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Abstract. We study the influence of the various hopping elements on the ground
state properties of the bosons in the 2D optical square lattice. Using the quantum rotor
approach for the Bose-Hubbard model with nearest t and next nearest-neighbours t′

hopping, we quantify to what extent changing the ratio t′/t affects the superfluid to
Mott-insulator transition.

PACS numbers: 67.85.Hj, 67.85.Bc, 03.75.Hh

1. Introduction

Optical lattices offer remarkably clean access to a particular Hamiltonian and, thereby,

serve as a model system for testing fundamental theoretical concepts and providing an

exemplar of quantum many-body effects [1]. It is well known that the ground state

of a system of repulsively interacting bosons in a periodic potential can be either in a

superfluid (SF) state or in a Mott-insulating (MI) state, characterized by integer boson

densities [2]. A periodic lattice potential with tightly confining potential wells can be

created by realising a dipole trap with superimposed counter propagating laser beams

[3]. These beams interfere and the interference pattern results in a periodic potential

landscape. For example, to form a two-dimensional lattice potential two standing waves

can be superimposed orthogonal to each other. The strength of the tunnel coupling is

characterized by the tunnel matrix element

tij = −
∫
drw0 (r − ri) Ĥ0w0 (r − rj) , (1)

where Ĥ0 is the Hamiltonian of the system, which includes the periodic lattice potential.

This element can be calculated by considering two Wannier functions of neighbouring

lattice sites ri and rj:

wn (r − Ri) ≡
1

N

∑

q

e−iq·Riψnq (r) , (2)

where ψnq (r) = unq (r) eiq·r, with unq (r) = unq (r + ai) being a periodic function, n is

the band index and ai is a lattice vector. If a sample of sufficiently cold bosonic atoms
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is loaded into a deep enough lattice (e.g. from a Bose–Einstein condensate), then only

states of the lowest band will be populated. Since, the Wannier state is well localized,

tij rapidly decreases with increasing relative separation |ri − rj|. Usually, the second

nearest neighbours have tunnelling rates that are 2–4 orders of magnitude smaller than

those of the nearest neighbours and the tight-binding can be expected to provide an

excellent description of the system in this regime. This represents the so-called tight

binding limit, where a state at any given site only couples to a few neighbouring sites.

However, it turns out that the Wannier state of the two-dimensional (2D) square lattice

can be weakly localized [4] (see, Fig. 1) depending on the intensity of the lattice. We

note that, even in 1D one can have regimes where next nearest-neighbour coupling is or

is not relevant [5]. Therefore, it appears reasonable to quantify the influence of the next

nearest-neighbour sites on the ground state properties of the bosons in the 2D optical

lattice. Furthermore, due to the separability of the potential for the 2D square lattice,

the tunnelling to sites lying on diagonals is identically equal to zero. As a consequence,

the tunnelling matrix arrangement including nearest and next to nearest neighbours

hopping is restricted to the lattice axes, as shown in Fig. 1.

2. Model

We start from a second quantized purely bosonic Hubbard Hamiltonian:

H = − t
∑

〈r,r′〉

[
a† (r) a (r′) + a† (r′) a (r)

]

− t′
∑

〈〈r,r′〉〉

[
a† (r) a (r′) + a† (r′) a (r)

]

+
U

2

∑

r

n2 (r) − µ
∑

r

n (r) , (3)

where, a† (r) and a (r′) are bosonic creation and annihilation operators defined on sites

r and r′ of a regular square lattice. The summations are performed over the nearest

〈. . .〉 and the next-nearest neighbours 〈〈. . .〉〉, respectively with hoppings t and t′ (see,

Fig. 1). A dispersion relation of the lattice is:

ε (k) = 2t (cos kx + cos ky) + 2t′ (cos 2kx + cos 2ky) . (4)

Furthermore, U is the on-site repulsion energy, n (r) = a† (r) a (r) represents the boson

number operator, while µ = µ + U
2
, with µ being a chemical potential controlling the

average number of bosons. The Bose-Hubbard model in Eq. (3) has been studied

intensively for a number of years [6, 7] and recently has been applied to bosons in

optical lattices [8, 9]. A number of approaches has been applied to investigate the

physics of the model like mean-field theories [10], strong-coupling expansion [11, 12],

coarse graining [13], methods based on a systematic strong-coupling approach, of the

Bose-Hubbard model, but going beyond mean field model [15, 16], or numerical once,

e.g. quantum Monte Carlo [17, 18, 19].
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Figure 1. (Colour online) Two-dimensional square lattice with the nearest neighbours
t and the next-nearest neighbours t′ hopping. Shaded areas denote Wannier state
density distribution based on data from Ref. [4].

