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Abstract. A set of genes that are proximately located on multiple chro-
mosomes often implies their origin from the same ancestral genomic seg-
ment or their involvement in the same biological process. Among the nu-
merous studies devoted to model and infer these gene sets, the recently
introduced APPROXIMATE COMMON INTERVAL (ACT) models capture gene
loss events in addition to the gene insertion, duplication and inversion
events already incorporated by earlier models. However, the computa-
tional tractability of the corresponding problems remains open in most
of the cases. In this contribution, we propose an algorithmic study of a
unifying model for ACI, namely MULTI-RELATED-SEGMENTS, and demon-
strate that capturing gene losses induces intractability in many cases.

1 Introduction

The genetic blueprint of an organism is encoded in a set of DNA se-
quences, known as chromosomes. During evolution, some subsequences
of a chromosome diverged while others, known as genes, were conserved
among different organisms. A chromosome is typically represented as a se-
quence of genes, then evolution is described as a series of discrete events:
gene insertion, loss, duplication and inversion. One of the most impor-
tant goals in comparative genomics is to identify a set of genes that are
in proximate locations on multiple chromosomes and their actual chro-
mosomal occurrences. Indeed, preservation of gene co-locality tends to
indicate that the corresponding genes either form a functional unit (e.g.,
operons) or result from speciation or duplication events [12]. In the litera-
ture, the former is termed “gene cluster” [3], whereas the latter is known
as “synteny” [22]. Both were extensively studied during the past decade,
and numerous models and algorithms were proposed to define and iden-
tify them. From an algorithmic point of view, we present a unified model
to capture approximate common intervals and provide tractability results
in association with evolutionary events.



2 Gene Proximity: Properties and Models

Modeling gene proximity based on biological intuition is known to be
difficult, but some key properties have been raised by Hoberman and
Durand [12]. We present a formalization of these properties by developing
the notion of MULTI-RELATED-SEGMENTS [20,21], meanwhile, show that
some of them are inadequately captured by existing models. We consider
here related algorithmic aspects.

2.1 Key Properties of Gene Proximity

Observing the co-occurrence of a gene set A in different chromosomal
segments indicates the common origin of these segments. Genes in A
are referred as ancestral genes. Naturally, these segments of interest are
subject to evolutionary constraints. The first crucial constraint consists in
evidence of any gene of interest as being ancestral. This property is usually
related to observing a minimum [ occurrences of such a gene among the
segments, thereby reducing the possibility of misinterpreting what is in
fact a chance occurrence. Secondly, each segment contributes sufficiently
to the ancestral gene set. More formally, each segment contains at least
€m different ancestral genes. Then, consider gene loss and insertion events
that may have occurred, such an segment may not necessarily contain all
ancestral genes while each may pick up genes independently. To constrain
the frequency of these events so that the signal of common origin can still
be detected, local and global ancestral gene density constraints apply. The
former is captured by allowing at most « interleaving genes between two
consecutive ancestral genes, while the latter is captured by allowing a
maximum ¢€; gene losses in each segment and a maximum ¢; total gene
losses among all segments.

2.2 Existing Models

Consider k chromosomes, each represented as a permutation over a given
gene set A. A CONSERVED SEGMENT [14] consists of a set of genes that
occur consecutively in the same order on every input chromosome. Once
the constraint of the preserved ordering is removed, it leads to the coOM-
MON INTERVAL (CI) model definition [19]. If the unordered pair of the
first and the last genes of a CI is the same on each chromosome, this CI
is moreover called conserved [5]. Furthermore, if we relax the constraint
that genes in a CI have to be consecutive in each chromosomal occurrence
— namely, two genes belonging to a CI can be interleaved by a bounded
number of genes not belonging to it — the definition of GENE-TEAMS (GT)
model [4] follows. The GT model is of higher biological relevance since
it in addition captures gene insertions. The aforementioned models can



be applied to strings to account for gene duplications, but the number
of resulting gene sets complying the model may increase exponentially.
More recently, APPROXIMATE COMMON INTERVAL (ACI) models were in-
troduced [1,17,7,13], where not all ancestral genes need to occur in every
segment. Among these, MEDIAN GENE CLUSTER (MGC) model [7] is the
most recent formulation, but the complexity of this model remains open.

