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Abstract

Let R be a complete discrete valuation ring of mixed characteristic
(0, p) with fraction field K. We study stable models of p-cyclic covers
of P1

K . First, we determine the monodromy extension, the monodromy
group, its filtration and the Swan conductor for special covers of ar-
bitrarily high genus with potential good reduction. In the case p = 2
we consider hyperelliptic curves of genus 2.

1 Introduction

Let (R, v) be a complete discrete valuation ring of mixed characteristic (0, p)
with fraction field K containing a primitve p-th root of unity ζp and alge-
braically closed residue field k. The stable reduction theorem states that
given a smooth, projective, geometrically connected curve C/K of genus
g(C) ≥ 2, there exists a unique minimal Galois extension M/K called the

monodromy extension of C/K such that CM := C ×M has stable reduction
over M . The group G = Gal(M/K) is the monodromy group of C/K. In a
previous paper, Lehr and Matignon [LM06] gave an algorithm to determine
the stable reduction of p-cyclic covers of P1

K under the extra assumption
of equidistant geometry of the branch locus and obtain information about
the monodromy extension M/K of C/K. This makes effective a theorem of
Raynaud [Ray90] in the case of p-cyclic covers of P1

K . The present article
studies examples of such p-cyclic covers but is independent of their work and
develops specific methods to treat our special covers.

Let C be the stable model of CM/M and Autk(Ck)
# the subgroup of

Autk(Ck) of elements acting trivially on the reduction in Ck of the ramifica-
tion locus of CM → P1

M (see [Liu02] 10.1.3 for the definition of the reduction
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map of CM). One derives from the stable reduction theorem the following
injection :

Gal(M/K) →֒ Autk(Ck)
#. (1)

When the p-Sylow subgroups of these groups are isomorphic, one says that
the wild monodromy is maximal. We are interested in realization of covers
such that the p-adic valuation of |Autk(Ck)

#| is large and having maximal
wild monodromy, we will study ramification filtrations and Swan conductors
of their monodromy extensions.

In section 3, we consider examples of covers of arbitrarily high genus
having potential good reduction. Let n ∈ N×, q = pn, λ = ζp − 1 and
K = Qur

p (λ1/(1+q)). We study covers Cc/K of P1
K defined by Y p = 1+ cXq +

X1+q with c ∈ R, v(λp/(1+q)) > v(c) and v(cp − c) ≥ v(p).

Theorem 1.1. The stable reduction Ck/k is canonically a p-cyclic cover of
P1
k. It is smooth, ramified at one point ∞ and étale outside ∞. The ram-

ification locus of CM → P1
M reduces in ∞ and the group Autk(Ck)

# has a
unique p-Sylow subgroup Autk(Ck)

#
1 . Moreover, the curve Cc/K has maximal

wild monodromy M/K. The extension M/K is the decomposition field of an
explicitly given polynomial and Gal(M/K) ≃ Autk(Ck)

#
1 is an extra-special

p-group of order pq2.

Let X/k be a p-cyclic cover of P1
k of genus g(X), ramified at one point ∞

and étale outside ∞. According to [LM05], the p-Sylow subgroup G∞,1(X)
of the subgroup of Autk(X) of automorphisms leaving ∞ fixed satisfies
|G∞,1(X)| ≤ 4p

(p−1)2
g(X)2. The stable reduction Ck/k of Theorem 1.1 is such

that G∞,1(Ck) = Autk(Ck)
#
1 and |G∞,1(Ck)| =

4p
(p−1)2

g(Ck)
2. So we obtain the

largest possible maximal wild monodromy for curves over some finite exten-
sion of Qur

p with genus in p−1
2
pN in the good reduction case.

The group G∞,1(Ck) = Autk(Ck)
#
1 is endowed with the ramification filtra-

tion (G∞,i(Ck))i≥0 which is easily seen to be :

G∞,0(Ck) = G∞,1(Ck) ) Z(G∞,0(Ck)) = G∞,2(Ck) = · · · = G∞,1+q(Ck) ) {1}.

Moreover, G := Gal(M/K) being the Galois group of a finite extension of
Qur

p , it is endowed with the ramification filtration (Gi)i≥0 of an arithmetic
nature. Since G ≃ G∞,1(Ck) it is natural to ask for the behaviour of (Gi)i≥0

under (1), that is to compare (Gi)i≥0 and (G∞,i(Ck))i≥0. One shows that they
actually coincide and we compute the conductor exponent f(Jac(Cc)/K) of
Jac(Cc)/K and its Swan conductor sw(Jac(Cc)/K) :
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Theorem 1.2. Under the hypotheses of Theorem 1.1, the lower ramification
filtration of G is :

G = G0 = G1 ) Z(G) = G2 = · · · = G1+q ) {1}.

Then, f(Jac(Cc)/K) = (2q + 1)(p − 1) and, in the case where c ∈ Qur
p ,

sw(Jac(Cc)/Qur
p ) = 1.

The value sw(Jac(Cc)/Qur
p ) = 1 is the smallest one among abelian vari-

eties over Qur
p with non tame monodromy extension. That is, in some sense, a

counter part of [BK94] and [LRS93] where an upper bound for the conductor
exponent is given and it is shown that this bound is actually achieved.

In section 4, one restricts to the case p = 2 and genus 2. In this situation
there are three possible types of geometry for the stable reduction. In each
case, one gives a family of curves with this degeneration type such that the
wild monodromy is maximal. This has applications to the inverse Galois
problem. For example, we have the following :

Proposition 1.1. Let K = Qur
2 (21/15) and C0/K the smooth, projective,

geometrically integral curve given by Y 2 = 1 + 23/5X2 +X3 + 22/5X4 +X5.
The irreducible components of its stable reduction Ck/k are elliptic curves.
The monodromy extension M/K of C0/K is the decomposition field of an
explicitly given polynomial. The curve C0/K has maximal wild monodromy
and G := Gal(M/K) ≃ Q8 ×Q8. Moreover, we have

Gi ≃























Q8 ×Q8, −1 ≤ i ≤ 1,
Z(Q8)×Q8, 2 ≤ i ≤ 3,
{1} ×Q8 4 ≤ i ≤ 31,
{1} × Z(Q8), 32 ≤ i ≤ 543,
{1} × {1}, 544 ≤ i.

and sw(Jac(C0)/K) = 45.

Some of the results that we give here were already available in a previous
preprint of C. Lehr and M. Matignon (see [LM]) , results about the arithmetic
of the monodromy extensions, ramification and conductors are new.

2 Background.

Notations. Let (R, v) be a complete discrete valuation ring (DVR) of mixed
characteristic (0, p) with fraction field K and algebraically closed residue field
k. We denote by πK a uniformizer of R and assume that K contains a prim-
itive p-th root of unity ζp. Let λ := ζp− 1. If L/K is an algebraic extension,
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we will denote by πL(resp. vL, resp. L◦) a uniformizer for L (resp. the
prolongation of v to L such that vL(πL) = 1, resp. the ring of integers of L).
If there is no possible confusion we note v for the prolongation of v to an
algebraic closure Kalg of K.