3. Quantum rotor representation

In the following, we switch from the particle-number representation to the conjugate

phase representation of the bosonic degrees of freedom which constitutes an effective

bosonic description of the strongly correlated system [16]. To this aim the second-

quantized Hamiltonian of the model is translated to the phase representation with the

help of the topologically constrained path integral formalism. A similar method that is

based on quantum rotor formulation was recently employed by one of us in the fermionic

Hubbard model [20]. The best merit of this approach is that it is capable of handling

spatial and quantum fluctuation effects properly and complying with Mermin-Wagner

theorem [21]. It also gives the results that are in a very good agreement with Quantum

Monte Carlo method (see, Fig. 2 in Ref. [16]).

The statistical sum can be written in a path integral form with use of customary

complex fields, a (rτ) depending on the “imaginary time” 0 ≤ τ ≤ β ≡ 1/kBT , (with T

being the temperature) that satisfy the periodic condition a (rτ) = a(rτ + β):

Z =

∫
[DaDa] e−S[a,a], (5)

where the action S is equal to:

S [a, a] =
∑

r

∫ β

0

dτ

[
a (rτ)

∂

∂τ
a (rτ) + H (τ)

]
. (6)

Next, we performing a local gauge transformation to new bosonic variables:
[
a (rτ)

a (rτ)

]
=

[
eiφ(rτ) 0

0 e−iφ(rτ)

] [
b (rτ)

b (rτ)

]
. (7)

The U(1) group governing the phase field φ (rτ) is compact, i.e. φ (rτ) has the topology

of a circle S1. The chief merit of the transformation in Eq. (7) is that we have managed

to cast the strongly correlated bosonic problem into a system of weakly interacting
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bosons, submerged in the bath of strongly fluctuating U(1) gauge potentials on the high

energy scale set by U . In the phase-only representation, the statistical sum reads:

Z =

∫
[Dφ] e−Sph[φ] (8)

with the action:

Sph [φ] =

∫ β

0

dτ

{∑

r

[
φ̇2 (rτ)

2U
+ i

µ

U
φ̇ (rτ)

]

− J
∑

〈r,r′〉

cos [φ (rτ) − φ (r′τ)]

− J ′
∑

〈〈r,r′〉〉

cos [φ (rτ) − φ (r′τ)] (9)

where φ̇ (rτ) = ∂φ (rτ) /∂τ . We parametrize the boson fields as follows

b (rτ) = b0 + b′ (rτ) (10)

and restrict our calculations to the fixed amplitude b0 thus, dropping the amplitude

fluctuation term b′ (rτ). This is justified by the observation that in the strong coupling

limit t/U � 1 the physics of the problem under study is dominated by the behaviour

in the U(1) sector. As a consequence, J = |b0|2 t, J ′ = |b0|2 t′ and the integration over

phase variables is restricted over the compact U(1) group manifold [22]. In performing

this integration one should take phase configurations that satisfy the boundary condition

φ (rβ) − φ (r0) = 2πm (r) (11)

and m (r) = 0,±1,±2, . . .. By the definition, for the superfluid transition the order

parameter reads:

ΨB = 〈a (rτ)〉 = 〈b (rτ)〉ψB. (12)

Its non-vanishing signals a bosonic condensation (we identify it as superfluid state).

Note that a nonzero value of the amplitude 〈b (rτ)〉 is not sufficient for superfluidity.

