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Abstract

We study the properties of excited charmonium states near the confinement string breaking

region using a screened confinement potential. Recent data on e+e− → ΛcΛ̄c and e+e− → J/ψππ

are discussed. We find that, in this energy region, S and D states became almost degenerated with

a narrow width. The measure of these states can contribute to a more accurate knowledge of the

confinement interaction.
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The breaking of the color electric string between two static sources is a phenomenon

predicted by QCD and it is the basis of the meson decays and hadronization processes.

Although there is no analytical proof, it is a general belief that confinement merge from

the force between the gluon color charges. When two quarks are separated, due to the non

abelian character of the theory, the gluon fields self interact forming color strings which

brings the quarks together. In a pure gluon gauge theory the potential energy of the qq̄

pair grows linearly with the quark-antiquark distance. However in full QCD the presence

of sea quarks may soften the linear potential, due to the screening of the color charges, and

eventually leads to the breaking of the string.

Lattice QCD calculations with dynamical fermions indicate that color screening effects

on the linear potential do exist at large distances and can be parametrized in terms of a

screening length µ−1 [1]. Recently string breaking effects has been shown for nf = 2 lattice

QCD [2].

From a phenomenological point of view the screening effects can be related to properties

of the quarkonium system. In fact, the knowledge of the highly excited quarkonium states

properties may help to determine the form of the confinement in this region.

Very recently [3] the Belle collaboration reported a measurement of the exclusive e+e− →

ΛcΛ̄c cross section. A clear peak at M = 4634+8+5
−7−8 MeV is observed. Besides this significant

near threshold enhancement, the cross section shows several structures up to 5.4 GeV. Similar

structures has been observed in the exclusive measurements of the e+e− → D∗±D∗∓ cross

section using initial state radiation [4] and in the analysis of the e+e− → J/ψππ data [5].

These data have been analyzed by different authors. Van Beveren et al. [6, 7] conclude

that the near threshold enhancement can be explained as a combined effect of a normal

threshold behavior and a sub-threshold zero in the amplitude at 4.5 GeV. Moreover, they

found indications for four not very broad (30 ≈ 60 MeV) new cc̄ states at 4.79 GeV, 4.87

GeV, 5.13 GeV and 5.29 GeV. On the other hand Bugg [8] concludes from the analysis of the

same data that the near threshold enhancement may be interpreted as the X(4660) when a

proper form factor is used in the phase space.

Although data are not yet conclusive, the region above the ΛcΛ̄c threshold is of indubitable

interest to determine the behavior of the confinement interaction near the string breaking

region. In this work we undertake the study of the JPC = 1−− cc̄ highly excited states

which are the accessible quantum numbers from the e+e− entrance channel. Our aim is
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to characterize these states (energies, leptonic and strong widths, etc) to look for these

properties in future experiments. We will use the model of Refs. [9, 10] which describes

the hadron spectrum [11] and the hadron-hadron interaction [12]. The model incorporates

color screening effect through a confinement potential similar to the one obtained in lattice

calculations [1]. This model has been applied to a careful study of the JPC = 1−− cc̄ sector

in Ref. [10]. In this reference most of the new 1−− resonances are interpreted as qq̄ states.

The X(4360) is found to be the 4S state and then the ψ(4415) appears as the 3D one.

This assignment differs from the standard one but agree with the new measurements of its

leptonic width [13]. Moreover the Y (4260), now included in PDG as X(4260) [14], does

not appear as qq̄ pair. This is consistent with the recent measurement of BaBar [15] of the

exclusive production of DD̄, D∗D̄ and D∗D̄∗ which did not find evidence for the X(4260)

decays in these channels as expected if the X(4260) were a JPC = 1−− charmonium state.

Similar calculation has been performed by other authors with rather different conclusions.

So Li et al. [16], using also a screened potential but with different parametrization, are able

to reproduce the X(4260) as a cc̄ state but loss the well established ψ(4160) which appears

too low in mass. The wide range of theoretical predictions demands more accurate data to

constrain the different models.

As stated above our model assumes a confinement potential suggested by lattice calcula-

tion with dynamical fermions [1]

VCON(~rij) = {−ac (1 − e−µc rij ) + ∆}(~λc
i · ~λc

j) (1)

where λC
j are the color matrices and ∆ is a global constant to fix the energy origin. This

constant is flavor independent and is fitted to the all meson spectrum [9]. At short distances

the potential presents a linear behavior with an effective confinement strength a = −acµc(~λ
C
i ·

~λC
j ) while at large distances shows a threshold given by

Vthr = {−ac + ∆}(~λc
i · ~λc

j) (2)

Li et al. [17] have shown that this potential gives similar global features that a coupled

channel calculation based on the Cornell potential and therefore describes, in an effective

way, the effects of dynamical light quark pair creation.

