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Abstract. The paper describes the theoretical formulation of dissociative γ → 2γ′

scattering in fixed-in-space and randomly oriented diatomic molecules in the dipole
approximation for excitation and 2γ′ production. Based on perturbation theory the
double differential cross section and two-photon angular correlation function of the
process is derived. The developed theory is applied to study the angular correlation
function of the two Lyman-α photons produced via decay of the doubly-excited
Q2

1Πu(1) state of the H2 molecule.
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1. Introduction

Doubly-excited molecular states, where two electrons are promoted from the ground

state into initially unoccupied orbitals, usually lie energetically above the first ionization

and dissociation thresholds (see, e.g. the reviews [1, 2] and [3]). These states

are sometimes called ’superexcited’ [4] and may decay either via autoionization or

neutral dissociation accompanied by photon emission [1]. Due to the variety of

different relaxation pathways, strong couplings with the electronic continua, and fairly

small excitation cross sections, these states are generally difficult to study both,

experimentally and theoretically [3]. During the last decades, superexcited states

have been studied experimentally in diatomic and polyatomic molecules using several

different techniques [2], such as ion spectroscopy [5], electron-energy-loss spectroscopy

[6], and one fluorescence photon [7] or two fluorescence photon coincidence spectroscopies

[8, 9]. Particularly for the latter type of experiments theoretical approaches as scarce

[10]. Therefore, in the present paper, the main goal is an extended theoretical

description of the two-photon coincident emission from dissociation fragments of one-

photon superexcited states in diatomic molecules.
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One-photon doubly-excited molecular states in diatomic molecules leading after

neutral dissociation to an emission of two photons may be divided in two groups. In

the first group, dissociation of a molecular superexcited state results in excited atomic

fragments, with one in a metastable state. The decay of the Q1
1Π state of H2 into

the H(2p) and H(2s) fragments [7] is an example of this type. The radiative decay of

the metastable state takes place mainly due to collisional quenching (see, e.g. [11] and

references therein). Therefore, the angular correlation between the two emitted photons

in this case does not carry precise information on the entangled atomic fragments.

In the second group, dissociation of a superexcited state forms two atomic fragments

in excited states decaying via dipole transition operator. The Q2
1Πu(1) superexcited

state of H2 dissociating into the H(2p) and H(2p) fragments [8] belongs to this second

group of processes. Such a two-photon emission process is very interesting, because

the two photons carry now detailed information on the structure and de-excitation

dynamics of the doubly excited molecular state. The two photons are entangled, since

they are emitted from an entangled excited-atom pair, even if the atomic fragments are

far from each other. Importance of entanglement of atomic fragments and its impact on

correlation in the two photons emission has been pointed out in [10]. Below we focus

on the decay of superexcited states within this second group.

The possibility to experimentally detect the two photons in coincidence emitted

via the dissociation of superexcited states into two excited fragments were shown in

the late 1980’s by Arai et al [8] in their pioneering experiments. The authors recorded

the absorption profile of the Q2
1Πu(1) state of H2 using the two-photon coincidence

technique. The experiment is very demanding mainly due to the requirement of

coincidence detection and small excitation cross section. Thus, the technique was unused

for more than 25 years. Higher photon flux of the modern synchrotron radiation sources

provides more feasible framework for this method, and the task was recently revived

by Odagiri et al [9] by repeating the original experiment on H2. Since then, similar

photon-photon coincidence experiments have been carried out by the same group also

for the homonuclear molecules N2 [12, 13] and O2 [14], and the heteronuclear molecule

NO [15]. Recently, this group published also the first experimental work devoted to

the measurement of the angular correlation function (ACF) of the two photons emitted

after the neutral dissociation of the Q2
1Πu(1) state of H2 [16].

The theoretical description of doubly-excited states in molecules is demanding, and

so far mainly carried out for H2. As an example, Guberman [17] has calculated energies

and Bottcher [18] potential energy curves and transition moments for several doubly-

excited states in H2. Calculations of the exciting photon energy dependence of the

absorption cross section based on semiclassical approximation were reported in [9, 19].

The full quantum mechanical treatment of the problem is presented by Borges and

Bielschowsy in [20]. To the best of our knowledge, so far only one theoretical work has

been devoted to the derivation of the ACF of two photons emitted after dissociation

of a superexcited molecular state [10]. The two-photon ACF obtained by Miyagi et

al [10] is based on the second-order correlation function in quantum optics and was
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used to study solely H2. Their approach, based on the analysis of the symmetry of

the dissociating doubly-excited state is elegant. However, it is challenging to extend it

to take into account different polarizations of the exciting radiation, general molecular

states, orientations of a molecule and decays to different spin-orbit components.

In this paper we present a theoretical description of one-photon excitation of

doubly excited molecular states, their dissociation into two excited atomic fragments,

and the following two-photon emission of diatomic molecules. Our model is based on

perturbation theory and can be readily applied to all diatomic molecules. The model

allows calculations with variable polarization of the incoming radiation, and polarization

sensitivities of the photon counters. The theory is applied to study the ACF of the two

Lyman-α photons produced via excitation and decay of the Q2
1Πu(1) state of the fixed-

in-space and randomly oriented H2 molecules. The ACF is studied in different cases

and compared to the existing theoretical and experimental data. Atomic units are used

throughout the paper unless otherwise stated.