3 Multi-related segments model

We now present MULTI-RELATED-SEGMENTS (MRS) model [20,21], which
is defined as consisting of a set of segments of interest, each evolved
from an ancestral segment with gene set A via gene insertion, loss, du-
plication, and inversion events. Formally, a MRS is defined as follows. To
ensure evidence of being ancestral genes, each gene in A occurs in at least
B (> 2) segments. Each segment of interest has to contain at least €,
different ancestral genes and is maximal (i.e., not extendable by includ-
ing surrounding genes) — thus, imposing a constraint on the minimum
contribution to A. Similar to the GT model, the local ancestral gene den-
sity is constrained allowing at most « non-ancestral genes between any
two consecutive ancestral genes. To control global ancestral gene density,
we require each segment to induce no more than ¢; gene losses and the
total number of gene losses of all segments to be lower than ;. Then,
given a set of chromosomes and parameters «, 3, €,,, €, and €;, the general
problem is to identify all MRS.

The formulation of MRS captures existing models and holds a better
biological intuition. MRS corresponds to a CI when 8 = k, €, = |A| and
a = 0, and to a GT when a > 0. Compared with these two models,
MRs further captures gene loss events. Note that this aspect was already
considered in the MGc model [7]. Nevertheless, there are several major
differences. Firstly, MRS captures the same origin of more than two seg-
ments in the absence of strong pairwise similarity information, such as
differential gene loss [18] and uber-operon [8] — which is not the case for
Mgac due to the requirement that segments pairwisely share some com-
mon genes. Secondly, the minimum evidence of a gene being ancestral is
more flexible in MRS by requiring § occurrences of any ancestral gene
— which has to be at least % in Mac. Finally, the local ancestral gene
density is not required in MGC — which is, as explained in [12], crucial.

From an algorithmic point of view, regarding all above mentioned
models, complexity increases when chromosomes are delineated as strings
rather than permutations: the problem is still tractable when considering
CI [2,9] but folds into the hardness as soon as conserved CI is consid-
ered [6]. The GT model, which captures gene insertions, duplications and



inversions, is polynomial on permutations [4] but exponential over strings
[16]. Considering the complexity of ACI models, which further captures
gene losses, an algorithm with O(kn® + occ) run time over strings was
proposed [1] where occ is bounded by the number of substrings of the
genomes. In this paper, we further investigate the complexity of ACI
models, by considering from an algorithmic point of view the problem of
MRS inference. Since known algorithmic results are available in previous
modeling of gene duplications, insertions and inversions, our focus is on
deriving if the problem is tractable when trying to model gene losses.

4 Complexity Analysis of MRS

One has to note that, in the following, we will set the numerical param-
eters of the model to specific values. This just consists in an algorithmic
trick for ease of proof. We first consider the case when the ancestral
gene set A is a priori known. The problem, termed LOCATEMRS, then
corresponds to locate, given k chromosomes S = {57, So, ..., Sk} repre-
sented as strings, a feasible MRS originating from A. We prove that this
problem is NP-hard even in the restricted case where |CS(S;)| = |S]
and meanwhile, at most one substring per S; can belong to the resulting
MRs, for every S; € S. It follows that LOCATEMRS problem is NP-hard.
Next, we prove LOCATEMRS to be fixed-parameter tractable (FPT) [10],
and provide an efficient dynamic programming solution. Then, we prove
that the optimization problem to identify all MRS is hard to approxi-
mate. Finally, we show that with the removal of the maximum number
of gene loss constraint and the maximum number of substrings per input
sequence constraint, a polynomial algorithm can be derived. Due to space
constraint, some proofs are deferred to the full version of the paper.

4.1 Identify A MRrs Given A

Let us consider that no gene insertion is allowed (o = 0), 8 > 2 and
€; = ¢, = 00. Then, by definition, any MRS consists of substrings involv-
ing only genes in A. Thus, each input chromosome can be pre-processed
in order to remove any gene not belonging to A, resulting in a sequence
of substrings. One may then filter out any substring that does not respect
the minimum contribution to A criterion (i.e., using €,,). Any remaining
substring will be referred as of interest. Finally, since in the MRS def-
inition, we are looking for maximal substrings (i.e., not extendable by
including surrounding genes), any substring of interest will be either kept
or fully removed in the solution.

