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1. INTRODUCTION AND SCOPE

This review principally concerns itself with kinematic methods of mass reconstruction, and in

particular those that have been considered for use with hadron colliders, notably the Large Hadron

Collider (LHC).

Specifically, kinematic methods demand that at least some particles are sufficiently close to their

mass shells that their energy-momentum Lorentz invariant pμpμ ≈ m2 can be used to constrain

their masses. Such methods aim to determine, to bound, or to otherwise constrain p in order

to learn about m. Assuming momentum and energy conservation, one also can learn about the

four-momenta of – and hence constrain the masses of – particles which are not directly observed

experimentally. Two important examples are (1) unstable particles which decay and (2) weakly

interacting particles which, though stable, do not interact with the detector.

It is of course true that when further information – beyond the purely kinematic – is either

known or assumed that one could use that information too. With sufficient theoretical and ex-

perimental understanding, and provided the calculation is tractable, one could obtain maximal

information about an event by comparing its statistical likelihood under different mass (or spin

or other) hypotheses. The ability to numerically marginalise over uncertain information (such as

momentum components of invisible particles) has made such calculations computationally feasible.

This approach – sometimes called the Matrix Element method – has been employed at the CERN

Spp̄S (e.g. [1]), LEP (e.g. [2]) and the Tevatron (e.g. [3]), and proposals exist for the LHC (e.g. [4]).

Such methods are ideal for making precise statements about parameters when some confidence

about the underlying model has been gained. They are however unwieldy in the early stages of

an investigation, when there are usually very many interesting hypotheses to test, each with a

wide range of allowed parameters. Another non-kinematic method of obtaining information is the

investigation of masses with virtual particles, far from their mass shells. A well-known example

is the constraint on the Higgs Boson mass (assuming e.g. the Standard Model as the underlying

theory) from loop contributions to electroweak observables [5].

The main advantage of the kinematic approaches reviewed in this article is that they make

very few assumptions about the details of the underlying physical model (gauge groups, spins

etc). This means that they can provide rather robust information, and act as a first step towards

understanding the underlying theory.
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TABLE I: Cartoons indicating various decay topologies, and relevant sections of this review. Dashed lines

indicate ‘invisible’ particles which traverse the apparatus undectected. Blobs indicate decays which may

(or may not) have proceeded via one or more on-mass-shell intermediates. References to sections should be

considered indicative rather than exhaustive.
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1.1. Outline of the Review

Many, though not all, mass measurement techniques can be broken down into three phases:

(1) the postulation of a hypothesis or hypotheses about the ‘decay topology’ – by which we mean

the sequence of decays which involve the particles whose masses are to be determined, (2) the

identification of the most appropriate final-state observables, and (3) the construction of constraints

or measurements of the target particle masses, using those observables.

In what remains of the introduction, we say a few more words about these three phases. In

Section 1.2 we will outline in more detail what we mean by decay topologies and kinematic hy-

pothesis. Indeed, readers new to the field may find that section a useful starting point from which

to determine which mass measurement techniques are relevant to their needs. We will go on to

talk in general terms about the basic observables which we believe are in our remit, and will then

comment on the nature of the secondary observables which are derived from them and which are

subsequently used to build the mass measurement constraints. Subsequently we will note some of

the issues that present recurrent challenges faced by mass determination methods of all kinds - in

particular ambiguities of the final or internal state and of the possibility that multiple decay chains

may be present in a single event.

Thereafter, the main part of the review is divided up into sections which, to first order, each

cover the mass measurement techniques which are appropriate to a specific decay topology, i.e. to a

specific set of assumptions about the identities of the particles participating in the observed decays,

and the kinematical structure of those decays.

Broadly speaking, the review starts with the decay topologies or hypotheses which make the

fewest assumptions – for example some assume nothing more than “that momentum is conserved”

– and from there the review progresses to the hypotheses which make progressively greater numbers

of assumptions. For example one of the last techniques discussed assumes that the experimenter

is able to identify samples of quintuples of events, each of which share the same five-particle

topology and particle content (though differing in kinematics), and which together amount to an

over-constrained system from which the unknown masses can be determined.

The most significant step-changes in the number of assumptions made by the increasingly com-

plex hypothesis in the main part of the view concern the following: (1) increasing numbers of

decay products, (2) increasing numbers of invisible decay products, (3) increasing lengths of “de-

cay chain”, (4) increasing numbers of decay chains present in each event, (5) assumptions making

use of pairs of decay chains related (in single events) by a mutual interaction (recoil), and (6)
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assumptions requiring increasingly pure samples of events, and (7) assumptions requiring greater

control of detector acceptances and efficiencies and background shapes over wide ranges.

In the appendix we gather together some definitions of kinematic variables and useful results.

1.2. Decay Topologies or Hypotheses

In the literature the shorthand “topology” is used to indicate a sequence of decays of heavy

objects to lighter ones. The constituents of what is often referred to as the “final state” may

actually have further non-trivial dynamics (e.g. showering and hadronisation of quarks or gluons

to jets). They might be indistinguishable (e.g. identical leptons) or indeed may be unobserved

(e.g. neutrinos).

A list of some topologies and links to corresponding sections of this review can be found in

Table I on Page 5. Note that hypotheses of a particular event topology may differ in their details

yet still provide a correct description of that event. For example hypothesis (1) might be that

particle A decayed to a final state comprising particles X, Y and Z, without specifying any details

about the intermediate mechanism. A refinement, hypothesis (2), might assume an explicit form

of the decay chain, e.g. A → BX followed by the decay B → Y Z. Provided that both hypotheses

do indeed correspond to the event observed it will be possible to extract more information from

the more detailed hypothesis (2): for example the mass of the intermediate particle B.

The topologies of Table I are therefore not all mutually exclusive. There is in fact a tension

between the desire to assume more details about topology – in order to obtain more information

about the event – and the need, in the presence of many competing processes, to propose something

general enough that it stands a respectable chance of matching the observed event.

As can be seen from Table I, parts (though by no means all) of this review are concerned with

topologies in which two particles are believed to have been produced in the initial state. This is

partially motivated by the expectation that in many models, new particles are odd under a Z2

parity (such as R-parity for supersymmetry) under which Standard Model particles are all even.

The lightest such parity-odd particle, if stable for cosmological timescales, is expected to be weakly

interacting, therefore to be unobserved by the apparatus. Invisible particles (which are not unique

to such models) are represented by dashed lines in Table I.
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1.3. Observables and other quantities defined per-event

The main information which is obtained from a hadron collider event is the momentum and

energy of the observable particles which impinge on the active volume. Particles which are detected

will have their reconstructed momenta and energy smeared by the experimental resolutions, and

this smearing will need to be understood in calibration channels and modelled by those interpreting

the experiments. Detailed understanding of the detector response is clearly necessary to perform

precision measurements, and is also a key component approaches which combine information from

different sources (e.g. different events) in order to over-constrain the kinematics.

Not all particles are necessarily observed – for example neutrinos and any other weakly-

interacting particles are expected to pass through the apparatus undetected. What is more, it

is not usually possible to reconstruct particles with small angles to the beam-pipe – for example

the hermetic region of the LHC general purpose detectors [6, 7] is restricted to a fiducial pseu-

dorapidity of |η| <∼ 5 where η = − log tan(θ/2) and θ is the angle relative to one of the beam

directions.

The incoming parton momenta are generally not known in hadron-hadron collisions, so the

centre-of-mass energy and the longitudinal boost of the centre-of-mass frame are not fixed by

the initial conditions. The sum of the momenta of any invisible particles can be inferred from

conservation of momentum.

Except in the very special case of central exclusive production1 the only information which can

be obtained about invisible particles’ momenta is the sum of the components perpendicular to the

beams:
∑

pinvisible
T ≈ /pT ≡ −∑pvis

T where the second sum is over the visible transverse momenta

of all final-state particles. The first equality is only approximate since particles at large |η| will be

undetected (though visible in principle), and because of experimental smearing of the pvis
T .

Most heavy particles decay sufficiently rapidly that they do not travel macroscopically measur-

able distances. Familiar exceptions include τ leptons and B hadrons which can travel macroscopic

distances from their production location. If decay products can be reconstructed to secondary

vertices away from the primary interaction point, the additional information can help in particle

identification, and in kinematic reconstruction. Some examples of using the kinematic information

from secondary vertices can be found in Section 3.10.

In addition to measuring directions, energies and momenta, the majority of hadron collider

1 For pp → ppX the centre-of-mass four-vector can be fully reconstructed from the outgoing proton momenta if
dedicated detectors are installed at very high |η| [8, 9].
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experiments can make statements about the identities of the particles they detect by using hardware

designed for that purpose. Muon detectors placed after hadron calorimeters are a prime example

of a means by which a species of particle can be identified with a high degree of confidence.

Nonetheless, many types of paricles (especially those with similar properties) cannot be identified

without dedicated hardware such as Čerenkov detectors [10].

The typical set of observables therefore consists of the four-momenta of a set of objects, some of

which are individual particles, and some of which may be groups of particles (e.g. hadronic jets).

Each of these objects have an identification hypothesis or hypotheses with associated probabilities.

Together with a hypothesis about the topology, these observables can be used to make inferences

about the properties (and particularly for this review, masses) of the particles.

The uses to which our observables are put tend to be restricted by the invariance of space-time

under rotations and Lorentz boosts, or by the approximate axisymmetry of the LHC detectors,

or by the lack of knowledge of the centre-of-momentum frame of the primary interaction due to

the composite nature of the colliding protons. As a result, our primary observables tend to be

combined into secondary derived quantities (which are themselves invariant under general boosts

or axial boosts or general rotations or rotations about the beam axis, or combinations thereof)

and these are in turn used as building blocks or inputs to more complicated tertiary methods and

variables. The secondary derived quantities of which we speak include the invariant masses and

transverse masses which, though discussed later, will already be familiar to most readers. However,

we give advanced warning, that there are sometimes situations in which it is useful to form derived

quantities which lack some of the usual symmetries of space-time or the detector. For example, the

first such quantity we will come across is mC (the “contralinear” invariant mass) which is decidedly

deviant under Lorentz boosts of any kind, but is nonetheless useful.

1.4. Constraints and quantities defined per-dataset and hybrids

As well as having observables and derived quantities which come from individual events, it is

natural to expect also observables that are formed from samples containing large numbers of events.

These could be called per-dataset variables. One classic example of a class of such variables, which

we will discuss in more detail later, are kinematic endpoints. Typically the position of a kinematic

endpoint places a constraint on some relationship of the masses of the particles involved in the

decays that generated the endpoint. A second example would be a mass constraint coming from a

fit to the shape of a differential distribution constructed from a large number of events.
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Furthermore, one can even conceive of hybrid variables, by which we mean variables which mix

together pieces of information from per-dataset and per-event into something more powerful. The

resulting hybrids appear to be defined “per-event”, but in fact make use of global properties of the

dataset as a whole. The most common reason for doing this is the desire to apply, to individual

events, one or more constraints of the type which cannot be deduced from any single event, but

which can be deduced from the set of all events.

In this review we will try to draw a distinction between per-event, per-dataset and hybrid

variables. We will leave further discussion of the merits and drawbacks of hybrid variables until

later (Section 4.9).

1.5. Ambiguities

It is often the case that final state particles cannot be uniquely attributed to particular positions

in the hypothesised decay chain. This may simply be due to there being repeated identical particles

in the final state. A second source of ambiguity can arise from initial state radiation (ISR). Any

high-scale process at a hadron collider will inevitably be accompanied by jets due to ISR, and

so mass measurement techniques, particularly those using jets, need to be robust with respect to

its presence. An extended discussion of complications caused by ISR can be found in Section 4.8

in the context of one particular event topology. A third class of ambiguity can result from there

being alternative internal particle assignments that leave the identities of particles in the final state

permuted. For example, consider the supersymmetric decay chain q̃ → χ̃0
2q → �̃∓�±q → χ̃0

1�
∓�±q.

In this chain the charge of the intermediate slepton is not known and so one cannot tell whether

the positively-charged lepton originated from the decay of the neutralino or from the subsequent

decay of the slepton. A fourth source of ambiguity can arise from lack of certainty as to whether

the decay topology hypothesised for a given event actually reflects reality. For example, the decay

chain above (in which the slepton is an on-shell resonance) has the same final particle content as

a similar chain in which the slepton is much heavier than the χ̃0
2, thus forcing the χ̃0

2 to decay by

an effective three body decay rather than via two successive two body decays.

There is substantial variability in the extent to which mass measurement techniques which have

been proposed in the literature choose to address the challenges presented by such ambiguities.

Some are developed with these ambiguities in mind from the start, while others do not address

them at all and merely hope that ways will be found to address them in the future. The reader

is encouraged to think critically about the assumptions made in each of the techniques reviewed
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herein, and to consider the ways in which they may or may not be sensitive to unresolved ambi-

guities. In particular, it should not be assumed that the presence of a technique in this review

guarantees that it can be used in practice, or that any technique can produce a definitive answer

that is not strongly dependent on one or more untestable assumptions made at its core.

1.6. Spins

The spins of the participating particles and the chiralities of their couplings can play impor-

tant roles in the dynamics of the decays. In most cases, the effects of the particles spins on

experimentally-accessible distributions are small, but various analyses have been proposed [11–34]

which indicate sensitivity to spins in a variety of cascade decays. Angular correlations in variables

other than cascade decays have also been studied [35–40]. A separate review article on the subject

of spin determination methods has recently been published [41] and we refer the reader to that

article for more details.

2. VARIABLES FOR PARTICLE PRODUCTION AT OR NEAR THRESHOLD

If one wishes to make very few assumptions about the type of interaction, the decay topology,

and the types or particles involved, then the best one can generally do is to construct an observable

which (because it is constructed out of quantities proportional to energy) scales approximately as

the energy of the centre-of-mass of the collision.

