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An analysis of the 219 Rn (ground state) 215 Po * (402 keV) 215 Po (ground state) angular correlation and the corresponding linear polarization angular distribution shows that the 402 keV excited state is highly aligned in substates. A similar analysis for the 211 Bi (ground state) 207 Tl * (351 keV) 207 Tl (ground state) ! angular correlation and a linear polarization measurement at 90°shows that, in contrast, the 351 keV excited state is highly aligned in ! substates.

The results enable hypotheses to be advanced about the shapes of nuclei in these excited states.

Introduction

The three processes of (i) α-decay followed by γ-decay (ii) α-capture followed by γ-decay and (iii) α-decay of a polarized system have been related by Rowley et al. [1].

For process (i) they considered favoured α-transitions (hindrance factor < 4) between parent and daughter states in odd-even nuclei. In the case of a prolate even-even core (positive quadrupole moment, Q) coupled to a deformation aligned nucleon they found that high alignment was produced in the excited state of the daughter, with preferential population of the higher substates. The analogous result for the oblate deformation aligned system (-Q) was a high alignment, with preferential population of the lower substates.

Two problems, which were not addressed, were firstly the degree of alignment produced, following favoured α-decay, when the even-even core was very weakly deformed (Q 0) and secondly the degree of alignment produced following non-favoured α-decay.

One can go some way to answering both these questions, from an experimental perspective, by considering transitions in the 227 Th decay chain. The 219 Rn (ground state) 215 Po * (402 keV) transition is a favoured α-decay (hindrance factor = 3.4). 215 Po consists of 7 nucleons outside a doubly magic 208 Pb core and more importantly the ground and excited states are well described by the single particle shell model hence the core quadrupole moment should be relatively small.

The 211 Bi (ground state)

Tl * (351 keV) transition is non-favoured and the ground state and excited states of 207 Tl are also well described by the single particle shell model, in terms of holes in the doubly magic 208 Pb core. So, not only does one have a non-favoured α-transition one should also have a relatively small core quadrupole moment.

Experimental α-γ angular correlation measurements have been reported [2,3] for the 219 Rn (ground state) 215 Po * (402 keV)

" 215 Po (ground state) decay. The corresponding α-γ-ray linear polarization angular distribution has also been measured by Krien et al [4]. Unfortunately, an extensive theoretical analysis by Krien et al [4] of the combined angular correlation measurements of Letessier et al [2] and the linear polarization measurements of Krien et al [4] was unable to produce the correct spins for the decay sequence. The spins given above are taken from the work of compilers [3] and consequently the analysis presented in section 4 is the first using the correct spin sequence.
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In the case of the 211 Bi (ground state) 207 Tl * (351 keV)

" 207
Tl (ground state) ! decay the correct spins were employed by Gorodetzky et al [5] but it is observed in section 6 that their definition of the α-γ-ray linear polarization is opposite in sign to that usually employed (see section 3) and therefore calls into question their theoretical analysis particularly since this is far from transparent [5]. Since historical angular correlation analyses have not been specifically concerned with the degree of alignment of excited states following α-decay, we outline the method required to extract the information from experimental angular correlation measurements in section 2.

In section 3, we outline the standard definitions and formulae used for α-γ-ray linear polarization distributions pertinent to the present analyses.

Angular correlation theory for α-γ decay.

Consider α-decay from a parent nuclear state of spin J p to the excited state of a daughter nucleus of spin J 1 followed by γ-decay to a lower state of the daughter nucleus of spin J 2 . If the α-particles are undetected, the excited daughter nuclei of spin J 1 are randomly orientated in space and the γ-ray angular distribution is isotropic. A non-isotropic γ-ray angular distribution depends on (i) the (non-statistical) population of the state of spin J 1 and on (ii) the intrinsic properties of the states of spin J 1 and J 2 .

The seminal article on γ-ray angular correlations by Rose and Brink [6] shows that factors (i) and (ii) are separable and gives examples which consider different modes of excitation of the electromagnetically decaying state of spin J 1 . However, Rose and Brink [6] did not specifically address the problem of α-γ angular correlations which we now outline using their notation.