1. Stable reduction of curves. The first result is due to Deligne and
Mumford (see for example [Liu02] for a presentation following Artin and
Winters).

Theorem 2.1 (Stable reduction theorem). Let C/K be a smooth, projective,
geometrically connected curve over K of genus g(C) ≥ 2. There exists a
unique finite Galois extension M/K minimal for the inclusion relation such
that CM/M has stable reduction. The stable model C of CM/M over M◦ is
unique up to isomorphism. One has a canonical injective morphism :

Gal(M/K)
i
→֒ Autk(Ck). (2)

Remarks :

1. Let’s explain the action of Gal(Kalg/K) on Ck/k. The group Gal(Kalg/K)
acts on CM := C ×M on the right. By unicity of the stable model,
this action extends to C :

C C
σ

M◦ M◦σ

Since k = kalg one gets σ×k = Idk, whence the announced action. The
last assertion of the theorem characterizes the elements of Gal(Kalg/M)
as the elements of Gal(Kalg/K) that trivially act on Ck/k.

2. If p > 2g(C)+1, then C/K has stable reduction over a tamely ramified
extension of K. We will study examples of covers with p ≤ 2g(C) + 1.

3. Our results will cover the elliptic case. Let E/K be an elliptic curve
with additive reduction. If its modular invariant is integral, then there
exists a smallest extension M ofK over which E/K has good reduction.
Else E/K obtains split multiplicative reduction over a unique quadratic
extension of K ( see [Kra90]).
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Definition 2.1. The extension M/K is the monodromy extension of C/K.
We call Gal(M/K) the monodromy group of C/K. It has a unique p-
Sylow subgroup Gal(M/K)1 called the wild monodromy group. The extension
M/MGal(M/K)1 is the wild monodromy extension.

From now on we consider smooth, projective, geometrically integral curves
C/K of genus g(C) ≥ 2 birationally given by Y p = f(X) :=

∏t
i=0(X − xi)

ni

with (p,
∑t

i=0 ni) = 1, (p, ni) = 1 and ∀ 0 ≤ i ≤ t, xi ∈ R×. Moreover,
we assume that ∀i 6= j, v(xi − xj) = 0, that is to say, the branch locus
B = {x0, . . . , xt,∞} of the cover has equidistant geometry. We denote by
Ram the ramification locus of the cover.

Remark : We only ask p-cyclic covers to satisfy Raynaud’s theorem 1’
[Ray90] condition, that is the branch locus is K-rational with equidistant
geometry. This has consequences on the image of (2).

Proposition 2.1. Let T = Proj(M◦[X0, X1]) with X = X0/X1. The nor-
malization Y of T in K(CM) admits a blowing-up Ỹ which is a semi-stable
model of CM/M . The dual graph of Ỹk/k is a tree and the points in Ram
specialize in a unique irreducible component D0 ≃ P1

k of Ỹk/k. There exists
a contraction morphism h : Ỹ → C, where C is the stable model of CM/M
and

Gal(M/K) →֒ Autk(Ck)
#, (3)

where Autk(Ck)
# is the subgroup of Autk(Ck) of elements inducing the identity

on h(D0).

Proof. Let f(X) = (X − x0)
n0S(X) and an0 + bp = 1. Then above T \B =

SpecA (resp. T \{B\x0} = SpecA0), the equation of Y is :

A[Y ]/(Y p − f(X)) (resp. A0[Y ]/(Y p − (X − x0)S(X)a)),

(using [Liu02] 4.1.18). Since v(S(x0)) = 0, the ramification locus Ram spe-
cialize in a unique component D0 of Ỹk. Using [Ray90] theorem 2, one
sees that Ỹk is a tree. It implies that there exists a contraction morphism
h : Ỹ → X of the components of Ỹk isomorphic to P1

k meeting Ỹk in at most 2
points ([Liu02] 7.5.4 and 8.3.36). The scheme X is seen to be stable ([Liu02]
10.3.31), so X ≃ C.

The component D0 is smooth of genus 0 (being birational to a curve with
function field a purely inseparable extension of K(P1

k)) so D0 ≃ P1
k. Then,

B having K-rational equidistant geometry with |B| ≥ 3, any element of
Gal(M/K) induces the identity on D0, giving (3).

Remark : The component D0 is the so called original component.
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Definition 2.2. If (3) is surjective, we say that C has maximal monodromy.
If vp(|Gal(M/K)|) = vp(|Autk(Ck)

#|), we say that C has maximal wild mon-

odromy.

Definition 2.3. The valuation on K(X) corresponding to the discrete valu-
ation ring R[X ](πK) is called the Gauss valuation vX with respect to X. We
then have

vX

(

m
∑

i=0

aiX
i

)

= min{v(ai), 0 ≤ i ≤ m}.

Note that a change of variables T = X−y
ρ

for y, ρ ∈ R induces a Gauss
valuation vT . These valuations are exactly those that come from the local
rings at generic points of components in the semi-stables models of P1

K.

2. Galois extensions of complete DVRs. Let L/K be a finite Galois
extension with group G. Then G is endowed with a lower ramification fil-

tration (Gi)i≥−1 where Gi is the i-th lower ramification group defined by
Gi := {σ ∈ G | vL(σ(πL)− πL) ≥ i+ 1}. The integers i such that Gi 6= Gi+1

are called lower breaks. For σ ∈ G− {1}, let iG(σ) := vL(σ(πL)− πL). The
group G is also endowed with a higher ramification filtration (Gi)i≥−1 which
can be computed from the Gi’s by means of the Herbrand’s function ϕL/K .
The real numbers t such that ∀ǫ > 0, Gt+ǫ 6= Gt are called higher breaks.
We will use the following lemma (see for example [Hyo87]).

Lemma 2.1. Let L/K defined by Xp = 1 + wπs
K with 0 < s < p

p−1
vK(p),

(s, p) = 1 and w ∈ R×. The different ideal DL/K satisfies :

vK(DL/K) = vK(p) +
p− 1

p
(1− s).

3. Extra-special p-groups. The Galois groups and automorphism groups
that we will have to consider are p-groups with peculiar group theoretic
properties (see for example [Suz82] for an account on extra-special p-groups).
We will denote by Z(G) (resp. D(G), Φ(G)) the center (resp. the derived
subgroup, the Frattini subgroup) of G. If G is a p-group, one has Φ(G) =
D(G)Gp.

Definition 2.4. An extra-special p-group is a non abelian p-group G such
that D(G) = Z(G) = Φ(G) has order p.

Proposition 2.2. Let G be an extra-special p-group.

1. Then |G| = p2n+1 for some n ∈ N×.
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2. One has the exact sequence

0→ Z(G)→ G→ (Z/pZ)2n → 0.