The distribution functions of momenta of partons within protons (“PDFs”) are largely rapidly

falling functions of the momentum fraction x, so above threshold, cross-sections tend to decrease

with the centre-of-mass energy of the parton-parton system, ŝ1/2. This means that heavy particles

can often be expected to be produced at or near threshold, and the energy of the collision can be

expected to give a good indication of the mass scale of the particles produced.

A variety of variables sensitive to the overall mass-energy scale have been proposed. Since

the momentum of the parton-parton centre-of-mass generally cannot be known when invisible

particles have been produced, the majority are constructed from only those momentum components

perpendicular to the beam pipe.

In the context of supersymmetry, the simplest mass-scale measurements are those deriving from

ad-hoc variables that have some kind of correlation, even if only approximate, with the masses or

mass differences of the primary particles produced in the interaction. Unfortunately there is little
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standardisation of nomenclature in this area: variables with the same experimental definition can

have more than one name depending on which collaboration uses them (for example, both ATLAS

and CMS have at different times defined an identical variable, though the former called their

variable Meff while the latter named theirs HT ) and even worse, neither collaboration has stuck to

a single definition of either of these variables for any great length of time. For example, the earliest

[42] definitions of Meff within ATLAS, which remained in use for more than a decade [43], defined

the “effective mass” variable in terms of the scalar sum of the four highest pT jets and the missing

transverse momentum as follows:

Meff =
∑
i=1,4

|pT,i| + |/pT |. (1)

More recent ATLAS work [44] has re-defined Meff as the sum of the hightest “n” pT jets, where n

depends on the analysis channel. The peak of the supersymmetric component of the original Meff

distribution of (1) and [42, 43] was found to correlate at the O(10%) level with a characteristic

SUSY mass-scale mSUSY ≡ min(mg̃,mũR
) for models drawn from the 5-parameter constrained

Minimal Supersymmetric Standard Model (cMSSM). A more general MSSM study [45], found

that the scalar sum over all jets given by

Mest =
∑

i

|pT,i| + |/pT | (2)

had a peak position which correlates well with a cross-section-weighted SUSY mass scale – after

the latter was corrected by the (a priori unknown) mass of the lightest supersymmetric particle.

Within CMS, the analogous variable is called HT whose name, we believe, comes from earlier

use at the Tevatron [46]. In 2006 a single document, the CMS technical design report [47], defines

HT in two different ways! The “jets and missing energy searches” section defines HT in terms

of the scalar sum of the second, third and fourth (but not the first) jet energies and the missing

transverse momentum according to

HT = ET (2) + ET (3) + ET (4) + |/pT | (3)

where ET (i) is the transverse energy of the ith jet, and

ET = E sin θ. (4)

In the trigger section of the same document [47] HT is defined differently as the scalar sum of the

ET values of all jets, excluding the missing transverse momentum:

HT = ET (1) + ET (2) + ET (3) + · · · . (5)
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In later CMS work [48] the definition of HT has changed for a third time, and is now the scalar

sum of the transverse momenta of all jets:

HT = pT (1) + pT (2) + pT (3) + · · · . (6)

Regardless of the specific definition used, the implicit assumption behind variables such as Meff

and HT is that in a hadron collider particles tend to be produced near threshold. Any particles

produced exactly at at rest, and which decay in a semi-invisible two-body decay, produce visible

daughters with transverse momenta pT = |pT | less than the two-body decay momentum,

pT ≤ p∗ =
λ

1
2 (mA,mB ,mC)

2mA
(7)

where mA is the mass of the parent, mB and mC are the masses of the two daughters and

λ(a, b, c) =
(
a2 − (b + c)2

) (
a2 − (b − c)2

)
.

The inequality in (7) becomes an equality in the case where there is no momentum along the

direction of the beam pipe. Thus the transverse momentum distribution contains information

about the mass scale of any heavy particles produced, though the above inequality will be smeared

by detector resolution, by production of heavy states well above threshold and by recoil of the

parent against initial state radiation.

As discussed above, the centre-of-mass energy of the (parton-parton) collision ŝ1/2 is sensitive

to the mass scale of heavy particles even if few details about their decay topology are known.

When invisible particles are produced, there is insufficient information to reconstruct ŝ1/2 for any

particular event, but it will be bounded from below by the observable

ŝ
1/2
min = (E2 − P 2

Z)
1
2 + (/p2

T + M2
invis)

1
2

where M
invis

is the sum of the mass of all invisible particles thought to have been produced [49].

It has been noted [50] that though ŝ
1/2
min and other similar variables are very heavily modified by

initial state radiation, the amount of modification is nonetheless calculable. This is all we shall say

about ŝ1/2 for the moment, however we will return to ŝ
1/2
min in more detail in Section 4.8 where we

discuss how it might concretely be used to measure masses of pair-produced events.

We note in passing that [49] does not confine itself to suggesting that ŝ
1/2
min be used only to

place strict bounds on ŝ1/2, or to place constraints on particle masses in the manner described

in Section 4.8. On the contrary, [49] advances a number of quite different potential uses for ŝ
1/2
min,

some not even related to mass measurement, which are not discussed further in this review.
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(a)Visible (b)Semi-invisible

FIG. 1: Two very simple decay topologies.

3. VARIABLES FOR SINGLE CASCADE DECAY CHAINS

3.1. Decays to two visible particles (“two-body visible”)

The simplest examples of kinematic mass reconstruction, e.g in the case of Z → e+e−, are

familiar. The decay topology can be written A → BC (Figure 1a) where capital letters are used to

label particles, and corresponding lower case letters represent their four-momenta. The parent (Z

boson) mass can be obtained from the straightforward construction of the “invariant mass” from

the square of the sum of the visible four-momenta:

m2
bc = (b + c)2. (8)

One therefore obtains an event-by-event estimator of the Z boson mass, and can form a distribution

which may be calibrated by comparison to calculations and/or Monte Carlo simulations (Figure 2a).

3.2. Decays to a visible and an invisible particle (“two-body semi-invisible”)

A more interesting case, because the final state contains missing information, can be found by

considering leptonic W boson decay (Figure 1b). For W → �ν, the topology is again A → BC,

but the neutrino is essentially invisible. Henceforth we will denote invisible particles with a slash;

writing this now as A → B /C. Although the three-momentum of the neutrino is not observed, its

transverse momentum /cT may typically be inferred from energy momentum conservation in the

transverse plane if there are no other invisible particles in the event. For each event there is some

range of values of mW which are consistent with the observables b, /cT , and the known mass of the

lepton mB and the (negligible) mass of the neutrino m/C . The boundary of the allowed domain is

conveniently found by the explicit construction of the transverse mass, MT [53–57]:

M2
T ≡ m2

B + m2
/C + 2

(
ebe/c − bT · /cT

)
. (9)
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(a)Dilepton invariant mass
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FIG. 2: (a) Dilepton invariant mass distribution for the process pp̄ → Z/γ → �+�−. From [51]. (b) Trans-

verse mass distribution for pp̄ → W → eν. The W boson mass is determined from a fit to the range indicated

with the double-headed horizontal arrow. From [52].

The (lower case) “transverse energy” quantities e for each particle are defined by

e2 = m2 + p2
T . (10)

These e are equal to the ET quantities (also denoted “transverse energy”) defined in (4) in the

massless limit. That the function in Equation 9 gives the largest value of mW consistent with the

observations is noted in [58, 59]. While the results of hypothesising incorrect values for the mass

of one of the daughter particles are of great interest – and are explored further in Section 4.2 –

one can also obtain a simple but equally important result when the correct values of the daughter

particles masses are assumed. For the true values of mB and m/C and in the approximation where

the widths are narrow and experimental resolutions small, the inequality

MT ≤ mA (11)

is satisfied by construction, with equality when the relative rapidity of the daughter particles van-

ishes. Therefore a histogram of values of MT , for many events with the same topology, should

populate some regions (corresponding to allowed values of mW ) but not other regions, correspond-

ing to disallowed values of mW . The mass could then be determined from the boundary of the

populated region – the kinematic endpoint or edge. In practice, background events, finite-width

effects and experimental resolutions smear the edge, so precise determinations of the W± mass
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FIG. 3: A single particle “A” decaying to three visible particles “B”, “C” and “D”.
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FIG. 4: The “dilepton” decay topology. The particle labelled Z is assumed to be unobserved by the detector.

using this method need to model such effects (see [54, 55] and others subsequently including the

example in fig. 2b).

3.3. Fully visible three-body decays

Techniques for analysing three-body decays of the type shown in Figure 3, i.e. where all three

daughters are visible, can be most conveniently analysed using the tried-and-tested method of

the Dalitz plot [60, 61]. This plot projects the momenta onto a surface (usually {m2
BC ,m2

BD})
which is uniformly populated for a three-body decay with a constant matrix element. Intermediate

resonances can be observed as bands in these plots for particular values of invariant mass. Angular

momentum multipoles can be determined from the rank of the spherical tensor needed to reproduce

the observed angular distributions.

Attempts to reproduce the desirable features of the Dalitz plot when invisible particles are

unobserved are revisited in Section 5.4.

3.4. The dilepton edge: two successive two-body decays

An example of a hypothesis used for the partial reconstruction of one part of an event is the

topology shown in Figure 4. This is sometimes called the “dilepton” topology, since it was first

studied in the context of the LHC [62] for the case of the supersymmetric decay χ̃0
2 → ql±�̃∓ →

ql±l∓χ̃0
1. The kinematics are most easily studied in the rest-frame of particle B (the slepton in

the example above) in which if the masses are fixed, the sizes of the momenta of the final state
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FIG. 5: An example “dilepton” distribution (taken from [62]) for the topology shown in Figure 4. In this

example, the kinematic endpoint is at approximately 100 GeV.

particles X, Y and Z are fixed. The invariant mass of the visible system, mXY , then depends only

on the angle θ between X and Y . In the limit of small masses of X and Y (which is approximately

true for the dilepton case), the density of states is proportional to mXY up to a maximum at

(mmax
XY )2 =

(m2
A − m2

B)(m2
B − m2

Z)
m2

B

(12)

when θ = π. Plotting a distribution of mXY one therefore obtains a triangular distribution, such as

the one shown in Figure 5. The maximum endpoint of this distribution can be measured, giving one

constraint on the three variables, mA, mB , and mZ . It is worth noting in this context that while

the endpoint of the sequential two-body decay (12) constrains differences in squared masses, the

equivalent single step three-body decay A → XY Z would have an endpoint at mmax
XY = mA − mZ ,

so would constrain the difference in unsquared masses.

Examples of applications include sensitivity for multiple kinematic endpoints from competing

decay chains [63], calculations of the m�� distribution shapes [15, 20, 64–66], tests of lepton uni-

versality [13, 67, 68], and an examination of pairs of such dilepton chains [69, 70].

If individual lepton flavour numbers are assumed to be conserved then in the dilepton case the

signal can be expected to be found in opposite-sign same-flavour (OSSF) pairs (e+e− and μ+μ−).

Backgrounds from e.g. tt̄ will not have lepton flavour correlations, and so an estimate of the OSSF

background distribution (resulting from such flavour-uncorrelated sources) can be obtained from

the opposite-sign, different flavour (OSDF) e±μ∓ distribution [63].

The di-tau invariant mass was investigated in [71]. This last case is not strictly an example of
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FIG. 6: The “ditau” decay topology.

the topology of Figure 4 since each tau decay also generates invisible particles (neutrinos), so the

appropriate topology is that of Figure 6. More about chains with multiple invisible particles can

be found in Section 4.6. Helicity effects in tau distributions are discussed in [72–74].

3.5. Constraints from the qll-like chain

If the “dilepton” topology of Section 3.4 is extended by one two-body decay, we reach a chain

having three successive two-body decays, resulting in a final state consisting of three visible (fre-

quently but not always light) particles, and one (frequently but not always massive) invisible

particle.

The most frequently considered context in which this topology is used is the decay of q̃ →
qχ̃0

2 → ql±�̃∓ → ql±l∓χ̃0
1

q̃ χ̃0
1

χ̃0
2

q

�̃∓R

l±near l∓far

which has led to this chain being known as the “qll-chain”. In fact the qll case is really a special

one in the sense that it assumes particular identities of particles, and hence admits only particular

possibilities for ambiguities. This chain was first suggested as a means of measuring sparticle

masses in [42, 75]. These early works proposed that, following on from the di-lepton edge technique

described above, other one-dimensional invariant mass distributions be plotted involving the quark

(or rather jet) momenta in addition to the momenta of the leptons. As before, relativistic kinematics

impose an upper limit on any particular invariant mass distribution, and the position of any

particular upper limit (or more generally kinematic end-point, or in some cases just “end-point”)
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may be established as a function of the masses of the particles involved in the chain. As always,

these kinematic end-point positions are valid only if the events are from the topology considered,

and will be smeared by detector resolution effects. Events from “backgrounds” may have almost

any invariant mass.

Conventionally, the lepton produced first in the decay of the heavier neutralino is called the

“near lepton” (near to the quark) and is notated lnear, while the lepton produced second in the

decay of the slepton is called the “far lepton” and is notated lfar [76, 77]. For the concrete case of the

qll it is not possible in a single event (in isolation from any other information) to determine which

observed lepton is lnear and which is lfar and thus it is not possible to construct an invariant mass

distribution consisting of exclusively of the combination mlnearq (or that of mlfarq). The early qll-

chain studies [42, 75, 78] elected to put to one side the issue of this ambiguity (c.f. general discussion

in section section 1.5). Subsequent attempts at addressing the issue of this ambiguity established

the need to build mass constraints out of kinematic end-points of distributions which were truly

“observable”. For example, the first such attempts [76, 77] proposed that the distributions of

mll, mllq, mlq(high) ≡ max{mql+ ,mql−} and mlq(low) ≡ min{mql+ ,mql−} be used. along with other

variables (discussed later) to measure the corresponding kinematic endpoints mmax
ll , mmax

llq , mmax
lq(high)

and mmax
lq(low). From a kinematic perspective, though not from a spin perspective (see Section 1.6),

there is no point in using mql+ and mql− in place of mlq(high) and mlq(low): even though either pairing

is “observable”, the Majorana nature of the neutralino makes the two distributions identical.