No qq̄ bound states can be found for energies higher than this threshold. Therefore at

this scale the system undergo a transition from a color string configuration between two
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static sources into a pair of mesons. Obviously the value of Vthr is an outcome of our fit and

experimental data of highly excited states may help to determine its value and/or the form

of the confinement potential in this region in a precise way.

Besides the confinement interaction in the charm sector, quarks and antiquarks interact

through one gluon exchange (OGE) [18]

Lgqq = i
√

4παsψ̄γµG
µ
cλ

cψ (3)

where λc are the SU(3) color matrices and Gµ
c is the gluon field. Expressions for the poten-

tials coming from the non relativistic reduction of OGE are given in Appendix A.

In the light sector quarks also interact through Goldstone boson exchanges coming from

the spontaneous breaking of the chiral symmetry [9]. Although in the sector we are going

to describe this interaction does not act, it is worth to mention it here because most of

the parameters, including those of the confinement interaction, are fitted to the all meson

spectrum.

The wide energy range covered by a consistent description of light, strange and heavy

mesons requires an effective scale-dependent strong coupling constant that cannot be ob-

tained from the usual one-loop expression of the running coupling constant because it di-

verges at Q = ΛQCD. We use the frozen coupling constant of Ref. [9]

αs(µ) =
α0

ln
(

µ2+µ2
0

Λ2
0

) (4)

where µ is the reduced mass of the qq̄ pair and α0, µ0 and Λ0 are parameters of the model

determined by a global fit to the hyperfine splitting from the light to the heavy quark sector.

All model parameters are given in Table I.

Meson masses can be found by solving the Schrödinger equation with this interactions

using the Gaussian Expansion Method [10].

Masses are not the only observable of the meson system. In fact decay widths allow to

check particular regions of the wave function and not an average over the all meson size as in

the calculation of the mass spectrum. Thus leptonic decays are sensitive to the meson wave

function at the origin and allows to discriminate between S and D states or conventional

cc̄ states from multiquark systems. Moreover, strong decays give information about the

total width of the state and the decay channels which is very usefull for its experimental

determination.
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quark masses mn (MeV) 313

ms (MeV) 555

mc (MeV) 1763

mb (MeV) 5110

Goldstone bosons mπ (fm−1) 0.70

mσ (fm−1) 3.42

mK (fm−1) 2.51

mη (fm−1) 2.77

Λπ (fm−1) 4.20

Λσ (fm−1) 4.20

ΛK (fm−1) 4.21

Λη (fm−1) 5.20

g2
ch/4π 0.54

θp (◦) −15

Confinement ac (MeV) 507.4

µc (fm−1) 0.576

∆ (MeV) 184.4

as 0.81

OGE α0 2.118

Λ0 (fm−1) 0.113

µ0 (MeV) 36.98

r̂0 (fm) 0.181

r̂g (fm) 0.259

TABLE I: Values used for the parameters of the model.

To describe the leptonic width we will use the van Royen-Weisskopf formula [19] modified

by QCD radiative corrections [20]

Γ
(
n3S1 → e+e−

)
=

4α2e2c |Rn(0)|2

M2
nS

(
1 − 16αs

3π

)
(5)

Γ
(
n3D1 → e+e−

)
=

25α2e2c
2m4

cM
2
nD

|R′′

n(0)|2. (6)

5



where MnS (MnD) is the mass for the nS (nD) state, ec = 2/3 the quark charge in units

of electron charge, α the fine structure constant, RnS(0) the S-wave radial function at the

origin and R”
nD(0) the second derivative of the D-wave radial function at the origin.

Meson strong decay is a complex non perturbative process that still has not been described

from first principles. Instead, phenomenological models has been developed to deal with

this problem. We will use the 3P0 model where the quark-antiquark pair is created from the

vacuum. The model was first proposed by Micu [21] and further developed by Le Yaouanc

et al. [22]. To describe the meson decay process A → B + C it assumes that a quark and

an antiquark is created with JPC = 0++ quantum numbers. The created qq̄ pair together

with the qq̄ pair in the original meson regroups in the two outgoing mesons via a quark

rearrangement process. Then, the transition operator is given by [23]

T = −3γ
∑

µ

∫
d3pd3p′ δ(3)(p + p′)

[
Y1

(
p− p′

2

)
b†µ(p)d†ν(p

′)

]C=1,I=0,S=1,J=0

(7)

where µ (ν = µ̄) are the quark (antiquark) quantum numbers and γ is a dimensionless

constant that denotes the strength of the qq̄ pair creation from the vacuum.

