distribution of activities having missed windows and
those that do not are shown in Table 1b. Missed window is used to specify the
earliest time at which a penalty applies and its size is generated randomly; for
non-emergency reactive maintenance it includes up to 15 days and up to 30 days
for planned maintenance. We also consider only the part of the missed window
which is included within the scheduling time frame.

We test the performance of the presented models using test cases with dif-
ferent problem sizes, and we generate randomly a set of ten scenarios for each
problem size. To avoid extended search time, we set a solving time limit of 10
minutes. Tests were carried out using a 2.40 GHz Intel Core 2 Duo PC with
3.48 GB of memory and running Windows XP. Table 2 illustrates experimental
results for test cases that include 20, 50, 70, 100, and 120 activities. Columns
Avg.FT, Avg.LT, and Avg. TP give the average times in seconds to find the first
solution, the best solution, and prove optimality, respectively. Additionally, col-
umn Avg.BT gives the average number of backtracks, while Avg.Nd gives the
average number of nodes. This table shows that M _ 2 is generally much faster in
comparison to M 1 (only slower in problems with size 100 for the time required
to prove optimality and those with size 120 for the time taken to find the best
solution). As expected, the embedded reasoning in the global constraintsin M_ 1
significantly reduces the number of nodes and backtracks.

The branching strategy used in the assignment of the start time and engineer
variables enables an efficient use of the global constraints in M 1. This is because
after an activity is assigned a start time, the alternative disjunctive constraint
disables alternative engineers who cannot carry out the activity with its new time
window. To study the impact of this strategy, we experimented with a different



branching strategy that assigns first the start time variables for all activities
according to the ModReg heuristic, then assigns engineer variables based on the
Dom/WDeg heuristic [7]. Results show that using this strategy, the solver failed
to provide any solutions for the majority of the test cases within the specified
time limit due to incorrect decisions for the assignment of start times taken at
the top of the search tree.

To better understand the effect of the global constraints on the model solving
ability, we test the two models, using the same settings, over larger problem
instances (150, 200, 220, and 240). Table 3 shows the percentages of test cases
solved to optimality and those with solutions found within the aforementioned
time limit. This table shows that reasoning incorporated in these constraints
significantly improves the model solving ability; it enables M 1 to solve all the
test cases and prove solution cost optimality for a few of them (20% of test cases
with size 150). However, M 2 shows a degrading performance as the problem size
increases. These results demonstrate the effect of problem structure exploitation
on solver performance when the maintenance scheduling problem becomes more
complex.

Table 1: The probability distribution of features in the test case generator
(a) Dependency, duration, and maintenance type

Feature || Dependency Duration (Slots) Maintenance Type
Value ||0: dep|l:indep|| 1 | 2 | 3 | 4 ||1: plan|2: reac|3: emerg
Prob. 0.55 | 0.45 /0.50|0.30/0.10{0.10{| 0.50 | 0.40 0.10

(b) Energy consumption and missed window
Feature Energy Consumption Missed Window
Value ||0:no Energy|1l:Low|2:Medium|3:High||0:no missed|1: with missed
Prob. 0.45 0.35 0.15 0.05 0.80 0.20

Table 2: Experimental results for problems that include up to 120 activities in
the two CP models

Problem| Avg.FT Avg.LT Avg. TP Avg.BT Avg.Nd
Size M 1M 2/M 1M 2| M1 M2|M1 M2|M1 M 2
20 0.071{0.027 | 0.091 | 0.027 || 0.119 | 0.038 0 0.2 36.8 36.8
50 0.511{0.110| 0.828 | 0.128 || 0.879 | 0.156 0.2 6.3 129.1 | 129.1
70 1.126 | 0.276 || 2.004 | 0.355 || 2.081 | 0.415 0.7 24.2 184.6 | 184.6
100 2.649(0.859(/103.949|40.828|{135.360(161.572(|2489.6| 113335 ||2650.6| 61194
120 4.019]2.194||23.284(43.425|| 144.436 |136.458||3439.4(23480.1||3058.6|16235.6




Table 3: Percentages of test cases with proven optimal and non-optimal solutions
optimal (%) ||With Sol(%)

Problem Size M 1| M 2|M 1| M 2
150 20.0 10.0 {{100.0| 80.0
200 0.0 0.0 100.0| 70.0
220 0.0 0.0 100.0| 30.0
240 0.0 0.0 100.0| 20.0

7 Conclusions

We have investigated a building maintenance scheduling problem. We have de-
veloped a constraint model that involves basic constraints, and another model
that uses global constraints to represent activities with alternative resources with
the aim to allow propagation before resources are allocated. We also present our
modifications to the alternative disjunctive constraint and introduce our global
constraint useResources that enables modelling resource requirements. Experi-
mental evaluation of these models shows that the basic model is faster on smaller
problems, but as the problem size increases, the global constraint model scales
better, and continues to produce solutions when the simple model does not.

In future work, we will conduct more experiments to precisely evaluate the
performance of the modified /new global constraints using benchmark scheduling
problems. These constraints constitute an appealing approach to solving a wide
range of practical scheduling problems including multi-processor task scheduling.
We will also focus on investigating a new three stage search strategy inspired
from scheduling and packing problems. The first stage determines the relative
ordering between pairs of activities linked by non-overlapping constraints, while
the second stage (inspired by ModReg and packing heuristics) restricts start
time windows of activities before allocating an engineer. This restriction aims
to efficiently utilize the alternative disjunctive and useResources constraints.
Finally, the third stage assigns starting times to activities. The existence of a
solution is very likely in the third stage, since time windows of activities are
tight and consistent. Finally, we consider improving the constraint model by the
reformulation and deduction of redundant constraints.
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