2. Theory

In the following section we formulate the double differential cross section for one photon

excitation and two photon decay of doubly-excited states of diatomic molecules. We

are, thus, interested in the following process:

AB + hνi → (AB)∗∗ → A∗ + B∗ → A + B + hνf + hν ′
f , (1)

where the incoming photon hνi excites molecule AB from the initial state to the doubly-

excited state (AB)∗∗. The state dissociates into the excited atomic fragments A∗ and B∗,

which emit subsequently two photons proceeding into stable states A and B. Thereby,

we assume that the radiative decay is slow compared with the dissociation. It is also

assumed, that the doubly-excited resonance is isolated allowing lifetime interference

effects to be neglected. A schematic view of the coordinate system used in the

calculations is shown in figure 1.

2.1. Wave functions

The molecular wave functions are described in Hund’s coupling case (a) [21, 22] by

|JMνΩ〉 =

√
2J + 1

8π2
DJ∗

MΩ(ω)|ν〉|Ω〉, (2)

where Wigner’s rotation matrix DJ
MΩ(ω) describes the molecular rotational motion, |ν〉

denotes the vibrational wave function, and |Ω〉 is the electronic part of the total wave

function. Quantum numbers J and M are the total angular momentum of the molecule

and its projection on the quantization axis. In Hund’s case (a) Ω = Λ + Σ, where Λ

and Σ are projections of the total orbital angular momentum and total spin on the

molecular axis. The theory can be directly applied to other Hund’s cases by using the

basis transformations given elsewhere (see, e.g. [23]). The molecular wave function (2)
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Figure 1. The coordinate system used. Positions of the detectors as well as the
molecular orientation are described by polar θ ∈ [0, π] and azimuth φ ∈ [0, 2π] angles.
The incoming photon propagates along the x- or z-axis depending on the chosen
polarization. The polarization vectors of the outgoing photons are described in the
basis spanned by spherical unit vectors ε̂1 and ε̂2.

does not describe a defined parity of a molecular state, but due to the closure relation,

the use of parity adapted wave functions becomes superfluous.

In the limit of large internuclear fragment separation, the adiabatic electronic wave

functions are written as linear combinations of atomic wave functions [24] as

|CΩ〉 r→∞−→
∑

jaΩajbΩb

M(jaΩajbΩb|CΩ)|cajaΩa〉|cbjbΩb〉, (3)

where j is the total angular momentum of an atomic fragment (a or b) and Ω is its

projection on the molecular quantization axis. The atomic quantum numbers jaΩa and

jbΩb (including their signs) are strictly selected in the sum (3) by the entanglement of the

two electronic states of atoms in the overall molecular electronic state |CΩ〉, including

signs and values of all quantum numbers of the molecular state (i.e. spin S, its projection

Σ, orbital angular momentum L and its projection Λ = Ω − Σ) labeled here by index C.

The coefficients M(jaΩajbΩb|CΩ) are given explicitly via Clebsch-Gordan coefficients in

[24].

2.2. Transition matrix elements

We start by defining the transition amplitudes for initial excitation, fragmentation and

subsequent two-photon emission by a two-step cascade by

〈αf ; hνmhνn|H|αi; hνi〉 = (8π3ωiωnωm)1/2 ×
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∑

αmαnα′
n

〈αf |~ε ∗
m · T (1)|αm〉〈αm|~ε ∗

n · T (1)|αn〉〈αn|Hv|α′
n, r0〉〈α′

n, r0|~εi · T (1)|αi, r0〉
(E − Em + iΓm/2)(E − En + iΓn/2)(E − En′ + iΓn′/2)

, (4)

where 〈α|~ε · T (1)|α′〉 are the dipole transition matrix elements, |α〉 denotes general

molecular states, and Hv is the Hamiltonian for the nuclear dynamics describing

(pre)dissociation [25, 26]. In (4) we have neglected the propagation of atomic fragments

between the emission of the first and second photon. The exciting and emitted

photons are described using a second-quantized vector potential for the electromagnetic

field characterized by the creation and annihilation operators of photons with specific

polarization and momentum. In the calculations of the matrix elements, the vector

potential is taken in the dipole approximation. The first two terms in the denominator

of the transition amplitude (4) are the diagonal matrix elements of the Green’s function

with the radiative linewidths Γn and Γm [25, 26, 27]. Γn′ is the total decay rate of

the superexcited state |α′
n〉, equal to the sum of its autoionization and (pre)dissociation

rates [21, 27] neglecting direct fluorescence deexcitation. Energies En and Em are equal

to En
r→∞−→ Eat

n + εk
n and Em

r→∞−→ Eat
m + εk

m + hνn = Eat
n + εk

m, where Eat and εk are the

total electronic and kinetic energies of the fragments when r → ∞. E is the total energy

of the system equal to Ei + hνi.

