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3 DIRO - Université de Montréal - QC - Canada, hamelsyl@iro.umontreal.ca
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Abstract. A set of genes that are proximately located on multiple chro-
mosomes often implies their origin from the same ancestral genomic seg-
ment or their involvement in the same biological process. Among the
numerous studies devoted to model and infer these gene sets, the re-
cently introduced approximate common interval (ACI) models cap-
ture gene loss events in addition to the gene insertion, duplication and
inversion events already incorporated by earlier models. However, the
computational tractability of the corresponding problems remains open
in most of the cases. In this contribution, we propose a unifying model for
ACI, namely Multi-related-segments (Mrs), and demonstrate that
capturing gene losses induces intractability in many cases (answering an
open question raised in [19,20]).

1 Introduction

The genetic blueprint of an organism is encoded in a set of DNA se-
quences, known as chromosomes. During evolution, some subsequences of
a chromosome diverged while others were conserved among different or-
ganisms. Many of these conserved subsequences correspond to functional
elements – referred to as genes, which are of paramount importance in
understanding evolution. Therefore, in many studies, a chromosome is
represented as a sequence of genes and evolution is described as a series
of discrete events, such as gene insertion, loss, duplication and inversion.
Two genes with highly similar sequences, typically arising via speciation
or duplication, are considered as belonging to the same gene family. In
this paper, a gene family and its constituent genes are assigned the same
label. One of the most important goals in comparative genomics is to
identify a set of genes that are in proximate locations on multiple chro-
mosomes and their actual chromosomal occurrences. Indeed, preservation
of gene co-locality tends to indicate that the corresponding genes either
form a functional unit (e.g., operons) or result from speciation or dupli-
cation events [12]. In the literature, the former is termed “gene cluster”,



whereas the latter is known as “synteny” [21]. Both were extensively stud-
ied during the past decade, and numerous models and algorithms were
proposed to define and identify them. Most gene cluster models are for-
mally defined [3] while many synteny detection methods are ad hoc and
lack formal definitions. In this contribution, we will focus only on formally
defined models and present the corresponding results from an algorithmic
point of view.

2 Gene Proximity: Properties and Models

Modeling gene proximity based on biological intuition is known to be dif-
ficult. Nevertheless, some key properties have been raised by Hoberman
et al. [12]. We will present briefly these properties and show that they are
inadequately captured by existing models. We then present a formaliza-
tion of the biological intuition of gene proximity modeling by developing
the notion of Multi-related-segments (Mrs).

2.1 Key Properties of Gene Proximity

The first crucial property consists in evidence of any gene of interest as
being ancestral. This property is usually related to observing a minimum
number of β occurrences of such a gene, thereby reducing the possibility
of misinterpreting what is in fact a chance occurrence.

Based on the fact that genes of interest appear, with relative proxim-
ity, in different chromosomes, most of the models consider chromosomal
regions, usually referred as segments or intervals, as being of interest.
Naturally, such segments are subjected to constraints in order to con-
firm their common origin. First of all, each contributes sufficiently to the
ancestral gene set. More formally, it means that such a segment has to
contain a minimum number of �m different ancestral genes. Then, consid-
ering evolutionary events that may have occurred, those segments may
not necessarily contain all the ancestral genes (i.e., gene losses). Mean-
while, they may contain genes not belonging to the ancestral gene set
(i.e., gene insertions).

For the segment to be relevant, some constraints on gene insertions
and losses have to be imposed, which are referred to as local and global
ancestral gene densities. The local density is captured by a maximum
number of interleaving genes between two consecutive ancestral genes in
a segment (usually referred as α). On the other hand, global density is
captured by the maximum number of �l gene losses in the segment and
the maximum overall number of �t gene losses of all segments of interest.
One can easily conceive that �l and �t play different roles: while �l controls
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locally in a segment the preservation of a maximum number of ancestral
genes, constraining only �t may allow for a long unconserved region to
occur within some segment of interest.