The direction of emission of an α-particle from a radioactive source and its subsequent detection provides a quantization axis which is also an axis of cylindrical symmetry. The subsequent γ-ray angular distribution relative to this axis of symmetry may then be written as
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1) where i is the index of data points of solid angle corrected, coincidence intensity W i , i the angle between the directions of α-particle and γ-ray emission and K is even (most frequently K 4). The Legendre polynomial coefficients A K can be determined by the evaluation of the variance-covariance (error) matrix [START_REF] Ferguson | Angular Correlation Methods in Gamma-Ray Spectroscopy[END_REF][START_REF] Bevington | Data Reduction and Error Analysis for the Physical Sciences[END_REF] using weights, 1/ σ i 2 where σ i are the experimental errors. The reaction plane of such a direction-direction angular correlation is defined by the directions of emission of both α-particle and γ-ray.

Normalized Legendre polynomial coefficients, a K , can be determined from the coefficients above. i.e. a o = 1, a 2 = A 2 /A 0 , a 4 = A 4 /A 0 with the appropriate errors [START_REF] Ferguson | Angular Correlation Methods in Gamma-Ray Spectroscopy[END_REF][START_REF] Bevington | Data Reduction and Error Analysis for the Physical Sciences[END_REF]. Values of a 2 and a 4 calculated in this way are the ones quoted in the literature [3] since they are determined without any knowledge of the spins of the states involved.

Theoretical values of a 2 and a 4 , dependent on J 1 , J 2 and the multipole mixing ratio between J 1 and J 2 , must be generated so that theoretically generated coincidence intensities can be compared with experimental data by means of least squares fits.

These theoretical coefficients a K can be factored into two separable parts a K =B K (population) Γ K (gamma decay) [1,6] where
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2) depends only on the population parameters w(M) of the magnetic substates M of J 1 with respect to the direction of emission of the α-particle (quantization axis). i.e. on the degree of alignment of the excited state of spin J 1 .

For B K (J 1 ) the sum over M runs from -J 1 to +J 1 and the normalization of the population parameters is such that ' 0 1 & ! and also B 0 (J 1 )=1.

α-particles have an intrinsic spin of zero and hence cannot be polarized. Further for the usual case of an unpolarized radioactive source in a state of spin J P with definite parity then α-decay must align [6] [6].

Equation (2.3) is the most general parameterization of the population condition for the state of spin J 1 requiring no prior knowledge of how the state was formed, the only strict condition being that the state is aligned.

The only limitation imposed by α-decay is that if J P <J 1 , the maximum substate populated should be M = J P since α-particles are spinless and any projection of orbital angular momentum (connecting J P and J 1 ) onto the quantization axis is zero.

Usually only the two lowest order multipoles L 1 and L 2 = L 1 +1 are considered for the γ-decay from the state of spin J 1 to the state of spin J 2 and for the general case one writes
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where δ is the relevant mixing ratio. For the majority of cases and for the examples considered in the present work L 1 = 1 and L 2 = 2 i.e. dipole and quadrupole radiation respectively. The R K coefficients in (2.5) can be written explicitly as
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6) These R K coefficients can be calculated directly but are also given as tabulated coefficients [6].

For the case of 215 Po * decay the γ-transition is pure electric quadrupole with

J 1 = 5/2 + , J 2 =9/2 + . Therefore Γ K (5/2,9/2) = R K (2 2 5/2,9/2) so that F ) & . ) G H; ) G I H & ' C0 1 : ) I 1 D 9 J A 9 4 A = ) G I H (2.7)
Where the w(M) are then the variable parameters to be used for least squares fitting to the experimental data.

α-γ linear polarization theory.

The prescription for obtaining the linear polarization distribution in a direction-polarization measurement was detailed in the definitive article by Fagg and Hanna [START_REF] Fagg | [END_REF].

The γ-ray linear polarization angular distribution relative to the quantization axis (direction of α-particle emission) may be written as
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where the +ve sign is taken for the E2 and E2/M1 radiation considered in the following work, W(θ) is the polarization insensitive intensity measured at a given angle θ, ξ is the angle between the plane containing the electric vector and the reaction plane. Only 0°and 90°are considered for ξ so that cos(2ξ) = ±1. P K (cosθ) = 7.5(-1+8cos 2 θ -7cos 4 θ). [START_REF] Fagg | [END_REF] noted that the coefficients C K in (3.1) can be factored into two separable parts in this case C K = B K (population) G K (polarized γ-decay) where B K (J 1 ) is identical to the form given in (2.3) since we are dealing with the identical population of the state of spin J 1 via α-decay.