Note that many of the invariant mass combinations that can be constructed are not independent

of the others. For example, in the limit of massless visible particles, m2
ll + m2

lq(low) + m2
lq(high) =

m2
ll + m2

ql+ + m2
ql− = m2

llq. In some but not all cases, this can lead to the kinematic end-points

themselves being related. For example (mmax
ll )2 + (mmax

lq(high))
2 = (mmax

llq )2 over some but not all

parts of mass-space [65].

There is definitely a clear benefit to be derived from critically (re-)examining the choices of

one-dimensional distributions used to constrain the qll-chain for there is no reason to believe that

the “traditional” choices of endpoint [76, 77] are optimal in any sense – indeed it is very unlikely

that the “traditional” choices are optimal by any definition as a measure of optimality was never

part of their design. For example, [79] point out that it may be preferable to look for two endpoints

(i.e. the l±nearq edge and the l±farq edge) in the “union” distribution of mql− ∪ mql+ rather than to

split this distribution into the l±q high and l±q low components, as the resulting inversion space

has only a twofold rather than a threefold ambiguity. Similarly, it can be advantageous to look for

maxima in linear combinations of invariant masses. For example [79] investigates the properties of
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kinematic endpoints of distributions of (m2α
ql− + m2α

ql+)
1
α for different values of α and finds merit in

the particular case mql− +mql+ (in this regard note the kinematic end-point of the “l±q sum-edge”

in Table II on Page 58).

One consequence of moving from technically unobservable distributions (like that of mlnearq) to

observable distributions (like that of mlq(high)) can be that the locations of the kinematic end-points

may become piecewise-smooth functions of the unknown masses [65, 76, 77, 80]. Furthermore, such

invariant mass distributions can evolve non-trivial shapes, and can acquire undesirable features (so

called “feet”) near the end points which might in some cases make end-point measurement prone

to large systematic errors [65, 80, 81]. Local non-differentiability of end-point position need not,

in itself, be a problem for mass determination (note that piecewise-smooth functions like |x| + 2x

can have well defined inverses) however it can be a visible symptom of a separate issue which is of

concern in certain cases: ambiguity in end-point inversion, discussed below. Accordingly there has

been some recent interest in alternative observable distributions for which end-point positions are

smooth functions of the masses [79].

Ambiguity in end-point “inversion”. Very often one finds oneself in the unfortunate posi-

tion of having too few observables to constrain all the parameters of a model. On other occasions

one may find oneself with a much larger number of independent measurements, sufficient to over-

constrain a model. In this fortunate position, one potentially has the power to rule out a model,

or else to give strong constrains on the parameters of a model which is consistent.

Occasionally one may find oneself in the very special situation in which the number of inde-

pendent observables or measurement happens to match exactly the number of free parameters

(e.g. masses) in the model. In such situations it can be very hard to resist the temptation to search

for analytic or closed-form “inversions” : i.e. solutions for the parameters (e.g. masses) in terms

of the observables or measurements (e.g. the position of the end-points). Many such “inversions”

have been published published for different sets of observables for the qll-chain [65, 79, 81–83].

For some sets of end-point measurements the inversion process may yield a single set of consistent

masses – hopefully the correct ones – while for some other sets of end-point methods there may

be more than one set of consistent masses (of which one is hopefully correct while the others are

spurious).

In fact the previous statement applies to the idealised situation in which detector resolution

is perfect. While the performance of some “inversions” degrade rapidly in response to even small

amounts of experimental smearing/resolution, others are much more tolerant. It seems that there

is much scope for future work to determine which inversions are best suited to experimental appli-
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cation and which are not.

For more detailed discussion see [82] and [79]. In particular these papers pose the further

question: “Can one find sets of distributions whose end-points always yield the smallest number of

spurious solutions?” and in answering this yield entirely new sets of invariant mass distributions

for the qll-chain.

There are benefits, clearly, in widening our understanding of what features in data drive our mass

constraints. Looking at endpoint inversion formulae (and minimal sets of invertible endpoints) is

one way that can be accomplished. Nevertheless, it should be remembered that the issue of analytic

invertibility alone must not drive the choice of variables used. Frequently there will be other more

important issues to address which might include: (1) which end-points are easiest to observe

(dependent on slope and shape near the end-point; relative numbers of signal and background

events near the edge; the degree to which the background shape and size may be independently

predicted); (2) which are least smeared by detector resolutions; and (3) which are least sensitive to

cuts and acceptance or things which can affect systematic uncertainties. Furthermore, it seems very

likely that the best measurements will be made by putting together the largest possible number of

pieces of (sometimes overlapping) evidence in a joint numerical fit, rather than by inverting a set

of equations for a particular set of constraints at the expense of other observables.

The reader who is not convinced that there is much work yet to be done in identifying better

(or at least additional) means of constraining masses in the qll-chain would be well advised to

review the cautionary tale of the hitherto undiscussed lower kinematic endpoint known as the

l+l−q threshold. Most of the “traditional” sets of endpoints [65, 76, 77, 81] as well as some of the

new proposals [82] rely to a lesser or indeed greater extent on the l+l−q threshold proposed first

in [78]. This is the lower end-point of the mllq distribution under the additional constraint that

mll < mmax
ll /

√
(2). This lower end-point is notorious2 for having experimental systematic errors

associated with its measurement (in part due to the shape [84] at turn-on being concave) which

are in some cases much larger than those required to make use of the constraint it provides. Such

an end-point may turn out to be just the sort of measurement that looks good on paper but turns

out to be under poor experimental control.

Moving away from one-dimensional constraints. It is often suggested, particularly by

the experimental community, that one-dimensional distributions of variables like mll, mqqll and

2 A discussion of the experimental drawbacks of the l+l−q threshold distribution may be found in Section 1.2 of
[79].
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FIG. 7: The “gluino” decay chain.

the other Lorentz invariants discussed above offer the simplest, and probably the most easily

measurable distributions from which to extract information about the masses of the parents. But

is this suggestion correct? It is certainly being challenged. These one-dimensional invariant mass

distributions can all be thought of as “projections” of the higher-dimensional space in which the

measurements live, onto a single dimension. The full three-dimensional shape of the qll-chain has

been noted in [83], and there are many promising proposals to use fits to structures in observables of

two (and higher) dimensions in order to gain information from correlations that are not otherwise

available in one-dimensional distributions [69, 70, 79, 82, 83]. In principle there is a lot more

information available in these higher-dimensional distributions – but whether that information is

easier or harder to extract than that from the one-dimensional distributions will depend to a large

extent on the relative degree to which the systematic uncertainties can be understood/controlled

by the experimental collaborations in the two cases.

3.6. Constraints from the qqll-like chain

Adding a further two-body decay to the “qll” chain produces the topology shown in Figure 7,

which sometimes called the “qqll” or “gluino” chain since the most studied example has been

g̃ → q̄q̃ → q̄qχ̃0
2 → q̄ql±�̃∓ → q̄ql±l∓χ̃0

1. Many of the kinematic endpoints for this longer chain can

be found in the results of section section 3.4 and section section 3.5 (or relabellings thereof). The

new endpoints, including the maximum of the four-body qqll distribution have been calculated

using massless approximation for the visible particles [80] assuming all particles on the backbone

are on mass-shell.3 These can depend on any of the other five masses in the problem (g̃, q̃, χ̃0
2, �̃

and χ̃0
1). The same chain has been used to put constraints on the spin of the gluino [86]. When

dealing with chains of this length containing many jets in the final state, most studies have found it

necessary to have addional information about the jets (for example bottom-quark tags) to reduce

ambiguities due to combinatorics and ISR etc.

3 Contrast how little has been written [85] about the case where some particles on the backbone of the qqll-chain
are off mass-shell.



23

FIG. 8: The “dark matter sandwich” decay chain.

3.7. Other chains containing successive two-body decays

One interesting chain which has been studied (to the best of our knowledge) only in [87] is

the “dark matter sandwich” topology of Figure 8. What makes this chain different from qll-like

chains is that the missing invisible particle (the dark matter particle) emerges at the mid-point of

the decay chain, rather like the filling in a sandwich. In the context in which it was investigated,

the particles on the back bone were allowed arbitrary masses, while the two visible ejecta were

treated as massless. As such the invariant mass distribution of the two visible particles depends

on five unknown masses (the four backbone masses and the sandwiched invisible particle’s mass).

Formulae for the position of the kinematic endpoint and the differential shape of the invariant mass

distribution of the invariant mass of the pair of visible ejecta may be found in [87].

These distributions are notable for having kinematic cusps – places in the differential distribution

where two curves with different slopes come together. Further discussion on such cusps can be found

in Sections 3.11 and 4.11.

3.8. When backbone sparticles are off mass-shell in multi-step decay chains

It is worth asking whether we would be able to tell if an observed ensemble of similar multi-

particle final states is likely to have come from events containing a long series of 2-body decays, or

whether it might (for example) have originated from a somewhat shorter decay chain with more

particles emitted at a smaller number of vertices. This question can be rephrased as asking whether

the narrow-width approximation is valid for all the intermediate states.

In the context of the discussion above, it may be noted that not all sparticles on the “backbone”

need be on their mass-shell. It is possible to imagine scenarios in which (for example) the sleptons

are heavier than the second-lightest neutralino. The second-lightest neutralino would then not

be able to decay via an on-shell slepton, though a three body decay via a highly virtual off-shell

slepton might still be possible, illustrated in Figure 9. The observed final state particle content

(a jet and two opposite sign sane flavour leptons) offers no clue as to whether the decay topology
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FIG. 9: The qll decay chain with a terminal three-body decay.

has a virtual or an on-shell slepton in the backbone. This is a problem, because the positions of

the kinematic endpoints of the usual invariant mass distributions are entirely different functions

of the masses of the sparticles involved. Consequently it might be possible, if events coming from

the on-shell scenario were analysed using the off-shell hypothesis (or vice versa) to obtain entirely

spurious mass measurements. Fortunately, the way that the event-space is populated (i.e. the

shapes of the distributions [15, 20, 30, 65, 80–82, 84, 87–89]) and the relationships between the

positions of the kinematic endpoints [65, 80–82, 90], betray clues as to the nature of the topology

and can permit the type of the decays (two-body versus three-body or similar) to be determined

correctly under favourable circumstances.

The qqll-chain is as susceptible as the qll-chain to ambiguities introduced from not knowing

which (if any) of the particles on the backbone are on or off mass shell. It is possibly the case that

the only work which has considered the qqll-chain with off-mass-shell particles on the backbone is

an incomplete undergraduate project [85].

We round off this section by noting an observation of [87] regarding a particular class of models

considered therein in which a single massive particle could decay via multi-body decays into two

or more visible particles and either one or two invisibles particles of identical and unknown mass.

These two topologies are shown in Figure 10. It was noted therein that the distribution of the

invariant mass of the visible system would show a double endpoint structure – one endpoint being

the difference between the mass of the parent and the invisible daughter: (mmax
vis )1 = mA − mC ,

and the other being (mmax
vis )2 = mA−2mC . Were such a double endpoint structure to be observed,

and were one prepared to hypothesise the underlying structure of Figure 10, the authors of [87]

propose that one use the linear combination of endpoints 2(mmax
vis )1 − (mmax

vis )2 to measure the

parent mass mA, while the combination (mmax
vis )1 − (mmax

vis )2 would measure the invisible particles’

mass mC .
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⋃

FIG. 10: Occasionally there are models which can produce both of the above topologies in the decays of a

single type of particle. For such models, variables have been proposed which constrain the unknown masses.

See the end of Section 3.8.

3.9. Directly reconstructible

Most of the discussion until this point has involved final states for which at least one of the

daughter particles is expected to go undetected. When the particle(s) of interest decay to a set

of daughters all of which are visible, then determining the mass of the parent(s) should generally

more straightforward (at least in principle). A simple example of the fully-visible case, A → BC

(Figure 1a) was discussed in Section 3.1, and the three-body case A → BCD in Section 3.3.

However, even when all the particles are visible the kinematical reconstruction is not necessarily

trivial. For example it is often difficult to assign the visible particles to the appropriate decay,

particularly if there is a large number of final-state objects or much initial state radiation. Other

ambiguities can arise when attempting to associate final state hadronic jets to particular types

of decay, since jets are themselves composite objects. Some examples of papers considering these

more difficult cases are surveyed in what follows.

3.9.1. Combinatorial complications.

Even when all of the final state particles can be identified, the task of reconstructing the masses

of the parent particles can be far from trivial. In events with many objects (jets, leptons, . . . ) in

the final state the attempt to associate such objects to particular parents involves considering a

factorially large number of different possible combinations. Though one can attempt to resolve some

of these ambiguities in particular cases by appealing to e.g. lepton number conservation [78, 91, 92]

or by looking for correlated kinematic features [69, 70], often there is no alternative but to assume

that all kinematic combinations are possible.

A particularly difficult case – because very many jets are expected in the final state – is baryon-

number violating, R-parity violating Supersymmetry [93, 94]. If the baryon-number-violating

couplings are small, then the Supersymmetric decay chain proceeds as in the R-parity conserving
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FIG. 11: The topology explored in [93].

case, but then each of the two lightest supersymmetric particles decays into three (different-flavour)

quarks: i.e. χ̃0
1 → qqq.

One can attempt to reconstruct the χ̃0
1 mass from three-jet invariant mass combinations. How-

ever in a hadron collider one expects (as well as the six jets from the two χ̃0
1 decays) further jets

from cascade decays, so the combinatorial background from wrong jet combinations can be very

significant. The first attempts to reconstruct such complex topologies made use of leptons from the

cascade decays (Figure 11) to simultaneously form invariant mass combinations for several heavy

particles [93].