2.2 Existing Models

Consider k chromosomes, each represented as a permutation over a given
gene set G. A conserved segment [13] consists of a set of genes that
occur consecutively in the same order on every input chromosome. Once
the constraint of the preserved ordering is removed, it leads to the com-
mon interval (CI) model definition [18]. If the unordered pair of the
first and the last genes of a CI is the same on each chromosome, this CI
is moreover called conserved. Furthermore, if we relax the constraint that
genes in a CI have to be consecutive in each chromosomal occurrence
– namely, two genes belonging to a CI can be interleaved by a bounded
number of genes not belonging to it – the definition of gene-teams (GT)
(also referred as max-gap) model [4] follows. The GT model is of higher
biological relevance compared to the CI model since it further captures
gene insertions, i.e., genes not belonging to the CI.

So far, we assumed chromosomes as gene permutations, which is rarely
the case in reality. To elevate the biological accuracy, chromosomes are
represented as strings over gene set G such that multiple occurrences of
genes, arising via duplication events, can occur on the same chromosome.
The aforementioned model definitions naturally apply to strings, but the
number of gene sets complying with the model may increase significantly.

More recently, approximate common interval (ACI) models were
introduced [1,16,7]. Unlike previous models, in ACI, not all genes of
interest have to be present in every chromosomal occurrence. Median
gene cluster (Mgc) model [7] is the most recent formulation of ACI in
which the problem is to identify in chromosomes (represented as strings)
S1, S2, . . . Sk, the gene set A (of interest) and its chromosomal occur-
rences S�

1, S
�
2, . . . S

�
k
satisfying

�
k

i=1 (|A \ CS(S�
i
)|+ |CS(S�

i
) \ A|) ≤ δ and�

k

i=1(|A \ CS(S�
i
)|+ |CS(S�

i
) \A|) ≤

�
k

i=1(|A� \ CS(S�
i
)|+ |CS(S�

i
) \ A�|),

for all A� ⊆ G. In this formulation, S�
i
is a substring of Si; CS(S�) denotes

the character set (or gene set) of S�; and δ is the maximum overall con-
tent difference allowed between A and the S�

i
s. In addition, |A| has to be

large enough to be biologically meaningful. Note that according to this
definition, any character of A has to belong to at least k

2 substrings.

2.3 Multi-related segments model

We now present our attempt to formalize the biological intuition of gene
proximity modeling in the notion of Multi-related-segments (Mrs).
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Similar to other models, a Mrs can be defined as consisting of a set of
segments of interest, each evolved from an ancestral segment with gene
set A by gene insertion, loss, duplication, and inversion events. Formally,
a Mrs is defined as follows. To ensure evidence of being ancestral genes,
any gene belonging to A has to occur in at least β (≥ 2) segments. Each
segment of interest has to contain at least �m different ancestral genes and
be maximal (i.e., not extendable by including surrounding genes) – thus,
imposing a constraint on the minimum contribution to A. As previously
done in the GT model, the local ancestral gene density is obtained by an
upper bound α controlling the number of non-ancestral genes between
any two consecutive ancestral ones in each segment. To capture global
ancestral gene density, we require each segment to induce no more than �l

gene losses and the total number of gene losses of all segments to be lower
than �t. Then, given a set of chromosomes and parameters α,β, �m, �l and
�t, the general problem is to identify all Mrs.

Compared to existing models, the Mrs definition has the following
biological advantages. First of all, it captures previous models. Mrs cor-
responds to a CI when β = k, �m = |A| and α = 0, and to a GT
when α ≥ 0. Compared to these two models, Mrs further captures gene
loss events. Note that this aspect was already considered in the Mgc
model [7]. Nevertheless, there are several major differences. Firstly, Mrs
captures the same origin of more than two segments in the absence of
strong pairwise similarity information, such as differential gene loss [17]
and uber-operon [8] – which is not the case for Mgc due to the require-
ment that segments pairwisely share some common genes. Moreover, the
minimum evidence of a gene being ancestral is more flexible in Mrs by
requiring β occurrences of any ancestral gene – which has to be at least k

2
in Mgc. Finally, the local ancestral gene density is not required in Mgc
– which is, as explained in [12], crucial.