The double differential cross section is calculated in the lowest order of perturbation

theory utilizing the Fermi’s golden rule

dσ2
nm

dΩndΩm

= 2πρ
∑

αf

|〈αf ; hνmhνn|H|αi; hνi〉|2 δ(E−Eat
f −εk

f−hνn−hνm), (5)

where ρ is the product of densities of the incoming and outgoing radiation modes [26].

We proceed by inserting the wave functions (2) and matrix elements (4) into (5), and

integrating over the kinetic energy of the fragments (see, e.g. [28]). It is assumed,

that all symmetry quantum numbers are conserved during the dissociation and that the

Franck-Condon approximation is valid on each step of the process. Averaging over the

degenerate Mi states and dividing by the incident photon flux we obtain on the energy

shell

dσ2
nm

dΩndΩm
=

α4ωiω
3
nω3

m

4π2c3Ĵ2
i

χdiss
∑

MiJf MfΩiΩf

∣∣∣∣∣
∑

JnJmMnMmΩnΩm

〈JfMfΩf |~ε ∗
m · T (1)|JmMmΩm〉

Et
f − Et

m + hνm + iΓm/2

〈JmMmΩm|~ε ∗
n · T (1)|JnMnΩn〉

Et
m − Et

n + hνn + iΓn/2
×

〈νn, r0|νi, r0〉〈JnMnΩn, r0|~εi · T (1)|JiMiΩi, r0〉
∣∣2 , (6)

where the assumption of a fast homogeneous dissociation yields the branching ratio

χdiss = 2π |〈JnMnΩn|Hv|JnMnΩn, r0〉|2 /Γn′, which is assumed to be the same for all

|JnMnΩn〉 states. The Franck-Condon factor for the initial excitation is denoted

by 〈νn, r0|νi, r0〉, α = 1/137 is the fine structure constant, and notation x̂ stands for√
2x + 1.

In order to calculate the double differential cross section for randomly oriented

molecular samples, the first step consists in the analytical integration over the rotational
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parts. Applying (A.1) from the appendix to the dipole transition matrix elements in

(6) we obtain

dσ2
nm

dΩndΩm

=
α4ωiω

3
nω3

m

4π2c3Ĵ2
i

χdiss
∑

MiJf MfΩiΩf

∣∣∣∣∣Γ
−1

∑

JnJmMnMmΩnΩm

∑

pipnpm

∑

qiqnqm

(−1)pi+pn+pmε−pi
ε∗−pn

ε∗−pm
Ĵf Ĵ

2
mĴ2

nĴi ×
(−1)Mf+Mm+Mn−Ωf−Ωm−Ωn〈νn, r0|νi, r0〉 ×(

Jf 1 Jm

−Mf pm Mm

)(
Jm 1 Jn

−Mm pn Mn

)(
Jn 1 Ji

−Mn pi Mi

)
×

(
Jf 1 Jm

−Ωf qm Ωm

)(
Jm 1 Jn

−Ωm qn Ωn

)(
Jn 1 Ji

−Ωn qi Ωi

)
×

〈Ωf |T (1)
qm

|Ωm〉〈Ωm|T (1)
qn

|Ωn〉〈Ωn|T (1)
qi

|Ωi〉
∣∣2 . (7)

Index p identifies tensor components in the laboratory coordinates and index q in the

molecule fixed frame [22]. Components ε−p describe polarizations as well as directions

of the incoming and outcoming photons and

Γ = (Et
f − Et

m + hνm + iΓm/2)(Et
m − Et

n + hνn + iΓn/2). (8)

Summations over all M quantum numbers were carried out analytically by applying

(A.2) twice to the sum over Mn and Mm and using the orthogonality of the 3j symbols

in summations over Mf and Mi. We obtain then the result

dσ2
nm

dΩndΩm
=

α4ωiω
3
nω3

m

4π2c3
χdiss

∑

JfΩiΩf

∑

K′Q′

Ĵ2
f K̂ ′2

∣∣∣∣∣Γ
−1
∑

K

F Q′

KK′

∑

JnJmΩnΩm

〈νn, r0|νi, r0〉×

(−1)Jf+2Jm+Jn−Ωm−ΩnĴ2
mĴ2

n

{
1 1 K

Ji Jm Jn

}{
1 K K ′

Ji Jf Jm

}
×

(
Jf 1 Jm

−Ωf Ωf − Ωm Ωm

)(
Jm 1 Jn

−Ωm Ωm − Ωn Ωn

)(
Jn 1 Ji

−Ωn Ωn − Ωi Ωi

)
×

〈Ωf |T (1)
qm

|Ωm〉〈Ωm|T (1)
qn

|Ωn〉〈Ωn|T (1)
qi

|Ωi〉
∣∣2 , (9)

where qi = Ωn − Ωi, qn = Ωm − Ωn, qm = Ωf − Ωm and the following designation has

been used

F Q′

KK′ = K̂2
∑

pipnpm

(−1)pi+pnε−pi
ε∗−pn

ε∗−pm

(
1 1 K

pi pn −(pi + pn)

)(
K 1 K ′

pi + pn pm Q′

)
. (10)

Tensor F Q′

KK′ contains all necessary information about polarizations and directions of

the incoming and outcoming photons in the laboratory frame, and is the two-photon

generalization of the function FK introduced in [25] for the one-photon decay. One

should note that after summing over indices Mi and Mf , summation over index K must

be performed coherently, and over K ′ incoherently, which differs from the one-photon

case where only the incoherent summation is required [25]. This leads to interference

between F Q′

KK′ components with different K.
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The radiative decay widths of excited atomic fragments are usually much smaller

than experimental fluorescence detection resolution. This requires an integration of

the double differential cross section (7) over the fluorescent photon energies hνn and

hνm. This integration will eliminate the Γ−1 factor (8) from (7) yielding the constant

4π2/(ΓnΓm) prefactor in the integrated double differential cross section. This, however,

will not change the final result for the ACF discussed below.