It has been shown that for one can reconstruct the heavy particle masses in such cases without

relying on the existence of leptons in the cascade decays. That analysis made use of more sophis-

ticated jet algorithms to determine the scale at which a single merged jet from the 3-quark system

(from each χ̃0
1 decay) can be resolved into sub-jets [94].

Similar sub-jet analyses have been proposed in reconstruction of other boosted heavy objects,

with recent examples including searches for boosted Higgs bosons decaying to bb̄ when produced

in association with a vector boson [95] or in association with tt̄ [96]. Anther example of using jet

substructure to improve the mass resolution (and hence signal to background discrimination) of

heavy objects can be found in the context of highly boosted top quarks [97].

3.9.2. Mass from velocity of metastable particles

When charged massive stable particles traverse the detector their mass can by determined

from simultaneous measurements of momentum and velocity (β). The momentum measurement

is usually obtained in the same way as for a muon – i.e. be determining the bending radius of

the particle in an externally applied magnetic field. The particle’s velocity can be found from

precision timing information, or from measurements of energy loss (dE
dx ) or from a combination

of both methods. When the mass of the metastable particle has been determined, the full 4-

vectors of all instances of that particle can be determined event-by-event. This allows the mass of

its parents/ancestors to be reconstructed by forming invariant masses along appropriate cascade
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decay chains.

LHC-related studies have considered the case of heavy leptons [43, 98–105] and bound states

of heavy coloured objects (so-called R-hadrons) [43, 106–109]. Slow-moving particles present par-

ticular experimental difficulties because the delay in reaching the outer parts of the detectors (the

muon chambers) means they risk being identified with the wrong bunch crossing. The experimen-

tal issues associated with triggering and reconstructing such particles have been addressed and are

understood [110, 111]. For more details on searches and measurements of massive stable particles

we refer the reader to a recent review paper dedicated to that topic [112].

3.10. Using spatial as well as momentum information

If invisible long-lived particles decay within the detector then the location of the decay vertex

in space can be used to provide constraints on the kinematics. Examples of models predicting such

displaced vertices include bilinear [113] or baryon-violating [114] R-parity violating supersymmetry,

and anomaly-mediated supersymmetry [115].

A demonstration of how the position of the secondary vertex can be combined with direct

kinematic information has been given in the context of a gauge-mediated supersymmetry breaking

model [116]. Cascades terminating in the decay χ̃0
1 → γG̃ were considered, which (provided they

occur within the tracking volume) produce photons which detectable in the calorimeter but which

do not point back to the primary interaction point. The position, arrival time and momentum

direction of the photons are used to determine the photon momentum, allowing the (invisible)

gravitino momentum to be completely determined. Knowing both the photon and the gravitino

momentum, the kinematics of the rest of the decay chain can also be determined.

3.11. Multiply branched trees

One way to extract mass information from multi-branched graphs (such as that shown in fig. 12a)

is by treating them with the same methods as single decays of unknown internal structure to n-

body final states (i.e. ignoring the existence of on-shell intermediate particles). For example one

get a good measurement of the Higgs boson mass by constructing a transverse mass variable MT

for the decay H → W+W− → �+ν�−ν̄ treating it just like a single four-body decay [118]. This

method has some merits, but does not make use of the full kinematic information available in such

topologies.
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FIG. 12: (a) A branched decay chain of the sort considered in Section 3.11. (b) Examples of kinematic

cusps. Adapted from [117].

Multi-branched trees can have multiple on-shell constraints and so can contain a rich spectrum

of possible Lorentz invariants. Plotting correlations between appropriate combinations can dilute

backgrounds, thereby improving the measurability of kinematic endpoints [119, 120].

These decay topologies have also bring to light other interesting features. In particular one can

observe in projected variables kinematical cusps [117]. These features are places in the differential

distribution where two curves with different slopes come together, as shown in Figure 12b. Such

cusps are a general feature of kinematic distributions not just multi-branched trees. For example

one can find a [87] for a cusp in topology described in Section 3.7. The source of these cusps,

as well as the other singularity structures – endpoints and thresholds – are discussed further in

Section 4.11.

Kinematic cusps could well be as useful for extracting mass information as endpoints. In fact

because the differential distributions are typically populated by large numbers of events near these

cusps, uncertainties in cusp positions might well be smaller than endpoint positions.

In these multi-branched decays – as elsewhere – it is possible to use the extra kinematic con-

straints to select events in which all final state-momenta are well-constrained despite the presence

of invisible particles [121] (see also Section 5.4).
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3.12. The contransverse mass

The invariant mass (8) has the property that it is not modified under any operation which

transforms all of the particles with the same boost pi �→ Λ�βpi. It is also possible to construct

variables which are invariant when different boosts are applied to their constituent particles. In

particular, one can construct a variable which is constructed from the sum of two arbitrary Lorentz

vectors a and b and which is invariant under equal and opposite boosts of those vectors

b �→ Λ�βb (13)

c �→ Λ−�βc. (14)

A variable which satisfies this back-to-back boost invariance condition was defined in [122],

M2
C = m2

B + m2
C + 2(EbEc + b · c)

where the bold quantities again represent the Euclidean three-vector momenta. Note the plus sign

before the dot product which distinguishes MC from the invariant mass (8). In the limit when mB

and mC are negligible, and the visible particles have originated from the decay A → BC, one can

see that MC =
√

4EbEc = 2p∗ where p∗ was defined in (7).

Because of our ignorance (in a hadron collider) of the z-momentum of the initial state it is

useful to define the related quantity constructed from purely transverse quantities

M2
CT = m2

B + m2
C + 2 (ebec + bT · cT ) (15)

where e is defined in (10). This quantity is known as the contransverse mass.

Neither MC nor MCT have found much application for single two-body decays, but they have

interesting invariance properties when pairs of identical semi-invisible decays (see Section 4.5) are

produced back-to-back in the transverse plane. The resulting contra-linear invariance properties

are of interest because back-to-back configurations with extremal MCT can be generated from the

threshold-production (‘at rest’) configuration by applying the transformations (13) to the respective

parent particles.

4. VARIABLES FOR PAIRS OF CASCADE DECAY CHAINS

We have seen that the transverse mass MT (Equation 9) is useful in situations involving A → B /C

where /C is the only invisible particle in the event. This begs the question: “What comparable tools
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(a) (b) (c) (d) (e) (f)

FIG. 13: Examples of the “dual-sided” event topologies discussed in Section 4.

can be employed in situations where there are two identical invisible particles in each event – such

as might arise in models with stable or meta-stable weakly interacting particles whose creation is

protected by a multiplicative quantum number?” (R-parity conserving supersymmetry [123] and

universal extra-dimensional models [124] being just two examples of such models.)

Techniques for extracting mass information from pairs of cascade decays are described in this

section. First we introduce the sorts of event-topology which are relevant to this question and the

notation convention we will use when describing them.

The topologies of interest in this section (shown in Figure 13) share the common feature that

each event is composed of two “sides” – where each “side” consists of a decay chain which terminates

in an invisible particle and one or more visible particles. For obvious reasons we call such events

“double sided”. The sides need not be identical (Figure 13(e) provides an asymmetric example,

and we will discuss asymmetric examples in more detail in section section 4.7) though topologies

with identical chains on each side have historically been the most studied.

To distinguish the sides of the particles when discussing events of these types, we used un-

primed indices for the particles on one side, and primed indices for particles on the other. Where

possible we use letters nearer the beginning of the alphabet for the most senior parent particles

and letters nearer the end of the alphabet for the most junior daughter particles. For example, the

simplest double sided topology (Figure 13(a)) might be denoted (A → B /C) + (A′ → B′ /C ′).

If a pair of particles is produced in the collision, and then each of these goes on to decay, there

are both additional constraints and additional complications compared to the single decay case.

New combinatorial ambiguities arise, since it is no longer generally possible to associate a particular

visible particle with one or other of these decay chains. In addition there are constraints which link

information between the two cascades – for example the missing transverse momentum is usually

assumed to be equal to the sum of the momenta of any invisible particles from both decay chains.

In this section we describe the simplest non-trivial example of a pair of decay chains – that being

an identical pair of single-step decays, with each decay producing one visible and one invisible
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FIG. 14: Generic MT2 configuration. The sets labelled B and B′ may correspond to individual particles, or

groups of visibles. In the latter case the visible could result from internal cascade decays within the ‘blobs’.

G labels ‘upstream’ particles, as defined in the text.

daughter (Figure 14). We examine the kinematic constraints for that case, and then go on to

examine more complicated topologies including multi-step cascade decays and non-identical chains.

4.1. Identical semi-invisible pair decays: MT2

We already saw in Section 3.2 that the transverse mass could be applied in circumstances where

there is a single mother particle (frequently the particle whose mass we hope to bound) decaying

in one or more steps ultimately into a single invisible particle (whose mass we may not know) and

one or more visible particles.

The MT2 variable [125] (also known as the stransverse mass) 4

is the analogue of the transverse mass which can be applied in the situations where there are

not one but two parent particles, each undergoing decays to a single invisible particle (whose mass

we may not know) and one or more visible particles. The most general topology of this type may

be seen in Figure 14 while specific examples may be seen in Figure 13.

The usual definition of MT2 in this case written for the general case shown in Figure 14 casts

the variable as a function of six things. The first four are straight-forward, being the invariant

masses (mB and mB′) and the transverse momenta (bT and b′
T ) of the visible final state particles,

or collections thereof, on each side of the event.

The fifth input is the observed missing transverse momentum in the event, often denoted /pT
. If

4 The nick-name “stransverse mass” arose as a shortened form of “supersymmetric transverse mass” as MT2 was
originally applied most frequently to supersymmetric events in cases where the transverse mass was no longer
usable.
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G in Figure 14 is taken to represent the totality of all other visible momenta in the event regardless

of source, then /pT
is equivalent to −(gT + bT + b′

T ). Whether or not /pT
is “useful” is dependent

on how closely it resembles /cT + /c′T , which depends on how many other invisible particles there

are in the event and on the detector reconstruction resolution for gT , bT and b′
T .

The sixth and final input is a pair of hypothesised masses for the invisible particles (m̃/C and

m̃/C
′). To distinguish the real from hypothesised masses, the latter have been given a tilde. In prin-

ciple these two hypothesised masses could be taken to be different from each other (see Section 4.7)

however in practice most studies take them to be identical. When both hypothesised masses are

taken to be identical that common value is often denoted by χ. In these terms, the usual definition

of MT2 is as follows:5

MT2(mB,mB′ ,bT ,b′
T , /pT

;χ) ≡ min
/cT +/c′T =/pT

{
max

(
MT ,M ′

T

)}
. (16)

where MT is the transverse mass constructed from mB, m̃/C(= χ), bT and /cT , while M ′
T is the

transverse mass constructed from mB′ , m̃/C
′(= χ), b′

T and /c′T , and where the minimisation is over

all hypothesised transverse momenta /cT and /c′T for the invisible particles which sum to the observed

missing transverse momentum. In Equation 16 the dependence on χ (or equivalently on m̃/C and

m̃/C
′ in the case that they differ) has been separated from the dependence on the other inputs by

a semi-colon to emphasise that the quantities to the left of the semi-colon are observables, while

χ to the right is instead a parameter. MT2 might thus be better described not as an observable in

the usual sense, but rather as an “observable function” – in this case a function of χ.

There are many parallels between the stransverse and the transverse mass. Most importantly

(as was first mentioned in section 3.2) the transverse mass can be viewed in two different but

equivalent ways: either as an event-by-event lower bound on the mass of the parent particle (in

terms of a mass hypotheses for the invisible particle), or as a curve delineating the boundary

between the regions of the two-dimensional space of the unknown parent and daughter masses

which are – or are not – consistent with a particular event. The same two interpretations are valid

for the stransverse mass:

In the first interpretation, most frequently used in the case that particles A and A′ (though not

necessarily /C and /C ′) have the same mass, the stransverse mass can be viewed as providing an

5 Computer libraries that can evaluate MT2 may be found in [126] and in [127] The library of [127] can only compute
MT2 using the bisection algorithm of [58], but it is very simple to use and is not dependent on external packages.
It is also distributed as part of the WIMPMASS library [128]. The library of [126] contains algorithms for a larger
number of variables (including MTGen, M2C , etc, as well as a copy of the algorithm in [58, 127]) but depends on
the external Minuit2 library [129, 130].
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mT2(χ)

χ
 

mB
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m~A

FIG. 15: The nature of the MT2 constraint from a single event. The region above the dashed line (marked�) is consistent with the constraints, while that below and to the right of the line (marked �) is incon-

sistent. Similar regions can be drawn for a single decay chain where the regions are bounded by MT .

event-by-event lower bound for mA in terms of a hypothesis (i.e. χ) for the mass of the invisible

particles. It may be shown [125, 131] that it is possible to saturate this bound with certain kinematic

configurations. A typical usage pattern therefore would be to plot a histogram of MT2(χ), over all

events, with the intention of identifying a clear kinematic end-point in that distribution located

at mA – at least for the case where χ is chosen to be equal to the true value m/C . This technique

has been used by the CDF collaboration to measure the top quark mass in the dilepton channel

[132] and has been suggested for the same use at the LHC [133]. The freedom to re-evaluate MT2

at different values of χ corresponds to the need to obtain different bounds on mA under differing

assumptions about the mass of the invisible particles that A and A′ decayed into.