From an algorithmic point of view, regarding all above mentioned
models, complexity increases when chromosomes are delineated as strings
rather than permutations: the problem is still tractable when considering
CI [2,9] but folds into the hardness as soon as conserved CI is consid-
ered [5,6]. The GT model, which captures gene insertions, duplications
and inversions, is polynomial on permutations [4] but exponential over
strings [15]. The complexity of ACI models, which further captures gene
losses, remain totally open [16,7] until this contribution. Although an al-
gorithm with O(kn3 + occ) run time over strings was proposed [1], the
bound of output size occ is unknown. In this paper, we consider from
an algorithmic point of view the problem of Mrs inference by applying
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various restrictions on the model definition. Since known algorithmic re-
sults are available in previous modeling of gene duplications, insertions
and inversions, our focus is on deriving if the problem is tractable when
trying to model gene losses.

3 Complexity of capturing gene losses using MRS

We first consider the case when the ancestral gene set A is a priori known.
The problem, termed LocateMrs, then corresponds to locate, given k

chromosomes S = {S1, S2, . . . , Sk} represented as strings, every feasible
Mrs originating from A. We prove that this problem is NP-hard even in
the restricted case where |CS(Si)| = |Si| and meanwhile, at most one sub-
string per Si can belong to the resulting Mrs, for every Si ∈ S. It follows
that LocateMrs problem is NP-hard. Next, we prove LocateMrs to
be fixed-parameter tractable (FPT) [10], and provide an efficient dynamic
programming solution. Then, we prove that the optimization problem to
identify allMrs is hard to approximate. Finally, we show that with the re-
moval of the maximum number of gene loss constraint and the maximum
number of substrings per input sequence constraint, a polynomial algo-
rithm can be derived. Due to space constraint, some proofs are deferred
to the full version of the paper (but are included in the Appendix).

3.1 Identify All MRS Given A

Let us consider that no gene insertion is allowed (α = 0), β ≥ 2 and
�t = �l = ∞. Then, by definition, each Mrs consists of substrings involv-
ing only genes in A. Thus, each input chromosome can be pre-processed
in order to remove any gene not belonging to A, resulting in a sequence
of substrings. One may then filter out any substring that does not respect
the minimum contribution to A criterion (i.e., using �m). Any remaining
substring will be referred as of interest. Finally, since in the Mrs def-
inition, we are looking for maximal substrings (i.e., not extendable by
including surrounding genes), any substring of interest will be either kept
or fully removed in the solution.

Definition 1. LocateMrs: Given a character set A, a string set S =
{S1

1 , S
2
1 , . . . , S

1
2 , S

2
2 , . . . , S

1
k
, S2

k
. . .} where Si

j
corresponds to the ith sub-

string of interest of Sj (i.e., the jth chromosome), find all subsets S � ⊆ S
corresponding to a Mrs, such that A =

�
S∈S� CS(S) and each character

of A appears in at least two elements of S �, and for any two Sa
i
, Sb

j
∈ S �,

i �= j.
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T1 = u1x1u2x2u3x3 – v1w1v2w2v3w3z3
T2 = v2x2v3x3u4x4 – u2w2u3w3z3v4w4z4
T3 = w3x3v4x4u5x5 – u3v3z3u4w4z4v5w5z5
T4 = w4x4v5x5u6x6 – u4v4z4u5w5z5v6w6

T5 = v1x1w5x5v6x6 – u1w1u5v5z5u6w6

SX






S1,1 = x1 S2,1 = x2 S6,1 = x6

S1,2 = u1 – w1 S2,2 = u2 – w2 S6,2 = u6 – w6

S1,3 = u1 – v1 S2,3 = u2 – v2 S6,3 = u6 – v6

S1,4 = w1 – v1 S2,4 = w2 – v2 S6,4 = w6 – v6

S3,1 = x3 S4,1 = x4 S5,1 = x5

S3,2 = u3 – v3 S4,2 = u4 – v4 S5,2 = u5 – v5
S3,3 = w3 – v3 S4,3 = w4 – v4 S5,3 = w5 – v5

Fig. 1. Illustration of the construction on the following instance of X3C: X =
{1, 2, 3, 4, 5, 6} and T = {(1,2,3), (2, 3, 4), (3, 4, 5), (4,5,6), (1, 5, 6)}. A correspon-
dance between the solutions of the problems is highlighted in bold.