When only the shape of the two-photon emission pattern (i.e. ACF) is of interest

and the J dependence of the vibronic molecular wave functions can be neglected, the

double differential cross section can be approximated by considering only the electronic

parts of the molecular wave function. Under these assumptions the double differential

cross section (9) provides the complete information on the ACF, which reads

dσ2
nm

dΩndΩm

∝ f(θn, φn, θm, φm) =

∫
dωl

∑

ΩiΩf

|
∑

ΩnΩm

∑

pipnpm

(−1)pi+pn+pmε−pi
ε∗−pn

ε∗−pm
×

D(1)
piqi

(ωl)D(1)
pnqn

(ωl)D(1)
pmqm

(ωl)〈Ωf |T (1)
qm

|Ωm〉〈Ωm|T (1)
qn

|Ωn〉〈Ωn|T (1)
qi

|Ωi〉|2, (11)

where ωl = (φl, θl, 0) specifies the orientation of the internuclear axis with respect to the

laboratory coordinates (see, figure 1). Equation (11) is the two-photon generalization

of the original one-photon emission result by van Brunt and Zare [29] (see also [25]).

2.3. Description of photons

An explicit expression for of the polarization dependent two-photon ACF can be

calculated by introducing the general polarization vector

~ε = cos ξε̂1 + sin ξeiδ ε̂2 (12)

in the detector frame [30] (see, figure 1). Terms ξ and δ parametrize the polarization

response of the detector in such a way that ξ is the angle between the polarization vector

and ε̂1, and δ is the phase between ε̂1 and ε̂2 shown in figure 1. Choosing δ = 0 denotes

detector sensitivity to linear polarization with polarization angle ξ, and δ = ±π/2

with ξ = π/4 gives the right- or left-handed circular polarization. Integration over the

polarization sensitivities ξ and δ corresponds to polarization insensitive detector. Basis

vectors ε̂1 and ε̂2 are the spherical unit vectors

ε̂1 = cos θ cos φx̂ + cos θ sin φŷ − sin θẑ,

ε̂2 = − sin φx̂ + cos φŷ
(13)

in the laboratory frame. Introducing the usual definition of the helicity basis vectors

ê±1 = ∓ 1√
2
(x̂ ± iŷ); ê0 = ẑ, (14)

polarization vector ~ε can be expressed in the helical basis as

~ε = − 1√
2
(cos ξ cos θ − i sin ξ)e−iφê+1 +

1√
2
(cos ξ cos θ + i sin ξ)eiφê−1 − cos ξ sin θê0. (15)
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The same equation can be also used to describe the direction and polarization of the

incoming radiation.

3. Results and discussion

As a particular example we study the |1Σg〉 + hνi → |1Σu〉 + hνm + hνn dissociative

inelastic scattering via |Q2
1Πu(1)〉 doubly-excited state in the homonuclear diatomic

molecule H2. We discuss the two-photon ACF for the decays of the H(2p0) and H(2p±1)

fragments formed via the dissociating |Q2
1Πu(1)〉 molecular state.

The energy of one-photon excitation cross section of the |1Σg〉 → |Q2
1Πu(1)〉 state

is about 35 eV and the dipole transition moment has been calculated to be about 0.064

a.u. at r0 = 1.4 a0 [20], being about three times smaller than in [18]. The complete

excitation and two-step decay process in H2 can be written as

|r0,
1Σg〉 + hνi

t0→ |1Πu〉∗∗
t0→t1
⇒ |1Πg〉∗

|1Σg〉∗
+ hνn

t1→t2→ |1Σu〉 + hνm. (16)

The molecule is excited to a dissociative |r0,
1Πu〉∗∗ state at time t0. The first photon

hνn is emitted at t1 resulting in a |1Πg〉∗ or |1Σg〉∗ intermediate state. Both of these

states decay subsequently to the same final state |1Σu〉 via emission of the second photon

hνm at time t2.

3.1. Fixed-in-space H2 and polarization insensitive detectors

As a first example we study the ACF in the case of fixed-in-space H2. The molecule

is excited by linearly polarized light and the outgoing photons are counted with

polarization insensitive detectors. The ACF in the considered case can be most

conveniently calculated using equation (11). The coordinate system was chosen so that

the incoming photon propagates along the laboratory x-axis and is polarized into the

direction of the z-axis, corresponding to vertical polarization in the laboratory frame.

