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A helpful analogy between the covalent bond and Particle Spectroscopy

D� V� Bugg�

Queen Mary� University of London� London E� �NS� UK

Abstract

It is proposed that meson resonances are linear combinations of q�q and meson�meson �MM��
baryon resonances are combinations of qqq and meson�baryon �MB�� Mixing between these
combinations arises via decays of con�ned states to meson�meson or meson�baryon� There
is a precise analogy with the covalent bond in molecular physics� it helps to visualise what
is happening physically� One eigenstate is lowered by the mixing� the other moves up
and normally increases in width� Cusps arise at thresholds� At sharp thresholds due to
S�wave 	�particle decays
 these cusps play a conspicuous role in many sets of data� The
overall pattern of light mesons is consistent with nearly linear Regge trajectories
 hence q�q
components� There is no obvious reason why this pattern should arise from dynamically
generated states without q�q content�

PACS numbers� �	�
��Ki
 �	����Yx
 �
�	��Ft
 ���	��Gk

� Introduction

In the early days of Particle Physics� Chew� Goldberger and others tried to account for resonances
in terms of particle exchanges ���� This met with partial success� For �N elastic scattering�
Donnachie and Hamilton ��� showed that exchanges of N � �	��
��� � and � provide long range
attraction in P��� D��� D�� and F�� partial waves where prominent resonances are observed�
Furthermore� these exchanges account for repulsive partial waves P��� P��� P��� D�� and D���
However� meson exchanges failed to account for the � meson� This approach was therefore
quickly overtaken by the quark model� which has provided a semi�quantitative picture of most
of the known resonances�

However� there are cracks in this framework� Firstly� it does not account for the � and �
poles� a�	
��� and f�	
���� Secondly� there are many examples where resonances appear at or
close to sharp S�wave thresholds� e�g� f�	
��� and a�	
��� at the K �K threshold� f�	����� at
the �� threshold� X	
���� at the �D�D

�

� threshold� S��	����� and D��	����� close to the �N
threshold�

There is a straightforward explanation of how S�wave thresholds attract these resonances �
��
Consider f�	
��� as an example� Its amplitude for ��� KK is given to �rst approximation by
the Flatt�e formula ����
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���� �
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where phase space � is factored out of T � Here Gi � giFi	s� and gi are coupling constants� Fi

are form factors� Writing D	s� � M� � s � i�	s�� a more exact form for D	s� is M� � s �
Re�	s�� i�	s�� where
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Fig� �	a� illustrates the dispersive term Re �	s� for f�	
��� using FKK � exp	�
k�KK�� where
kKK is KK momentum in GeV�c� Re � acts as an e�ective attraction� Parameters of f�	
���
are known� Ref� �
� gives tables of pole positions when M � G� and G� are varied� If M is as low
as ��� MeV� there is still a pole at ��� � i�� MeV� for M in the range �������� MeV� there is
a pole within �
 MeV of the KK threshold� The moral is that a strong threshold can move a
resonance a surprisingly long way� For f�	
���� G�

KK � ��� GeV��
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Figure �� 	a� Re�KK	s� and G�
KK�KK	s� for f�	
���� normalised to � at the peak of G�

KK�KK�
	b� the loop diagram for f�	
��� � K �K�

It is important to realise that Re � is not an �optional extra � It is a rigorous consequence
of analyticity for all s�channel decay processes� In principle these terms are required for all
resonance decays� It is then logical to include also t� and u�channel exchanges�

P�wave thresholds lead to broader e�ects because of the k� momentum dependence of phase
space� There are in principle contributions to �	���� and a�	������ but in practice these e�ects
may be accomodated by �tted form factors describing decay widths�

The virtue of Eq� 	�� is twofold� Firstly� it is easily evaluated� secondly it illustrates graph�
ically the e�ect of the form factor F � Re �	s� goes negative close to the peak of G�� and
subsequently has a minimum at � ��� GeV� thereafter it slowly rises to � as M ���

There are alternatives to evaluating Eq� 	��� The same result may be obtained by evaluating
the loop diagram of Fig� �	b�� Secondly� solving the Bethe�Salpeter equation is equivalent
to evaluating all loop diagrams� It is straightforward in principle to include s� and t�channel
exchanges in solving this equation�

Several authors have adopted a similar approach� Ja�e ��� gives the equations and discusses
many of the implications in Section �C of his paper� The Hamiltonian for a q�q state decaying
to meson�meson obeys

H! �

�
H�� V
V H��

�
!� 	
�

H�� describes short�range con�gurations� H�� refers to ingoing and outgoing states and should
include t� and u�channel exchanges� V accounts for the coupling between them due to s�channel
decays�

Weinstein and Isgur pursued the connection between q�q� qq�q�q and meson components in their
work on K �K molecules ���� Van Beveren and Rupp ��� construct a model where the short�range
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attraction in H�� is approximated by a harmonic oscillator potential� which couples at radius R
to ingoing and outgoing waves corresponding to decay channels� Despite the approximations�
this gives valuable insight� Their algebraic solution satis�es the Schr"odinger equation and is
therefore fully analytic� It includes e�ects of thresholds fully� although not yet the s� and
t�channel exchanges�

Barnes and Swanson ��� consider meson loops due to pairs of D� D�� Ds and D�

s mesons� using
the �P� model for decays� For �S� �P and �P charmonium states� they �nd that large mass shifts
due to these loops may be �hidden in the valence quark model by a change of parameters� The
important conclusion from their work is that two�meson continuum components of charmonium
states may be quite large� with the result that the constituent quark model predicts masses
which are too high� particularly near the thresholds of opening channels�

Oset and collaborators demonstrate in a series of papers that some resonances may be under�
stood as �dynamically driven states �
� ���� ���� ���� ��
� ���� ���� ���� due to s� t and u�channel
exchanges� They take the view that �qq and qqq components are not needed at all in these cases�
This takes us full circle back to the approach tried by Chew�

How is it that Oset et al� are able to reproduce known resonances 	approximately� with meson
exchanges alone# They use S�wave form factors which are adjusted to get one predicted reso�
nance of each paper at the right mass� Resulting amplitudes are strong� The form factors may
be mocking up short range q�q components� The importance of their work is the demonstration
that components derived from meson loops are large� and should be taken into account�

On the other hand� the well known J�!� �P�	
����� �P�	
����� �P�	
����� !	�S� and !	
����
are interpreted naturally as c�c states 	with tiny admixtures of the mesonic states to which they
decay�� Therefore it is logical to include the c�c component into all other resonances unless there
is a good reason why not� One should not be deterred from invoking q�q and qqq components to
get all resonances with their correct masses and widths�

The central premise of the present paper is that both H�� and H�� play essential roles in
all cases� This is di�erent from approaches where only one of the two components in the
Hamiltonian contributes� for example the approach based on four�quark mesonic states�

An approach which has recently been popular is to suppose that �molecules are formed from
�q�qqq con�gurations ���� ������
� ���� ����� The well known question over this approach is why
so few tetraquarks are observed� Vijande et al� ���� throw light on this issue� They study the
stability of pure c�cn�n and cc�n�n states in the absence of diquark interactions� They �nd that
all �� c�cn�n states with J � �� � or � are unstable� Their calculation points to the conclusion
that such molecules are rare unless either 	i� there are attractive diquark interactions� or 	ii�
coupling to meson�meson �nal states contributes� as proposed here�

The layout of remaining sections is as follows� Section � considers a useful analogy with the
covalent bond in chemistry� This analogy helps visualise the main features of mixing� Section

 reviews approximations to be used in �tting data� Section � considers �� �� a�	
��� and
f�	
���� Section � discusses �rstly X	
���� and concludes� as do several authors� that data
require a linear combination of c�c and �DD�� Next it reviews the status of light mesons with
JP � ��� �� and ��� The objective is to demonstrate that observed states lie close to straight
line trajectories when masses squared are plotted against radial excitation number� There are
some signi�cant deviations attributable to thresholds� However� the overall picture is consistent
with rather regularly spaced q�q states consistent with Regge trajectories� Such trajectories are
usually attributed to $ux tubes joining q�q pairs and expanding as spin J increases� There is no






obvious reason why dynamically generated states should follow such a regular sequence� Section
� makes remarks on desirable experiments and Section � draws conclusions�

� A helpful analogy with the covalent bond in chemistry

The wave function ! of Eq� 	
� is a linear combination of q�q 	or qqq� and uncon�ned MM 	or
MB�� The key point is that two attractive components H�� and H�� lower the eigenstate via the
mixing� This is a purely quantum mechanical e�ect� There is a direct analogy with the covalent
bond in chemistry� The solution of Eq� 	
� is given by the Breit�Rabi equation�

E � 	E� � E���� �
q

	E� � E��� � jV j�� 	��

where E� and E� are eigenvalues of separate H�� and H��� One linear combination is pulled
down in energy�

In chemistry� H is in principle known exactly� The discussion of the hydrogen molecule 	and
more complex ones� is given in many textbooks on Physical Chemistry� for example the one of
Atkins ��
�� Consider two hydrogen atoms labelled A and B� combining to make a hydrogen
molecule� H�� and H�� describe A and B� The equation describing this pair is precisely the same
as Eq� 	
�� except that H�� and H�� have a di�erent radial dependence to the mesonic case�
Fig� �	a� sketches contours of electron density for the lower state of Eq� 	��� The e�ect of the
mixing is that the electron density adjusts so that the two electrons are somewhat concentrated
between the two ions� In more detail� the wave�function for the atomic molecule is expanded in
terms of a complete set of atomic H orbitals� For hydrogen� these are just the energy levels of
a single hydrogen atom� For a carbon atom� they are replaced by wave functions allowing for
shielding of the Coulomb �eld of the nucleus by electrons in the lowest atomic levels� It is also
necessary to anti�symmetrise wave functions� Atkin gives algebraic forms which approximate the
electronic wave functions� With modern computing techniques� the Variational method adjusts
the coe%cients of the expansion in terms of excited states to describe wave functions with great
accuracy�

Figure �� Sketch of the electron density in the hydrogen molecule for 	a� lower and 	b� upper
states of Eq� 	���

Two key points are that 	a� the extension of the wave function into the overlap region lowers

�



momenta of electrons� hence their kinetic energy� 	b� the whole system shrinks slightly and the
binding of electrons to both nuclei increases�

In the Particle Physics case� the procedure is conceptually identical� The mesonic wave
function for the ground state is sucked into the region of overlap� producing an attractive
interaction between q�q and meson�meson� This implies that q�q will decay to �nal states where
the interaction is indeed attractive� Fig� �	b� shows the electron density for the upper state of
Eq� 	��� In this case� electrons are repelled from the overlap region� increasing their momenta
and kinetic energies� hence the energy eigenvalue� The second e�ect is that the increased binding
for the lower state draws the quarks slightly down the Coulombic part of the QCD potential�
shrinking the radius of the state� The converse happens for the upper state� Calculation of the
mixing requires the radial wave functions of q�q states� which can be evaluated from the funnel
potential� A di%culty� however� is that the radial form of the mixing element V between q�q and
MM parts of the wave function is unknown� and has to be guessed� The calculations of Oset
et al� concern purely the mesonic part of the wave function�

The conceptual analogy is simple� mixing between q�q and meson�meson will lower the eigen�
value of the lower of the two states given by 	��� The Variational Principle governs this eigenvalue
and the wave function� The numerator of Eq� 	�� is positive de�nite� It is therefore unavoidable
that Re �	s� goes negative at large s� The Variational Principle will cut o� the high mass tail
of the resonance� so as to minimise the repulsive part of Re �	s�� hence reducing the resonance
width� A feature of light q�q and qqq resonances is that their widths are roughly equal to the
spacing between radial excitations� It is likely that widths are restricted to this value by a feed�
back mechanism which creates an orderly sequence of resonances� A general feature of decays
of high mass resonances is that S�wave decays to low mass �nal states are weak� Decays tend
to be to high mass con�gurations with small momenta� High spin states generally decay with
large angular momenta� where the centrifugal barrier delays the opening of the threshold�

There is little evidence for decays to I � � �� pairs or I � 
�� K�� where interactions are
repulsive ����� The commonly observed SU	
� octets and decuplets are those whose decays do
not lead to such repulsive �nal states� Higher representions such as ��� �� and ��� do lead
to such repulsive �nal states� The natural interpretation is that repulsive �nal states actively
inhibit formation of representations higher than octets and decuplets� The Variational Principle
arranges that the con�gurations produced are those where repulsive �nal states are suppressed�

� Approximations

A di%culty at present is that the form factor used in Fig� � is not known precisely� The usual
Flatt�e formula� Eq� 	��� serves as an approximate �tting function where M and g� are �tted
empirically� However� the cusp changes slope abruptly at the KK threshold� Analysis of data
then requires a precise knowledge of experimental resolution if the cusp is included in the �t�
This is illustrated for a�	
��� in Ref� ����� where Crystal Barrel data on �pp � 	���� are �tted
including the cusp� The mass resolution� 
�� MeV� is known accurately in this case� but is large
enough to smear out the cusp seriously� The cusp plays a strong role if the energy resolution is as
good as � MeV� A further detail is that separate thresholds for K�K� and K� �K� have not been
used in Fig� � for simplicity� these two thresholds may be taken into account straightforwardly
and the equations are given by Achasov and Shestakov �����
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��� Broad Thresholds

Although broad thresholds may play a role in forming a resonance� the dispersive term Re �
eventually has only a small e�ect on the experimental line�shape in most cases� There is�
however� a crucial detail which has often been neglected in �ts to data�

Let us consider as an example �� � ��� The Breit�Wigner amplitude in this case is

f �
�

k

M
q

&��	s�
q

&��	s�

M� � s� Re �	s�� iM&total	s�
� 	��

Here� k is the �� centre of mass momentum 	allowing for the incident $ux�� The �� phase
space is approximately constant� However� it is essential to allow for the rapid s�dependence of
&��� Many experimental analyses ignore this point and �t jf j� to a Breit�Wigner resonance of
constant width�

This is a critical point for many resonances in the mass range ��� GeV� where thresholds are
opening� Fig� 
	a� shows line�shapes of f�	�
��� � �� and �� as an example� There is a large
di�erence between them� This is the source of the large spread in masses reported by the Particle
Data Group 	PDG� for f�	�
��� ����� Anisovich et al� ���� determine the K�matrix pole position
�
�� � �� MeV from a combined analysis of data on ��p � ����n and K �Kn� ���� � �����
and Crystal Barrel data for �pp at rest � 
��� ��		� ������� K�K���� K�

SK
�
S�

�� K�K�
S�

�

and �pn� ������� K�
SK

��� and K�
SK

�
S�

�� the last three determine P�state annihilation� This
analysis did not explicitly allow for Re �	s� in the denominator� That was taken into account
in Ref� ��
�� resulting in a mass of �
�
� �� MeV� in close agreement with Anisovich et al� The
peak in ��� if judged from the mean of half�heights� is �
�� MeV� in good agreement with the
determination of mass from �� data quoted by the PDG�

0

0.2

0.4

0.6

0.8

1

0.8 1 1.2 1.4 1.6 1.8

Mass (GeV)

In
te

n
si

ty

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-0.5 0 0.5 1

Re f

Im
 f

Figure 
� 	a� Line�shapes of f�	�
��� for ��� �� 	full�� a Breit�Wigner amplitude of constant
width 	dotted�� and ��� �� 	dashed�� 	b� the Argand diagram� with masses marked in GeV�

The Argand diagram from Ref� ��
� is shown in Fig� 
	b�� It follows a circle closely� The
conclusion is that experimentalists can safely omit Re� as a �rst approximation� However�
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phase shifts depart signi�cantly from a Breit�Wigner amplitude of constant width� At low mass�
where �� phase space is small� &total is small and the phase shift varies rapidly� at high mass it
varies more slowly� For high quality data� a second pass including Re �	s� is desirable

Likewise 		����� and 		����� may be �tted as two decay modes of a single 		����� �
��� The
		����� is seen only in KK�	�
��� where phase space rises from threshold near �
�� MeV as
momentum cubed in the �nal state� the 		����� is seen in �K S�waves and 	�� where phase
space changes slowly�

� �� �� a������ and f������

The � and � poles are well predicted in both mass and width by the Roy equations �
�� �
���
which are based on t� and u�channel exchanges� Exchange of �	���� and K�	�
�� make strong
contributions� The Julich group of Janssen et al� �

� showed that meson exchanges account
for f�	
��� and a�	
���� It seems unavoidable that all four states �� �� a�	
��� and f�	
��� are
strongly driven by meson exchanges� They are conspicuous because q�q states lie in the mass range
�
������� MeV� There is one feature� however� which is hidden in the meson exchanges going
into the Roy equations� They impose the Adler zero coming from chiral symmetry breaking�
This is a short�range e�ect�

Ja�e has proposed �
�� that �� �� a�	
��� and f�	
��� are colourless ��quark states made
from a coloured SU	
� � combination of qq and a �� combination of �q�q� This naturally leads
to a light �� an intermediate � and the highest 	degenerate� masses for a�	
��� and f�	
���� in
agreement with experiment� Note� however that meson�meson con�gurations lead to a similar
spectrum except that the a�	
��� might lie at the 	� threshold� This does not happen because
of the nearby Adler zero at s � m�

� �m�
���� the a�	
��� migrates to the KK threshold because

the Adler zero in this case is distant� at s � m�
K�� �
��� Ja�e s model does not agree well with

the observed decay branching ratio 	� � KK��	� � ��� near � GeV� �
�� A serious problem
is that� from the width of the � pole� the � width is predicted to be 	�
�� 

� MeV� much less
than the latest value� ��� � ��	stat�� ��	syst� MeV �����

A further point is that Maiani et al� ���� extend Ja�e s scheme to �cq���qq� con�gurations �����
They give a �rm prediction for the observation of analogues of a�	
��� in c�sn�n with I � � and
charges �� �� and ��� There is no evidence for such states as yet�

Although experimental line�shapes are not a�ected strongly for broad resonances� one should
not jump to the conclusion that broad resonances are pure q�q states� The calculations of Oset et
al� show that mesonic components are potentially large� A related point is what happens to the
upper energy combinations appearing in Eq� 	��� If mesonic components are large� these upper
combinations are moved upwards substantially� As Ja�e remarks� they become broad and are
likely to fall apart� creating a broad high mass background� The high mass tail of the � does
behave in this sort of way above � GeV� due to coupling to �� ��
�� however� the precise form
of this high mass behaviour is poorly known because of lack of data on ��� ���
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� Applications

��� X������

It is evident from the width of the cusp in Re� of Fig� � that a cusp alone fails to �t the � 

MeV width of X	
���� ����� the coupling to �DD� is weaker than that of f�	
��� to KK� but
the shape of the dispersion curve is similar�

Several authors conclude that a linear combination of c�c and �DD� is likely in X	
����� Eichten
et al� �
�� remark that this explains the low mass of X	
���� compared to early calculations
based purely on c�c� Suzuki �
�� points out that the large production rate of X	
���� in CDF data
from the Tevatron requires that it has a large wave function at the origin� hence a substantial
c�c component� for a pure molecular state the observed production rate is nearly � orders of
magnitude smaller than CDF observe� Conversely� the molecular re�arrangements �DD� � �J�!
and �J�! account naturally for the weak decays which are observed� here� the strength of �DD�

binding is unimportant� Bignamini et al� con�rm that the CDF production rate is about �
orders of magnitude too large to be explained by a molecular component alone ����� Swanson
���� also favoures mixing between �cc and a molecular component�

Recently Lee et al� ���� have made a detailed �t to existing data� solving the Bethe�Salpeter
equation � equivalent to evaluating the dispersion integral of Eq� 	��� The binding energy of
X	
���� arises essentially from �DD� loop diagrams� The magnitude of � exchange is known from
the width of the decay D� � D�� other exchanges are modelled� However� meson exchanges
are not the essential source of binding� They simply need to be attractive� so that �D and D�

approach one another� Both �D�D
�
� and D�D� channels contribute� though the X	
���� appears

at the lower threshold� The binding energy is controled sensitively by the form factor�
Kalashnikova and Nefediev conclude that X	
���� has substantial components of both �cc

and �DD� ��
�� They point out that Babar data for the ratio of branching ratios BR�X	
���� �

!�	�S���BR�X	
���� � 
J�!� � 
�� � ��� ���� agrees within a factor � with estimates for a
�cc state ����� The prediction of Swanson for a pure molecule is � �� ���� ����� Also Gutsche et
al� conclude that some component of c�c is essential to explain the large rate for X	
���� � 
!�

����� So there seems to be widespread agreement that X	
���� is a linear combination of c�c and
D �D�� The precise combination is not yet agreed�

The narrow width of X	
���� arises because its decay modes to ����J�!� �J�! and possibly
�	
����� are OZI suppressed� therefore weak� Its coupling to �D�D�� over the width of the
resonance is also weak� However� the coupling to �DD� rises rapidly above threshold and produces
the binding via virtual loop diagrams� Kalashnikova and Nefediev conclude that the �cc state
is attracted to the �DD� threshold� Ortega et al� ���� reach a similar conclusion that X	
����
must have a large �DD� component�

��� Not all cusps are resonances

There is a cusp at the �d threshold ��
�� but no resonance� The exotic Z�	��
�� of Belle ����
is at the threshold for D�	�����D�	����� and has a width close to that of D�	������ The data
can be �tted as a resonance� but can also be �tted successfully by a non�resonant cusp� see Fig�
� of �
�� Additionally� Babar do not con�rm the existence of the Z	��
���
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��� Light Vector Mesons

Crystal Barrel data in $ight� taken together with other data at lower energies� provide evidence
that resonance masses squared for each spin�parity lie close to straight line trajectories �����
Updated examples are shown here in Fig� 
� They resemble Regge trajectories� except they
are drawn for one set of quantum numbers at a time� There is a striking agreement for all JP �
with a common slope of ����
 � ����
 GeV� for each unit of excitation� A similar regularity
is observed for baryon resonances with similar slope ����� Such regularity agrees with states
having a large q�q component� but there is no direct connection with molecules or dynamically
generated states�
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Figure �� Trajectories of �nn resonances� 	a� I � �� JPC � ���� 	b� I � �� JPC � ���� 	c�
I � �� JPC � ��� and ����

An application of the idea that some resonances mix strongly with channels to which they
decay concerns �	�
���� This state lies close to the N �N threshold and it is well known that the
�pp �S� interaction is strongly attractive� Babar and E��� observe it in decays to 
��
�� and
�	������� ����� These are strong decay modes in N �N annihilation� It is natural to interpret
�	�
��� as the n � 
 �S� n�n state mixed with �pp� Then other � states fall into place as follows�
	ii� �	����� �� D�� n � �� It is observed in three sets of data� ����� �� and a��� There
are extensive di�erential cross section and polarisation data on �pp � ���� from the PS ���
experiment down to a mass of �
�� MeV 	a beam momentum of 
�� MeV�c� ��
�� There are
further similar data above a beam momentum of � GeV�c from an experiment at the Cern PS
of Eisenhandler et al ����� The polarisation data determine the ratio of decay amplitudes to
�D� and �S� �pp con�gurations� rD�S � g�pp	�D���g�pp	�S�� � ���� � ��
�� for the low available
momentum in �pp� this is a rather large �D� component�
	iii� �	����� �� S�� n � �� It is seen in ���� data of ��
� and ���� and in Crystal Barrel data
for a�	
���� and in GAMS and Babar data ����� 	the PDG incorrectly lists the �
�� MeV state
of Hasan ���� under �	������ but it is the �	������� For �	������ rD�S � ������ �����
	iv� �	����� �� D�� n � 
� It is observed only in two sets of data� ���� and in Crystal Barrel
data for a�� and therefore needs con�rmation� it has a large error for rD�S� The �	������ �	�����
and �	����� are consistent within errors with a straight trajectory with the same slope as other
states� see Fig� �	b��
	v� The Y 	����� ���� observed by BES � and Babar in �f�	
��� and K�K�f�	
��� makes a






natural s�s partner for �	������ Note that there is su%cient momentum in the �nal state to
allow a �D� state�

��� J
P � �� light mesons

The f�	����� lies at the �� threshold� The PDG quotes an average mass of ���� � �
 MeV�
although Baker et al� ���� �nd a mass of ��
����	stat��
	syst� MeV when Re�	s� is included
in the analysis� This is distinctly lower than the mass of a�	������ in the range �������
� MeV�
For almost massless quarks� one expects f� and a� masses to be close� So f�	����� has clearly
been attracted to the �� threshold� This requires a molecular component� The f�	����� appears
clearly in ��� as observed by several groups ����� It should appear in �� with g��� � 
g��� by
SU	�� symmetry� which predicts g	����� � �g	��� because of the similar masses of light quarks
and the close masses of �	���� and �	�����

The f�	����� � �� observed by GAMS and VES ���� may be �tted by folding the line�shape
of f�	����� with �� phase space and a reasonable form factor ����� together with the dispersive
term Re�	s�� There is no need for separate f�	����� and f�	������ this has confused a number
of theoretical predictions of the sequence of �� states�

Fig� �	b� shows trajectories for ��� states� including those above the �pp threshold from
Crystal Barrel data in $ight� using trajectories with a slope of ���� GeV�� The PDG makes a
number of serious errors in reporting the Crystal Barrel publications� Those mistakes distort
conclusions to be drawn from the data� It lists f�	����� under f�	�
���� which is observed in ��
and KK by all other groups� The f�	�
��� is naturally interpreted as an s�s state� Both f�	�����
and f�	��

� are observed in a combined analysis of ten sets of data� four sets of PS��� and
Eisenhandler et al�� together with Crystal Barrel data for 	����� 	������ 			� ����� 		 and 		��
The data from the last 
 channels are �tted to a linear combination cos� jn�n 
 � sin � js�s 

and the mixing angle is determined to be � � ���� for f�	����� and � � ������ for f�	��

�
����� So the f�	����� is certainly not an s�s state� From polarisation data� the f�	����� is
dominantly �P� with rF�P � ����� ���
 	de�ned like rD�S� and the f�	�
��� is largely �F� with
rF�P � ���� � ���� The PDG fails to list the f�	��

� at all� despite many prompts over a �
year period� It is observed in � channels� ��� 		� 		�� f�	 and a�	�
�����

A further comment is that the f�	����� is conspicuous by its absence from Crystal Barrel
data in $ight� All s�s states such as f�	����� are produced very weakly in �pp interactions� The
f�	����� is observed mostly in K �K and 		 channels� It is therefore naturally interpreted as an
s�s state� the partner of f�	�
����

An important systematic observation is that �pp states tend to decay with the same L as the
initial �pp state� There is a simple explanation� namely good overlap of the initial and �nal states
in impact parameter� This observation may be useful to those calculating decays� hence mesonic
contributions to eqns� 	���	���

��� Light �� mesons

There is extensive evidence for a radial excitation of f�	�
��� at ��
� MeV� The facts run as
follows� In BES � data for J�! � �K�K�� there is a clear f�	����� � KK ����� In high
statistics data for J�! � ������ ��
� there is no visible f�	������ setting a limit on branching
ratios� BR	f�	����� � ����BR	f�	����� � KK� � ���� with 
�' con�dence� Thirdly� in

��



J�! � ������ there is a �� peak requiring an additional f�	��
�� decaying to �� but weakly
to KK ����� There is ample independent evidence for it in J�! � 
�� ���� ���� ��
� and
�pp � 		�� in $ight ����� BES � also report an �� peak of 
� events at ���� MeV� JP � ��

is favoured ����� It is con�rmed by VES data at the Hadron�
 conference ����� The BES data
may be �tted well with the f�	��
�� line�shape folded with �� phase space and a form factor
exp�
k���� There is some scatter on Fig� �	c� of masses about the line of standard slope� this
may well be because masses of �� states tend to be the most di%cult to deterine due to isotropic
angular distributions�

A comment is needed on f�	����� of the Particle Data Tables� It does not �t in naturally in
Fig� �	b�� The spin analysis of the GAMS group ���� �nds a very marginal di�erence between
spin � and spin �� It rests on a �ne distinction in the angular distribution depending strongly
on experimental acceptance� however� no Monte Carlo of the acceptance is shown� With the
bene�t of hindsight� it seems possible that this was in fact the �rst observation of f�	��
���

Summarising subsections ��
 to ���� there is strong evidence in Figs� �	a��	c� that resonances
lie close to straight trajectories as a function of mass squared� These may be redrawn as Regge
trajectories for ��� ��� 
�� etc�� see Fig� �� of ����� Regge trajectories are naturally explained
by a $ux tube joining q and �q� the energy stored in the $ux tube explains the linear relation
between J and mass squared� There is no clear reason why molecules or dynamically generated
states should follow such trajectories�

��� Glueballs

Morningstar and Peardon ���� predict glueball masses in the quenched approximation where q�q
are omitted� When mixing with q�q is included� mixing is likely to lower glueball masses�

� Remarks on further experiments

Further progress towards a complete spectroscopy of light mesons and baryons is important
for an understanding of con�nement � one of the key phase transitions in physics� Progress
is possible by measuring transverse polarisation in formation processes� Consider �pp as an
example� The high spin states appear clearly as peaks� e�g� f�	����� and f�	�
���� These serve
as interferometers for lower states� However� di�erential cross sections measure only real parts
of interferences� This leaves the door open to two�fold ambiguities in relative phases and large
errors if resonances happen to be orthogonal� A measurement of transverse polarisation normal
to the plane of scattering measures Tr � A��yA 
� where A is the amplitude� This measures
the imaginary part of interferences� What appears to be less well known is that transverse
polarisation in the plane of scattering gives additional information for three and four�body �nal
states with a decay plane di�erent to the plane de�ned by the beam and initial state polarisation�
This depends on Tr � A��xA 
� and measures the real parts of exactly the same interferences
as appear from the �y operator� Longitudinal polarisation depends only on di�erences of two
intensities and is less useful�

An example of a simple experiment which would pay a rich dividend is to measure such
polarisations with the Crystal Barrel detector at the forthcoming GSI �p source� over the same
mass range as used at LEAR� An extracted beam with these momenta will be available at the

��



FLAIR ring� Such measurements could indeed have been made at LEAR if it had not been
sacri�ced to the funding of the LHC� The present situation is that the amplitudes for I � ��
C � �� states are unique for all expected JP � For I � �� C � ��� they are nearly complete� but
there are some weaknesses for low spin states� notably �S� which leads to a $at decay angular
distribution� For I � �� C � �� there is a two�fold ambiguity for 	� �nal states and crucial
JP � �� states are missing� For I � �� C � �� there are many missing states�

The measurements required are to 	i� 	� and 		� 	I � �� C � ���� 	ii� �� 	I � �� C � ����
	iii� �	 and �	�� 	I � �� C � ���� A measurement of 	���� would cross�check the exist�
ing solution and provide information on interferences between singlet and triplet �pp states� As
well as locating missing states� this would build up a clear picture of the many decays observ�
able� for comparision with meson exchange processes� All of these channels can be measured
simultaneously with the existing Crystal Barrel detector�

A Monte Carlo simulation of results extrapolated from existing analyses predicts a unique
set of amplitudes for all quantum numbers� Data are required from � GeV�c down to the lowest
possible momentum � 
�� MeV�c� Seven of the nine momenta studied at LEAR were run in 

months of beam time� so it is not a long experiment� nor does it demand beam intensities above
� � ����p�s� A Monte Carlo study shows that backgrounds from heavy nuclei in the polarised
target 	and its cryostat� should be at or below an average level of ��'� this is comparable with
cross�talk between �nal states and is easily measured from a dummy target�

Baryon spectrocopy would also bene�t from similar ��p polarisation measurements in inelas�
tic channels� A transverse magnetic �eld is required for compatibility with the polarised target�
Rates are enormous� so running time is governed by down�time required for polarising the target
and changing momenta� Data at 
� MeV steps of mass appear su%cient� except close to ��body
thresholds such as �N �

� Conclusions

The objective of this paper has been to make a case for what appears logically necessary� namely
that both quark combinations at short range and decay channels at large range contribute to
the eigenstates� The X	
���� is a prime example of mixing between c�c and meson�meson in the
form of �DD��

In view of the calculations of Oset et al� and Barnes and Swanson� it seems likely that
many resonances contain large mesonic contributions� The straight trajectories of Figs� �	a��	c�
are naturally explained by Regge phenomenology� molecules and dynamically generated states
provide no obvious explanation of these trajectories� The large mass shift between f�	�����
and a�	����� indicates meson mixing into f�	������ lowering the eigenvalue in analogy with the
covalent bond in chemistry�

The data on a�	
���� f�	
���� f�	����� and �	�
��� �t naturally into this picture� There
must be a large mesonic contribution to the nonet of �� �� a�	
��� and f�	
���� but there could
be a modest diquark component as well� It is likely that there will be a small q�q component�
but this is suppressed by the L � � centrifugal barrier for �P� combinations�

Experimentalists must take care to �t the s�dependence of the numerator of Breit�Wigner
resonances due to phase space� e�g� f�	�
��� � �� has a very di�erent line�shape to f�	�
��� �
��� The denominator may be �tted as a �rst approximation with a Breit�Wigner resonances of

��



constant width� however� for high quality data� the e�ect of the dispersive component in the real
part of the denominator matters� For sharp thresholds� e�g� f�� KK� the Flatt�e formula is an
approximation� with high quality data� the correction due to the cusp in Re �	s� is important�
but requires precise information on experimental resolution�

Further experiments on transverse polarisation in inelastic processes are needed and appear
to be practicable without large cost�
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