We will prove that LocateMrs is hard but fixed-parameter tractable.
We first consider that |S| = |CS(S)| for any S ∈ S (i.e., S is a permuta-
tion). Note that this problem is in NP. Indeed, given a subset S � of S,
one can check in polynomial time that each character of A appears in at
least two elements of S � and that no more than one substring Si

j
of any

Sj belongs to S �. To prove that this problem is moreover NP-hard, we
provide a polynomial reduction from the NP-complete problem Exact
Cover by 3-sets (X3C) [11]: Given a finite set X = {x1, . . . , x|X |} and
a family T = {t1, . . . , t|T |} of triples over X , is there a subfamily T � ⊆ T
such that every xi ∈ X is contained in exactly one element of T � ?

X3C problem is hard even in the special case where each element of
X appears at most three times in T [11]. Then, it is sufficient to consider
the case where each element appears either two or three times. Indeed,
any triple containing some element that occurs only once has to be part of
any solution and can be removed from further consideration. According
to the problem definition, a solution corresponds to a selection of one
among the at most three occurrences of any element of X . Without loss
of generality, we fix the triple order in T .

Let us now provide the construction from any instance (X , T ) of X3C
problem (an example is given in Figure 1). The set S will be built on
|T | sequences, which represent the triples of T , and four (resp. three)
additional sequences, which represent any element of X occurring twice
(resp. three times) in T . Let ST = {T1, . . . T|T |} (resp. SX ) be the set of
sequences representing the triples (resp. the elements of X ). Moreover,
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we use the symbol “–” to separate the non-adjacent substrings in a given
string, e.g., S = S1 – S2 – S3. Note that, the order of the characters in
these substrings is not important according to the definition of Mrs. Let
us first construct ST as follows. First, for each element xi ∈ X occurring
twice in T , concatenate uixi (resp. vixi) to T 1

j
(initially empty) and viwi

(resp. uiwi) to T 2
j
(initially empty) if the first (resp. second) occurrence

of xi appears in the jth triple of T . Second, for each element xi ∈ X
occurring three times in T , concatenate uixi (resp. vixi and wixi) to T 1

j

and viwizi (resp. uiwizi and uivizi) to T 2
j
if the first (resp. second and

third) occurrence of xi appears in the jth triple of T . Let us now construct
the set SX . For each element xi ∈ X occurring two times in T , add the
following four sequences to SX : Si,1 = xi, Si,2 = ui – wi, Si,3 = ui – vi,
Si,4 = wi – vi. And, for each element xi ∈ X occurring three times in
T , add the following three sequences to SX : Si,1 = xi, Si,2 = ui – vi,
Si,3 = wi – vi. We finally define A to be the set of all characters used in
the construction.

Lemma 1. There exists a solution T � ⊆ T to X3C problem over (X , T )
if and only if in the corresponding built instance (A,S) of LocateMrs
there exists a subset S � ⊆ S corresponding to a Mrs.

Correctness of Lemma 1 (see appendix) implies the following result.

Theorem 1. LocateMrs problem is NP-complete even in the special
case where none of the input strings contains duplicated characters and
at most one substring Si

j
of every Sj can belong to any solution S �.

We now prove that LocateMrs belongs to the class of the fixed-
parameter tractable (FPT) problems [10]. In other words, it can be solved
efficiently by an algorithm exponential only with respect to a fixed pa-
rameter – |A| in our case – while polynomial in the size of the input.

Theorem 2. LocateMrs problem is Fixed-Parameter Tractable in |A|

To show this, we provide a dynamic programming solution. According
to LocateMrs definition, one has to select exactly one substring of inter-
est among all of them in each sequence Sj . A naive algorithm may try all
such combinations and check for each if any character appears in at least
two substrings. Such an algorithm has an exponential running time. We
will prove that by using an efficient dynamic programming strategy, one
may hold the exponential factor in the size of the ancestral gene set. Note
that one does not need to compute the exact number of times each char-
acter occurs but only to ensure that it occurs in at least two substrings in
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the solution. According to this remark, consider a fixed ordering of char-
acters (a1, a2, . . . , a|A|) of A, we compute after adding substring S to the
current solution a vector C = (c1, c2, . . . , c|A|), where ci ∈ {0, 1, 2} denotes
respectively that ai is not contained, contained in one, or contained in at
least two substrings. For example, consider A = {1, 2, 3, 4, 5} and cur-
rent solution S � = {124}, one may derive a vector C = (2, 1, 0, 2, 1) after
adding substring “1445” to S �. The main property of this representation
is that, given A, there are only 3|A| possible vectors. Further, let µ(x)
and χS (x) denote, respectively, the position of x in the fixed ordering of
A and the boolean function indicating whether x occurs in S. We define
a boolean dynamic table D indexed by the last substring added and the
vector C for the current solution. The main recursive function is defined
as follows