Fagg and Hanna

The form of G K can be written explicitly for dipole/quadrupole radiation from Fagg and Hanna
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Q P / / & 2 ? ! = P / / <! ? @ (3.3) where again the R K coefficients can be evaluated from (2.6) or obtained from tables [6].

Fagg and Hanna following earlier authors proposed that the natural quantity for the observation of linear polarization was

* % & <# %I K & 7R 2 # %I K & 7R @<# %I K & 7R # %I K & 7R @ (3.4) If a γ-
ray under investigation is 100% plane polarized with its electric vector in the reaction plane (ξ=0°) then P(θ) = +1. Likewise if a γ-ray is 100% plane polarized with the electric vector normal to the reaction plane (ξ=90°) then P(θ) = -1. All other degrees of polarization lie between ±1.

Substituting ( (3.11) The most general theoretical form of P(θ) for mixed dipole/quadrupole transitions, allowing all physical values of a 2 and a 4 and using trigonometric equalities to expand P K (2) (cosθ) and P K (cosθ) has been given by Jones [10].

In order to develop experimental measurements of γ-ray linear polarization which can be linked to the primary definition given in (3.4) one has to have a phenomenon which is sensitive to the degree of polarization of an incident γ-ray.

The sensitivity of Compton scattering to the linear polarization of an incident γ-ray has long been known and is well described by the Klein-Nishina formula [9,11 and references therein]. This formula enables the relevant differential cross section to be evaluated for scattering of γ-rays through different angles. This shows that the scattering is a maximum in the plane normal to the plane containing the electric vector of the incident γ-ray. An experimental measurement of the type
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12) is expected to be proportional to the theoretical value of (3.4). [ %I \ & 7R is the number of Compton scattered events in the reaction plane and [ %I \ & 7R the number scattered normal to the reaction plane.

We can experimentally determine the proportionality between (3.4) and (3.12) [ the polarization sensitivity Q(E γ )] by utilizing γ-rays of known linear polarization. Several measurements are required at various E γ since Q(E γ ) is energy dependent and the appropriate value can be interpolated from the calibration measurements.

We then may deduce an experimentally measured polarization * % & ( % ] ^

The decay of 219 Rn -angular correlation measurements

We use the spins / _ `& I / `& I / `& as given in the abstract with a pure E2, γ-decay. We have taken published Legendre polynomial coefficients [3] to generate data points at 10°intervals from 0°to 90°using the function # $ % $ & !777<! F * LMN % $ F P * P LMN % $ @ with pseudo-statistical errors of a $ & ! # % $ . These data have been least squares fitted by generating a K from (2.7) with w(M) as the variables.

Firstly we generated data points using the experimentally obtained Legendre polynomial coefficients namely a 2 = -0.198 ± 0.024 and a 4 = -0.005 ± 0.030 determined by Hesselink [3]. The best fit obtained was w(1/2) = 0.030, w(3/2) = 0.048, w(5/2) = 0.422 giving a sum of squares of residuals of ∆ 2 = 3.4x10 -4 . These population parameters produced theoretical coefficients of a 2 = -0.198, a 4 = -0.005 i.e. the same as the experimental coefficients.

Secondly we generated data points from the experimentally obtained Legendre polynomial coefficients namely a 2 = -0.162, a 4 = -0.069 obtained by Letessier et al [2]. Unfortunately, the errors associated with a 2 and a 4 are not reported in that work. The best fit was obtained from w(1/2) = 0.069, w(3/2) = 0, w(5/2) = 0.431 with a sum of the squares of residuals of ∆ 2 = 6.4. These population parameters produced theoretical coefficients of a 2 = -0.192, a 4 = -0.008.

Figure 1 maps the full range of a 2 and a 4 for mathematically allowed population parameters and for the decay sequence studied here. We plot also the best fit results to the Hesselink coefficients, [labelled (a)] and to the Letessier coefficients, [labelled (b)]. Figure 1. Mathematically allowed w(1/2), w(3/2), w(5/2) for an aligned J 1 = 5/2 state mapped onto a 2 and a 4 assuming a subsequent pure E2 γ-decay to a J 2 = 9/2 state. The upper boundary lines are defined by the condition w(5/2) = 0, the lower boundary lines by the condition w(3/2) = 0 for any given w(1/2). The labelled points are determined by least squares fits to the data of, [point a] Hesselink [3] and [point b] Letessier et al [2] assuming aligned systems with population parameters as variables.