The molecular quantization axis coincides with the laboratory y-axis, which corresponds

to the geometry used in [10]. In the molecule fixed frame, summation over positive and

negative projections of the angular momenta Ω gives four pathways leading to the same

final state

Ωi = 0
qi=±1−→ Ωn = ±1





qn=0−→ Ωm = ±1
qm=∓1−→

qn=∓1−→ Ωm = 0
qm=0−→

Ωf = 0. (17)

The ACF was calculated by replacing the molecular wave functions at large

internuclear separation by linear combinations of atomic wave functions (3). The atomic

dipole transition matrix elements were calculated assuming pure LS-coupling scheme

and applying the Wigner-Eckart theorem [31]. As a result the ACF reads

f(θn, φn, θm, φm) =
1

2
|εn

1 ε
m
0 + εn

0 εm
1 + εn

−1ε
m
0 + εn

0 ε
m
−1|2 ×

|2
9
(2
√

2 − 3)〈1s‖T (1)‖2p〉2〈1ΠΛ=|±1|
u |T (1)

qi=|±1||
1Σg〉|2, (18)
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where the first term contains all angular and polarization information of the emitted two

photons, and the second term is only a constant factor. In the following, for convenience,

ACFs are normalized so that their maxima correspond to unity.

Inserting the vector components of (15) into (18) and integrating over the

polarization sensitivities ξn, ξm, δn and δm we found that

f(θn, π/2, θm, 3π/2) = sin2(θn − θm). (19)

Here, choosing φn = π/2 and φm = 3π/2 aligns the detectors to opposite sides in plane

perpendicular to the direction of propagation of the incoming radiation (i.e. the dipole

plane). The ACF (19) is depicted in figure 2. We note that the function in figure 2

coincides with the weighting factor I00 for the 〈T00〉 multipole calculated for two-photon

production of electron-impact excited atoms [32].
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0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 2. Surface and contour plot of the dipole plane angular correlation function
(19) for fixed-in-space H2 molecules as a function of θn and θm. The molecules are
aligned perpendicular to the electric field vector and the direction of propagation of
the incoming radiation.

Function (19) is exactly the same as obtained in [10], and it produces the identical

result if the angle θm takes values between [−π, 0] as in [10]. However, with the use of

the usual definition of polar angles θn and θm running in between [0, π], our result leads

to different interpretation of the ACF (19). According to figure 2 the zero line of the

ACF is along the θn = θm diagonal, and not on the θm = π − θn diagonal as suggested

in [10].

In order to show how the interference influences the ACF (18), figure 3 depicts the

two-photon ACF computed for the same case without accounting for the interference.

This means, that the four components of the first term of (18) are summed up

incoherently. Comparing figures 2 and 3 one can see that the interference has the
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Figure 3. Surface and contour plot of the dipole plane angular correlation function of
fixed-in-space H2 molecules computed without interference. The molecules are aligned
perpendicular to the electric field vector and direction of propagation of the incoming
radiation.

strongest influence along the diagonals and no influence at the sides, if one detector is

aligned parallel to the polarization vector of the incident light (θn/m = 0◦ or 180◦). In

these cases, a single cut from the surface has a clear nonconstant shape, but it is not due

to the interference. On the other hand, figures 2 and 3 indicate that the zero diagonal

in figure 2 is due to complete destructive interference. If one needs to study interference

experimentally in the discussed case by taking a single cut from the surface with one

detector fixed, it should be placed preferably perpendicular to the electric field vector

of the linearly polarized incident radiation.

3.2. Randomly oriented H2 and polarization insensitive detectors

We may simplify (9) assuming that the radial parts of the dipole transition matrix

elements are independent of J , and using, that for the initial and final states of the

process Ωi = Ωf = 0. Summations over Jm and Jn can be carried out by applying (A.3)

twice, and the sum over Jf using the orthogonality of the 3j symbols. Equation (9) is

then reduced to the form

dσ2
nm

dΩndΩm

=
α4ωiω

3
nω3

m

4π2c3
χdiss

∑

K′Q′

K̂ ′2

∣∣∣∣∣Γ
−1
∑

K

F Q′

KK′

∑

ΩnΩm

(−1)K−Ωm−2Ωn〈νn, r0|νi, r0〉×

(
1 1 K

Ωm − Ωn Ωn −Ωm

)(
K 1 K ′

Ωm −Ωm 0

)
×

〈Ωf |T (1)
qm

|Ωm〉〈Ωm|T (1)
qn

|Ωn〉〈Ωn|T (1)
qi

|Ωi〉
∣∣2 . (20)
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Performing summations over K, K ′, Ωn and Ωm, and simplifying the dipole

transition matrix elements as discussed in the previous section, the ACF takes the form

similar to (18). Now, however, the information about all photons (including incident

radiation) is expressed by the F Q′

KK′ terms

f(θn, φn, θm, φm) =
∑

Q′

3|2
3
F Q′

01 − 1

3
F Q′

11 +
1

15
F Q′

21 |2 +
∑

Q′

7|2
5

√
2

7
F Q′

23 |2. (21)

The form of equation (21) is independent of the coordinate system, polarization of

the incident light and polarization sensitivities of the detectors. Only K ′ = 1, 3 values

remain, which can be interpreted as follows. In the molecular frame the process leads

to an emission of one linearly and one circularly polarized photon. The fact that the

first photon may be linearly or circularly polarized in the molecular frame is reflected

in the interference between the F Q′

K1 terms. Only one F Q′

K3 component is presented

because K = 2 and K ′ = 3 is the only combination allowed by the triangular conditions

in the dipole approximation for K ′ = 3. All experimentally observable results presented

below can be obtained from (21), or equally from (11) by integrating over the molecular

orientations.