D(Si
j
, (c1, . . . c|A|)) =






1 – if ∃i� < i, j� < j s.t. D(Si�
j� , (c

�
1, . . . c

�
|A|)) = 1

and ∀1 ≤ l ≤ |A|, c
l
− c�

l
= χ

S i
j
(x)

where µ(x) = l

0 – otherwise

Algorithm 1 LocateMrs(A, S = {S1
1 , S

2
1 . . . , S

1
2 , S

2
2 , . . . , S

1
k
, S2

k
})

1: Initialize all entries of D to 0
2: for each Si

1 ∈ S do D(Si
1, (c1, . . . , c|A|)) = 1 where ∀x ∈ Si

1, cµ(x) = χSi
1
(x) done

3: for j = 2 to k do
4: for each Si

j ∈ S do Fill out D(Si
j , (c1, . . . , c|A|)) done

5: end for
6: for each Si

k ∈ S do
7: if D(Si

k, (2, . . . , 2)) = 1 then return True end if
8: end for
9: return False

Given this function, one can apply Algorithm 1. The algorithm com-
putes, for each sequence Sj the possible character set solution induced by
any combination of substrings of interest from sequences Sj� with j� < j.
Therefore, any entry D(Si

j
, (2, . . . , 2)) = 1 corresponds to a Mrs being

found. One may, using a simple back-tracking technic, rebuild one opti-
mal solution. Let us now prove the time complexity of this algorithm. In
order to fill out D, one has to compute |S|×3|A| entries. Indeed, there are
at most |S| different substrings and 3|A| possible character sets. The main
recursion needs, for each entry, to browse at most |S|× 3|A| other entries
of D. This leads to an overall O((|S| × 3|A|)2) running time algorithm.
Hence, the problem is FPT with respect to |A|.
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3.2 Identify All MRS When A Is Unknown

We will prove that finding all Mrs problem is hard even in the special
case where none of the sequences contains duplicated characters and in
any solution S �, for any sequence Sj at most one substring Si

j
∈ S � (i.e.,

α = 0, β ≥ 2, �t = �l = ∞).
First, note that the problem is in NP since given a subset S � of S,

one can polynomially check that each element of A appears in at least
two substrings and no more than one substring of any sequence belongs
to S �. To prove that this problem is moreover NP-hard, we provide a
polynomial reduction from the NP-complete problem X3C [21] based on
a slight modification of the reduction of the previous section. Indeed, if
one replaces each of the separations “–” between substrings of interest
by a unique character appearing only once in S, then by definition, those
added characters will never be part of a Mrs since any character should
appear at least twice in a Mrs. Due to the unextandability property of
Mrs, one should be able to find neither a smaller nor a bigger substring
of interest in each sequence than in the LocateMrs formulation. The
rest of the proof still holds, leading to the following theorem.

Theorem 3. Finding a Mrs problem is NP-complete even in the special
case where none of the sequences contains duplicated characters and in
any solution S �, at most one substring from each Sj belongs to S �.

Let us then consider the optimization version of the problem (Defini-
tion 2) where one wants to find a Mrs induced by the maximum unknown
ancestral gene set (in other words, one constrains the minimum size of
A), and at the same time, at most one substring of each Sj can belong
to the Mrs.

Definition 2. MaxMrs: Given a set of k strings S = {S1, . . . Sk}, find
any possible (A,S �) where S � = {S�

1, S
�
2, . . . S

�
k
: S�

i
is a substring of Si},

A =
�

k

i=1 CS(S�
i
), and |A| is maximum.

We will demonstrate that this optimization problem is hard to ap-
proximate – answering an open question raised in [19,20]. Meanwhile, we
show that the inapproximability of this problem may stem from forbid-
ding more than one substring per input chromosome, the relaxation of
which leads to polynomiality.