To achieve this, also the phase variables, must become stiff and coherent, which implies

that ψB defined as:

ψB =
〈
eiφ(rτ)

〉
ph

(13)

is non-vanishing. The averages appearing in Eqs. (12) and (13) are as follows:

〈. . .〉 =

∫ [
DξDξ

]
. . . e−S[ξ,ξ]

∫ [
DξDξ

]
e−S[ξ,ξ]

, (14)

where ξ denotes a or b fields, respectively,

〈. . .〉ph =

∫
[Dφ] . . . e−Sph[φ]

∫
[Dφ] e−Sph[φ]

(15)

and the action Sph [φ] given in Eq. (9).
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The value of the boson amplitude b0 can be obtained from saddle-point condition:

∂f
[
b, b

]

∂b

∣∣∣∣∣
b=b0

=
∂f

[
b, b

]

∂b

∣∣∣∣∣
b=b0

= 0 (16)

with the free energy per lattice site f = − 1
βN

ln
∫
DbDbe−S[b,b]. Using the

parametrization in Eq. (10) we obtain the action :

S
[
b0, b0

]
= Nβ

[
− (zt + z′t′) |b0|2 − µ |b0|2 +

U

2
|b0|4

]
. (17)

So that, the amplitude of the bosonic field reads:

|b0|2 = 2

(
zt + z′t′

U
+
µ

U

)
, (18)

where z and z′ are number of nearest neighbours and next-nearest neighbours,

respectively, for a given lattice (in our case, z = z′ = 4).

The definition in Eq. (13) of the order parameter suggests that the description

in terms of the unimodular complex field ψ (rτ) = eiφ(rτ) (|ψ (rτ)|2 = 1) would be

more desirable than working a with trigonometric action involving the phase variable

φ (rτ). Furthermore, we substitute the rigid unimodular constraint |ψ (rτ)|2 = 1 for

each site r by the weaker spherical closure relation, which maps the problem onto

the soluble quantum spherical (QS) model [16]. The convenient way to enforce the

spherical constraint is the functional analog of the δ-function representation δ (x) =∫ +∞
−∞ (dλ/2πi) eλx, which introduces the Lagrange multiplier λ. The evaluation of the

effective action in terms of the ψ (rτ) fields may be organized using the loop method

[23]. To the second order in ψ (rτ) we obtain the partition function of the effective QS

model:

Z =
1

2πi

∫ +i∞

−i∞
dλ

∫ [
DψDψ

]
e−S[ψ,ψ], (19)

with the Fourier transformed action:

S
[
ψ, ψ

]
= − 1

Nβ

∑

k`

[
J (k) − γ−1 (ω`) − λ

]
ψ (kω`)ψ (kω`) , (20)

where the Bose-Matsubara frequencies are ω` = 2π`/β with ` = 0,±1,±2, . . .. Here, the

dispersion for the nearest and the next-nearest neighbours phase stiffness parameters is

given by

J (k) = 2J (cos kx + cos ky) + 2J ′ (cos 2kx + cos 2ky) , (21)

where J = t |b0|2 and J ′ = t′ |b0|2 with b0 given in Eq. (18). Furthermore, γ (ω`) is

Fourier transformed phase correlation function:

γ (rτ ; r′τ ′) =
〈
e−i[φ(rτ)−φ(r′τ ′)]

〉
ph
, (22)

which explicit form is given in Ref. [16].
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4. Results

Considering the problem at the mean-field level, it is obvious from Eq. (18) that the

effect of t′ is a simple correction to the direct hopping t. However, as already mentioned

in a strongly correlated case t � U the actual superfluid order is determined by the

phase coherence among bosons rather than the non-vanishing amplitude of the Bose

field. Therefore, going beyond the mean-field result using quantum rotor method it

is not a priori clear what the influence of t′ will be, especially for a two-dimensional

system, where phase fluctuations are significant. As usual, in the quantum rotor model

calculations the critical boundary is determined from the condition of vanishing of the

order parameter susceptibility G−1 (k = 0, ω` = 0) = 0, which defines the value of the

Lagrange multiplier λ0 at criticallity. Here,

G−1 (kω`) = λ0 − J (k) + γ−1 (ω`) . (23)

The “equation of state” with the order parameter |ψB|2 reads:

1 − |ψB|2 =
1

βN

∑

k`

G (kω`) . (24)

Because in two-dimensions a long-range order is expected only in the ground state we

have to specialize in the zero temperature limit β → ∞ in Eq. (24). We obtain:

1 − |ψB|2 =
1

N

∫ +∞

−∞

dερ (ε)

2

√
λ0−t|b0|2ε

U
+ 1

4

, (25)

where the critical value of the Lagrange multiplier is:

λ0 = J (0) + γ−1 (0) = |b0|2 ε (0) − U

4
+ v2

( µ
U

)
(26)

with a periodic function v [x] = x − [x] − 1/2 resulting from a boundary condition in

Eq. (11), where [x] is the floor function giving the greatest integer less than or equal to

x. In order to perform summation over wave vectors in equation of state in Eq. (24),

it is desirable to introduce a density of states of the 2D lattice with the nearest t and

next-nearest t′ neighbours hopping:

ρ (ε) =
1

N

∑

k

δ

[
ε− ε (k)

t

]
, (27)

which can be conveniently written as a convolution involving one dimensional densities

of states:

ρ (ε) =

∫ +∞

−∞
dxΛ (x) Λ (ε− x) , (28)

where

Λ (x) = Θ [ζ (x)]

ρ1D

[
1−
√
ζ(x)

4r

]
+ ρ1D

[
1+
√
ζ(x)

4r

]

√
ζ (x)

(29)
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Figure 2. (Colour online) Zero-temperature phase diagram of the system as a function
of hopping and chemical potential. Lobes for various values of the nearest neighbours
t′ to the next-nearest neighbours hopping t ratios (from the lightest to the darkest
shading: t′/t = 0,−0.016,−0.1,−0.2). MI denotes a Mott Insulator phase, while SF is
a superfluid region. The lower inset shows details of the t′ = 0 and t′/t = −0.016 lobes.
The upper inset shows the lattice density of states calculated from the dispersion in
Eq. (4) and Eq. (28) for the respective ratios of t′/t.

with η = t′/t, furthermore ζ (x) = 1 + 8r (x + r), Θ(x) is a step function and the

one-dimensional density of states is given by ρ1D (x) = (1/π)Θ (1 − |x|) /
√

1 − x2. For

t′/t = 0 we recover the usual density of state for the 2D lattice with the logarithmic

singularity at ε = 0. For t′ > 0, the density of states given by Eq. (28) is rather

uncommon e.g. in solid state physics applications, because usually the term next nearest-

neighbours hopping refers to the interactions along diagonals of the square lattice,

which are vanishing in the present case. In the MI phase, bosons are incompressible

∂nB/∂µ = 0 and localized, which means that the total energy is minimized when each

site is filled with the same number of atoms. Increasing fluctuations in the phase system

reduces fluctuations in the boson number on each site according to the Heisenberg

uncertainty relation ∆nB∆φ ≥ 1/2. By crossing the boundary line, bosons can move

from one lattice site to the next. The order parameter ΨB has a non-vanishing value,

and the system exhibits a long-range phase coherence. This is opposite to the case of

the Mott insulator, where phase coherence is lost. In Fig. 2 we plotted zero-temperature

phase diagram as a function of normalized hopping t/U vs. normalized chemical

potential µ/U for various values of t′/t hopping parameter. The phase boundary is

periodic with the chemical potential µ/U and the filling is fixed to the integer values

within the lobes. For square lattice, numerical investigation of the band structure and

explicit calculation of the Wannier states give the negative sign of t′/t ratio with value

of t′/t = −0.016 (t′ being 1.6% of t, see, Table 1 in Ref. [4]. In our calculations, it

leads to an increase of the size of the lobes by approximately 3% with respect to the
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pure 2D case with the nearest neighbours interactions only. Also, the shape of the

lobes changes with increasing t′ hopping. In general, the inclusion of the next-nearest

neighbours suppresses the superfluid state (see, Fig. 2). From Ref. [4] it follows that

for other type of lattices like hexagonal or rectangular the respective absolute value of

t′/t is even smaller than in the present case, which suggest that the prospective effects

on the phase diagram will be even less pronounced.

5. Conclusions

In this work, we have investigated two-dimensional lattices with nearest and next-nearest

neighbours hopping that may be used in experiments with Bose condensation of cold

atoms. We have shown that lattices with next-nearest neighbours hopping could affect

the ground state interaction – chemical potential phase diagram of the system, which

consist of Mott insulating lobes and superfluid region by suppressing the superfluid state.

In a view towards promising future developments, it would be interesting to consider

experimental realization of the presented scenario by means of two-dimensional optical

lattices with changing lattice potential depth.
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