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Based on the non-linear logistic equation we study, in a qualitative and semi-quantitative way, the evolution with energy and saturation of the elastic differential cross-section in pp(pp) collisions at high energy. Geometrical scaling occurs at the black disk limit, and scaling develops first for small values of the scaling variable |t|σ tot. . Our prediction for dσ/ dt at LHC, with two zeros and a minimum at large |t| differs, as far as we know, from all existing ones.

Saturation phenomena are expected to dominate QCD physics at high energy and high matter density [1,2], as it may happen at LHC and cosmic rays at ultra high energies. This is in fact an old problem related to unitarization and the need to reduce particle multiplicity and lowering total cross sections (see, for instance, [3]). Non linear differential equations include, in a natural way, saturation effects. This happens with the well known logistic equation [4]. See [START_REF] Selyugin | Difraction[END_REF] and [6] for discussions on evolution and saturation.

We shall concentrate here in the evolution of the imaginary part of the impact parameter elastic amplitude, or the profile function Γ(b, R) ≡ Im B(b, R), where b is the impact parameter, related to angular momentum by

b 2 √ s , (1) 
where √ s is the centre of mass energy, and R is an increasing with energy radial scale parameter. Partial wave unitarity constrains Γ(b, R):

0 ≤ Γ(b, R) ≤ 1.
(

) 2 
We now write two logistic equations, in R and b, respectively:

∂Γ ∂R = 1 γ (Γ -Γ 2 ), (3) 
and

∂Γ ∂b = - 1 γ (Γ -Γ 2 ), (4) 
where γ > 0 is pratically a constant. From (3) one sees that ∂Γ/∂R > 0 and that, for fixed b and Γ > 0, Γ reaches the black disk limit: Γ = Γ 2 = 1. From(4) one sees that in general Γ is a decreasing function of b and that, for large b, Γ decreases, as expected, exponentially (Γ ∼ exp -b/γ), saturation occurring first at small b.

A solution of (3) and ( 4), not the most general one, is:

Γ(b, R) = 1 exp b-R γ + 1 . (5) 
The total and elastic cross-section are written as

σ tot. (s) = 2π Γ(b, R)db 2 (6) 
and, neglecting real part contributions,

σ el. (s) = π |Γ(b, R)| 2 db 2 , (7) 
respectively. The imaginary part of the elastic amplitude Im F (t, R) is the Fourier-Bessel transform of Γ(b, R) and the differential elastic cross-section is written as Taking ( 5) as a phenomenological model with two free parameters, γ and R, we have compared it with data on dσ/dt from √ s = 14 GeV up to LHC energies. An unexpected qualitative agreement with data was found, Fig. 1.

dσ dt = σ 2 tot. 16π Im F (t, R) 2 Im F (0, R) 2 . ( 8 
)
In the evolution of the amplitude (5) with energy one finds three regimes (see Fig. 1): i) √ s 20 GeV, Fig. 1.a). This is the region corresponding to linear evolution, with Γ small and with exponential behavior, dσ/dt being a monotonically decreasing function of -t.

ii) 20 √ s 63 GeV (ISR energies), Figs. 1.b) and c). In this region a dip, which is a minimum, not a zero, appears at -t ≈ 1.4 GeV 2 and slowly moves to the left as energy increases. Conventional wisdom says that the dip results from a zero: interference between one-Pomeron and two-Pomeron exchanges [START_REF] Landshoff | Soft Collisions of Hadrons[END_REF].

iii) 500 √ s 1.8 TeV, Figs. 1.d), e) and f). In this region the minimum becomes negative, originating a pair of zeros. Instead of the clean second maximum of region ii) one has now a kind of shoulder, but with a cross-section higher by an order of magnitude.

In Fig. 1.g) we have also included our expectation for LHC (assuming σ tot. ≈ 110 mb -see [START_REF] Wibig | [END_REF] for expected range of values -and γ = 1 mb 1/2 ). Our LHC curve clearly shows how the evolution towards the black disk continues: from a monotonically decreasing curve at large -t a minimum starts developing which at some stage generates a pair of zeros to join the previous pair. And so on! In the black disk limit we just have a sequence of pairs of zeros.

At high energy, √ s 60 GeV, when σ pp σ pp is not difficult to use the derivative dispersion relations [START_REF] Bronzan | [END_REF] to estimate the real part contribution to the differential cross section. In Figs. 1.c) to 1.g) we show, in full line, dσ/dt including the real part correction. The real part contribution is important at the zeros of Γ.

Two conclusions can be drawn from our comparasion with data in Fig. 1: 1) the parameter R is a monotonically growing function of energy, 2) the parameter γ can at high energy be taken as a constant, 1 mb 1/2 Comming back to (5) it should be noticed that in regions of energy where γ/R const., as it happens at ISR energies (20 √ s 60 GeV), Γ(b, R) in (5) satisfies geometrical scaling [7],

Γ(b, R) -----→ γ/R const. Γ(β), (9) 
with

β ≡ b R , (10) 
and,

dσ dt ∼ R 2 f (tR 2 ) 2 . ( 11 
)
As γ, contrary to R, does not show in general a consistent dependence on energy, only in the limit R → ∞, γ/R → 0 and one obtains again scaling [8], showing the approach to black disk geometrical scaling from small to larger values of the scaling variable. Scaling only applies to the imaginary part of the amplitude. The parameter γ was put equal 1.