In the following, we consider that β ≥ 2, α = 0, �m = 1, and �t =
�l = ∞. We prove the inapproximability of MaxMrs below by proposing
a reduction from the Minimum Set Cover (MinSC) problem: Given a
family F of subsets of a finite universe U , find a set cover F � for U – that
is a subfamily F � ⊆ F whose union is U – of the minimum cardinality.
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Since any character appearing once in an input string will not be part
of a Mrs, we use the symbol “–” to denote any such character. The pres-
ence of symbol “–” will induce, in MaxMrs problem, that characters ap-
pearing before and after it in any input string cannot be part of the same
solution. Given any instance (F ,U) of MinSC, where U = {u1, . . . un}
and F = {Fi : Fi = {u1

i
, u2

i
, . . . u

ni
i
}, 1 ≤ i ≤ m}, we define a set of strings

S = {S0, . . . , Sk=2m} with S0 = u1 . . . un, Si = S1
i
– S2

i
= u1

i
u2
i
. . . u

ni
i

–
vi and Sm+i = vi, for 1 ≤ i ≤ m.

Lemma 2. If there exists a cover F � ⊆ F for U (i.e. U =
�

F∈F � F ) then
there exists a solution (A,S �) (i.e. a Mrs) for the built up instance S of
MaxMrs such that |A| = n+m− |F �|. (See proof in the appendix)

Lemma 3. Given a solution (A,S �) for a built up instance S of MaxMrs,
we can construct in polynomial-time a cover F � ⊆ F for U , such that
|F �| ≤ m− (|A|− n).

Proof. We first define a polynomial-time subroutine that transforms any
solution (A,S �) to an equally good solution where CS(S0) ⊆ A. For any
character of S0 not belonging to A – say uj , add to S � one substring S1

i

that was not in S � but contains uj , meanwhile, remove from S � correspond-
ingly two substrings S2

i
and Sm+i. Every such replacement operation will

change a given vi by uj in A without decreasing the cardinality of A
(i.e. an equally good solution). Once this subroutine has been applied
to (A,S �), one can build a cover F � = {Fi : S2

i
�∈ S �}. The subroutine

guarantees that all elements of S0 belong to F � – a cover for U . Clearly,
|A| − n corresponds to the number of vjs belonging to A. Considering
S1, S2...Sm (where S2

j
s appear), there exist at most m− (|A|− n) strings

such that S2
j
�∈ S �; inducing that |F �| ≤ m− (|A|− n). ��

Theorem 4. MaxMrs is APX-hard even in the special case where, for
every input string Si, |CS(Si)| = |Si|.

Proof. Consider Minimum 3-SetCover-3 (Min3SC-3), a subproblem
of MinSC, where the size of any set in F is bounded by 3 as well as the
number of times each character of U occurs in F . We will prove the theo-
rem by contradiction, assuming thatMaxMrs admits a Polynomial-Time
Approximation Scheme (PTAS), i.e. one would be able to find an approx-
imation algorithm leading to an approximate solution (AAPX ,SAPX),
which compared to the optimal solution (AOPT ,SOPT ), induces |AAPX | ≥
(1−�)·|AOPT | for a parameter � > 0. Accordingly, under the same assump-
tion, we will prove that Min3SC-3 also admits a PTAS, i.e. one would
be able to find an approximation algorithm leading to an approximate
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solution FAPX , which compared to the optimal solution FOPT , induces
|FAPX | ≤ (1 + γ) · |FOPT | for a parameter γ > 0 – a contradiction to the
fact that Min3SC-3 is APX-hard [14].

Since each character of U occurs at most three times in F , the size of
the ground set used to build F is at most 3n, leading tom ≤ 3n. Moreover,
any cover F � ⊆ F of U is at least of size n

3 since F is composed of sets of
size at most three. Hence, n

3 ≤ |FOPT | and consequently, m ≤ 9 · |FOPT |.
If we have an approximate solution (AAPX ,SAPX), then

By Lemma 3, |FAPX | ≤ m− (|AAPX |− n)
By assumption, m− (|AAPX |− n) ≤ m− ((1− �) · |AOPT |− n)
By Lemma 2, |AOPT | = n+m− |FOPT |
Which leads to, |FAPX | ≤ � · n+ � ·m+ (1− �) · |FOPT |
(m ≤ 3n ≤ 9|FOPT |) ≤ 12� · |FOPT |+ (1− �) · |FOPT |
Finally, ≤ (1 + 11�) · |FOPT | ��

We now prove the following surprising result when every input se-
quence contains no duplicated characters.