It is unlikely that the results of fit (b) are physical, since the experimentally measured Legendre polynomial coefficient a 4 = -0.069 is outside the theoretical range of a 4 allowed for the given spin sequence. The mathematical constraints that the w(M) are positive and that w(1/2) + w(3/2) + w(5/2) = 0.5 are sufficient to force fit (b) close to fit (a). Unfortunately, ∆ 2 is much larger for fit (b) compared to fit (a) and was probably a contributory factor to the original difficulties in assigning spins to the states.

The decay of 219 Rn -linear polarization measurements

Krien et al [4] analysed the angular correlation data of Letessier et al [2] simultaneously with their own linear polarization distribution measurements. Unfortunately, the angular correlation data of Hesselink et al [3] post dated the work of Krien et al [4] and so could not be used. Interestingly, Krien et al [4] also analysed the linear polarization angular distribution of the 402keV γ-ray in the form <[ %I \ & 7R @<[ %I \ & 7R @ not in the standard form given by (3.12). We are unable to convert the published data into a standard P E (θ) since Q(E γ ) is not determined. However we can calculate A(θ) and obtain Q for each measurement in order to determine whether the Q are consistent with the w(M) obtained in section (4). The angles at which the linear polarization measurements were taken can be obtained from Weigt et al [11].

We are able to extract A(90°) = -0.13 ± 0.01, A(115.7°) = -0.12 ±0.015, A(141.4°) = -0.04 ± 0.02 from the published data [4]. The published 180 °point is merely a check against differences in detection and electronic For the population parameters obtained from the Hesselink data we obtain from (2.7 and 3.8) P(90°) = -0.27, P(115.7°) = -0.23, P(141.4°) = -0.12 and from the Letessier data we obtain P(90°) = -0.27, P(115.7°) = -0.22, P(141.4°) = -0.11 i.e. very similar. The polarization sensitivity, Q, is determined as 0.48 ± 0.04, 0.52 ± 0.07, 0.33 ± 0.17 respectively, from the Hesselink data, giving a weighted average of 0.48 ± 0.03. Therefore, the measurements of Q are statistically consistent. This means, of course, that the theoretical linear polarization distribution calculated using the high alignment parameters is consistent with the shape of the experimental linear polarization distribution.

The errors on P(90˚), for example, can readily be deduced, from the errors on the experimental asymmetry, as ~10%. Similar errors may be deduced from the experimental Legendre polynomial coefficients.

The decay of 211 Bi

We use the spin sequence J P = 9/2 -, J 1 = 3/2 + , J 2 = 1/2 + given in the abstract [5,12]. Legendre polynomial coefficients of a 2 = 0.004 ± 0.005 (a 4 = 0) were obtained from angular correlation measurements [5] and a γ-ray linear polarization measurement was also carried out at 90°. The negative of the linear polarization sign convention used in the present work (3.4 and 3.12) was employed [5] and in order to comply with the theory used here the published experimental polarization should be taken as P E (90°) = -0.623 ± 0.023.

We could carry out a similar analysis to that performed in section 4 which would only require a step search since here w(1/2) + w(3/2) = 0.5 but since only a 2 was determined from experiment we can employ a more transparent method.

If we use the coefficients [6],

ρ 2 (3/2 1/2) = -2, ρ 2 (3/2 3/2) = 2 in (2.3) and the coefficient R 2 (1 1 3/2 1/2 ) = 1/2, R 2 (1 2 3/2 1/2) = 3/2 and R 2 (2 2 3/2 1/2) = -1/2 in (2.5
) we obtain from the product of (2.3) and (2.5) that

F & 0 -0 ! ! c ? 2 ? ! ? (6.1) Since a 2 is zero within experimental error, either w(1/2) w(3/2), or δ 2 -2 3δ -1 0. If w(1/2) w(3/2)
then the linear polarization would be very small which is patently incorrect. Therefore, if we solve the quadratic equation in δ to give an approximate solution we find δ = -0.268 or +3.732. The higher solution for δ is ruled out by internal coefficient measurements [5].