Definition 1. LOCATEMRS: Given a character set A, a string set S =
{511,5’2,...,S%,S%,...,Sl,s,%...} where S; corresponds to the it sub-
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T1 = u1X1u2X2U3X3 — V1W1V2W2V3W323

To = v2x2V3T3U4T4s  — U2W2U3W3Z3VaW4Z4
ST T3 = W3T3V4T4U5T5 — U3V3Z3U4q4W4Zy4V5W5Zs5
Ty = WaXaVsXsUeXe — U4V424Us5Ws525V6We6
T5 = V1T1W5T5VeT6 — U1W1U5V5Z5UeWg
S11=x1 Sa1 = X2 Se6,1 = Xe
Si2=u1 — w1 Sr2=1us — w2 Se2= us — W
Siz=ur — vi Sez=wu2 — v2 Se3z3= us — Ve
Syl Sta=w1 —v1i Sra=wz — vz Ses=wWs — Ve
S3,1 = X3 S11 = Xa Ss5,1 = Xs
Sz3e=wu3 — vz Si2=us —va Ss2=1us — Us
S33=W3 — v3 Siz=ws — va Ss53=Ws — Us

Fig. 1. Illustration of the construction on the following instance of X3C: X =
{1,2,3,4,5,6} and T = {(1,2,3),(2,3,4),(3,4,5),(4,5,6),(1,5,6)}. A correspon-
dance between the solutions of the problems is highlighted in bold.

string of interest of S; (i.e., G chromosome), find a subsets S' C S
corresponding to a MRS, such that A =|Jgcg CS(S) and each character
of A appears in at least two elements of S', and VS¢, S;.’ eS8, i#7.

We will prove that LOCATEMRS is hard but fixed-parameter tractable.
We first consider that |S| = |CS(S)| for any S € S (i.e., S is a permuta-
tion). Note that this problem is in NP. Indeed, given a subset S’ of S,
one can check in polynomial time that each character of A appears in at
least two elements of &’ and that no more than one substring S} of any
S; belongs to &’. To prove that this problem is moreover NP-hard, we
provide a polynomial reduction from the NP-complete problem ExacT
COVER BY 3-SETS (X3C) [11]: Given a finite set X = {z1,..., 7y} and
a family 7 = {t1,...,tj7} of triples over X, is there a subfamily 7' C T
such that every z; € X is contained in exactly one element of 7' ?

X3C problem is hard even in the special case where each element of
X appears at most three times in 7 [11]. Then, it is sufficient to consider
the case where each element appears either two or three times. Indeed,
any triple containing some element that occurs only once has to be part of
any solution and can be removed from further consideration. According
to the problem definition, a solution corresponds to a selection of one
among the at most three occurrences of any element of X'. Without loss
of generality, we fix the triple order in 7.

Let us now provide the construction from any instance (X, 7T) of X3C
problem (an example is given in Figure 1). For each element z; € X,
let z;,u;,v;,w; and z; be some characters. The set S will be built on



|7T| sequences, which represent the triples of 7, and four (resp. three)
additional sequences, which represent any element of X occurring twice
(resp. three times) in 7. Let St = {T1,...Tj7|} (resp. Sx) be the set of
sequences representing the triples (resp. the elements of X’). Moreover,
we use the symbol “—” to separate the non-adjacent substrings in a given
string, e.g., S = S' — §? — §3. Note that, the order of the characters in
these substrings is not important according to the definition of MRS. Let
us first construct S as follows. First, for each element x; € X occurring
twice in T, concatenate u;x; (resp. v;x;) to le (initially empty) and v;w;
(resp. u;w;) to Tj2 (initially empty) if the first (resp. second) occurrence
of z; appears in the j¥ triple of 7. Second, for each element z; € X
occurring three times in 7, concatenate u;x; (resp. v;x; and w;x;) to le
and v;w;z; (resp. u;w;z; and w;v;z;) to Tj2 if the first (resp. second and
third) occurrence of x; appears in the j triple of 7. Let us now construct
the set Sy. For each element z; € X occurring two times in 7, add the
following four sequences to Sx: S;1 = x;, Si2 = w; — w;, Si3 =u; — v,
Sia = w; — v;. And, for each element x; € X occurring three times in
T, add the following three sequences to Sx: Si1 = x;, Si2 = u; — v,
Si3 =w; — v;. We finally define A to be the set of all characters used in
the construction.

