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Abstract. Based on the non-linear logistic equation we study, in a qualitative
and semi-quantitative way, the evolution with energy and saturation of the elastic
differential cross-section in pp(p̄p) collisions at high energy. Geometrical scaling occurs
at the black disk limit, and scaling develops first for small values of the scaling variable
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differs, as far as we know, from all existing ones.
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Saturation phenomena are expected to dominate QCD physics at high energy and

high matter density [1, 2], as it may happen at LHC and cosmic rays at ultra high

energies. This is in fact an old problem related to unitarization and the need to reduce

particle multiplicity and lowering total cross sections (see, for instance,[3]). Non linear

differential equations include, in a natural way, saturation effects. This happens with

the well known logistic equation[4]. See[5] and [6] for discussions on evolution and

saturation.

We shall concentrate here in the evolution of the imaginary part of the impact

parameter elastic amplitude, or the profile function Γ(b, R) ≡ Im B(b, R), where b is the

impact parameter, related to angular momentum ` by

b ' 2√
s
`, (1)

where
√

s is the centre of mass energy, and R is an increasing with energy radial scale

parameter. Partial wave unitarity constrains Γ(b, R):

0 ≤ Γ(b, R) ≤ 1. (2)

We now write two logistic equations, in R and b, respectively:

∂Γ

∂R
=

1

γ
(Γ − Γ2), (3)

and

∂Γ

∂b
= −1

γ
(Γ − Γ2), (4)

where γ > 0 is pratically a constant. From (3) one sees that ∂Γ/∂R > 0 and that, for

fixed b and Γ > 0, Γ reaches the black disk limit: Γ = Γ2 = 1. From(4) one sees that

in general Γ is a decreasing function of b and that, for large b, Γ decreases, as expected,

exponentially (Γ ∼ exp−b/γ), saturation occurring first at small b.

A solution of (3) and (4), not the most general one, is:

Γ(b, R) =
1

exp b−R
γ

+ 1
. (5)

The total and elastic cross-section are written as

σtot.(s) = 2π

∫
Γ(b, R)db2 (6)

and, neglecting real part contributions,

σel.(s) = π

∫
|Γ(b, R)|2db2, (7)

respectively. The imaginary part of the elastic amplitude Im F (t, R) is the Fourier-Bessel

transform of Γ(b, R) and the differential elastic cross-section is written as

dσ

dt
=

σ2
tot.

16π

Im F (t, R)2

Im F (0, R)2
. (8)
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Figure 1. dσ/dt as function of −t at different energies, showing the sequence: no
structure in a), one minimum in b) and c), two zeros in d) and e) and two zeros and
one minimum in f) at LHC. Values of γ and R: a) γ = 1.020, R = 1.972; b) γ = 1.026,
R = 2.171; c) γ = 1.090, R = 2.259; d) γ = 1.000, R = 2.575; e) γ = 1.016, R = 2.496;
f) γ = 1.078, R = 2.683; g) γ = 1, R = 3.770. Data from [11]. Dashed line: only
imaginary part contribution. Full line: the real part of the amplitude is included.

Taking (5) as a phenomenological model with two free parameters, γ and R, we

have compared it with data on dσ/dt from
√

s = 14 GeV up to LHC energies. An
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unexpected qualitative agreement with data was found, Fig. 1.

In the evolution of the amplitude (5) with energy one finds three regimes (see Fig.

1):

i)
√

s . 20 GeV, Fig. 1.a).

This is the region corresponding to linear evolution, with Γ small and with

exponential behavior, dσ/dt being a monotonically decreasing function of −t.

ii) 20 .
√

s . 63 GeV (ISR energies), Figs. 1.b) and c).

In this region a dip, which is a minimum, not a zero, appears at −t ≈ 1.4 GeV2

and slowly moves to the left as energy increases. Conventional wisdom says that the

dip results from a zero: interference between one-Pomeron and two-Pomeron exchanges

[12].

iii) 500 .
√

s . 1.8 TeV, Figs. 1.d), e) and f).

In this region the minimum becomes negative, originating a pair of zeros. Instead

of the clean second maximum of region ii) one has now a kind of shoulder, but with a

cross-section higher by an order of magnitude.

In Fig. 1.g) we have also included our expectation for LHC (assuming σtot. ≈ 110 mb

- see [13] for expected range of values - and γ = 1 mb1/2). Our LHC curve clearly shows

how the evolution towards the black disk continues: from a monotonically decreasing

curve at large −t a minimum starts developing which at some stage generates a pair

of zeros to join the previous pair. And so on! In the black disk limit we just have a

sequence of pairs of zeros.

At high energy,
√

s & 60 GeV, when σpp ' σp̄p is not difficult to use the derivative

dispersion relations [14] to estimate the real part contribution to the differential cross

section. In Figs. 1.c) to 1.g) we show, in full line, dσ/dt including the real part

correction. The real part contribution is important at the zeros of Γ.