More accurately, we can obtain a simple expression for P(90°) using (3.11) with θ = 90°and (2.3) for B 2 (3/2) we find
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Using the coefficients given above we find
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Inserting the values P(90°) = -0.623 ± 0.023 and a 2 = 0.004 ± 0.005 we solve the simultaneous equations (6.1) and (6.2) to obtain δ = -0.271 ± 0.004 and [w(1/2) -w(3/2)] = 0.36 ± 0.01. Since w(1/2) + w(3/2) = 0.5 we find w(1/2) =0.43 and w(3/2) = 0.07 i.e. high alignment in the ± 1/2 substates. We note that Gorodetzky et al. [5] obtained the same numerical value for δ but the opposite sign. Rose and Brink [6] have noted the differences in the sign of δ by different authors relative to their own, phase consistent approach. Unfortunately, the theoretical analysis by Gorodetzky et al. [5] is not clear. The parent and daughter states of spin J P and J 1 , respectively connect by the vector equation J P = J 1 + L α . The L α define the allowed α-particle partial waves. Hence, the minimum partial wave > & 5/ _ 2 / 5 Mg 5/ _ 2 / 5 ! which is even when no parity change occurs between J P and J 1 and odd if a parity change occurs.

Since the ground state of 211 Bi has J P π = 9/2 -and the 351 keV state of 207 Tl has J 1 π = 3/2 + then only two interfering partial waves L = 3 and L = 5 are allowed and the population parameters are given by 0 1 & <h hi = LMN j = i @ ! = where X, Y are Clebsch-Gordan coefficients h & / _ / 1 2 15 7 and i & / _ / 1 2 15 7 , = & 5( f( 5 is the ratio of the amplitudes of the partial waves and Φ σ 5 -σ 3 +nπ is the relevant phase between waves of angular momentum 3 and 5 where σ 5 and σ 3 are Coulomb phases [1,6].

In figure 2 we plot w(1/2) and P(90°) as a function of θ = tan -1 R from 0°to 90°, with the value of the mixing ratio δ = -0.271. Figure 2. Plots of the variation of w(1/2) with θ and P(90˚) with θ, where tan θ = R (the ratio of partial wave amplitudes) for the 351 keV decay in 207 Tl calculated with a γ-ray multipole mixing ratio of δ(E2/M1) = -0.271.

The solid lines denote a fixed Coulomb phase difference of (σ 5 -σ 3 ) the dashed lines (σ 5 -σ 3 +π). The points indicate the experimentally measured linear polarization at 90˚and the best fit w(1/2), as calculated in the text.

We find that the phase difference between the partial waves needed to satisfy both w(1/2) = 0.43 and P(90°) = -0.623 requires the choice Φ = (σ 5 -σ 3 ) Also, we find R = 0.27 (in agreement with [5]) satisfies both conditions. This value for R leads to amplitudes of A 3 = 0.97 and A 5 = 0.26, assuming the normalization condition that the sum of the squares of the amplitudes is unity. A second solution can be found to satisfy both conditions on population and polarization with R > 1. This solution is considered much less likely due to decreasing penetrability through the angular momentum barrier for increasing L.

Discussion

The rudimentary picture for the onset of prolate deformation is sometimes visualized as the orbit of a single hole in an otherwise closed shell spherical nucleus giving rise to a 'pinched' waist. In this scenario the total angular momentum vector, J, is perpendicular to the plane of the hole's orbit i.e. along the symmetry axis. This semi-classical picture implies that the nucleus would be fully aligned in M = ± J substates. Allowing for the possibility of Coulomb interference between the 3 α-partial waves involved in the 219 Rn ground state decay, the values w(1/2) = 0.03, w(3/2) = 0.048 and w(5/2) = 0.422 for the population of the 402 keV state in 215 Po must be extremely close to the maximum alignment possible. The low hindrance factor, (HF = 3.4), for the α-decay also implies that the ground state of 219 Rn and the 402 keV excited state of 215 Po have similar structure. The close analogy to the semi-classical picture above would perhaps explain the spin assignments of the states in terms of the single particle shell model rather than the Nilsson model. Rowley et al. [1] showed that for favoured α-decays (as is the case for the 219 Rn decay here) the restriction to the two lowest allowed partial waves i.e. L=0 and L=2 would favour a phase difference of (σ 2 -σ 0 + π) for prolate daughter nuclei. This was found to be the case. The best fit parameters for a two partial wave fit to the data of Hesselink [3] were w(1/2) = 0.010, w(3/2) = 0.076 and w(5/2) = 0.414 for R = 0.682 giving a sum of the squares of residuals ∆ 2 = 0.006 and P(90 ˚) = -0.27. These population parameters and derived polarization are clearly quite close to those obtained by the more exact approach. It should perhaps be pointed out again that the weak deformation above is not in the regime of strong core quadrupole deformation examined by Rowley et al. [1].