Lemma 1. There exists a solution T' C T to X3C problem over (X, T)
if and only if in the corresponding built instance (A,S) of LOCATEMRS
there exists a subset S C S corresponding to a MRS.

Correctness of Lemma 1 implies the following result.

Theorem 1. LOCATEMRS problem is NP-complete even in the special
case where none of the input strings contains duplicated characters and
at most one substring S; of every S; can belong to any solution S’

We now prove that LOCATEMRS belongs to the class of the fixed-
parameter tractable (FPT) problems [10]. In other words, it can be solved
efficiently by an algorithm exponential only with respect to a fixed pa-
rameter — |A| in our case — while polynomial in the size of the input.

Theorem 2. LOCATEMRS problem is Fized-Parameter Tractable in |A|

To show this, we provide a dynamic programming solution. According
to LOCATEMRS definition, one has to select exactly one substring of inter-
est among all of them in each sequence ;. A naive algorithm may try all
such combinations and check for each if any character appears in at least
two substrings. Such an algorithm has an exponential running time. We



will prove that by using an efficient dynamic programming strategy, one
may hold the exponential factor in the size of the ancestral gene set. Note
that one does not need to compute the exact number of times each char-
acter occurs but only to ensure that it occurs in at least two substrings in
the solution. According to this remark, consider a fixed ordering of char-
acters (ai,az,...,a4) of A, we compute after adding substring S to the
current solution a vector C = (c1, ¢z, . - ., ¢4)), where ¢; € {0, 1,2} denotes
respectively that a; is not contained, contained in one, or contained in at
least two substrings. For example, consider A = {1,2,3,4,5} and current
solution 8" = {124}, one may derive a vector C = (2,1, 0,2, 1) after adding
substring “1445” to S’. The main property of this representation is that,
given A, there are only 3/ possible vectors. Further, let p(x) and xg(x)
denote, respectively, the position of x in the fixed ordering of A and the
boolean function indicating whether z occurs in S. We define a boolean
dynamic table D indexed by the last substring added and the vector C
for the current solution. The main recursion' is defined as follows:

1-if 3,5 < js.t. D(S,,(cl,. \/A|))_1
and V1 <[ < | A, XSZ( + ¢, = min{2, ¢}

where pu(x) =1
0 — otherwise

D(S, (1. .. clap) =

Algorithm 1 LOCATEMRS(A, S = {S},5%,...,84,52,...,5:,52,...})

: Initialize all entries of D to 0
for each S} € S do D(Si, (c1,...,¢4))) = 1 where Vz € S}, ¢ = Xs: (z) done
for j =2 to k do
for each S} € S do Fill out D(S}, (ci,...,cp4)) done
end for
for each S € S do
if D(SL,(2,...,2)) = 1 then return True end if
end for
return False

Given this function, one can apply Algorithm 1. The algorithm com-
putes, for each sequence S; the possible character set solution induced by
any combination of substrings of interest from sequences S;» with j' < j.
Therefore, any entry D(SJZ'-, (2,...,2)) = 1 corresponds to a MRS being
found. One may, using a simple back-tracking technic, rebuild one opti-
mal solution. Let us now prove the time complexity of this algorithm. In
order to fill out D, one has to compute |S| x 34l entries. Indeed, there are
at most |S| different substrings and 3/ possible character sets. The main

! The base case is made in Algorithm 1



recursion needs, for each entry, to browse at most |S| x 34l other entries
of D. This leads to an overall O((|S| x 3/)?) running time algorithm.
Hence, the problem is FPT with respect to |.A|.

4.2 Identify All MRs When A Is Unknown

We will prove that finding all MRS problem is hard even in the special
case where none of the sequences contains duplicated characters and in
any solution &', for any sequence S; at most one substring S} e S (ie.,
a=0,2>2 ¢=¢=0).