Two conclusions can be drawn from our comparasion with data in Fig. 1: 1) the

parameter R is a monotonically growing function of energy, 2) the parameter γ can at

high energy be taken as a constant, 1 mb1/2

Comming back to (5) it should be noticed that in regions of energy where

γ/R ' const., as it happens at ISR energies (20 .
√

s . 60 GeV), Γ(b, R) in (5)

satisfies geometrical scaling [7],

Γ(b, R) −−−−−→
γ/R'const.

Γ(β), (9)

with

β ≡ b

R
, (10)

and,

dσ

dt
∼ R2

(
f(tR2)

)2
. (11)

As γ, contrary to R, does not show in general a consistent dependence on energy,

only in the limit R → ∞, γ/R → 0 and one obtains again scaling [8],

Γ(b, R) −−→
R→∞ Γ(β) ≡

{
1, 0 ≤ β < 1

0, β > 1
, (12)
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Figure 2. d(σ/dt) / (dσ/dt(0)) as a function of the scaling variable |t|σtot. showing
the approach to black disk geometrical scaling from small to larger values of the scaling
variable. Scaling only applies to the imaginary part of the amplitude. The parameter
γ was put equal 1.

with σtot. ∼ σel. ∼ R2 and σel./σtot. → const. = 1/2.

It should be also noticed that the parameter R in (5) separates the region of negative

curvature, b < R, from the region of positive curvature, b > R. In fact, R plays the role

of the angular momentum L, used in the proof of Froissart bound [9] by Martin and

collaborators [10], that separates the region that contributes in a significant way to the

total cross-section, ` < L, from the region that is negligible, ` > L:

R =
2√
s
L =

1√
t0

ln

(
s

s0

)
, (13)

with
√

t0 = 2mπ. In fact γ, the parameter that controls the low density region, b > R,

can be seen as a measure of the range of the interaction, with γ ∼ (2mπ)−1 in the

Yukawa picture. The evolution of the cross-sections with the energy is controlled by the

single parameter R(s), the effective impact parameter radius.

In Fig. 2 we show the geometrical scaling plot (see (11)) of dσ
dt

/dσ
dt

(t = 0) as function

of the variable |t|σtot. for different values of R and for γ = 1 mb1/2, and the black disk

limit. The way the approach to the scaling curve is achieved seems clear: as the energy,

or R, increases scaling is satisfied for larger |t|σtot. values. The LHC curve corresponds

to σtot. = 110 mb, σel./σtot. ' 0.28.

In Fig. 3 we show the correlation between σel./σtot. and σtot. in comparison with

data. Note the transient geometrical scaling at ISR energies, σel./σtot. ' const..

It should be mentioned that the curves shown in Fig. 1 are not fits to data, but

represent qualitative descriptions. This means that σel. and σtot., which are controlled

by the first points in the low | t | region, are not constrained. That is the reason why

the values of R(s) in Fig. 1 do not coincide with the values used in Fig. 3. For instance,
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Figure 3. σel./σtot. as a function of σtot. making use of (5). Data points, from left to
right:

√
s = 23.5 GeV, γ = 1.065, R = 1.710;

√
s = 30.6 GeV, γ = 1.090, R = 1.731;√

s = 44.9 GeV, γ = 1.095, R = 1.805;
√

s = 52.8 GeV, γ = 1.107, R = 1.810;√
s = 200 GeV, γ = 1.123, R = 2.100;

√
s = 540 GeV, γ = 1.080, R = 2.498;√

s = 900 GeV, γ = 1.026, R = 2.662;
√

s = 1800 GeV, γ = 1.046, R = 3.050. We
expect for LHC σel./σtot. = 0.28 and σtot. = 110 mb. Data from [11].

at ISR energies, in Fig. 1, σel. and σtot. are larger by a factor of the order of 15% relative

to the true values (in Fig. 3).

Recently, in several papers [15, 16, 17] the questions of soft physics were addressed

from different points of view. However, contrary to the present paper, no attempts

were made to explain the qualitative aspects of dσ/dt evolution with energy. Instead,

interesting problems related to inelastic diffraction, as Higgs production, were addressed.

The black disk perspective varied significantly from [15] to [16]: the black disk limit being

already present at LHC energies in [15], but occuring at extremely high energies in [16].

For a discussion on the black disk limit see also [18].

The relevance or not of the Froissart bound (see [19] and [20]) and a dynamical

interpretation of it (see [21] and [22]) are still matters open to discussion.

Finally, we summarize our work. Starting from the non-linear logistic equation we

obtained a solution for the high-energy imaginary part of the amplitude, and we were

able to describe in a qualitative and semi-quantitative way the essential features of the

evolution of the differential elastic cross-section with energy, namely the sequence: no

structure in |t|, one minimum, two zeros and so on. Our prediction for dσ/dt at LHC

energies is different from all the ones we are aware of (see, for instance, [23]).
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