In the case of the 351 keV state in 207 Tl, the proton structure is believed to consist of (core)(2d 3/2 ) 3 (3s 1/2 ) 2 which decays to the ground state of proton structure (core)(2d 3/2 ) 4 (3s 1/2 ) 1 . Therefore, logically one might expect to observe the above semi-classical picture again since 208 Pb is the neighbouring doubly closed shell nucleus (although the hole is deeper in the core, for the excited state, rather than in the outer shell). However, the large alignment in ±1/2 substates [w(1/2) = 0.43] implies that the orbital angular momentum vector must be largely perpendicular to the quantization axis. This, perhaps surprisingly, further implies that the shape of the nucleus in the 351 keV state is possibly oblate. (The quantization axis is defined by α-emission which takes place radially outwards around the equatorial plane of an oblate nucleus).

Unlike the case of 219 Rn, the decay of 211 Bi is not a favoured α-decay. The phase shift (σ 5 -σ 3 ) is required to obtain w(1/2) = 0.43 and P(90 ˚) = -0.623 as shown in Figure 2. It is an open question whether any physics is obtained from a determination of this phase shift for such non-favoured transitions. However, it should perhaps be noted that the ground state of 211 Bi is probably also slightly oblate ( 2 neutrons and 1 proton outside a 208 Pb core) and the α-decay is between j = l -1/2 states.

It should be emphasized that perhaps the most remarkable aspect of the results obtained here is the strong tendency to high alignment in these weakly deformed nuclei following the disruptive effect of α-decay.

Conclusions

Alpha-gamma angular correlations and linear polarization measurements have been analyzed following the decays of 219 Rn and 211 Bi with special emphasis on the population parameters of the excited states in the daughter nuclei. The analyses are consistent with the spins assigned by compilers. The multipole mixing ratio and the alpha partial wave amplitude ratio are the same as obtained in previous work for 211 Bi decay [5]. The 402 keV excited state in 215 Po and the 351keV excited state in 207 Tl are found to be highly aligned following α-decay. It is shown that the alignment conditions may be useful when speculating about the shapes of nuclei in excited states.

It is hoped that the advent of radioactive ion beam facilities will enable transitions to be studied which are accessible to both α-decay and Coulomb excitation in order to check the above hypothesis. Since α-decay gives access to states which are sometimes not readily accessible by Coulomb excitation and since the analysis of α-γ angular correlation is relatively simple this method would be a useful complement to Coulomb excitation for the study of nuclear shapes. Figure 2. Plots of the variation of w(1/2) with θ and P(90˚) with θ, where tan θ = R (the ratio of partial wave amplitudes) for the 351 keV decay in 207 Tl calculated with a γ-ray multipole mixing ratio of δ(E2/M1) = -0.271. The solid lines denote a fixed Coulomb phase difference of (σ 5 -σ 3 ) the dashed lines (σ 5 -σ 3 +π). The points indicate the experimentally measured linear polarization at 90˚and the best fit w(1/2), as calculated in the text.
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  two Compton scattering directions, since P(θ) = 0 when θ = 0°or 180°(where the reaction plane reduces to a straight line).
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 1 Figure 1. Mathematically allowed w(1/2), w(3/2), w(5/2) for an aligned J 1 = 5/2 state mapped onto a 2 and a 4 assuming a subsequent pure E2 γ-decay to a J 2 = 9/2 state. The upper boundary lines are defined by the condition w(5/2) = 0, the lower boundary lines by the condition w(3/2) = 0 for any given w(1/2). The labelled points are determined by least squares fits to the data of, [point a] Hesselink [3] and [point b] Letessier et al [4] assuming aligned systems with population parameters as variables.