3.2.1. Linearly polarized incident light The case of linearly polarized incident light was

treated in the geometry illustrated in figure 1. Inserting explicit values of the F Q′

KK′ given

via (10) in (21), the ACF takes form

f(θn, φn, θm, φm) =
1

328π4
(19|εn

0 ε
m
1 + εn

1 ε
m
0 |2 + 19|εn

0 ε
m
−1 + εn

−1ε
m
0 |2 +

8|εn
1 ε

m
1 |2 + 8|εn

−1ε
m
−1|2 + 8|2εn

0 ε
m
0 + εn

−1ε
m
1 + εn

1 εm
−1|2). (22)

Comparison of (22) and (18) shows that, if the molecular sample is randomly oriented,

εn
j εm

j and εn
j εm

−j components are present in the ACF, which are absent for the special

orientation discussed in the previous section. In addition, we note that the summation

over Mi and Mf smears out the interference between εn
0 ε

m
1 + εn

1 ε
m
0 and εn

0 εm
−1 + εn

−1ε
m
0

terms. The analytic form of the ACF (22) can be calculated inserting components

(15) to (22), and integrating over the polarization sensitivities of the detectors. The

normalized ACF then takes the form

f(θn, π/2, θm3π/2) =
1

164
(111 − 25(cos 2θm + cos 2θn) + 3 cos 2(θm + θn)), (23)

which is depicted in figure 4.

The surface plotted in figure 4 shows that the shape of the ACF for the special

orientation plotted in figure 2 is mostly smeared out. However, the ACF exhibits still

a clear dependence on the emission angles, which can be verified experimentally. One

may see that in contrast to the fixed-in-space case, the highest coincidence probability is

obtained when the two detectors are facing each other perpendicular to the electric field

vector of the incident light. The function in figure 4 resembles somehow the ACF from

[10] weighted with initial excitation probability of sin2 θ (see, figure 4a’ in [10]). Clear

differences can be still pointed out. The present ACF has a clear isotropic background
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Figure 4. Surface and contour plot of the dipole plane angular correlation function
(23) for randomly oriented H2 molecules excited by linearly polarized radiation.

and the double peak structure obtained in [10] is missing. The background in the present

calculations explains, without invoking finite opening angles of the detectors, why the

photon-photon coincidences were observed in [9] despite the experimental geometry was

set to a zero point of the ACF computed in [10].

In order to analyze the ACF (22) in more detail, figure 5 depicts three functions

summed in figure 4. The uppermost panel of figure 4 shows the contribution from the

first two terms in (22), the middle panel shows the contribution from the third, and

fourth terms, and the lowermost panel the fifth term. The first and second, as well

as third and fourth terms were summed because they result in equal dependencies,

respectively. The function shown in the uppermost panel of figure 5 for a random

orientation is the same as in figure 4a’ in [10] (but rotated by 90◦ around the vertical

axis piercing the horizontal plane at θn = θm = 90◦, which is due to different definitions

of spherical angle θ discussed above). Additional investigations showed that the ACF

derived in [10] and averaged with sin2 θ does not reproduce the full solution of the

problem for randomly oriented molecules. We assume that this is because rotation of the

two-photon state obtained from the second-order correlation function does not produce

εn
j εm

j and εn
j εm

−j components. Therefore, the approximate approach in [10] gives only a

part of the full solution (22). We emphasize that the angular conservation requires that

|qi| = |qn + qm| = 1 holds always in the molecular frame, and it is the transformation to

the laboratory frame which produces the additional terms in (22). From figure 5 we also

see that the linear combination of the three parts does not always have to be symmetric

for the two diagonals. It is by chance that the sum is symmetric in the case of linearly

polarized light shown in figure 4.

Results of the present calculations of the ACF are compared to the experimental
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Figure 5. Surface plots of the three different functions summed in equation (22).
Uppermost panel: Function obtained from the first two terms. Middle panel: Function
obtained from the third and fourth term. Lowermost panel: Function obtained from
the fifth term. The scales show the relative contributions of these functions to the
ACF (22) shown in figure 4.

[16] and theoretical [10] ones in figure 6. The figure shows a cut from the surface

depicted in figure 4 along the θn = π − θm diagonal. As one can see, the coincidence

rate function computed in [10] has a minimum and vanishes at θm = 0◦ (dashed curve).
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Figure 6. Single cut of the dipole plane two-photon ACF for randomly oriented
H2 molecule excited by linearly polarized incident light. The detectors are facing
each other with relation θn = π − θm. Dots: Experimental data from [16]. Solid line:
Present calculation. Dash-dotted line: Present calculation convolved with the detector
opening angles 0.64 sr used in [16]. Dashed line: Calculation [10]. Crosses: Calculation
[10] convolved with the detector opening angles 0.64 sr. All results are normalized to
the unity at θm = 90◦.