Defining the S-matrix as

< f |S|i >= I + i(2π)4δ4(pf − pi)M (8)

where M is the decay amplitude of the process A → B + C, the decay width in terms of

the partial wave amplitude using the relativistic phase space is

Γ = 2π
EBEC

kMA

∑

JL

|MJL|2 (9)

where k is the on-shell relative momentum of the decaying mesons.

Using the parameters of Table I and equations (5), (6) and (9) we have performed a

calculation of the main properties of the excited charmonium states in a screened potential

up to the threshold. In Table II we summarize our results. The near threshold enhancement

is interpreted as a bound state at M = 4614 MeV or M = 4641 MeV. In addition we found

14 bound states up to 12 3S1 and 11 3D1. Some of them coincides with the one suggested

by [7] although, given the experimental uncertainties, we do not want to stress too much

this agreement. The main feature concerning the masses is that as far as we approach to the

breaking threshold the S and D states become more and more degenerated making difficult

to separate them experimentally. Moreover the leptonic and strong widths become smaller.
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FIG. 1: Total widths for the cc̄ 1−− states discussed in the text. Solid dots shows the experimental

data taken from [14, 24]. Solid (open) squares shows the results of the present (from Ref. [10])

calculation.

This can be seen in Figs. 1 and 2 where, for completeness, we have included the results

obtained in Ref. [10] with the same model. The measured strong widths agree reasonably

well with our calculation reaching a maximum around a mass of M = 4600 MeV. After

this maximum, the widths decrease due to the competition between phase space and meson

wave function overlaps. In almost all the resonances the most important decay channel is

the D∗D∗. The experimental data around 4700MeV is clearly out of the systematic, which

maybe an indication of a more complex structure of the 4660 state.

The situation is similar regarding the leptonic widths shown in Fig. 2. As in the former

figure we show the results of Ref. [10] for the lower masses together with our current results.

Once again the model reproduces the measured widths showing a clear difference between

S and D wave states. This behavior is an important tool to assign quantum numbers to

the resonances. In particular the measure of the X(4360) leptonic width will confirm the

assignment given in Ref. [10]. As far as we are approaching to the threshold the widths are

narrower and the difference between S and D states become smaller.
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FIG. 2: Leptonic widths for the cc̄ 1−− states discussed in the text. Solid dots shows the experi-

mental data taken from [13, 14]. Solid (open) squares shows the results for S-wave states for the

present (from Ref. [10]) calculation. The same is represented with triangles for D-wave states.

In Fig. 3 we show the quadratic mean radius for these mesons. As expected these are

extended objects with a radius that grows as one gets closer to the threshold.

Then the scenario drawn from this calculation consists in several narrow resonances near

the breaking threshold which include S and D-wave states. The only possible way to resolve

these two angular momentum contributions is to look to some specific ratio, like R = X→DD∗

X→D∗D∗

shown in Fig. 4, which range from 1.5 to 0.7 for S-wave states and is around 0.2 for D states.

Finally we compare our results with the e+e− → J/ψππ and e+e− → ΛcΛ̄c data. We will

use those of van Beveren et al. [6, 7] where the subtraction of the non-resonant signal has been

carried out assuming Breit Wigner forms for the cc̄ resonances. Some of the experimental

predicted structures are well reproduced. The most significant differences are the resonance

below 4900 MeV and the one around 5300 MeV. The discrepancy at 4900 MeV can not be

explained by interference effects or modifications in the Breit-Wigner shapes because the

nearby resonances are too separated, as shown in Fig. 5. The discrepancy around 5300 has

a different origin because our threshold is below this region.
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State MQM (MeV) Mexp(MeV) Γe+e−(keV) Dominant BR ΓT (MeV)