Remark : With the previous notations, we will encounter curves such that
the p-Sylow subgroup of Autk(Ck)

# is an extra-special p-group. In this case,
the above short exact sequence has a geometric description that we will make
explicit later on.

4. Torsion points on abelian varieties. Let A/K be an abelian variety
over K with potential good reduction. Let ℓ 6= p be a prime number, we
denote by A[ℓ] the ℓ-torsion subgroup of A(Kalg) and by Tℓ(A) = lim

←−
A[ℓn]

(resp. Vℓ(A) = Tℓ(A) ⊗ Qℓ) the Tate module (resp. ℓ-adic Tate module) of
A.

The following result may be found in [Gur03] (paragraph 3). We recall it
for the convenience of the reader.

Lemma 2.2. Let k = kalg be a field with char k = p ≥ 0 and C/k be a
projective, smooth, integral curve. Let ℓ 6= p be a prime number and H be a
finite subgroup of Autk(C) such that (|H|, ℓ) = 1. Then

2g(C/H) = dimFℓ
Jac(C)[ℓ]H

.

If ℓ ≥ 3, then L = K(A[ℓ]) is the minimal extension over which A/K has
good reduction. It is a Galois extension with groupG (see [ST68]). We denote
by rG (resp. 1G) the character of the regular (resp. unit) representation of
G. We denote by I the inertia group of Kalg/K. For further explanations
about conductor exponents see [Ser67], [Ogg67] and [ST68].

Definition 2.5. 1. Let

aG(σ) := −iG(σ), σ 6= 1,

aG(1) :=
∑

σ 6=1

iG(σ),

and swG := aG− rG+1G. Then, aG is the character of a Qℓ[G]-module
and there exists a projective Zℓ[G]-module SwG such that SwG⊗Zℓ

Qℓ

has character swG.
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2. We still denote by Tℓ(A) (resp. A[ℓ]) the Zℓ[G]-module (resp. Fℓ[G]-
module) afforded by G→ Aut(Tℓ(A)) (resp. G→ Aut(A[ℓ])). Let

sw(A/K) := dimFℓ
HomG(SwG, A[ℓ]),

ǫ(A/K) := codimQℓ
Vℓ(A)

I .

The integer f(A/K) := ǫ(A/K) + sw(A/K) is the so called conductor

exponent of A/K and sw(A/K) is the Swan conductor of A/K.

Proposition 2.3. Let ℓ 6= p, ℓ ≥ 3 be a prime number.

1. The integers sw(A/K) and ǫ(A/K) are independent of ℓ.

2. One has

sw(A/K) =
∑

i≥1

|Gi|

|G0|
dimFℓ

A[ℓ]/A[ℓ]Gi.

Moreover, for ℓ large enough, ǫ(A/K) = dimFℓ
A[ℓ]/A[ℓ]G0.

Remark : It follows from the definition that sw(A/K) = 0 if and only if
G1 = {1}. The Swan conductor is a measure of the wild ramification.

3 Covers with potential good reduction.

We start by fixing notations that will be used throughout this section.

Notations. We denote by m the maximal ideal of (Kalg)◦. Let n ∈ N×,
q = pn and an = (−1)q(−p)p+p2+···+q. We denote by Qur

p the maximal unram-

ified extension of Qp. Let K := Qur
p (λ1/(1+q)). For c ∈ R let

fq,c(X) = 1 + cXq +X1+q.

One defines the modified monodromy polynomial by

Lc(X) = Xq2 − an(c+X)fq,c(X)q−1.

Let Cc/K and Aq/k be the smooth projective integral curves birationally
given respectively by Y p = fq,c(X) and wp − w = t1+q.

Theorem 3.1. The curve Cc/K has potential good reduction isomorphic to
Aq/k.

1. If v(c) ≥ v(λp/(1+q)), then the monodromy extension of Cc/K is trivial.
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2. If v(c) < v(λp/(1+q)), let y be a root of Lc(X) in Kalg. Then Cc has
good reduction over K(y, fq,c(y)

1/p). If Lc(X) is irreducible over K,
then Cc/K has maximal wild monodromy. The monodromy extension
of Cc/K is M = K(y, fq,c(y)

1/p) and G = Gal(M/K) is an extra-special
p-group of order pq2. If c ∈ R with v(cp − c) ≥ v(p), then Lc(X) is
irreducible over K, the lower ramification filtration of G is

G = G0 = G1 ) G2 = · · · = G1+q = Z(G) ) {1}.

Moreover, one has f(Jac(Cc)/K) = (2q + 1)(p − 1). If c ∈ Qur
p then

sw(Jac(Cc)/Qur
p ) = 1.

Proof. 1. Assume that v(c) ≥ v(λp/(1+q)). Set λp/(1+q)T = X and λW + 1 = Y .
Then, the equation defining Cc/K becomes

(λW + 1)p =

p
∑

i=0

(

p

i

)

λiW i = 1 + cλpq/(1+q)T q + λpT 1+q.

After simplification by λp and reduction modulo πK this equation gives :

wp − w = atq + t1+q, a ∈ k. (4)

By Hurwitz formula the genus of the curve defined by (4) is seen to be that of
Cc/K . Applying [Liu02] 10.3.44, there is a component in the stable reduc-
tion birationally given by (4). The stable reduction being a tree, the curve
Cc/K has good reduction over K.

2. The proof of the first part is divided into six steps. Let y be a root of
Lc(X).

Step I : One has v(y) = v(anc)/q
2.

Since y is a root of Lc(X), one has

yq
2

= an(c+ y)fq,c(y)
q−1,

so v(y) > 0. Assume that v(c+ y) ≥ v(y). Then, q2v(y) ≥ v(an) + v(y) and

v(c) ≥ v(y) ≥ v(an)
q2−1

= p
q+1

v(λ), which is a contradiction. So v(c + y) < v(y)

thus v(c+ y) = v(c).

Step II : Define S and T by λp/(1+q)T = (X − y) = S. Then,

fq,c(S + y) ≡ fq,c(y) + yqS + (c+ y)Sq + S1+q mod λp
m[T ].
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Using the following formula for A ∈ Kalg with v(A) > 0 and B ∈ (Kalg)◦[T ]

(A+B)q ≡ (Aq/p +Bq/p)p mod p2m[T ],

one computes mod λp
m[T ]

fq,c(y + S) = 1 + c(y + S)q + (y + S)1+q

≡ 1 + c(yq/p + Sq/p)p + (y + S)(yq/p + Sq/p)p

≡ fq,c(y) + (yq + Σ)S + (c+ y)Sq + S1+q + (c+ y)Σ,

where Σ =
∑p−1

k=1

(

p
k

)

ykq/pS(p−k)q/p. Using Step I, one checks that Σ ∈ λp
m[T ].