The minimum in the experimental coincidence rate [16] (dots) is, however, not so deep,

even if one accounts for the finite detector opening angles in the theory (crosses).

This disagreement was explained in [16] by the large pressure effect. It was suggested

in [16] that experimental data may saturate to the theoretical predictions (crosses)

with decreasing of pressure. One can see from figure 6, that the presently computed

coincidence rate (solid curve) has the same shape but a smaller dip in the minimum

around θm = 0◦. Due to the constant background in the presently computed ACF (22),

the rate for detecting both photons parallel to the polarization vector of the incident

light has a limit of about 0.4 (not zero as suggested in [10]). The finite detector opening

angles used in [16] additionally enlarges the coincidence rate around θm = 0◦ (dash-

dotted curve). Thus, we may conclude that the lower pressure of 0.13 Pa of the H2

sample used in [16] approaches already the limit where collisions do not considerably

destroy the entanglement in the system. Slight asymmetry of the experimental ACF

[16] and its disagreement with the presently computed ACF (dash-dotted curve) at

θm = 110◦, 0◦ and −20◦ might be due to entangled atom-pair reactions suggested in

[16].

As a final remark, we note that the linear dichroism pattern [33], defined as the

difference between the ACF recorded with the incident light polarization along the y-axis

and the ACF with the incident light polarized along the z-axis, has the same shape as

the function shown in figure 4. The only difference is that the linear dichroism function
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takes values between about (-0.4,0.4). This is a direct consequence of the symmetry and

periodicity of function (23).

3.2.2. Circularly polarized incident light The most convenient form of the ACF in the

case of circularly polarized incident light is obtained when the incoming light is chosen

to propagate along the z-axis in the laboratory frame (see figure 1). By inserting the

components of the right-handed circularly polarized incident light into (21), we obtain

f(θn, φn, θm, φm) =
1

76π4
(
8

3
|εn

0 ε
m
1 + εn

1 ε
m
0 |2 + 5|εn

0ε
m
−1 − εn

−1ε
m
0 |2 +

8|εn
1 ε

m
1 |2 +

52

3
|εn

−1ε
m
−1|2 + |2εn

0ε
m
0 + εn

−1ε
m
1 + εn

1 εm
−1|2). (24)

The left-handed circularly polarized case can be described by exchanging simultaneously

the numerical prefactors of the first and second terms, and third and fourth terms. Note,

that the function (24) has the same terms as in (22), but with different weights, which

are not symmetric for the first and the second, and the third and the fourth terms.

However, since the functions produced by these pairs are equal, as mentioned above,

the total ACFs for right- and left-handed circularly polarized light are equal. This

means that, even if the detectors are polarization sensitive, one cannot observe circular

dichroism [33] in the two-photon ACF from H2. The function (24) is explicitly given by

f(π/2, φn, π/2, φm) =
1

38
(37 + cos 2(φm − φn)). (25)
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Figure 7. Surface and contour plot of the dipole plane angular correlation function
(25) for randomly oriented H2 molecules excited by circularly polarized light.

Figure 7 shows the two-photon ACF (25) for randomly oriented molecules excited

by circularly polarized incident light. One can see that the ACF in this case is almost

constant and does not change by more than 5 %. The figure also shows that the
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maximum of the function corresponds to the φm = π + φn diagonal. This result is

expected and physically meaningful because, if the incident light is circularly polarized,

there is no preferred direction in the dipole plane when both detectors are facing each

other. We can also conclude that, in contrast to the case of linearly polarized light, the

function in figure 7 has additional maxima in the two corners, where the photons are

detected in the same direction.

3.3. Randomly oriented H2 and polarization sensitive detectors

As an example of an ACF measured by polarization sensitive detectors, the case of

molecules excited by linearly polarized light is studied. The two photons are counted

by detectors sensitive to linear and circular polarization, such that detector sensitive to

the linear polarization is at the direction θn. Selecting the detector at θn to be sensitive

to linear polarization parallel (‖) or perpendicular (⊥) to the direction of propagation

of the incident light, we obtain from (22) two functions

f‖(θn, π/2, θm, 3π/2) =
1

102
(64 − 10 cos 2θm − 25 cos 2θn + 3 cos 2(θm + θn)) (26)

f⊥(θn, π/2, θm, 3π/2) =
1

62
(47 − 15 cos 2θm). (27)

The choice of the sensitivity between left- and right-handed circular polarization of the

detector at θm do not alter the above functions.

The functions (26) and (27) are plotted in the upper and lower panels of figure 8,

respectively. The function in the lower panel shows that the ACF is independent of the

emission angle of the linearly polarized light which is perpendicular to the direction of

propagation of the incident radiation. On can also see that the coincidence detection is

most probable if the circularly polarized photon is detected perpendicular to the electric

field vector of the incoming radiation (θm = 90◦). On the other hand, the upper panel

of figure 8 shows clear variations as a function of both angles. We note that the sides

of the surface are slightly asymmetric. As an example, the coincidence detection is a

bit more probable, if the detector sensitive to the linearly polarized photon is in the

perpendicular direction of the electric field vector of the incoming light θn = 90◦ and

θm = 0◦, than if the detector sensitive to circular polarization is in the corresponding

direction θm = 90◦ and θn = 0◦. This behaviour was indicated already by analysis of

the lowermost panel of figure 8, since functions (26) and (27) do not depend on the

detector sensitivity to the direction of polarization of the circularly polarized photons.