5 3S1 4614 0.57 D∗D∗
2 0.41 164.6

4 3D1 4641 4664 ± 11 0.31 D∗D∗ 0.30 107.5

6 3S1 4791 4790 0.42 D∗D∗
2 0.33 86.9

5 3D1 4810 0.28 D∗D∗ 0.40 57.0

4870

7 3S1 4929 0.32 D∗D∗ 0.20 55.6

6 3D1 4944 0.24 D∗D∗ 0.40 46.8

8 3S1 5036 0.24 D∗D∗ 0.24 44.3

7 3D1 5048 0.20 D∗D∗ 0.33 43.8

9 3S1 5117 0.17 D∗D∗ 0.26 34.5

8 3D1 5126 5130 0.16 D∗D∗ 0.30 35.3

10 3S1 5175 0.12 D∗D∗ 0.25 25.3

9 3D1 5182 0.11 D∗D∗ 0.27 27.1

11 3S1 5214 0.07 D∗D∗ 0.24 16.91

10 3D1 5219 0.07 D∗D∗ 0.25 17.81

12 3S1 5236 0.03 D∗D∗ 0.24 8.49

11 3D1 5239 0.03 D∗D∗ 0.24 8.35

5290

TABLE II: High excited states of cc̄ with quantum numbers JPC = 1−−.

In order to show the sensitivity of the spectra to the confinement potential parameters

we have change ac and µc in Eq.(1), leaving its product constant, which guarantees that

the slope of the confinement remains the same. The results are shown in Fig. 6. With this

parametrization we clearly improve the agreement in the 5300 MeV region, although the

precision of the data is not enough to decide about the 4900 MeV region. The price to pay

is to loose part of the consistency with the whole meson spectra. These results show the

interest of this region to constrain the confinement interaction.

As a summary, we have studied the properties of the cc̄ resonances near the string breaking

threshold using a screened confinement potential. These states show narrow leptonic and
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FIG. 3: Solid square shows the theoretical mean square radius of the resonances in Table II.

strong widths and are very extended objects. They show a promising agreement with the

scarce experimental data, although more experimental and theoretical work is needed in this

interesting region to gain more insight into the properties of confinement.

APPENDIX A: THE QUARK-QUARK POTENTIAL

In this appendix we give explicit expressions for the different pieces of the quark-quark

potential. They contain central, tensor and spin-orbit terms that will be grouped for con-

sistency.

1. Gluon exchange interaction

The central part of the OGE reads

V C
OGE(~rij) =

1

4
αs(~λ

c
i · ~λc

j)

[
1

rij
− 1

6mimj
(~σi · ~σj)

e−rij/r0(µ)

rijr2
0(µ)

]
(A1)
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FIG. 4: The ratio R = X→DD∗

X→D∗D∗ predicted by the model is shown by solid squares (triangles) for

S-wave (D-wave) states.

where the delta function is regularized as

δ(rij) →
1

4π

e−rij/r0(µ)

rijr2
0(µ)

(A2)

with r0(µ) = r̂0
µnn

µij
scales with the reduced mass as expected for a Coulombic system.

The noncentral potentials, tensor and spin-orbit, have the form

V T
OGE(~rij) = − 1

16

αs

mimj

(~λc
i · ~λc

j)

[
1

r3
ij

− e−rij/rg(µ)

rij

(
1

r2
ij

+
1

3r2
g(µ)

+
1

rijrg(µ)

)]
Sij (A3)

V SO
OGE(~rij) = − 1

16

αs

m2
im

2
j

(~λc
i · ~λc

j)

[
1

r3
ij

− e−rij/rg(µ)

r3
ij

(
1 +

rij

rg(µ)

)]

×
[
((mi +mj)

2 + 2mimj)(~S+ · ~L) + (m2
j −m2

i )(
~S− · ~L)

]
(A4)

where ~S± = ~Si ± ~Sj and rg(µ) = r̂g
µnn

µij
scales as the central term. Finally we use an effective

scale dependent strong coupling constant given by Eq. (4).
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2. Confinement

The screened confinement potential is written as

V C
CON(~rij) =

[
−ac(1 − e−µcrij) + ∆

]
(~λc

i · ~λc
j). (A5)

The spin-orbit contribution is a combination of scalar and vector terms

V SO
CON(~rij) =

(
~λc

i · ~λc
j

) acµce
−µcrij

4m2
im

2
jrij

[
((m2

i +m2
j)(1 − 2as)

+4mimj(1 − as))(~S+ · ~L) + (m2
j −m2

i )(1 − 2as)(~S− · ~L)
]

(A6)

where as controls the ratio between them.
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FIG. 5: Fit to J/Ψπ+π− [6] and the e+e− → Λ+
c Λ−

c [7] data, shown by solid dots, using the

resonances from Table II. The solid line shows the full result while the dashed lines show the

position of each resonance.
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FIG. 6: Same as in Fig. 5 varying the confinement parameters as explained in the text.
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