Theorem 5. If one restricts neither the maximum number of gene losses
per substring of interest, nor the maximum number of substrings of inter-
est per chromosome, finding all the Mrs becomes a polynomial task.

Proof. Consider a graph G = (V,E) obtained from S in such a way that
a vertex is assigned to every character in each string Si ∈ S and a red
(resp. blue) colored edge is created between any two adjacent characters
(resp. any two vertices representing identical characters). Given this rep-
resentation, the notion of character set naturally extends to any subgraph
G[V �] of G as the set of represented characters by V �. Our method con-
sists in an iterative procedure which stops when none of the following
operations can be applied anymore. The results will consist of a set of
connected components, each corresponding to a Mrs. The first operation
consists in removing from V any vertex which is only incident to red
colored edges. This polynomial operation results in the removal of genes
not appearing twice in a candidate connected component. The second
operation gets rid of candidates not fulfilling the minimum contribution
to the ancestral gene set by pruning any red edge-induced subgraph G�

such that |CS(G�)| < �m. This operation can be done in linear time by
browsing any connected component. Once none of these operations can
be done anymore, it is easy to see that each remaining connected compo-
nent corresponds to a Mrs. ��
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Appendix

Missing proofs for main results

Lemma 1. There exists a solution T � ⊆ T to X3C problem over (X , T )
if and only if in the corresponding built instance (A,S) of LocateMrs
there exists a subset S � ⊆ S corresponding to a Mrs.

Proof. (⇒) Suppose such T � ⊆ T exists for the instance (X , T ). Let us
prove that we can compute in polynomial time an S � ⊆ S corresponding
to a Mrs in the corresponding built instance of LocateMrs. For any
triple tq ∈ T , if tq ∈ T � then add T 1

q to S �; add T 2
q otherwise. Moreover,

for 1 ≤ i ≤ |X |, add Si,1 to S �. For any element xi ∈ X occuring two times
in T , if the first triple containing xi is in T � then add S2

i,2, S
2
i,3, S

2
i,4 to S �;

add S1
i,2, S

1
i,3, S

1
i,4 to S � otherwise. For any element xi ∈ X occuring three

times in T , if the first triple containing xi is in T � then add S2
i,2, S

1
i,3 to

S �; if the second triple containing xi is in T � then add S1
i,2, S

1
i,3 to S �; add

S1
i,2, S

2
i,3 to S � otherwise (see Figure 1). Let us now prove that S � is indeed

aMrs, i.e., A =
�

S∈S� CS(S) and any element of A appears at least twice
in S �. First note that, by definition, in T �, there is exactly one triple
containing any element of X . Thus, by construction, there is exactly one
substring per sequence in S �. Let us consider any element xi ∈ X which
occurs twice in T – say in triples tq and tq� for the first and respectively
second occurrences of xi. Then, since T � is an exact cover, there exists
exactly one among tq and tq� in T � – say tq. Therefore, by construction,
{T 1

q , T
2
q� , Si,1, S

2
i,2, S

2
i,3, S

2
i,4} ⊆ S � (the reader may, for example, consider

x1 in Figure 1). Consequently, a) two occurrences of xi appear in S � (one
from Si,1 and one from T 1

q ), b) two occurrences of ui appear in S � (one
from T 1

q and one from T 2
q�), c) two occurrences of vi appear in S � (one

from Si,3 and one from Si,4), and d) two occurrences of wi appear in S �

(one from Si,2 and one from T 2
q�). With a similar reasoning, one can check

that any of xi, ui, vi, wi appears twice when tq� ∈ T �. Let us now consider
each element xi ∈ X that occurs three times in T – say in triples tq, tq�
and tq�� for the first (resp. second and third) occurrence of xi. Then, since
T � is an exact cover, there exists exactly one among tq, tq� and tq�� in T � –
say tq. Therefore, by construction, {T 1