Therefore, if functions (26) and (27) are summed before normalization one obtains a

function, which is proportional to the case of polarization insensitive detectors (23).

As a final example, the two-photon coincidence probability as a function of the

angle of linear polarization sensitivity ξn is shown in figure 9 for two special geometries

(see caption of figure 9). For both geometries we obtained that the coincidence detection

probability show clear measurable variations as a function of ξn. One can see that the

two cases show opposite behaviour. If the linearly polarized photon is detected parallel

to the electric field vector of the incident light, the maximal coincidence rate corresponds
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Figure 8. Surface and contour plots of the dipole plane two-photon ACF detected by
polarization sensitive detectors. The H2 molecules are randomly oriented and excited
by linearly polarized light. Upper panel: The detector on the θn direction is sensitive
to the linear polarization parallel to the direction of propagation of the incident light.
Lower panel: The detector on the θn direction is sensitive to linear polarization
perpendicular to the direction of propagation of the incident light. Detector on the θm

direction in both cases is sensitive to the left- or right-handed circular polarization.

to the detection of the photons polarized parallel to the direction of propagation of the

incident light. On the other hand, if the linearly polarized photons are detected in the

direction perpendicular to the electric field vector of the incident radiation, the maximal

coincidence rate corresponds to the detector sensitive to photons polarized perpendicular

to the direction of propagation of the incident light.

4. Conclusion

We have provided a general theoretical framework to simulate the double differential

cross section and ACF of two photons emitted by two entangled atomic fragments

after neutral (pre)dissociation of a superexcited diatomic molecule. The theory can

be applied to the studies of fixed-in-space and randomly oriented molecules with
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Figure 9. Coincidence intensity obtained in the dipole plane by detectors sensitive to
circular and linear polarization as a function of the linear polarization angle ξn in two
orientations. Dashed line: The detector sensitive to the linear polarization is parallel
(θn = 0◦) and the detector sensitive to the circular polarization is perpendicular to the
electric field vector of the incident light (θm = 90◦). Solid line: The detector sensitive
to the linear polarization is perpendicular (θn = 90◦) and detector sensitive to the
circular polarization is parallel (θm = 0◦) to the electric vector of the incident light.

different polarizations of the incoming light and polarization sensitivities of the photon

counters. The presented model was used to calculate the analytical forms of the ACF

of two photons following the dissociation of the Q2
1Πu(1) superexcited state of H2 in

different cases. In the case of a fixed-in-space H2 molecule, we demonstrated how the

interference influences the two-photon ACF. In the case of randomly oriented molecules

and polarization insensitive detectors, the two-photon ACFs induced by linearly and

circularly polarized incident light were obtained. The present theory provides more

complete description of the process than the previously published calculations [10] and

it agrees with the recent experimental data [16] considerably better. It was shown that

in the studied case, the linear dichroism pattern has the same shape as ACF obtained

by using horizontally polarized incident light, and that there is no circular dichroism

in the ACF. In the case of polarization sensitive detectors we obtained that the shape

of ACF depends strongly on the linear polarization angle of the detected photon, but

shows no difference between detector sensitivity to the left- and right-handed circular

polarization.
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Appendix

In the following we list some identities utilized in the present derivation. The analytical

integration over the rotational parts of the wave functions is well known and can be

found e.g. in [22]. The matrix elements are

〈JMΩ|D(k)∗
pq (ω)|J ′M ′Ω′〉 = Ĵ Ĵ ′(−1)M−Ω

(
J k J ′

−M p M ′

)(
J k J ′

−Ω q Ω′

)
, (A.1)

where index p refers to the laboratory coordinates and q to the molecular frame.

Summation over Mm and Mn in (9) can be carried out analytically with the aid of

(2.19) of Rotenberg et al [34]. In our case it reads:

∑

KQ

K̂2(−1)J+Jd+J ′+k1+k2+K−M+q2

(
J K J ′

−M −Q M ′

)(
k1 k2 K

q1 q2 Q

){
k1 k2 K

J ′ J Jd

}

=
∑

Md

(
J k1 Jd

−M q1 Md

)(
Jd k2 J ′

−Md q2 M ′

)
. (A.2)

Summation over Jn and Jm in (20) was carried out using (4.16) from Zare [35],

which in our case reads:

∑

Jd

Ĵd
2
(−1)Jd

{
k1 k2 K

J ′ J Jd

}(
J k1 Jd

−Ω q1 Ωd

)(
Jd k2 J ′

−Ωd q2 Ω′

)

= (−1)K−k1−k2−J ′−J+q1+Ω′

(
k1 k2 K

q1 q2 −(q1 + q2)

)(
J K J ′

−Ω Ω′ − Ω Ω′

)
. (A.3)
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