Step III : Let R1 := K[y]◦. For all 0 ≤ i ≤ n, there exist Bi ∈ R1 and

Ai(S) ∈ R1[S] such that mod λp
m[T ] one has :

fq,c(S + y) ≡ fq,c(y)(1 + SAi(S))
p + yqS +BiS

q/pi + S1+q. (5)

One defines the Ai(S)’s and the Bi’s by induction. For all 0 ≤ i ≤ n− 1, let

Bn :=− yq and Bi := fq,c(y)
Bp

i+1

(−pfq,c(y))p
,

A0(S) :=0 and SAi+1(S) := SAi(S)− p−1fq,c(y)
−1Bi+1S

q/pi+1

.

One checks that for all 0 ≤ i ≤ n

Bi/fq,c(y) = (−p)(−p)−1−p−···−pn−i

(−yq/fq,c(y))
pn−i

,

and

v(Bi) ≥ (1 +
1

p
+ · · ·+

1

pi−1
)v(p), ∀1 ≤ i ≤ n. (6)

It follows that ∀ 1 ≤ i ≤ n, p−1Bi ∈ R1, ∀ 0 ≤ i ≤ n Ai(S) ∈ R1[S] and
B0 = c+ y since Lc(y) = 0.

One proves this step by induction on i. According to Step II, the equa-
tion (5) holds for i = 0. Assume that (5) is satisfied for i. Taking into
account that

fq,c(y)(1 + (−1)p)
Bp

i+1

ppfq,c(y)p
Sq/pi,

p−1
∑

k=2

(

p

k

)

(
Bi+1

pfq,c(y)
Sq/pi+1

)k(1 + SAi+1(S))
p−k,

Bi+1S
q/pi+1

p−1
∑

k=1

(

p− 1

k

)

SkAi+1(S)
k,
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are in λp
m[T ], one gets (5) for i+ 1.

Step IV : The curve Cc/K has good reduction over K(y, fq,c(y)
1/p).

Applying Step III for i = n, one gets

fq,c(y + S) ≡ fq,c(y)(1 + SAn(S))
p + S1+q mod λp

m[T ],

then the change of variables in K(y, fq,c(y)
1/p)

X = λp/(1+q)T + y = S + y and
Y

fq,c(y)1/p
= λW + 1 + SAn(S),

induces in reduction wp − w = t1+q with genus g(Cc). So [Liu02] 10.3.44
implies that the above change of variables gives the stable model.

Step V : For any distinct roots yi, yj of Lc(X), v(yi − yj) = v(λp/(1+q)).
The changes of variables T = (X − yi)/λ

p/(1+q) and T = (X − yj)/λ
p/(1+q)

induce equivalent Gauss valuations of K(Cc) else applying [Liu02] 10.3.44
would contradict the uniqueness of the stable model. In particular v(yi − yj) ≥
v(λp/(1+q)).

Using Step I, one checks that v(q2yq
2−1) > v(an) and v(f ′

q,c(y)) > 0, so :

v(L′
c(y)) = v(an) = (q2 − 1)v(λp/(1+q)).

Taking into account that L′
c(yi) =

∏

j 6=i(yi − yj) and degLc(X) = q2, one

obtains v(yi − yj) = v(λp/(1+q)).

Step VI : If Lc(X) is irreducible over K, then K(y, fq,c(y)
1/p) is the mon-

odromy extension M of Cc/K and G := Gal(M/K) is an extra-special p-
group of order pq2.
Let (yi)i=1,...,q2 be the roots of Lc(X), L := K(y1, . . . , yq2) and M/K be
the monodromy extension of Cc/K. Any τ ∈ Gal(L/K) − {1} is such that
τ(yi) = yj for some i 6= j. Thus, the change of variables

X = λp/(1+q)T + yi and
Y

fq,c(yi)1/p
= λW + 1 + SAn(S),

induces the stable model and τ acts on it by :

τ(T ) =
X − yj
λp/(1+q)

, hence T − τ(T ) =
yj − yi
λp/(1+q)

.

According to Step V, τ acts non-trivially on the stable reduction. It fol-
lows that L ⊆ M . Indeed if Gal(Kalg/M) * Gal(Kalg/L) it would exist

11



σ ∈ Gal(Kalg/M) inducing σ̄ 6= Id ∈ Gal(L/K), which would contradict the
characterization of Gal(Kalg/M) (see remark after Theorem 2.1) .

According to [LM05], the p-Sylow subgroup Autk(Ck)
#
1 of Autk(Ck)

# is
an extra-special p-group of order pq2. Moreover, one has :

0→ Z(Autk(Ck)
#
1 )→ Autk(Ck)

#
1 → (Z/pZ)2n → 0,

where (Z/pZ)2n is identified with the group of translations t 7→ t+a extending
to elements of Autk(Ck)

#
1 . Therefore we have morphisms

Gal(M/K)
i
→֒ Autk(Ck)

#
1

ϕ
→ Autk(Ck)

#
1 /Z(Autk(Ck)

#
1 ).

The composition is seen to be surjective since the image contains the q2

translations t 7→ t+ (yi − y1)/λp/(1+q). Consequently, i(Gal(M/K)) is a sub-
group of Autk(Ck)

#
1 of index at most p. So it contains Φ(Autk(Ck)

#
1 ) =

Z(Autk(Ck)
#
1 ) = Kerϕ. It implies that i is an isomorphism. Thus [M : K] =

pq2. By Step IV, one has M ⊆ K(y, fq,c(y)
1/p), hence M = K(y, fq,c(y)

1/p).

We show, for later use, thatK(y1)/K is Galois and that Gal(M/K(y1)) =
Z(G). Indeed, M/K(y1) is p-cyclic and generated by σ defined by :

σ(y1) = y1 and σ(fq,c(y1)
1/p) = ζ−1

p fq,c(y1)
1/p.

According to Step IV, σ acts on the stable model by :

σ(S) = S, σ(
Y

fq,c(y1)1/p
) =

Y

ζ−1
p fq,c(y1)1/p

= λσ(W ) + 1 + SAn(S).

Hence

λW + 1 + SAn(S)

ζ−1
p

= λσ(W ) + 1 + SAn(S),

thus, σ(W ) = ζpW + 1 + SAn(S).

It follows that, in reduction, σ induces the Artin-Schreier morphism that gen-
erates Z(Autk(Ck)

#
1 ). It implies that K(y1)/K is Galois, Gal(M/K(y1)) =

Z(G) and Gal(K(y1)/K) ≃ (Z/pZ)2n.

We now prove the statements concerning the arithmetic of M/K. We assume
that c ∈ R with v(cp − c) ≥ v(p) and we split the proof into 5 steps. Let
y be a root of Lc(X) and bn := (−1)(−p)1+p+···+pn−1

. Note that bpn = an
and L := K(y1, . . . , yq2) = K(y1). We note that v(cp − c) ≥ v(p), so

12



v(λp/(1+q)) > v(c) implies v(c) = 0.

Step A : The polynomial Lc(X) is irreducible over K.