The second interpretation of MT2 is that it (or more specifically the functional form of the

curve MT2(χ)) describes, for each event, the boundary between the region of (parent, daughter)-

mass space that is consistent with that event and the region that is inconsistent with that event

in the manner indicated in Figure 15. The first explicit proof of this property was recorded in

[58] and similar ideas have been expressed elsewhere [134]. Viewing MT2 as a “boundary of a

consistent region of mass space” is a powerful idea, not only because it provides a different way

of understanding MT2, but also because it allows us to see that the transverse mass and even

the ordinary invariant mass could similarly have been defined as such boundaries. Indeed, once

it has been seen that the transverse mass MT could have been defined as the boundary of an

allowed region, the proof that the stransverse mass is such a boundary follows immediately from

its usual min max definition (16). The interpretation of MT2 as a boundary also shows us that

generalisations of MT2 – for example to situations with dissimilar parent masses – would ideally be

constructed so that they give the boundary of the consistent region of an “extended” mass-space
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with a higher dimensionality.

4.2. Dependence of MT2 on the WIMP mass(es)

Different approaches can be made to the problem of the dependence of MT2 on the a priori

unknown parameter χ, the hypothesis for the mass of the invisible particles. If one is using MT2 as

a bound on the mass of the parent particle, one possibility would be to take the most conservative

value – i.e. to set χ = 0. Since

MT2(χ = 0) < MT2(χ > 0) ≤ mA

using a trial value χ = 0 will return a value which is certainly less than mA, the mass of the parent.

This conservative approach has been shown to be useful when using MT2 as a tool to distinguish

events which are not consistent with particular Standard Model decay topologies [35, 135, 136],

because the invisible particles of the Standard Model – the neutrinos – do indeed have very small

masses and so satisfy χ ≈ 0. The problem with assuming χ = 0 is that for m/C 
= 0 the bound is

not saturated; while MT2(χ = 0) < mA for all events, there are no events for which MT2(χ = 0)

approaches mA, so one cannot use the end-point of the MT2(χ = 0) as a measurement of mA. The

first example of MT2 being used in LHC data to separate expected standard model backgrounds

from potential signals from supersymmetry is shown in Figure 16.

To measure masses we want to use the property that if the correct hypothesis is made for

the mass of the invisible particle, then MT2 returns a value ≤ mA, with equality for some state

configurations. The dependence of the MT2 distribution on the unknown mass of the invisible

daughter particle χ is therefore important. For a distribution of interest to depend upon an

unknown parameter might be seen as a disadvantage. But it is possible to turn this argument on

its head; the fact that the distribution of MT2(χ) depends on χ might allow us to simultaneously

extract both the mass of the parent and the mass of the invisible daughter.

To see how the dependence of MT2(χ) on χ can be made to help us, consider the envelope of

the maximum of the curves MT2(χ) over all events. The individual bounding curves from different

events will generally have different shapes, but all must share the property (by construction) that

MT2(χ = m/C) ≤ mA, (17)

with the equality satisfied for some set of kinematic configurations. In general different events will

be maximal for χ < m/C and for χ > m/C . However the property (17) means that the bounding
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FIG. 16: This figure, reproduced from [44], shows the preliminary leading dijet MT2 distribution for the

first 70 inverse nanobarns of ATLAS data. The dotted line shows the shape of a potential SUSY signal in a

model with a large amount of strongly interacting sparticle production. Note that the QCD dijet background

constitutes the majority of the events passing cuts, but that as it lacks a mass scale the majority of those

events fall at very low MT2 values. This contrasts with the behavour of top-pair and potential SUSY events

which have high mass scales and occur at high MT2 values.

curves just above and below χ = m/C must both pass through the point (m/C , mA). If events

with different slopes are maximal for χ < m/C and χ > m/C , then the overall envelope function

maxevents MT2(χ) will be continuous but non-differentiable at the point (m/C ,mA):[
d

dχ
max
events

MT2(χ)
]

χ=m/C−

=
[

d

dχ
max
events

MT2(χ)
]

χ=m/C+

.

This feature was first spotted in simulations of pairs of three-body gluino decays g̃ → qq̄χ̃0
1 [137]

(see also Figure 17) but has also been explored for simpler and more complex topologies [138–140].

The existence of this ‘kink’ in the MT2 endpoint makes it tempting to infer that it will be

straightforward to extract both the parent and the invisible-daughter masses. However for a

substantial change in the gradient d
dχ maxevents MT2(χ) at (m/C ,mA) there must be contributions

from events with substantially different properties. Pairs of two-body decays in which the sum of

the parents’ transverse momenta is zero, and which have fixed mA will not produce kinks because

the kinematics are so constrained that the gradients at χ = m/C± have to be equal [139]..

The event-by-event changes which lead to measurable ‘kinks’ in the end-point function can come

from the two different sources below [137–139].
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FIG. 17: The points show how a measured upper bound of the MT2 distribution for pairs of three-body

decays (g̃ → qq̄χ̃0
1) depends on the a prior unknown mass of the invisible particle. The straighter red (more

curved blue) line shows the configuration which is maximal for χ greater than (less than) m/C . The area

above and to the left of both curves gives the domain of allowed values of (mχ̃0
1
, mg̃). Notice the change in

gradient in the envelope curve near (97,780); the coordinate of the position of this kink corresponds to the

masses of the neutralino and the gluino used in the simulation. Adapted from [137].

• Different values of mB , the invariant mass of the visible-particle subsystem, will lead to

different boundary curves in the space (m/C , mA). This mechanism is the dominant source

of the kink seen in fig. 17, where the qq̄ invariant mass changes significantly between events.

Other topologies in which the visible system is a composite constructed from the sum of two

or more visible particles will share this behaviour.

• When one allows the two-parent center-of-mass to be boosted, the extremal boundary curves

correspond to configurations with arbitrarily large parent momenta. The bounding curves

for χ < m/C (χ > m/C) come from events in which the invisible particle is emitted parallel

to (anti-parallel to) the boost direction. Systems with finite boosts have correspondingly

less-pronounced kinks.

The two-parent center-of-mass frame can be expected to have a small transverse boost unless

the parents were themselves created from previous decays, or there was large initial state

radiation. The negative sum of the transverse momenta of the parents – i.e. the momentum
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against which those parents are recoiling – is often known as the ‘upstream’ momentum,

PUT and is represented in Figure 14 by the label G.

Since only a small number of signal events are expected to contribute near the kinematic

endpoint, it might be considered difficult to extract information from the χ dependence of

maxevents MT2(χ) without having a very good knowledge of the backgrounds. Nevertheless at-

tempts to measure the invisible particle mass from the kink (or variables characterising the location

of that kink) have shown some promise. The position of the kink of the first sort (coming from a

variable-mass visible particle system) was successfully captured in simulations [137].

A method for exploiting the second (boost-generated) kink in the case where the invariant mass

of the visible particle system is fixed has been proposed in [89] and further explored in [141]. The

central observation of that method is that one can construct one-dimensional analogues of MT2

using only the components of the visible momenta parallel to (perpendicular to) the upstream mo-

mentum direction. Because the perpendicular analogue MT2⊥ has a distribution with an endpoint

(and indeed a shape) which is independent of PUT it can be used as a ‘control’ sample against

which the MT2‖ distribution (constructed from components parallel to PUT ) can be compared.

For a pair of two-body decays the experimental problems in understanding the behaviour of the

parallel and the perpendicular endpoints are likely to be considerable. For that case, the fraction

of near-extremal events will be small, the backgrounds important, and the systematic uncertainties

in fitting the shapes are likely to be significant. It is not yet clear whether the method could be

practical in such cases.

We note that while these ‘kinks’ have been most frequently studied for topologies containing a

pair of decay chains, the same effects also generate kinks in single decays or decay chains [137–139],

or in asymmetric decay chains (for which see Section 4.7).

The mathematical structure of these ‘kinks’ is discussed further in Section 4.11.

4.3. Decomposing MT2 with respect to upstream momenta: (MT2⊥ and MT2‖)

It can be useful to decompose MT2 into “components”6 which are perpendicular or parallel

to the upstream transverse momentum. These components are called, respectively, MT2⊥ and

MT2‖ [89]. One advantage of this decomposition is that the component perpendicular to the

6 We use the term “components” figuratively since MT2 is not a vector. Strictly it is the transverse momenta which
are inputs to MT2 which are resolved into components.
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upstream transverse momentum, MT2⊥, has no dependence on the magnitude of the recoil supplied

by the upstream transverse momentum for any value of the trial mass χ.7 A second advantage of

this decomposition is that under a reasonable set of circumstances, the shape of the differential

distribution of MT2⊥ becomes fully determined (i.e. it does not depend on unknown parameters

such as the unknown centre of mass energy) [89]. This existence of this universal shape might

therefore make it possible to fit the distribution more accurately and make it possible to extract

masses by a secondary step [89]. The kinematic endpoints of the MT2⊥ and MT2‖ distributions

may be found in the appendix in equations (A.20) and (A.19). Compare the related properties of

MCT⊥ and MCT‖ discussed in Section 4.5.

4.4. Identical chains of decays

If one is willing to assume that the visible particles originate from two identical two-step decays

of identical sparticles, i.e.

then several MT2 variables can be calculated for each event [92, 142] (first suggested in the context

of the variable MCT in [122]). Using the endpoints of three versions of MT2, changing what is inter-

preted as visible transverse momentum, missing transverse momentum and upstream momentum

one can, in combination with the dilepton endpoint, identify the correct masses (assuming perfect

resolution and no combinatoric ambiguity). In [142] a similar approach to forming MT2 subsystems

is proposed, and the origin of kinks in the maxima of the various distributions is explored. Several

methods of extracting particle masses using multiple MT2 distributions are introduced, including

a hybrid method that uses the dilepton endpoint. The kink analysis is discussed in more detail in

this review in section section 4.2 (Page 34), and the hybrid method in section section 4.9 (Page 45).

An alternative to finding limits is to make hypotheses about the particle masses, and then for

each mass hypothesis to count the number of events for which there are real positive solutions for

7 Recall that this was not true for MT2, and in fact the dependence of MT2 at unphysical values of χ was a necessary
ingredient for forming one of the two types of MT2 “kink” (see Section 4.2).
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the energies of the unseen particles (‘consistent events’) [141, 143]. A region is formed in three-

dimensional mass space which is consistent with all events, and this tends to a minimum volume as

the number of events approaches infinity. The correct masses correspond to a point at the region’s

tip. By looking for the point at which the number of consistent events is a maximum, one can

obtain an estimate for all three masses. A computer library called WIMPMASS [128] that facilitates

implementation of the techniques of [143] may be downloaded.

Events containing slightly longer pairs of identical chains are amenable to other treatments. For

example, under the hypothesis that the invisible particles are massless (relevant in many GMSB

models with gravitinos in the final state) events containing a pair of identical decay chains of the

form

are fully reconstructible even though there are two unseen particles in the final state. Such a

reconstruction is demonstrated in the appendix of [144] using a GMSB-like scenario as an example

with two copies of the chain χ̃0
2 → �̃∓�± → χ̃0

1�
∓�± → G̃γ�∓�±i.

If one drops the assumption that the unobserved final state particles are massless, then there

are too few constraints from a single event to reconstruct the event. However we will return to this

double-chain later in Section 5 where we will see that there are a number of techniques that would

permit the masses to be recovered if one is prepared to consider more than one event simultaneously.

4.5. Pair decays with small upstream momentum: MCT

Identical pairs of semi-invisible decays in which the parents had zero upstream momentum

(i.e. Figure 14 with recoil momentum g=0) have interesting properties if the visible daughters are

used as inputs to the MCT variable [122]. The definition of MCT used for pair decays of the above

type uses only the momenta of the two visible decay products (or systems of products) and is as

follows:

M2
CT = m2

B + m2
B′ + 2

(
ebeb′ + bT · b′

T

)
(18)

where eb is once again defined as in Equation (10). Take note of the subtle difference between the

definition of MCT in equation (18) for pair decays, and the definition of MCT for in equation (15).
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The definition in (18)8 uses only half of the final state momenta (namely those of the two systems

B and B′ in Figure 14 which are visible!) while the definition in equation (15)9 uses all the final

state momenta of a single two-body decay.

MCT enjoys the property that it is invariant under equal and opposite boosts in the transverse

plane of the primed and un-primed systems. This insensitivity is a welcome feature as equal-mass

parent particles produced in hadron collisions will have (in the absence of initial-state radiation)

back-to-back transverse boosts, and the magnitude of those boosts will be unknown and unmea-

surable if there are invisible daughters.

It has been shown [92] that MCT is equal to MT2 in the special case where χ = 0, the visible

particles are massless, and the upstream transverse momentum is zero. Since it has also been shown

[58] that MT2 delineates the boundary between allowed and disallowed regions in mass space, we

can see that MCT has the same bounding property in mass space under these conditions.

Although MCT does not quite describe the boundary of the allowed region of mass space when

the event contains non-zero upstream momentum it is nevertheless bounded above by a value

Mmax
CT which is calculable for any boost, so a “boost-corrected” MCT can be used to recover a good

determination of the masses in sequential decays [146]. The combination of masses determined by

this maximum value of this contransverse mass is (in the limit where mB = mB′ = 0, and PUT =0)

Mmax
CT =

m2
A − m2

/C

mA
= 2p∗.

To within a factor of two, this endpoint is therefore telling us the momentum of the daughters in

the rest frame of the parent. This simple dependence of Mmax
CT on the unknown parameter m/C

may make distributions of MCT very convenient for later interpretation, since the endpoint can

be measured for one hypothesised value of m/C (for example 0), and later reinterpreted for other

trial invisible-particle masses. This can be compared to the behaviour of MT2 which (though it

exactly describes the bound in mass space for any trial mass m̃/C and under arbitrary boosts of the

parents) has a non-trivial (and boost-modified) dependence on the invisible particle trial mass, χ.

Because of the ease of reinterpreting MCT for different m̃/C , one could suggest that even in the case

of arbitrarily boosted parents (for which the variable does not quite describe the boundary of a

domain in mass space) the MCT distribution could still be the most suitable choice for presenting

endpoints kinematics relevant to mass measurements [146].