First, note that the problem is in NP since given a subset S’ of S,
one can polynomially check that each element of A appears in at least
two substrings and no more than one substring of any sequence belongs
to &’. To prove that this problem is moreover NP-hard, we provide a
polynomial reduction from the NP-complete problem X3C [21] based on
a slight modification of the reduction of the previous section. Indeed, if
one replaces each of the separations “—” between substrings of interest
by a unique character appearing only once in S, then by definition, those
added characters will never be part of a MRS since any character should
appear at least twice in a MRS. Due to the unextandability property of
MRS, one should be able to find neither a smaller nor a bigger substring
of interest in each sequence than in the LOCATEMRS formulation. The
rest of the proof still holds, leading to the following theorem.

Theorem 3. Finding a MRS problem is NP -complete even in the special
case where none of the sequences contains duplicated characters and in
any solution S', at most one substring from each S; belongs to S’.

Let us then consider the optimization version of the problem (Defini-
tion 2) where one wants to find a MRS induced by the maximum unknown
ancestral gene set (in other words, one constrains the minimum size of
A), and at the same time, at most one substring of each S; can belong
to the MRs.

Definition 2. MAXMRS: Given a set of k strings S = {S1,... Sk}, find
any possible (A, S’) where 8" = {S],55,...5,, : S, is a substring of S;},
A=, C8(S)), and | A| is mazimum,

We will demonstrate that this optimization problem is hard to approx-
imate. Meanwhile, we show that the inapproximability of this problem
may stem from forbidding more than one substring per input chromo-
some, the relaxation of which leads to polynomiality.

In the following, we consider that 5 > 2, « = 0, ¢, = 1, and ¢ =
€; = 00. We prove the inapproximability of MAXMRS below by proposing



a reduction from the MINIMUM SET COVER (MINSC) problem: Given a
family F of subsets of a finite universe U, find a set cover F’ for U — that
is a subfamily 7' C F whose union is &/ — of the minimum cardinality.

Since any character appearing once in an input string will not be part
of a MRS, we use the symbol “~” to denote any such character. The pres-
ence of symbol “~” will induce, in MAXMRS problem, that characters ap-
pearing before and after it in any input string cannot be part of the same
solution. Given any instance (F,U) of MINSC, where U = {uq,...u,}
and F = {F; : F; = {u},u?,...ul"},1 <i < m}, we define a set of strings
S = {So,...,Sk—om} With So = uy ... up, S; = S} = S? = wlu? ... ul" -
v; and Sp1; = v, for 1 < i < m.

Lemma 2. If there exists a cover F' C F forU (i.e. U = Jpcr F) then
there exists a solution (A,S") (i.e. a MRS) for the built up instance S of
MAXMRS such that |A| =n+m — |F'|.

Lemma 3. Given a solution (A, S") for a built up instance S of MAXMRS,
we can construct in polynomial-time a cover F' C F for U, such that

[F'| <m— (Al = n).

Proof. We first define a polynomial-time subroutine that transforms any
solution (A,S’) to an equally good solution where CS(Sp) C A. For any
character of Sy not belonging to A — say u;, add to S’ one substring Si1
that was not in &’ but contains u;, meanwhile, remove from S’ correspond-
ingly two substrings SZ-2 and Sy,+;. Every such replacement operation will
change a given v; by wu; in A without decreasing the cardinality of A
(i.e. an equally good solution). Once this subroutine has been applied
to (A,S’), one can build a cover 7' = {F; : S? ¢ §'}. The subroutine
guarantees that all elements of Sy belong to 7' — a cover for U. Clearly,
|A| — n corresponds to the number of v;s belonging to A. Considering
S1,59...Sm (where szs appear), there exist at most m — (|.A| — n) strings
such that S7 ¢ §'; inducing that [F'| < m — (JA] — n). 0

Theorem 4. MAXMRS is APX-hard even in the special case where, for
every input string S;, |CS(S;)| = |Si.

Proof. Consider MINIMUM 3-SETCOVER-3 (MIN3SC-3), a subproblem of
MINSC, where the size of any set in F is bounded by 3 as well as the num-
ber of times each character of U occurs in F. We will prove the theorem
by contradiction, assuming that MAXMRS admits a Polynomial-Time Ap-
proximation Scheme (PTAS), i.e. one would be able to find an approxima-
tion algorithm leading to an approximate solution (A4px,Sapx), which
compared with the optimal solution (Aoppr,Sopr), induces |Aapx| >



(1 —¢) - |Aopr| for a parameter € > 0. Accordingly, under the same as-
sumption, we will prove that MIN3SC-3 also admits a PTAS, i.e. one
would be able to find an approximation algorithm leading to an approx-
imate solution F4px, which compared with the optimal solution Fopr,
induces |Fapx| < (147)-|Fopr| for a parameter v > 0 — a contradiction
to the fact that MIN3SC-3 is APX-hard [15].