One computes

(yq
2/p − cbn)

p = yq
2

+ (−c)pan + Σ

= an(1 + yq(c+ y))q−1(c+ y) + (−c)pan + Σ

= an

q−1
∑

k=0

(

q − 1

k

)

ykq(c+ y)1+k + (−c)pan + Σ

= any + an(c+ (−c)p) + anΣ
′ + Σ,

where Σ :=
∑p−1

k=1

(

p
k

)

ykq
2/p(−cbn)

p−k and Σ′ :=
∑q−1

k=1

(

q−1
k

)

ykq(c + y)1+k.
Using Step I one checks that v(Σ) > v(any) and v(Σ′) ≥ v(yq) > v(y).
Since v(cp − c) ≥ v(p) > v(y), one gets :

v(yq
2/p − cbn) =

v(any)

p
,

and t := pq
2

(yq
2/p− cbn)

−(p−1)(q+1) ∈ L has valuation vL(p)/q
2 = [L : Qur

p ]/q2.
So q2 divides [L : K]. It implies that Lc(X) is irreducible over K.

Step B : Reduction step.

The last non-trivial group Gi0 of the lower ramification filtration (Gi)i≥0 of
G := Gal(M/K) is a subgroup of Z(G) ([Ser79] IV §2 Corollary 2 of Propo-
sition 9) and as Z(G) ≃ Z/pZ, it follows that Gi0 = Z(G).

According to Step VI the group H := Gal(M/L) is Z(G). Consequently,
the filtration (Gi)i≥0 can be deduced from that of M/L and L/K (see [Ser79]
IV §2 Proposition 2 and Corollary of Proposition 3).

Step C : The ramification filtration of L/K is :

(G/H)0 = (G/H)1 ) (G/H)2 = {1}.

Since K/Qur
p is tamely ramified of degree (p−1)(q+1), one has K = Qur

p (πK)

with π
(p−1)(q+1)
K = p for some uniformizer πK of K. In particular,

z :=
πq2

K

yq2/p − cbn
,

is such that t = z(p−1)(q+1). Then, following the proof of Step A, z is a uni-
formizer of L. Let y and y′ be two distinct roots of Lc(X). Let σ ∈ Gal(L/K)
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such that σ(y) = y′. Then

σ(z)− z =
πq2

K

y′q2/p − cbn
−

πq2

K

yq2/p − cbn

= πq2

K

yq
2/p − y′q

2/p

(yq2/p − cbn)(y′q
2/p − cbn)

,

so v(σ(z)− z) = 2v(z)− q2v(πK) + v(y′q
2/p − yq

2/p). It follows from :

(y − y′)q
2/p = yq

2/p + (−y′)q
2/p +

q2

p
−1
∑

k=1

(

q2/p

k

)

yk(−y′)
q2

p
−k,

and v(y) = v(y′), v(p) + q2

p
v(y) > q2

p
v(y− y′) (use Step I and Step V) that

v(yq
2/p − y′q

2/p) = q2

p
v(y − y′) = q2v(πK). Hence v(σ(z) − z) = 2v(z). This

means that (G/H)2 = {1}.

Step D : Let s := (q + 1)(pq2 − 1). There exist u ∈ L, r ∈ πs
Lm such that

fq,c(y)u
p = 1 + pyq/p(

yq
2/p

bn
− c) + r,

and vL(py
q/p(y

q2/p

bn
− c)) = s.

To prove the second statement, we note that :

(
yq

2/p

bn
)p = fq,c(y)

q−1(c+ y) =

q−1
∑

k=0

(

q − 1

k

)

ykq(c+ y)1+k = c+ y + Σ,

with Σ :=
∑q−1

k=1

(

q−1
k

)

ykq(c+ y)1+k. We set h := yq
2/p

bn
− c and compute :

hp = (
yq

2/p

bn
)p + (−c)p +

p−1
∑

k=1

(

p

k

)

(
yq

2/p

bn
)k(−c)p−k

= c+ (−c)p + y + Σ+

p−1
∑

k=1

(

p

k

)

(
yq

2/p

bn
)k(−c)p−k.

Since v(cp − c) ≥ v(p) > v(y), v(Σ) > v(y) and v(y
q2/p

bn
) ≥ 0, one gets

vL(h) = vL(y)/p = q2 − 1 and vL(py
q/ph) = s.
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For the first claim, if n ≥ 2 we choose :

u := 1− cyq/p +

n−2
∑

k=0

y(1+q)pk

(−p)1+p+···+pk
= 1 + w.

Then, fq,c(y)u
p − 1 = 1 + cyq + y1+q + Σ1 + cyqΣ1 + y1+qΣ1 − 1 with :

Σ1 :=

p−1
∑

k=1

(

p

k

)

wk + wp = pw +

p−1
∑

k=2

(

p

k

)

wk + wp = pw + Σ′ + wp

= p

[

−cyq/p −
y1+q

p
+

n−2
∑

k=1

y(1+q)pk

(−p)1+p+···+pk

]

+ Σ′ + wp,

and Σ′ :=
∑p−1

k=2

(

p
k

)

wk, where sums are eventually empty if n = 2 or p = 2.
So :

fq,c(y)u
p − 1 = cyq − pcyq/p +

n−2
∑

k=1

py(1+q)pk

(−p)1+p+···+pk
+ Σ′ + wp

+ cpyqw + cyqΣ′ + cyqwp + y1+qpw + y1+qΣ′ + y1+qwp.

Computation shows that v(w) = v(yq/p) and we deduce that :

wp = (−c)pyq +

n−2
∑

k=0

y(1+q)p1+k

(−p)p+···+p1+k mod πs
Lm.

One checks that vL(y
qp) > s, vL(y

qwp) > s and vL(Σ
′) > s. Hence :

fq,c(y)u
p − 1 = (c+ (−c)p)yq − pcyq/p +

n−2
∑

k=1

py(1+q)pk

(−p)1+···+pk
+

n−2
∑

k=0

y(1+q)p1+k

(−p)p+···+p1+k

= −pcyq/p +
yq/p(1+q)

(−p)p+···+q/p
= pyq/p(

yq
2/p

bn
− c) mod πs

Lm.

If n = 1, we choose u := 1− cy and check that the statement is still true.

Step E : Computation of conductors.

From Step D, one deduces that the extension M/L is defined by Xp =
1 + phyq/p + r with r ∈ πs

Lm. From lemma 2.1, one gets that vM(DM/L) =
(p− 1)(q + 2). Hence

Z/pZ ≃ H0 = H1 = · · · = H1+q ) {1},
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and according to Step B and Step C one has :

G = G0 = G1 ) Z(G) = G2 = · · · = G1+q ) {1}.

Let ℓ 6= p be a prime number. Since the G-modules Jac(C)[ℓ] and Jac(Ck)[ℓ]
are isomorphic (see [ST68] paragraph 2) one has that for i ≥ 0 :

dimFℓ
Jac(C)[ℓ]Gi = dimFℓ

Jac(Ck)[ℓ]
Gi .