8 Historically this was how MCT was first defined in [122].
9 So far as we are aware, active use of MCT for single particle systems does not seem to have been encouraged prior

to [145].
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Two one-dimensional decompositions of MCT were proposed in [88] and named MCT⊥ and

MCT‖. These were constructed from the components of the visible momenta in the directions

respectively perpendicular to and parallel to the upstream transverse momentum two-vector. Since

the projection of a vector onto a plane is not changed by any boost which is perpendicular to

that plane, the distributions of MCT⊥ is unmodified by the magnitude of the boost which the

visible systems acquire from recoil against the upstream transverse momentum. Indeed the MCT⊥

distribution (or at least that part of it which has MCT⊥ > 0) has a universal shape in the absence

of spin correlations [88]. This distribution does not depend on, for example, ŝ or the longitudinal

boost of the parents, which it is claimed should make it much easier to fit in order to extract the

kinematic limit Mmax
CT⊥. The maximum of the MCT‖ distribution does depend on the boost, but

does so in a simple calculable way [88]. A summary of some of these results may be found in the

Appendix in equations (A.22) and (A.23). Compare also the related properties of MT2⊥ and MT2‖

discussed in Section 4.3.

In [145] a variant has proposed which considers separately the MCT for each side of a pair-decay

event, and then uses a MT2-like construction but now using MCT rather than MT on each branch

MCT2 = min
/cT +/c′T =/pT

{
max

(
MCT ,M ′

CT

)}
.

With a judicious choice of m̃C , the resultant variable has a Jacobian which increases the density

of events near the kinematic endpoint Mmax
CT2. The shape of the distributions for typical Standard

Model backgrounds were not investigated in [145], but provided that the backgrounds near the

peaked endpoint structures can be reduced [147] then this variable could increase the observability

of kinematic end-points and the precision with which they might be determined.

4.6. Multiple invisible daughters per chain

The generalisation of MT2 to cases with more than one invisible particle in each decay chain

have been considered in [115, 118, 148]. The transverse mass (and hence the stransverse mass

MT2) remains bounded below by a minimum value m< and above by m> (= mA for χ = m/C).

In the case of a n-body decay to a set of visible particles and a set of invisible particles, A →
B + C + . . . + /X + /Y + . . . the minimum value of is simply the sum of the masses of the daughters∑

mB + mC + . . . + m /X + m /Y + . . .. With larger numbers of invisible particles produced, the

fraction of states near MT = mA (or MT2 = mA for the two-chain case) is reduced. In such

cases the end-point might only be inferred from a measurement of the shape of the distribution.
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Sequential decays producing invisibles at each step further restrict the range of MT (and hence

MT2).

In [148] it is recognised that while chains containing multiple light invisible particles will gen-

erally have different kinematic properties to those containing smaller numbers of heavier invisible

particles, nevertheless there are cases (such as the decay of a neutralino to multiple neutrinos

χ̃ → ν . . . ν) for which the presence of multiple invisibles would be very difficult to infer.

4.7. Non-identical decay chains

If the two decay chains do not contain identical mass particles along their length then the results

above need some modification. In some cases it may possible to find parts of the chains (particular

decays) which are identical and to apply the identical-chain methods of the previous sections to

those subsystems [149].

The generalisation of the above methods to two-chain processes with non-identical masses has

been considered in [59, 150]. For example in [59] it was shown that in a pair decay with different-

mass parents one can hypothesise a value for the ratio of the parents masses mA/mA′ , and produce

a distribution which is sensitive to their product mAmA′ . In principle one can also determine the

correct value of the input ratio mA/mA′ from a kink structure in the endpoint of this distribution

in a manner reminiscent of, but different to that discussed in Section 4.2 (when changes due to a

different input parameter – the hypothesised mass χ of the invisible daughters – were considered).

A similar method can be employed to measure the mass of non-identical mass invisible particles:

by using either the inverse of the transverse mass (M−1
T ) [59] or by constructing a variant of MT2

with two different invisible particle masses [59, 150]. With either variant, ridges or creases in the

domain of consistent masses are found. These crease structures – which are generalisations of the

‘kinks’ discussed in Section 4.2 – intersect at the special point in the parameter space for which the

assumed masses (or relationships between masses) were correctly hypothesised. In [150] the latter

method is studied in detail, the PUT dependence of the modified MT2 distribution determined,

and the configurations of the bounding events described.

4.8. Inclusive pair-decay variables

For double sided event topologies in which one (or both) of the two equal mass parent particles

generates a large number of visible particles in its decay (e.g. as suggested in Figure 14) it is rea-



43

sonable to ask the question “Could one, in a real detector, tell which of the observed/reconstructed

final state particles or calorimetric energy deposits belong to B (i.e. to one side) and which belong

to B′ (i.e. to the other side)?” In some particular cases (principally those in which A and A′ are

guaranteed to be produced with large and opposite boosts) the answer to the above question might

be “yes”, as the constituents of B and B′ might be found in opposite hemispheres. This leads

to so-called “hemispheric MT2” techniques [151], previously investigated in [47, 152, 153]. The

remainder of the time the answer to the above question is likely to be “no”, in which case there

are a few alternative approaches. One such approach, which is specifically targeted at analysing

these pair decays, is to define the inclusive variable MTGen [154]. After we have discussed MTGen,

we will discuss an alternative approach involving ŝ
1/2
min.

It may be shown that MTGen, canonically defined [154] as the smallest value of MT2 obtained

after trying all possible partitions of the visible momenta (excluding those visible momenta deriving

from G in Figure 14 in cases where it is possible to determine which they are) between the two

sides, again has an interpretation as the boundary. The equivalence between these two different

definitions of MTGen was shown in [59] using insights from [58]. In this case MTGen is the boundary

of the region of parent/invisible mass-space which is consistent with the hypothesis that the visible

momenta were, in some unknown order, derived from A or A′ in association with two invisible

particles. The MTGen endpoint thus provides a constraint which tells you the parent particle mass

as a function of a hypothesised daughter particle masses, in just the same way that MT2 does. In

short, MTGen is the natural generalisation of MT2 to events in which you believe there is a pair of

parent particles but whose momenta you cannot be sure of uniquely assigning to their respective

parents.

During the process of scanning all possible partitions of the visible momenta into two groups

(one for each side of the event) MTGen has to combine observed particle four-momenta together

into resultant transverse-momenta for input to MT2. There are a variety of ways in which this

combination can be done, each of which has merits and demerits. MTGen is not unique in needing

to combine four-momenta to produce transverse-momenta, but we will only discuss this issue in

the context of MTGen. Options for determining the 1+2 vector for the visible system (all of which

have the same space-like components pT but differ in their time-like component) include [155]: (a)

summing the Lorentz four vectors (E,p) then ignoring the final pz; (b) summing the Lorentz 1+2

vectors (e,pT ); (c) projecting the total energy onto the transverse plane (using ET = |E| sin θ)

after summing the constituent four-vectors; (d) as for (c) but projecting each constituent before

summing. Which of these combinations is used for combining momenta has important additional
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consequences for the dependence of these variables on initial state radiation and/or multiple parton

interactions as will be discussed shortly.

A second and alternative approach to analysing pair-decays inclusively involves returning to

ŝ
1/2
min [49], which the reader will recall has already featured in this review in Section 2 where it was

discussed as a global event variable. All that is needed to re-use ŝ
1/2
min in the context of the pair-decay

hypothesis it is to revisit how it should be interpreted. For example, [49] noted that when sparticle-

pair decays are generated without initial state radiation and without multiple parton interactions,

then there is a strong correlation between (a) the position of the peak of the ŝ
1/2
min distribution and

(b) the sum of the masses of the two parent particles. One might hope to use this correlation to

measure those parent particle masses.10 It is noted in [49] that this correlation has a status closer

to a “conjecture” or a “rule of thumb” than a “necessity”, since it results from a fortuitous (and

somewhat process dependent) cancellation between two effects with quite different origin [49]. The

first effect is that the true value of ŝ1/2 exceeds the value it would take for threshold production

by an unknown and almost certainly different amount in each event (i.e. ŝ1/2 > 2mparent) with the

mean offset carrying some production-process dependence. The second effect is that the bound on

ŝ1/2 provided by ŝ
1/2
min seems to be lower than ŝ1/2 by approximately the same amount as the excess

in the first effect. In consequence we have a somewhat process dependent coincidence, with two

quite different effects approximately cancelling out, leading to the correlation between the peak of

the ŝ
1/2
min distribution and 2mparent.11

The above correlation was demonstrated in simulations without initial state radiation. It is

noted in [49, 50] that the effect of inclusion of initial state radiation (ISR) and multiple parton

interactions (MPI) can be to substantially increase the measured values of ŝ1/2 and to substantially

modify the shape and position of the peak of the ŝ
1/2
min distribution by large factors (order 2). This

10 ŝ
1/2
min shares with MT2, MTGen and similar variables the property that it measures parent masses for a given

hypothesised mass of the invisible daughters. So when we say “this correlation can be used to the masses of the
two parent particles” we mean for suitable hypothesised invisible particle masses.

11 Note the difference here between ŝ
1/2
min and MTGen. The construction of the MTGen variable makes direct use of the

pairwise hypothesis, whereas the construction of ŝ
1/2
min does not. However both can have the pairwise hypothesis

applied to their interpretation, and consequently both can potentially say useful things about pairwise events.
Whereas an MTGen measurement places a direct and calculable bound on the parent masses in each event (subject

to the pairwise hypothesis), a ŝ
1/2
min measurement of those parent masses is reliant on a correlation based on a

fortuitous cancellation between quite different and process dependent effects). This does not mean that either
variable is better or worse than they other. The two variables are simply different. Which you should use depends
on which assumptions you do or do not wish to make and at what level you wish to make them. For example, if
you are prepared to make a strong pairwise hypothesis about the pairwise nature of all the events in your sample,
then you should perhaps use MTGen since it can make more use of that hypothesis. On the other hand, it might
be advantageous to avoid making the pairwise assumption at construction, so that you can interpret the same set
of events in many ways. In which case ŝ

1/2
min may be more useful.
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means that, in the presence of ISR, the correlation spotted in [49] requires either accurate modelling

of such effects, or alternatively requires care to reduce the effect of ISR (by for example restricting

attention to momenta in the small |η| region).

Sensitivity to initial state radiation and multiple parton interactions is by no means unique

to ŝ
1/2
min. For example, MTGen distributions also can gain undesirable high tails when ISR or

other momenta not deriving from the parents are “mistakenly” identified as the products of the

parents and used as inputs. Indeed inclusive variables tend, by construction, to be sensitive to

all objects in the final state, and so will, to a greater extent than more selective variables, tend

to contain contributions from initial state QCD radiation as well as decay products from heavy

object decays. Inclusive variables which combine four momenta using options (a) and (c) above

are often particularly sensitive to ISR, etc, since these momentum combination schemes are more

sensitive to the appearance of a small number of momenta at high rapidity. For all such variables,

the contributions from ISR and MPI will need to be well modelled before the variables can be used

in precision constraints.

It has been shown that QCD radiation and multiple parton interactions can play an important

role in modifying inclusive distributions [49, 50, 156]. In [50] it is even argued such dependence

should be regarded as beneficial, since it allows us to test not only our understanding of QCD,

but also our understanding of the link between the scale of the QCD radiation and the mass

scale of the particles that were involved in its generation. In this sense, accurate modelling of the

sensitivity of inclusive variables to this radiation might in itself lead to indirect mass determinations

or constraints.

One final approach to controlling the effect of ISR is to attempt to find ways of “removing”

it from the analysis. Such techniques presuppose that the decay chain of interest can be well

reconstructed from only a subset of the jets in the final state. In such a case, this information can

be used to discard some jets (under the assumption that they had a high probability of coming

from initial-state radiation) and improve the mass reconstruction [157].

4.9. Hybrid variables

The concept of hybrid (as opposed to per-event and per-dataset variables) was introduced in

Section 1.4. What use might hybrid variables be for pair decays? No single event containing a

qll-chain of Section 3.5 can generate the constraint on the slepton and neutralino masses seen in

Equation 12 – however such a constraint can emerge from the “dilepton edge” by consideration of
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FIG. 18: Event topologies required (a) by M2C and (b) by M3C .

the sample of events as a whole. In a scenario where it is foreseen that such a constraint could be

obtained from a large sample of events, one might profit from constructing a variable which “re-

interprets” each event in the light of that constraint. Ideally this process injects valuable additional

information into each event, and the resulting hybrid variables are more powerful than their non-

hybrid relatives. This supposes, however, that the information injected is “good” or “relevant”

to the event into which it was injected, which need not be true. Successful application of hybrid

variables is thus limited by the degree of homogeneity in the samples of events to which they might

be applied, the extent to which the events in those samples satisfy the “injection hypothesis”, and

the degree to which both these requirements could be verified.

We will now look at two hybrid variables that apply the dilepton edge constraint to pair decays,

M2C and M3C .

The hybrid variables M2C [91, 158] and M3C [159] use as their hybrid “ingredient” the mass

relationships obtained from the “dilepton edge” of the qll-chain. Using this ingredient, together

with MT2, these variables reconstruct event-by-event lower and/or upper bounds on the LSP mass.

The only important difference between M2C and M3C is the topology to which each variable is

applied. Both have the same final state, but the internals are different. The topologies for each

variable are shown side-by-side in Figure 18. M2C assumes a pair of identical particles, decaying

identically to one LSP and two SM particles. M3C requires two sequential two-body decays per

branch, with an intermediate real particle. In both cases, the “daughter” particles are commonly

taken to be the lightest neutralino, and the “parent” particles are taken to be the second lightest

neutralino. The slepton, if it is on shell, is treated as neither a parent nor a daughter but as an

internal particle.