Since each character of & occurs at most three times in F, the size of
the ground set used to build F is at most 3n, leading to m < 3n. Moreover,
any cover F' C F of U is at least of size § since F is composed of sets of
size at most three. Hence, § < |Fopr| and consequently, m <9-|Fopr|.

If we have an approximate solution (Aspx,Sapx), then

By Lemma 3, |Fapx| <m — (J[Aapx| —n)

By assumption, m — (|[Aapx| —n) <m —((1 —¢)-|Aopr| — n)

By Lemma 2, |Aopr| =n+m — |Fopr|

Which leads to, |Fapx| <e-n+e-m+(1—e¢)-|Fopr|
(m < 3n < 9|Fopr|) <12¢-|Fopr|+ (1 —€) - [Forr|
Finally, < (1+11¢) - |Fopr| O

We now prove the following result on restricted instances.

Theorem 5. If one restricts neither the mazimum number of gene losses
per substring of interest, nor the maximum number of substrings of inter-
est per chromosome, and if every input sequence contains no duplicated
characters, finding all the MRS becomes a polynomial task.

Proof. Consider a graph G = (V, E) obtained from S in such a way that
a vertex is assigned to every character in each string S; € S and a red
(resp. blue) colored edge is created between any two adjacent characters
(resp. any two vertices representing identical characters). Given this rep-
resentation, the notion of character set naturally extends to any subgraph
G[V'] of G as the set of represented characters by V’. Our method con-
sists in an iterative procedure which stops when none of the following
operations can be applied anymore. The results will consist of a set of
connected components, each corresponding to a MRS. The first operation
consists in removing from V any vertex which is only incident to red
colored edges. This polynomial operation results in the removal of genes
not appearing twice in a candidate connected component. The second
operation gets rid of candidates not fulfilling the minimum contribution
to the ancestral gene set by pruning any red edge-induced subgraph G’
such that |CS(G')| < €. This operation can be done in linear time by
browsing any connected component. Once none of these operations can
be done anymore, it is easy to see that each remaining connected compo-
nent corresponds to a MRS. O
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Appendix

Missing proofs for main results

Lemma 1. There exists a solution T' C T to X3C problem over (X,T)
if and only if in the corresponding built instance (A,S) of LOCATEMRS
there exists a subset S’ C S corresponding to a MRS.

Proof. (=) Suppose such 7’ C T exists for the instance (X, 7). Let us
prove that we can compute in polynomial time an &’ C S corresponding
to a MRS in the corresponding built instance of LOCATEMRS. For any
triple t, € T, if t; € T’ then add qu to &'; add Tq2 otherwise. Moreover,
for 1 <i < |X|, add S;; to §'. For any element z; € X occuring two times
in 7, if the first triple containing x; is in 7’ then add 522, S? 35 524 to &’;
add Silg, S} 3 514 to S’ otherwise. For any element x; € X occuring three
times in 7, if the first triple containing x; is in 7’ then add 5'2 ,S1 5 to
&’; if the second triple containing z; is in 7’ then add S12, 513 to S’ add
Sl 523 to 8" otherwise (see Figure 1). Let us now prove that S’ is indeed
a MRS, i.e., A =Jges CS(S) and any element of A appears at least twice
in &’. First note that, by definition, in 7", there is exactly one triple
containing any element of X. Thus, by construction, there is exactly one
substring per sequence in §’. Let us consider any element x; € X which
occurs twice in 7 — say in triples ¢, and ¢, for the first and respectively
second occurrences of ;. Then, since 7’ is an exact cover, there exists
exactly one among ¢, and ty in 7' — say t,. Therefore, by construction,
{T1 T2 i 1,5’2-2’2, 53’3,51»274} C &’ (the reader may, for example, consider
z1 in Flgure 1). Consequently, a) two occurrences of x; appear in &’ (one
from S;; and one from T}), b) two occurrences of u; appear in S’ (one
from T1 and one from T qg ), ¢) two occurrences of v; appear in &’ (one
from 51’3 and one from S;4), and d) two occurrences of w; appear in S’
(one from S; o and one from T, q%) With a similar reasoning, one can check
that any of x;, u;, v;, w; appears twice when ty € 7'. Let us now consider
each element z; € X' that occurs three times in 7 — say in triples 4, ¢,
and tg» for the first (resp. second and third) occurrence of x;. Then, since
T is an exact cover, there exists exactly one among tq, ty and ty in T’ —