Moreover, for 0 ≤ i ≤ 1 + q one has Jac(Ck)[ℓ]
Gi ⊆ Jac(Ck)[ℓ]

Z(G). Then,
from Ck/Z(G) ≃ P1

k (see end of StepVI) and lemma 2.2, it follows that for
0 ≤ i ≤ 1 + q, dimFℓ

Jac(Ck)[ℓ]
Gi = 0. Since g(C) = q(p − 1)/2, one gets

f(Jac(C)/K) = (2q + 1)(p− 1). Moreover, if c ∈ Qur
p , an easy computation

shows that sw(Jac(C)/Qur
p ) = 1.

Remark : If c ∈ R with v(c) = (a/b)v(p) < v(λp/(1+q)) and a and b both
prime to p, then Lc(X) is irreducible over K. Indeed, the expression of the
valuation of any root y of Lc(X) shows that the ramification index ofK(y)/K
is q2.

4 Monodromy of genus 2 hyperelliptic curves

We restrict to the case p = 2 and deg f(X) = 5 of the introduction. In
this situation, there are three types of geometry for the stable reduction
(see Figure 1). For each type of degeneration, we will give an example
of cover C/K with maximal wild monodromy and birationally given by
Y 2 = f(X) = 1 + b2X

2 + b3X
3 + b4X

4 + X5 ∈ R[X ] over some R. De-
fine X to be the R-model of C/K given by Y 2 = f(X) and let’s describe
each degeneration type.

The Jacobian criterion shows that Xk/k has two singularities if and only
if b3 6= 0. Type I occurs when Xk/k has two singularities and by blowing-up
X at these points one obtains two elliptic curves. Type II (resp. type III)
occurs in the one singularity case when there are two (resp. one) irreducible
components of non 0 genus in the stable reduction. The elliptic curves E/k
that we will encounter are birationally given by w2 − w = t3. They are such
that Autk(E) ≃ Sl2(F3) has a unique 2-Sylow subgroup isomorphic to Q8.
We denote by D0 the original component defined in Proposition 2.1.
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D0

Type III

D0

Type I

D0

Type II

Figure 1

Magma codes used in this section are available on the authors webpages
[CM].

Notations. For f(X) ∈ R[X ], let

f(X + x) = s0(x) + s1(x)X + s2(x)X
2 + s3(x)X

3 + s4(x)X
4 +X5,

be the Taylor expansion of f and define

Tf (Y ) := s1(Y )2 − 4s0(Y )s2(Y ).

Degeneration type III : This is the case of potential good reduction. For
example, using notations of the previous section, let K := Qur

2 ((−2)1/5) and
C1/K be the smooth, projective, geometrically integral curve birationally
given by Y 2 = 1+X4+X5 = f4,1(X). Then, C1/K has potential good reduc-
tion with maximal wild monodromy M/K, the group Gal(M/K) is an extra-
special 2-group of order 25, f(Jac(C1)/K) = 9 and sw(Jac(C1)/Qur

2 ) = 1.

Degeneration type I :

Proposition 4.1. Let ρ := 22/3, b2, b3, b4 ∈ Qalg
2 , K := Qur

2 (b2, b3, b4) and
C/K be the smooth, projective, geometrically integral curve birationally given
by

Y 2 = f(X) = 1 + b2X
2 + b3X

3 + b4X
4 +X5,

with v(bi) ≥ 0 and v(b3) = 0. Assume that 1 + b3b2 + b23b4 6≡ 0 mod πK.
Then C has stable reduction of type I and

Tf(Y ) = T1,f (Y )T2,f(Y ) with Ti,f(Y ) ∈ K[Y ],

such that T1,f(Y ) = Y 4 ∈ k[Y ] and T2,f(Y ) = Y 4+b3
2
∈ k[Y ]. If T1,f (Y ) and

T2,f (Y ) are irreducible over K and define linearly disjoint extensions, then
C/K has maximal wild monodromy M/K with group Gal(M/K) ≃ Q8×Q8.
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Proof. Using Maple, one computes Tf (Y ) and reduces it mod 2. The state-
ment about Tf (Y ) follows from Hensel’s lemma.

Let y be a root of Tf(Y ). Define ρT = S = X − y and choose s0(y)
1/2

and s2(y)
1/2 such that 2s0(y)

1/2s2(y)
1/2 = s1(y). Then

f(S + y) = s0(y) + s1(y)S + s2(y)S
2 + s3(y)S

3 + s4(y)S
4 + S5

= (s0(y)
1/2 + s2(y)

1/2S)2 + s3(y)S
3 + s4(y)S

4 + S5

= (s0(y)
1/2 + s2(y)

1/2ρT )2 + s3(y)ρ
3T 3 + s4(y)ρ

4T 4 + ρ5T 5.

The change of variables

ρT = S = X − y and Y = 2W + (s0(y)
1/2 + s2(y)

1/2S),

induces

W 2 + (s0(y)
1/2 + s2(y)

1/2S)W = s3(y)T
3 + s4(y)ρT

4 + ρ2T 5,

which is an equation of a quasi-projective flat scheme over K(y, f(y)1/2)◦

with special fiber given by w2 − w = t3.
Let (yi)i=1,...,4 (resp. (yi)i=5,...,8) be the roots of T1,f (Y ) (resp. T2,f(Y )).

Then, for any i ∈ {1, . . . , 4} and j ∈ {5, . . . , 8}, the above computations
show that C has stable reduction over L := K(yi, yj, f(yi)

1/2, f(yj)
1/2) (use

[Liu02] 10.3.44). Moreover two distinct roots of T1,f(Y ) (resp. T2,f(Y ))
induce equivalent Gauss valuations on K(C), else it would contradict the
uniqueness of the stable model. In particular,

v(yi − yj) ≥ v(ρ), i 6= j ∈ {1, 2, 3, 4} or i 6= j ∈ {5, 6, 7, 8}, (7)

v(yi − yj) = 0, i ∈ {1, 2, 3, 4} and j ∈ {5, 6, 7, 8},

which implies that v(disc(T1,f (Y ))) + v(disc(T2,f(Y ))) = v(disc(Tf (Y ))) and
disc(Ti,f (Y )) ≥ 12v(ρ) = 8v(2) for i = 1, 2. These are equalities if and only
if (7) are all equalities. Using Maple, one has

2−16 disc(Tf (Y )) = b83(1 + b3b2 + b23b4)
4 mod 2,

thus one gets that (7) are all equalities, therefore

0,
y2 − y1

ρ
,
y3 − y1

ρ
,
y4 − y1

ρ
,

are all distinct mod πK . Applying Hensel’s lemma to T1,f(ρY + y1) shows
that K(y1)/K is Galois. The same holds for K(y5)/K.
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Let’s denote by E1/k and E2/k (resp. ∞1 and ∞2) the genus 1 curves in
the stable reduction of C (resp. their crossing points with D0). The group
Autk(Ck)

# ≃ Autk,∞1
(E1) × Autk,∞2

(E2) has a unique 2-Sylow subgroup
isomorphic to Syl2(Autk,∞1

(E1)) × Syl2(Autk,∞2
(E2)) where Autk,∞i

(Ei) ≃
Sl2(F3) denotes the subgroup of Autk(Ei) leaving ∞i fixed.