q , T
2
q� , T

2
q�� , Si,1, S

2
i,2, S

1
i,3} ⊆ S � (the

reader may, for example, consider x3 in Figure 1). Consequently, a) two
occurrences of xi appear in S � (one from Si,1 and one from T 1

q ), b) three
occurrences of ui appear in S � (one from T 1

q , one from T 2
q� and one from

T 2
q��), c) two occurrences of vi appear in S � (one from T 2

q�� and one from
Si,2), d) two occurrences of wi appear in S � (one from Si,3 and one from

13



T 2
q�), and e) two occurrences of zi appear in S � (one from T 2

q� and one from

T 2
q��). With a similar reasoning, one can check that any of xi, ui, vi, wi, zi

appears at least twice when tq� ∈ T � or tq�� ∈ T �. We have completed the
proof that each element of A appears at least twice in S �; inducing that
S � is indeed a Mrs.

(⇐) Suppose now that such a set S � ⊆ S exists for the corresponding
built instance of LocateMrs (A,S). We will prove that we can compute
in polynomial time a T � ⊆ T corresponding to a solution for the instance
(X , T ). For any 1 ≤ i ≤ |T |, ti ∈ T � if T 1

i
⊆ S �. Let us now prove that

T � is indeed an exact cover of T . Note that, any solution S � is a subset
of S since we are looking for unextandable substrings (inducing that any
substring of interest is either fully kept or removed). Moreover, recall that
we consider here the special case of the problem where in any solution S �,
for any string Sj , at most one substring Si

j
∈ S �. Let us first prove that

given two triples tq and tq� both containing one of the two occurrences
of xi ∈ X (i.e. the case where xi appears twice in X ), then, exactly one
of the substrings T 1

q and T 1
q� belongs to S � (the reader may, for example,

consider x1 in Figure 1). By contradiction, suppose this is not the case,
i.e. {T 1

q , T
1
q�} ⊆ S �. Then, in S �, there are already one occurrence of ui,

one occurrence of vi and two occurrences of xi. Note that the set of ele-
ments related to variable xi, i.e., {xi, ui, vi, wi}, appears in the following
sequences {Tq, Tq� , Si,1, Si,2, Si,3, Si,4}. Since, by definition, in S �, every el-
ement should appear at least twice, using exactly one of the substrings of
each of these sequences, one should be able to obtain another ui, another
vi and two wi. Unfortunately, this is not possible in any combination of
the corresponding substrings excluding, by hypothesis, T 2

q and T 2
q� ; a con-

tradiction. Now consider the three triples tq, tq� and tq�� , each containing
one of the three occurrences of xi ∈ X (i.e. the case where xi appears
three times in X ), then, exactly one among the substrings T 1

q , T
1
q� and T 1

q��

belongs to S � (the reader may, for example, consider x3 in Figure 1). By
construction, the occurrences of zi belong to T 2

q , T
2
q� and T 2

q�� . In order to
obtain at least two occurrences of zi in S �, at least two of the substrings
among {T 2

q , T
2
q� , T

2
q��} should be in S �. Moreover, since the occurrences of

xi belong to {T 1
q , T

1
q� , T

1
q�� , Si,1}, exactly one of {T 1

q , T
1
q� , T

1
q��} should be in

S �. We have proved that for each element xi occuring twice (resp. three
times) in T , exactly one of the triples containing xi is kept in T �. Thus,
T � is indeed an exact cover of T . ��

Lemma 2. If there exists a cover F � ⊆ F for U (i.e., U =
�

F∈F � F )
then there exists a solution (A,S �) (i.e., a Mrs) for the built up instance
S of MaxMrs such that |A| = n+m− |F �|.
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Proof. Consider the following solution S � = {S0}
�
{S1

i
∈ S : Fi ∈

F �}
�
{S2

i
, Sm+i ∈ S : Fi �∈ F �}. By definition, S � is indeed a Mrs since

it cannot be extended (it is made of one unextandable substring of each
sequence) and any element appears twice. Moreover, its character set
A = U

�
{vi : Fi �∈ F �} which is of size n+m− |F �|. ��
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