It is easy to see conceptually how M2C generates an upper and/or a lower bound on the LSP
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FIG. 19: The four potential combinations of constraint coming from MT2 and the dilepton edge which

together contribute to M2C are shown. The mass difference Δ = mA − mB is assumed to have been

measured independently, e.g. from the endpoint of the dilepton invariant mass distribution in three-body

decays A → B�+�−. Knowledge of Δ constrains the (mA, mB) solution to lie on the diagonal line. The

constraint from the pair decay kinematics gives the separate MT2 constraint, for which the solution must lie

above and to the left of the dashed line. The intersection of the shaded region with the diagonal line then

gives an event-by-event allowed solution space.

mass for each event using the constraint coming from the dilepton edge. We have already seen in

Figure 15 that, in the absence of any additional “hybrid” information, the nature of the “ordinary”

MT2 constraint is to identify the region of (parent,daughter)-mass space which is compatible with

the event. This allowed region was shaded and labelled with a � in Figure 15. With only the

information from MT2, all we know is that the true parent and daughter mass combination is

somewhere in this region. If we now introduce the hybrid constraint from the dilepton edge on the

same set of axes we get one of the cases shown in Figure 19. The constraint from the dilepton edge

is always the straight blue (dot-dash or solid) line passing through the point at which the parent

and daughter particles take the correct, though unknown, masses, with

Δ = mA − mB = mmax
�� .

If we apply the MT2 constraint and the dilepton edge constraint simultaneously, we can see that

the point where the true parent and daughter masses lie must be found somewhere on the part of
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the straight line which overlaps the shaded MT2 region. This smaller allowed region is indicated by

the solid (rather than dot-dashed) sections of the straight blue lines in Figure 19. It will be noted

that, depending on the shape of the MT2 boundary, the allowed region of joint constraint may be

either finite or unbounded in extent. If finite, there is always an upper bound on the neutralino

masses (both parent and daughter), and sometimes a lower bound too. If unbounded in extent,

there may be only a lower bound on the neutralino masses, or if unlucky, no bound at all. Which

situation one finds depends very much on the kinematics of the individual events, and depends

in particular on the net transverse momentum in the lab-frame of the pair of parent neutralinos

(PUT ). Where a lower bound and/or upper bound for the mass of the lightest neutralino exists, it

is called M2C,LB and/or M2C,UB as appropriate.

Analogous definitions and results apply to the case of M3C , except that in this case the sequence

of two-body decays means that the dilepton edge provides a constraint (12) on the differences of

squared masses of participating particles rather than the mass difference Δ.

Alternatively, instead of generating hybrid variables per se, one can instead talk of hybrid

techniques, where again one combines constraints (such as those from a dilepton edge) with what

would otherwise be under-constrained event topologies to reconstruct masses. A fine example of

this includes [160] which combines kinematic edges with events of the type shown in Figure 13(d).

4.10. Going beyond pairs of decay chains

It is straightforward to generalise the kinematical boundary method to chains involving more

than two decay chains. For example one can define an analogue of the MT2 variable (16) suitable

for the case where three parents are produced, and each decays to a system of visible particles and

invisible particles. One can construct the best bound possible, without knowing the splitting of

the invisible momentum between chains, but subject to the constraint that the momenta of the

invisibles should sum to the total missing momentum [136, 155]

MT3 ≡ min
/cT +/c′T +/c′′T =/pT

{
max

(
MT ,M ′

T ,M ′′
T

)}
.

There are obvious generalisations to more than three cascades, but such constructions have not

received much attention in the literature.
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4.11. Singularity variables

It has been noted [161] that all of the kinematic endpoints identified in Section 3 and 4 (e.g. mll,

MT , MT2, MCT , . . . ) as well as the cusps described in Section 3.7 and 3.11 are points where

the projection from momentum space into the variable of choice becomes singular provided that

the correct hypothesis has been made for the relevant masses. It is shown in [161] that one can

systematically identify all the singularities. It is also possible to construct normalised variables

(singularity coordinates) locally perpendicular to all such singularity structures in a procedural

manner which, though somewhat involved, is well defined. These variables can be constructed for

different trial masses and the most singular behaviour sought.

5. VARIABLES BASED ON SUPPOSITIONS RELATING TO MULTIPLE EVENTS

We have, by now, seen many examples of events or topologies in which it is not possible to

determine the full kinematics of a single event in isolation from any others. The problem has

been that a typical event can be expected to contain far more unknowns (e.g. the components

of the momenta of the invisible particles, and the masses of the unseen internal resonances) than

can be constrained by the available observations. However, although each event in isolation may

contain too little information to allow kinematics and unknown masses to be fully determined, it

is sometimes the case that one or more events taken together with some joint assumptions can

overcome this hurdle. In practice, this requires three conditions to be satisfied: (1) that you have a

sample of events in which a sufficiently large fraction can be expected to share a common topology

and particle content, (2) that the “unknowns” may be divided into those which are “shared” among

all events (e.g. model parameters such as unknown masses) and those which are “independent”

(e.g. kinematical variables such as the four momenta of the LSPs in each event), and (3) that the

number of independent (kinematical) unknowns per event is smaller than the number of constraints

that may be applied to each event by observation and/or hypothesis. If these three conditions are

satisfied, then when a sufficiently large sample of events is considered as a whole, the joint system

should become over-constrained and it should be possible to determine not only the unknown

masses of the participating particles, but also information about the momentum components of

the unseen particles in each event.

Some methods taking this approach look quite literally at pairs (or triples or quintuples) of

events – indeed however many are necessary to get an over or exact constraint – and attempt
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thereby to use each such pair (or . . . ) to gain multiple independent measurements of model

parameters [162–165]. We will discuss some of these in Section 5.1. Other studies shy away from

such an approach, preferring to derive a measurement from the sample of events “as a whole”

rather than from pairings. In this latter category come not only all matrix element methods and

model dependent fits (of which there are too many to produce a definite list12) but also methods

that form approximate goodness of fit minimisations. We will mention one such method [167] in

Section 5.2.

There is still much debate and little consensus as to whether it is better to work with event

“pairs” (etc) or to work with the sample of events in its entirety. There are arguments and

proponents on both sides - and it is hoped that both methods will be tested on the LHC data.

5.1. Methods looking at small groups of events

One of the first studies to attempt to extract masses by looking at small groups of events that

individually would be unconstrained was the “mass relation method” [162, 163]. This considered

long decay chains of the form

(specifically they considered a final state containing two opposite sign same family leptons, two jets

and a neutralino coming from a gluino in the initial state). The key idea is that the particle masses

can be fully determined – to within a set of discrete choice-ambiguities – if sufficiently many events

are considered in combination. In principle, events would need to be considered five-at-a-time.

However to simplify the presentation of the method, the authors made the assumption that the

three lightest sparticle masses were already known, and this allows them to use events in pairs. The

authors noted that it would be possible to extend this method to shorter chains if more than one

were present in each event, as the missing momentum constraint would then couple the momenta

of the invisible particles and thus couple the constraints on the chains.

Indeed, though couched in a somewhat different language, the so-called “polynomial” method

of [164, 165] can be thought of as extending the mass relation method to identical pair decays of

the form

12 Nevertheless, it is worth mentioning [166] as an example of a matrix element method providing an alternative to
the purely kinematic methods of Section 4.1 for measuring particle masses in pair production.
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.

This method takes pairs of events and finds the mass hypotheses that are compatible with them.

Perhaps surprisingly (given the large number of particles in the final state) the evidence provided

in [164, 165] suggests that combinatorial ambiguities may not present insurmountable problems for

such techniques. Computer libraries and Mathematica notebooks are freely available [128] which

provide routines that may be used to determine the masses which are consistent with pairs of

events of this type.

5.2. Matrix element methods, distribution shapes, and combining events

The majority of the mass measurement methods described previously have been based on con-

clusions derived from small numbers of events, or from the local properties of distributions. For

example: invariant masses were used to measure the mass of single particles decaying to visible

products; local properties of distributions (for example the location of discrete features, such as a

kinematic endpoints) were used to measure certain relationships between masses; and the solutions

of sets of simultaneous equations derived from a small number of events were used to find many

masses at once under the assumption that the events were homogeneous.

It should be noted, however, that there are other techniques which typically become powerful

only when looking at much larger numbers of events. In the main, these are methods sensitive to

the global (or at least non-local) shapes of differential distributions of observables, though there

are other examples (e.g. [167]) which we will comment on which do not conform to this pattern. It

should be admitted that the distinction being drawn here13 is perhaps not as clear cut as we are

suggesting – one might argue, for example, that many events are needed to see a kinematic endpoint,

or that only by knowing or using the shape of the distribution near an endpoint can the endpoint

be reliably fitted, and that therefore the use of kinematic endpoints requires a good understanding

of the non-local properties of distributions and/or large numbers of events. Nonetheless, we think

that the distinction is a useful one to draw in the sense that, from an experimental perspective, to

13 i.e. the distinction between observables based on global properties of distributions (such as their shapes) and
observables based on local properties (endpoints) or small numbers of events.
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make use of “shape” information one needs a much better understanding of detector acceptances

and efficiencies over the full range of the differential distribution in question than one does if one

is merely fitting a local property such as a resonance. Similarly, fitting the shape of a “signal”

distribution over a wide range (a range in which the background distributions might have very

non-trivial differential distributions of their own) places much more stringent requirements on the

experimenter’s understanding of the size and shape of the underlying backgrounds.14

Matrix element methods, also known as likelihood methods or shape methods, have a long

history of making use of all the events in a sample to constrain a set of model parameters – not

only in particle physics, but in all areas of the sciences. In fact, if the underlying model (for both

new physics and relevant backgrounds) is well understood, and the only remaining question is the

determination of some parameters within that model, then no method can beat the matrix element

or likelihood methods for their ability to extract information from data [168]. In these methods, the

basic idea is that if (within the confines of a fully parametrised model) it is possible to determine

the probability with which any given set of observables is likely to arise, or (equivalently), if one

can predict the shape of the differential distributions of certain observables as a function of the

parameters of the model in question, then it is possible to do whichever of the following is most

desired: (1) to determine which set of model parameters make the data most likely, (2) to determine

confidence intervals for some of the model parameters, (3) to sample from the posterior distribution

of model parameters induced by the likelihood of the data given an appropriate prior. Indeed, there

are yet more ways that results of a shape based analysis could be interpreted or presented – but the

common feature of each is their dependence on a well understood likelihood (the probability of the

data given a model). If the parameters of the model in question are masses (or if the parameters

may be used to derive masses) then these techniques perform model dependent mass measurements.

For example, [166] used a matrix element method to place a constraint on the parent and daughter

masses in the topology of the type shown in Figure 13(a). It is interesting to note that the shape

of the constraint obtained in [166] bears many similarities to that obtained from the corresponding

MT2 analyses. Possible reasons for this similarity are suggested in [59].

One ingredient required by analyses that make use of shapes is, therefore, an ability to predict

the shape of differential distributions of useful observables. In some cases, there is no alternative

to using event generators to calculate the shapes of such distributions by Monte Carlo methods.

14 In contrast a narrow structure, such as a resonance, can often be fitted using a sideband technique with compara-
tively little understanding of the backgrounds.
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There are instances, however, where the shapes of distributions can be calculated analytically to

provide useful insights into either their nature or into the sets of circumstances in which the shapes

are most useful [15, 20, 30, 65, 80, 81, 84, 88, 89, 91, 158, 159, 169].

It should be noted that the shapes of some of those differential distributions are sensitive to the

spins and couplings of the particles involved, and that in fact most spin-sensitive analyses rely on

this as their only means of extracting information about those spins [12, 15, 20, 30, 35].

In practice, matrix element and likelihood methods tend to be applied only in the mature

stages of an analysis. For example, currently they are being used for top quark mass measurements

[170, 171] and Higgs boson searches [172] at the Tevatron. Such techniques are less likely to perform

well in the early stages when there remains some debate as to the nature of the model being fitted

– and in particular when the distribution of the background is poorly understood. As a result,

there is also a large number of methods that are not strictly based on the statistical likelihood, but

which nevertheless try to determine model parameters from some form of fit over model parameters

to some aspect of the data.

Are all methods that look at large homogeneous samples of events based on shapes or differen-

tial distributions? Fortunately not! For example, though the mass relation method was initially

propoposed [162] as a method that should consider pairs of events (thus leading to its discussion

earlier in Section 5.1) it has been noted, for example in Section X of [173], that the mass relation

method can trivially be extended to work on all events, and indeed becomes less arbitrary in the

process. With similarities to the mass relation method and to the methods of [143, 164, 165],

another homogeneous event sample technique not based on event shapes has been proposed in

[167] which aims to use linear algebra to efficiently determine unknown masses from events which

are individually under- (but collectively over-) constrained, by asking us to solve the kinematics

of each event in terms of a minimal number of assumptions, and then minimise a goodness of fit

through variation of these assumptions. In the example used in [167] there are sufficient constraints

to permit us to determine the four-momenta of both of the invisible particles provided we are pre-

pared to to hypothesise all eight participating masses. A goodness of fit function which compares

the squares of those LSP momenta to the hypothesised LSP masses can then be constructed and

subsequently minimised over all possible choices of the set of eight masses. This results in an

overall “best fit for the participating masses” which uses all events democratically. Though this is

not strictly a likelihood method, one can think of methods in this class as attempting to form a

“heuristic” likelihood – by which we mean a function which loosely shares some of the properties

of a real likelihood, in particular it is large near “good” values of the model parameters, and small
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elsewhere.

5.3. Model fitting and adding other observables

To improve our determination of the masses we may well be willing to make assumptions about

the physics beyond hypothesising topologies and decays. For example some of the first variables

explored in this review (in Section 2) were those which already made the additional (often implicit)

assumption that heavy particles are produced near their kinematic threshold, so with E ≈ m.

Assumptions about the nature of the incoming partons allow us to turn initial-state radiation

to our advantage. QCD radiation adds particles to the final state by an amount which can be

calculated, and hence could potentially be exploited to provide information on heavy object masses

[50] – though more detailed work is needed to check the practicality of this proposal.