First, we show that L/K is the monodromy extension M/K of C/K. Let
σ ∈ Gal(L/K) inducing the identity on Ck/k. We show that ∀i ∈ {1, . . . , 8},
σ(yi) = yi. Otherwise, since σ is an isometry, σ(y1) /∈ {y5, . . . , y8} and we
can assume that σ(y1) = y2. So :

σ(
X − y1

ρ
) =

X − y1
ρ

+
y1 − y2

ρ
,

so σ does not induce the identity on Ck/k. If σ(s0(yi)
1/2) = −s0(yi)

1/2 for
some i then σ(s2(yi)

1/2) = −s2(yi)
1/2 and

σ(W )−W = s0(yi)
1/2 + s2(yi)

1/2ρT,

therefore σ acts non trivially on Ck/k. It implies that for all i ∈ {1, . . . , 8},
σ(s0(yi)

1/2) = s0(yi)
1/2 and σ = Id. Since M ⊆ L, this shows that L = M .

Now, we show that the wild monodromy is maximal assuming that T1,f(Y )
and T2,f(Y ) are irreducible over K and define linearly disjoint extensions.
One has natural morphisms :

Gal(M/K)
i
→֒ Q8 ×Q8

p
−→ Q8 ×Q8/Z(Q8)

q
−→ Q8/Z(Q8)×Q8/Z(Q8).

For any i ∈ {1, . . . , 4} and j ∈ {5, . . . , 8}, (i, j) 6= (1, 5), there exists σi,j ∈
Gal(M/K) such that :

σi,j(y1) = yi and σi,j(y5) = yj,

which is seen to act non trivially on Ck/k. The composition q ◦ p ◦ i is then
surjective, it implies that p ◦ i(Gal(M/K)) is a subgroup of Q8 × Q8/Z(Q8)
of index at most 2 so it contains Φ(Q8 ×Q8/Z(Q8)) = Z(Q8)× {1} = Ker q.
It follows that p ◦ i is onto and i(Gal(M/K)) is a subgroup of Q8 × Q8 of
index at most 2 so it contains Φ(Q8×Q8) = Z(Q8)×Z(Q8) ⊇ Ker p. Finally,
one has i(Gal(M/K)) = Q8 ×Q8.

Example : Let f0(X) := 1+23/5X2+X3+22/5X4+X5 andK := Qur
2 (2

1

15 ).
Then, one checks using Magma that Tf0(Y ) = T1,f0(Y )T2,f0(Y ) where T1,f0(Y )
and T2,f0(Y ) are irreducible polynomials over K and T2,f0(Y ) is irreducible
over the decomposition field of T1,f0(Y ). So, the curve C0/K defined by
Y 2 = f0(X) has maximal wild monodromy M/K with group Gal(M/K) ≃
Q8 ×Q8.
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q2:= pAdicField(2,8);

q2x<x>:=PolynomialRing(q2);

k<pi>:=TotallyRamifiedExtension(q2,x^15-2);

K<rho>:=UnramifiedExtension(k,8);

Ky<y>:=PolynomialRing(K);

b3:=1;

b2:=pi^9;

b4:=pi^6;

T:=(2*b2*y+3*b3*y^2+4*b4*y^3+5*y^4)^2-

4*(1+b2*y^2+b3*y^3+b4*y^4+y^5)*(b2+3*b3*y+6*b4*y^2+10*y^3);

F,a,A:=Factorization(T: Extensions:= true);

Degree(F[1][1]);Degree(F[2][1]);

L1:=A[1]‘Extension;

L1Y<Y>:=PolynomialAlgebra(L1);

TY:=L1Y!Eltseq(T);

G:=Factorization(TY);

G[1][2];G[2][2];G[3][2];G[4][2];G[5][2];

Degree(G[5][1]);

This has the following consequence for the Inverse Galois Problem :

Corollary 4.1. With the notations of the above example, let (yi)i=1,...,8 be the
roots of Tf0(Y ) and M = K(y1, . . . , y8, f0(y1)

1/2, . . . , f0(y8)
1/2). Then M/K

is Galois with Galois group isomorphic to Q8 ×Q8 ≃ Syl2(Autk(Ck)
#).

We now give results about the arithmetic of the monodromy extension of
the previous example.

M

K1 := K(y1, f0(y1)
1/2) K2 := K(y5, f0(y5)

1/2)

K := Qur
2 (21/5)(21/3)

Qur
2 (21/5)

First of all, M/Qur
2 (21/5) is the monodromy extension of C0/Qur

2 (21/5).
Indeed, let θ be a primitive cube root of unity. The curve C0 has a stable
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model over M and σ ∈ Gal(K/Qur
2 (21/5)) defined by σ(21/3) = θ21/3 acts non

trivially on the stable reduction by t 7→ θt . It implies that

Gal(M/Qur
2 (21/5)) →֒ Sl2(F3)× Sl2(F3).

Moreover, M/K1 is Galois with group isomorphic to Q8. Indeed, from the
proof of proposition 4.1, since Gal(M/K1) acts trivially on one of the two
elliptic curves of the stable reduction, one has the injection :

Gal(M/K1) →֒ Q8 × {Id}.

Moreover the image of this injection is mapped ontoQ8/Z(Q8) so Gal(M/K1) ≃
Q8. The extensions K1/K and K2/K being linearly disjoint. It implies that
Gal(K2/K) ≃ Q8 and it follows that Gal(K2/Qur

2 (21/5)) ≃ Sl2(F3). Similarly,
Gal(K1/Qur

2 (21/5)) ≃ Sl2(F3).
This has consequences on the possible ramification subgroups arising in

the filtrations of 1G := Gal(K1/K) and 2G := Gal(K2/K). Namely there
are no subgroups of order 4, otherwise there would be a normal subgroup
of order 4 in Sl2(F3). So the possible subgroups arising in the ramification
filtrations of 1G and 2G are Q8, Z(Q8) and {1}.

Using Magma (see [CM]) one computes the lower ramification filtrations

1G = (1G)0 = (1G)1 ) Z(1G) = (1G)2 = (1G)3 ) {1},

2G = (2G)0 = · · · = (2G)5 ) Z(2G) = (2G)6 = · · · = (2G)69 ) {1}.

In order to compute the lower ramification filtration of Gal(M/K), we now
determine its upper ramification filtration since it enjoys peculiar arithmetic
properties. Using lemma 3.5 of [Kid03] and the expressions of ϕK1/K and
ϕK2/K , one sees that K1/K and K2/K are arithmetically disjoint. According
to [Yam68] theorem 3, one has for any u ∈ R :

Gal(M/K)u ≃ 1G
u × 2G

u.