Γ(b, R) --→ R→∞ Γ(β) ≡ 1, 0 ≤ β < 1 0, β>1 , (12) 
with σ tot. ∼ σ el. ∼ R 2 and σ el. /σ tot. → const. = 1/2. It should be also noticed that the parameter R in ( 5) separates the region of negative curvature, b < R, from the region of positive curvature, b > R. In fact, R plays the role of the angular momentum L, used in the proof of Froissart bound [9] by Martin and collaborators [10], that separates the region that contributes in a significant way to the total cross-section, < L, from the region that is negligible, > L:

R = 2 √ s L = 1 √ t 0 ln s s 0 , (13) 
with √ t 0 = 2m π . In fact γ, the parameter that controls the low density region, b > R, can be seen as a measure of the range of the interaction, with γ ∼ (2m π ) -1 in the Yukawa picture. The evolution of the cross-sections with the energy is controlled by the single parameter R(s), the effective impact parameter radius.

In Fig. 2 we show the geometrical scaling plot (see (11)) of dσ dt / dσ dt (t = 0) as function of the variable |t|σ tot. for different values of R and for γ = 1 mb 1/2 , and the black disk limit. The way the approach to the scaling curve is achieved seems clear: as the energy, or R, increases scaling is satisfied for larger |t|σ tot. values. The LHC curve corresponds to σ tot. = 110 mb, σ el. /σ tot. 0.28.

In Fig. 3 we show the correlation between σ el. /σ tot. and σ tot. in comparison with data. Note the transient geometrical scaling at ISR energies, σ el. /σ tot. const..

It should be mentioned that the curves shown in Fig. 1 are not fits to data, but represent qualitative descriptions. This means that σ el. and σ tot. , which are controlled by the first points in the low | t | region, are not constrained. That is the reason why the values of R(s) in Fig. 1 do not coincide with the values used in Fig. 3. For instance, at ISR energies, in Fig. 1, σ el. and σ tot. are larger by a factor of the order of 15% relative to the true values (in Fig. 3).

Recently, in several papers [START_REF] Frankfurt | Rapidity gap survival, 12th International Conference on Elastic and Diffractive Scattering[END_REF]16,17] the questions of soft physics were addressed from different points of view. However, contrary to the present paper, no attempts were made to explain the qualitative aspects of dσ/dt evolution with energy. Instead, interesting problems related to inelastic diffraction, as Higgs production, were addressed. The black disk perspective varied significantly from [START_REF] Frankfurt | Rapidity gap survival, 12th International Conference on Elastic and Diffractive Scattering[END_REF] to [16]: the black disk limit being already present at LHC energies in [START_REF] Frankfurt | Rapidity gap survival, 12th International Conference on Elastic and Diffractive Scattering[END_REF], but occuring at extremely high energies in [16]. For a discussion on the black disk limit see also [18].

The relevance or not of the Froissart bound (see [19] and [20]) and a dynamical interpretation of it (see [21] and [22]) are still matters open to discussion.

Finally, we summarize our work. Starting from the non-linear logistic equation we obtained a solution for the high-energy imaginary part of the amplitude, and we were able to describe in a qualitative and semi-quantitative way the essential features of the evolution of the differential elastic cross-section with energy, namely the sequence: no structure in |t|, one minimum, two zeros and so on. Our prediction for dσ/dt at LHC energies is different from all the ones we are aware of (see, for instance, [23]).
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 1 Figure 1. dσ/dt as function of -t at different energies, showing the sequence: no structure in a), one minimum in b) and c), two zeros in d) and e) and two zeros and one minimum in f) at LHC. Values of γ and R: a) γ = 1.020, R = 1.972; b) γ = 1.026, R = 2.171; c) γ = 1.090, R = 2.259; d) γ = 1.000, R = 2.575; e) γ = 1.016, R = 2.496; f) γ = 1.078, R = 2.683; g) γ = 1, R = 3.770. Data from [11]. Dashed line: only imaginary part contribution. Full line: the real part of the amplitude is included.
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 2 Figure 2. d(σ/dt) / (dσ/dt(0)) as a function of the scaling variable |t|σ tot.showing the approach to black disk geometrical scaling from small to larger values of the scaling variable. Scaling only applies to the imaginary part of the amplitude. The parameter γ was put equal 1.

Figure 3 .

 3 Figure 3. σ el. /σ tot. as a function of σ tot. making use of (5). Data points, from left to right: √ s = 23.5 GeV, γ = 1.065, R = 1.710; √ s = 30.6 GeV, γ = 1.090, R = 1.731; √ s = 44.9 GeV, γ = 1.095, R = 1.805; √ s = 52.8 GeV, γ = 1.107, R = 1.810; √ s = 200 GeV, γ = 1.123, R = 2.100; √ s = 540 GeV, γ = 1.080, R = 2.498; √ s = 900 GeV, γ = 1.026, R = 2.662; √ s = 1800 GeV, γ = 1.046, R = 3.050.We expect for LHC σ el. /σ tot. = 0.28 and σ tot. = 110 mb. Data from[11].
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