If a particular model is assumed one can combine multiple measurements of different topologies

to fit for the masses. The constraints from mass or kinematic edge measurements have been

interpreted in the context of supersymmetric models by several groups [77, 174–177]. If constraints

from a future electron-positron collider can be added [178] then the near-degenerate directions in

the LHC-only measurements can be resolved, leading to improved mass constraints even on those

particles not directly observable at any future e+e− machine.

Alternatively, if one is willing to make suppositions about the couplings of any new particles

(as might be reasonable for example for a supersymmetric model) one could further constrain the

masses using only LHC data. The number of events observed is usually a strong function of the

mass (both because of the parton distribution functions and the explicit dependence of the matrix

element on kinematic variables such as ŝ). If one is willing to entertain hypotheses about the

couplings involved, it is possible to interpret the measured cross-sections as constraints in mass

space [179, 180], considerably improving the overall mass scale determination even for a modest

integrated luminosity of ∼ 1fb−1, and with modest uncertainties in the predicted cross sections of

order 20%.

5.4. Alternative approaches to under-constrained events

We have already seen that when invisible particles are produced it is not always possible to fully

reconstruct the event kinematics. Nonetheless, there are sometimes ways in which it is possible to

perform approximate kinematic reconstructions.
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For example, the general point is made in [181, 182] that events in particular corners of kinematic

phase space can be “more reconstructible” than general events in the bulk. For example, [181]

investigates di-chargino production, with each chargino decaying to an opposite sign di-lepton pair

and a lighter neutralino. This is a topology of the form in Figure 13(b). In general these events

are not reconstructible, however the subset of events in which two di-lepton invariant masses (one

from each “side”) are close to their upper kinematic limit are forced to adopt particular kinematic

configurations: in these “extremal” events, the decay products of the heavier charginos may be

collinear in the chargino rest frame, for example. If one selects only events near kinematic endpoints,

one can therefore make use of this additional kinematic information to render the events sufficiently

reconstructible that masses may be determined. The same trick was applied in Section 20.2.4.1, in

the Supersymmetry chapter of [63].

Another example of performing “approximate” reconstruction near kinematic endpoints is the

so-called “MAOS Method”15 of [31, 121]. Here it is noted that for events that are near their

MT2 endpoint (Section 4.1) the missing particles’ momenta are constrained to be similar to the

values selected by the assignment (or “splitting” of /pT ) that determines the value of MT2. It has

been demonstrated that by selecting such near-endpoint events, and by using the “approximate

momentum reconstruction” implied by the splitting selected by the MT2 minimisation, then it

is possible to reconstruct not only the masses of the particles involved, but also place strong

constraints on their spins. This is demonstrated in the the context of a supersymmetric model [31]

and for the determination of the Higgs boson mass in the channel h → W+W− → �+�−νν [121].

Not all “approximate reconstructions” are motivated by edges of phase space – an alternative

approach is to construct variables from the kinematic configuration which has the greatest likeli-

hood, or from a weighted average of possible configurations, perhaps weighted by a prior motivated

by a Monte Carlo simulation. This approach has been employed in template-based measurements

of the top quark mass in the di-leptonic channel at the Tevatron [183–189].

6. CONCLUSIONS

The story may be apocryphal, but it has been said that prior to the establishment of the quark

model, new particles were being found at such an alarming rate that it was seriously proposed that

a Nobel Prize ought to be awarded to the first physicist who couldn’t discover a new particle.

15 “MAOS” stands for “MT2 Assisted On Shell”
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In the 1950s and early 1960s particle physics may have been expanding into a theoretical vacuum

driven by an excess of experimental results. In the case of mass measurement techniques for the

LHC, however, the process seems to have been turned upside down. The earliest LHC specific

techniques were proposed in 1996, or thereabouts [42, 62], and in the course of the intervening

15 years they have been developed beyond all recognition. All of this has happened in an almost

complete absence of data against which to test these techniques. The Tevatron collaborations are

owed a debt of thanks both for inventing their own methods, but also for acting as a testbed for

some LHC proposals, for example for mass determination in the dileptonic tt̄ system.

March of 2010 saw the first collisions at the LHC with centre of mass energies of 7 TeV, and so

the long wait for that data is now over. Those who have invested considerable effort in developing

mass measurement techniques are looking on in expectation, waiting to see what the data will bring.

In very little time, experimental collaborations will dash the hopes of phenomenologists the world

over by refusing to release any plots derived from any of the mass measurement variables which are

more complicated than mere invariant masses, as they will be too busy tearing themselves apart

in debates over how best to measure the photon reconstruction efficiency in the pseudorapidity

range 1.4 < |η| < 1.5. The development of mass measurement techniques, which has already seen

a period of incredible productivity over the last 15 years, is thus assured a second wind.

While writing this review, nothing was more disheartening than finding the words “We propose

a new variable . . . ” in one of the abstracts circulated in the daily arXiv digest for hep-ph. We are

pleased to be able to confirm that we, ourselves, have managed to create no new variables during

the course of this review.
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¯

A. SOME FREQUENTLY USED DEFINITIONS AND FORMULAE

For convenience we include definitions of some of the more frequently-used kinematic variables,

and reproduce some of the most important kinematic endpoint formulae.

A.1. Summary of simple kinematic variables

Bold font symbols indicate Euclidean momentum vectors in three (or two transverse) dimen-

sions. A subscript T indicates a quantity built from transverse momentum components.

Invariant mass (Section 3.1):

M2 =

(∑
i

pi

)2

. (A.1)

Transverse energy (Section 3.2)

e2 = m2 + p2
T . (A.2)

Effective mass (Section 2) – a typical definition is a sum over the leading n jets:

Meff = |/pT | +
∑

i=1,n

|pT,i| (A.3)

where historically n has always been taken to be “4”, but more recently n has become dependent

on the analysis channel. Note that HT , the analogue in CMS and at the Tevatron, has a number

of different definitions (see equations (3), (5) and (6)), of which the one most frequently used at

present is

HT =
∑

i=1,n

|pT,i| . (A.4)

Transverse mass (Section 3.2) if m/C is known

M2
T ≡ m2

b + m2
/c + 2

(
ebe/c − bT · /cT

)
(A.5)

otherwise

M2
T ≡ m2

b + χ2 + 2
(
ebeχ − bT · /cT

)
(A.6)
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Related edge Kinematic endpoint

l+l− edge (mmax
ll )2 = (ξ − l)(l − χ)/l

l+l−q edge (mmax
llq )2 =

⎧⎪⎨
⎪⎩

(mq̃ − mχ̃0
1
)2 if l2 < qχ < ξ2 and ξ2χ < ql2,

max
[

(q−ξ)(ξ−χ)
ξ , (q−l)(l−χ)

l , (ql−ξχ)(ξ−l)
ξl

]
otherwise

or equivalently

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q − ξ)(ξ − χ)/ξ if ξ2 < χq,

(ql − ξχ)(ξ − l)/ξl if l2q < χξ2,

(q − l)(l − χ)/l if qχ < l2,

(mq̃ − mχ̃0
1
)2 otherwise.

l+l−q threshold (mmin
llq )2 =

[
2l(q − ξ)(ξ − χ) + (q + ξ)(ξ − l)(l − χ)

−(q − ξ)
√

(ξ + l)2(l + χ)2 − 16ξl2χ

]
/(4lξ)

l±nearq edge (mmax
lnearq

)2 = (q − ξ)(ξ − l)/ξ

l±farq edge (mmax
lfarq

)2 = (q − ξ)(l − χ)/l

(just a definition) (mmax
lq(eq))

2 = (q − ξ)(l − χ)/(2l − χ)

l±q high-edge (mmax
lq(high))

2 = max
[
(mmax

lnearq
)2, (mmax

lfarq
)2
]

l±q low-edge (mmax
lq(low))

2 = min
[
(mmax

lnearq
)2, (mmax

lq(eq))
2
]

(alternative form)
(
(mmax

lq(low))
2, (mmax

lq(high))
2
)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
(mmax

lnearq
)2, (mmax

lfarq
)2
)

if 2l > ξ + χ > 2
√

ξχ(
(mmax

lq(eq))
2, (mmax

lfarq
)2
)

if ξ + χ > 2l > 2
√

ξχ(
(mmax

lq(eq))
2, (mmax

lnearq
)2
)

if ξ + χ > 2
√

ξχ > 2l.

l±q sum-edge (m2
ql+ + m2

ql−)max = (q − ξ)(ξ − χ)/ξ

Xq edge (mmax
Xq )2 = X + (q − ξ)

[
ξ + X − χ +

√
(ξ − X − χ)2 − 4Xχ

]
/(2ξ)

TABLE II: (Containing results from [65, 77, 79, 82].) This table lists the absolute kinematic endpoints of

invariant mass distributions formed from decay chains of the type q̃ → χ̃0
2 → �̃∓�±nearq → χ̃0

1�
∓
far�

±
nearq for

known particle masses. The shorthand notation used is: χ = m2
χ̃0

1
, l = m2

�̃R
, ξ = m2

χ̃0
2

and q = m2
q̃ and X

is m2
h or m2

Z as appropriate. The visible particles are assumed to have negligible mass. Inversion formulae

(i.e. masses in terms of endpoints) for certain subsets of the above endpoints are published in [65, 79, 82].

Note that this table is by no means exhaustive: many other interesting endpoints have been proposed for

the qll-type chain (including those of [79, 82]) and for other types of chain [87].
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where χ, the hypothesis for m/C is also used in eχ =
√

χ2 + c2
T .

Contransverse mass (Section 3.12, 4.5):

M2
CT = m2

b + m2
b′ + 2(ebeb′ + bT · b′

T ). (A.7)

Stransverse mass (Section 4.1 et sequens):

MT2 = min
/cT +/c′T =/pT

{
max

(
MT ,M ′

T

)}
. (A.8)

A.2. Kinematic endpoints of cascade decay chains

The kinematic endpoints for the decay chain q̃ → χ̃0
2 → �̃∓�±nearq → χ̃0

1�
∓
far�

±
nearq (and other

chains with the same topology) can be found in Table II.

A.3. Some properties of two-body decays and variables related to them

This section summarises some frequently-used results relating to two-body semi-invisible decays of

a single particle. In this section our notation assumes that the decay is labelled

A → B /C

and that upstream transverse momentum is defined to be

PUT = −aT .

Transverse momentum:

For any PUT recoil, with the correct invisible particle mass hypothesis χ = m/C the momentum of

each daughter in the parent rest frame is

p∗ =
λ

1
2 (mA,mB ,m/C)

2mA
(A.9)

where

λ(a, b, c) =
(
a2 − (b + c)2

) (
a2 − (b − c)2

)
= a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2. (A.10)

For mB = 0 (A.9) simplifies to

p∗ =
m2

A − m2
/C

2mA
: mB = 0 (A.11)
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For single particle production and two-body decay with PUT = 0

bmax
T = p∗ : PUT = 0. (A.12)

For fixed PUT and mB = 0,

bmax
T = p∗ey : mB = 0 (A.13)

where sinh y = |PUT |/mA and p∗ for mB = 0 is given in Equation A.11. For fixed PUT and

mB 
= 0,

bmax
T = mB sinh(y + η) (A.14)

where sinh η = p∗/mB .

Transverse mass: for any PUT recoil, with the correct invisible particle mass hypothesis

Mmax
T = mA : χ = m/C (A.15)

For fixed PUT , and an arbitrary mass hypothesis χ 
= m/C and with mB=0, 16

[Mmax
T (χ)]2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
p∗e−y +

√
(|PUT | + p∗e−y)2 + χ2

)2 − P2
UT : χ < m/C ,mB = 0

(
p∗e+y +

√
(|PUT | − p∗e+y)2 + χ2

)2 − P2
UT : χ > m/C ,mB = 0

(A.16)

where sinh y = |PUT |/mA and p∗ for mB = 0 is given in Equation A.11.

A.4. Endpoints for pairs of semi-invisible decays

This section summarises endpoint formulae for kinematic variables used for pairs of semi-invisible

decays. In this section our notation assumes that the decays are labelled

A → B /C

A′ → B′ /C ′

and that the upstream transverse momentum is

PUT = −(aT + a′
T ).

16 After [142].
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Stransverse mass: for any PUT , for the correct invisible particle mass hypothesis,

Mmax
T2 = mA : χ = m/C . (A.17)

For fixed PUT and mB = 0 the maximum value of MT2 for any invisible particle mass hypothesis

χ is given by Equation A.16 but now with PUT �→ PUT /2 [142]:

[Mmax
T2 (χ)]2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
p∗e−y2 +

√
(|PUT /2| + p∗e−y2)2 + χ2

)2
− P2

UT /4 : χ < m/C ,mB = 0

(
p∗e+y2 +

√
(|PUT /2| − p∗e+y2)2 + χ2

)2 − P2
UT /4 : χ > m/C ,mB = 0

(A.18)

where sinh y2 = |PUT |/2mA. Formulae for Mmax
T2 with mB 
= 0 are given in [137] for PUT = 0, and

in [142] for arbitrary PUT .

The 1-D decomposed versions of MT2 (Section 4.3) constructed from components of momenta

parallel to (perpendicular to) PUT [89] have endpoints:

Mmax
T2‖ = Mmax

T2 (A.19)

Mmax
T2⊥ = p∗ +

√
p∗2 + m̃2

/C
: mb = 0. (A.20)

Contransverse mass: for mB = 0 and arbitrary PUT [146]:

Mmax
CT = 2p∗ey2 : mB = 0 (A.21)

and likewise for the projections in the same limit [88]:

Mmax
CT‖ = 2p∗ey2 : mB = 0 (A.22)

Mmax
CT⊥ = 2p∗ : mB = 0 (A.23)

where again sinh y2 = |PUT |/2mA and p∗ for mB = 0 was defined in Equation A.11. Cases with

mB 
= 0 are considered in [88, 146].
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