So one gets :

Gal(M/K)u ≃























1G× 2G, −1 ≤ u ≤ 1,
Z(1G)× 2G, 1 < u ≤ 3/2,
{1} × 2G, 3/2 < u ≤ 5,
{1} × Z(2G), 5 < u ≤ 21,
{1} × {1}, 21 < u.

One deduces the lower ramification filtration of Gal(M/K) :

Gal(M/K)i ≃























1G× 2G, −1 ≤ i ≤ 1,
Z(1G)× 2G, 2 ≤ i ≤ 3,
{1} × 2G, 4 ≤ i ≤ 31,
{1} × Z(2G), 32 ≤ i ≤ 543,
{1} × {1}, 544 ≤ i.
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Let denote the genus 1 irreducible components of Ck/k by E1 and E2. Let H1

(resp. H2) be a finite subgroup of Syl2(Autk,∞1
(E1)) (resp. Syl2(Autk,∞2

(E2)))
and ℓ 6= 2 be a prime number. One has :

Pic◦(Ck)[ℓ]
H1×H2 = Pic◦(E1)[ℓ]

H1 × Pic◦(E2)[ℓ]
H2 .

According to lemma 2.2 one has dimFℓ
Pic◦(Ei)[ℓ]

Hi = 2g(Ei/Hi). It follows
that sw(Jac(C0)/K) = 45.

Degeneration type II :

Proposition 4.2. Let a9 = 2, K := Qur
2 (a), ρ := a4 and C/K be the smooth,

projective, geometrically integral curve birationally given by

Y 2 = f(X) = 1 + a3X2 + a6X3 +X5.

Then, C has stable reduction of type II and C/K has maximal wild mon-
odromy M/K with group Gal(M/K) ≃ (Q8 ×Q8)⋊ Z/2Z.

Proof. Using Magma, one determines the Newton polygon of Tf (Y ). Then,
Tf (Y ) has 8 roots (yi)i=1,...,8 of valuation

7
24
v(2). By considering the Newton

polygon of ∆(Z) = (Tf(Z+y1)−Tf (y1))/Z, one shows that ∆(Z) has 3 roots
(say y2 − y1, y3 − y1 and y4 − y1) of valuation v(ρ) and 4 roots of valuation
v(2)/3.

Let y be a root of Tf (Y ). Define ρT = S = X−y and choose s0(y)
1/2 and

s2(y)
1/2 such that 2s0(y)

1/2s2(y)
1/2 = s1(y). Then the change of variables

ρT = S = X − y and Y = 2W + (s0(y)
1/2 + s2(y)

1/2S),

induces

W 2 + (s0(y)
1/2 + s2(y)

1/2S)W =
s3(y)ρ

3

4
T 3 +

s4(y)ρ
4

4
T 4 +

ρ5

4
T 5,

which is an equation of a quasi-projective flat scheme over K(y, f(y)1/2)
with special fiber given by w2 − w = t3. The same argument as in the
degeneration type I shows that C has stable reduction of type II over L =
K(y1, . . . , y8, f(y1)

1/2, . . . , f(y8)
1/2).

We first show that L/K is the monodromy extension M/K of C/K. Let
σ ∈ Gal(L/K) inducing the identity on Ck/k. We show that ∀i ∈ {1, . . . , 8},
σ(yi) = yi. Else, for example, σ(y1) = y2 or σ(y1) = y5. It follows from the
properties of the roots of ∆(Z) that, if σ(y1) = y2 then σ acts by non trivial
translation on Ck/k and if σ(y1) = y5 then σ acts on Ck/k by permuting the
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genus 1 components. Once again, the same computations as in the degener-
ation type I show that ∀i ∈ {1, . . . , 8}, σ(f(yi)

1/2) = f(yi)
1/2. Since M ⊆ L,

one gets M = L.
Now, we show that the wild monodromy is maximal. Let’s consider the

canonical morphism :

Gal(M/K)
i
→֒ Syl2(Autk(Ck)

#) ≃ (Q8 ×Q8)⋊ Z/2Z.

One sees Q8×Q8 as the subgroup (Q8×Q8)⋊{1} of (Q8×Q8)⋊Z/2Z. Set
H := i(Gal(M/K)) ∩ (Q8 ×Q8). One has natural morphisms :

H
p
−→ Q8 ×Q8/Z(Q8)

q
−→ Q8/Z(Q8)×Q8/Z(Q8).

Using Magma (see [CM]) one shows that Tf (Y ) is irreducible over K and
over K(y1) one has the following decomposition in irreducible factors :

Tf(Y ) =
4
∏

i=1

(Y − yi)T2(Y ),

and T2(Y ) decomposes over K(y1, y5). It implies that q ◦ p ◦ i is surjective
and p(H) is a subgroup of index at most 2 so it contains Φ(Q8 ×Q8/Z(Q8))
and as for type I, one has p(H) = Q8 × Q8/Z(Q8). It implies that H is a
subgroup of Q8 × Q8 of index at most 2 and again H = Q8 × Q8, that is
Q8 ×Q8 ⊆ i(Gal(M/K)). Finally on has a natural morphism :

(Q8 ×Q8)⋊ Z/2Z
r
−→ (Q8/Z(Q8)×Q8/Z(Q8))⋊ Z/2Z.

The composition r ◦ i is surjective since there exist σ, τ ∈ Gal(M/K) such
that for i ∈ {1, . . . , 4} and j ∈ {5, . . . , 8}

σ(y1) = yi and σ(y5) = yj,

τ(y1) = y5.

Since the index of i(Gal(M/K)) in (Q8×Q8)⋊Z/2Z is at most 2, this group
contains Φ((Q8 × Q8) ⋊ Z/2Z) ⊇ Ker r so i(Gal(M/K)) = (Q8 × Q8) ⋊
Z/2Z.

Again we derive the following result for the Inverse Galois Problem :

Corollary 4.2. With the notations of Proposition 4.2, let (yi)i=1,...,8 be the
roots of Tf(Y ) and M = K(y1, . . . , y8, f(y1)

1/2, . . . , f(y8)
1/2). Then M/K is

Galois with Galois group isomorphic to (Q8×Q8)⋊Z/2Z ≃ Syl2(Autk(Ck)
#).
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Remark. Throughout this paper, we have described monodromy extensions
as decomposition fields of explicit polynomials being p-adic approximations
of the so called monodromy polynomial of [LM06]. The point is that the
roots of the monodromy polynomial are the centers of the blowing-ups giving
the stable reduction of a p-cyclic cover of P1

K with equidistant geometry.
For a given genus, the expression of the monodromy polynomial is somehow
generic, making it quite complicated. Since p-adically close polynomials with
same degrees define the same extensions, it was natural to drop terms having
a small p-adic contribution in our examples to obtain modified monodromy
polynomials easier to handle than the actual monodromy polynomial.
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