say tq. Therefore, by construction, {T1 T,,T,,,SZ 1,512, S} 3} C S’ (the
reader may, for example, consider x3 in Flgure 1). Consequently, a) two
occurrences of z; appear in S’ (one from S;; and one from T, ql), b) three
occurrences of u; appear in &’ (one from qu, one from TqQ, and one from
T2)), ¢) two occurrences of v; appear in S’ (one from T q2,, and one from

q
Si2), d) two occurrences of w; appear in &’ (one from S; 3 and one from
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Tq%), and e) two occurrences of z; appear in S’ (one from Tq% and one from
TqQ,,). With a similar reasoning, one can check that any of x;, u;, v;, w;, z;
appears at least twice when t, € T’ or ty» € T'. We have completed the
proof that each element of A appears at least twice in &’; inducing that
S’ is indeed a MRS.

(<) Suppose now that such a set S’ C S exists for the corresponding
built instance of LOCATEMRS (A, S). We will prove that we can compute
in polynomial time a 7’ C T corresponding to a solution for the instance
(X,T). Forany 1 <4 < |T|, t; € T if T} C &'. Let us now prove that
T’ is indeed an exact cover of 7. Note that, any solution &’ is a subset
of § since we are looking for unextandable substrings (inducing that any
substring of interest is either fully kept or removed). Moreover, recall that
we consider here the special case of the problem where in any solution &,
for any string S;, at most one substring S; € 8. Let us first prove that
given two triples t, and ¢, both containing one of the two occurrences
of x; € X (i.e. the case where x; appears twice in X'), then, exactly one
of the substrings qu and qu, belongs to &’ (the reader may, for example,
consider z; in Figure 1). By contradiction, suppose this is not the case,
i.e. {qu, qu,} C &’'. Then, in &', there are already one occurrence of u;,
one occurrence of v; and two occurrences of x;. Note that the set of ele-
ments related to variable z;, i.e., {z;, u;, v;, w;}, appears in the following
sequences {1y, Ty, Si1,Si 2, Si 3, Sia}. Since, by definition, in &', every el-
ement should appear at least twice, using exactly one of the substrings of
each of these sequences, one should be able to obtain another u;, another
v; and two w;. Unfortunately, this is not possible in any combination of
the corresponding substrings excluding, by hypothesis, Tq2 and qu,; a con-
tradiction. Now consider the three triples ¢, t, and ¢4/, each containing
one of the three occurrences of z; € X (i.e. the case where x; appears
three times in X'), then, exactly one among the substrings qu, qu, and qu/,
belongs to &’ (the reader may, for example, consider x3 in Figure 1). By
construction, the occurrences of z; belong to Tq2, Tq% and Tq%,. In order to
obtain at least two occurrences of z; in &', at least two of the substrings
among {Tq27 Tq2,7 Tq2,,} should be in §’. Moreover, since the occurrences of
x; belong to {qu, qu,, qu,,, Si1}, exactly one of {qu, qu,, qu,,} should be in
&’. We have proved that for each element z; occuring twice (resp. three
times) in T, exactly one of the triples containing x; is kept in 7'. Thus,
T is indeed an exact cover of 7. O

Lemma 2. If there exists a cover F' C F forU (i.e., U =Upcr F)
then there exists a solution (A,S’) (i.e., a MRS) for the built up instance
S of MAXMRS such that |A| = n+ m — |F'|.
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Proof. Consider the following solution &' = {So} U{S} € S : F, €
FYU{S?, Smyi € St F; ¢ F'}. By definition, S’ is indeed a MRS since
it cannot be extended (it is made of one unextandable substring of each
sequence) and any element appears twice. Moreover, its character set

A=U\J{v; : F; € F'} which is of size n +m — |F'|. 0
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