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Ultracold atoms in optical lattices [1] represent a remarkably clean and controllable

system [2, 3] to realize the fundamental Bose-Hubbard model [4]. Its two main

ingredients are the atom tunneling, or hopping J , between the neighbouring lattice sites

and the on-site atom-atom interaction U . In a homogeneous lattice, when the kinetic

energy due to the inter-site hopping dominates, J & U , the atoms are delocalized over

the entire lattice yielding a superfluid (SF) phase, while in the opposite regime of strong

on-site interaction, U � J , the hopping is energetically suppressed resulting in a Mott

insulator (MI) phase with fixed integer number n of localized atoms at each lattice

site. When a deep optical lattice is superimposed by a shallow confining potential,

there can be MI phases with occupation numbers of n = 0, 1, 2, ... in successive spatial

shells [5, 6, 7, 8], separated by SF phases with intermediate mean occupation number

corresponding to delocalized atoms on top of the filled MI shell.

Experimentally [3], the quantum phase transition between the SF and MI phases is

implemented by adiabatically increasing the lattice depth which results in the reduction

of intersite tunneling amplitude and simultaneous increase of the on-site interaction [2].

If, however, the lattice potential is raised quickly, so that the tunneling is suddenly

switched off, each site occupation “freezes” to whatever atom-number distribution it

corresponded to just before the switching off, be it a SF, a MI, or a spatially-dependent

combination of the two phases.

In this paper, we propose a very efficient method to filter out from such a frozen

(J = 0) optical lattice only the desired number N of atoms per site. This is achieved by

using an external field which couples the initially populated internal atomic state |a〉 to

another internal state |b〉 trapped by a second optical lattice potential. We show that, for

strong enough state- (or lattice-) dependent on-site interactions, the coupling field with

properly tuned frequency will selectively transfer to the second lattice only the singles

(N = 1), the pairs (N = 2), or the triples (N = 3) of atoms, via the corresponding N -

photon resonant transition. Hence, after the transfer, the second lattice will only have

the desired site occupation number N = 1, 2, or 3, while the first lattice will contain all

the other occupation numbers n 6= N .

Before proceeding, we note related, but different, earlier work. Rabl et al

[9] proposed to reduce the site occupation number defects in an optical lattice by

adiabatically transferring a chosen number of atoms to another internal state. DeMarco

et al [5] studied similar systems employing rapid adiabatic transfer of atoms to the

second internal state, or inducing resonant single-photon Rabi oscillations between

the atomic states with occupation number–dependent Rabi frequencies. Mohring et

al [10] discussed coherent extraction of atoms from a BEC reservoir into the quantum

tweezers—tight trap—using adiabatic and resonant transfer techniques. del Campo et

al [11] described the preparation of number states of strongly interacting atoms by

reducing the depth and width of a one-dimensional trap.

Considering only two internal atomic states and corresponding optical lattice
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potentials, the Hamiltonian of the system takes the form

H =
∑

j

[(~ωa + εa,j)n̂a,j + 1
2
Uaan̂a,j(n̂a,j − 1)

+ (~ωb + εb,j)n̂b,j + 1
2
Ubbn̂b,j(n̂b,j − 1)

+ Uabn̂a,jn̂b,j + ~Ω(b̂†j âje
−iωt + â†

j b̂je
iωt)]. (1)

Here âj (â†
j) and b̂j (b̂†j) are the annihilation (creation) operators for bosonic atoms in

the internal states |a〉 and |b〉, of energies ~ωa and ~ωb, localized at lattice site j, with

single-particle energies εa,j and εb,j, and n̂a,j ≡ â†
j âj and n̂b,j ≡ b̂†j b̂j are the corresponding

number operators. A natural basis for Hamiltonian (1) is that of the eigenstates |nα,j〉
of operators n̂α,j whose eigenvalues n = 0, 1, 2, . . . denote the number of atoms in the

corresponding state |α〉 (α = a, b) at site j. Next, Uαα = gαα

∫
d3r|wα(r)|4 is the on-

site interaction energy for the atoms in state |α〉, and Uab = gab

∫
d3r|wa(r)|2|wb(r)|2

is the interaction between the |a〉 and |b〉 atoms, where gαα′ ≡ 4πaαα′~2/M , with

aαα′ being the corresponding s-wave scattering length, M the atomic mass and wα(r)

the (localized) Wannier function of the lowest Bloch band of the corresponding lattice

potential [1, 2]. Finally, Ω = Ωab

∫
d3r w∗

a(r)wb(r) is the coupling amplitude between

the localized atoms in states |a〉 and |b〉, which is induced by an external field with

the “bare” (free–atom) Rabi frequency Ωab. This field can be a microwave field of

frequency ω ∼ ωb − ωa coupling the atomic hyperfine states |a〉 and |b〉 through a

magnetic dipole transition, or an optical bi-chromatic field inducing Raman transition

|a〉 → |b〉, in which case ω is the frequency difference between the two field components

(the corresponding differential ac Stark shift of |a〉 and |b〉 can be incorporated in ωa

or ωb). Note that the rotating-wave approximation, requiring Ω � ω, is presumed in

the last term of equation (1).

In deep optical lattices, the Wannier functions wα(r− rα,j) localized on individual

sites j can be well approximated [1] by the ground-state wavefunction of a harmonic

oscillator centered at rα,j,

wα(r − rα,j) ≈
(

1

πσ2
α

)3/4

exp

[
−(r − rα,j)

2

2σ2
α

]
, (2)

where the width σα =
√

~/Mνα is expressed through the vibrational frequency

να =
√

2π2Vα/Md2 determined by the lattice potential amplitude Vα and period d.

For the interaction parameters of Hamiltonian (1) we then obtain

Uαα ' gαα

(2πσ2
α)3/2

∝ aααV 3/4
α (α = a, b), (3a)

Uab ' gab

[π(σ2
a + σ2

b )]
3/2

exp

[
− δr2

σ2
a + σ2

b

]
, (3b)

Ω ' Ωab

(
σaσb

σ2
a + σ2

b

)3/2

exp

[
− δr2

2(σ2
a + σ2

b )

]
, (3c)

where δr ≡ |ra,j − rb,j| < d is a possible offset of the lattice potentials for the atoms

in states |a〉 and |b〉 [12]. These expressions attest to the controllability of the atom-



Atom number filter in an optical lattice 4

atom interactions Uαα′ and coupling Ω through the interatomic scattering lengths aαα′

(α, α′ = a, b); the optical lattice parameters, including the lattice modulation depths Vα,

affecting σα’s, and the relative offset δr; as well as the external coupling field amplitude,

affecting Ωab. In the experiments, typically Uαα′/~ . 2π × 10 kHz [1, 3, 6, 7]. We

emphasise that the single-band approximation inherent in Hamiltonian (1) requires that

the atom-atom interactions be small compared to the excited band energies, Uαα′ < ~να.

While, in general, εa,j and εb,j need not be uniform throughout the lattice, due

to, e.g., shallow external trap, we assume that the difference |εa,j − εb,j| is constant,

and typically small compared to ωb − ωa, for all j. Accordingly, we define ~ωba ≡
~ωb + εb,j − (~ωa + εa,j) = const ∀j and omit the subscript j from now on.

Assume that initially all the atoms are in state |a〉, with the sites of the

corresponding lattice having arbitrary occupations |na〉, n = 0, 1, 2, . . ., and all the

sites of the other lattice empty, |0b〉.
Before describing our main idea of atom-number filter, we briefly consider a simple

but instructive case of uniformly interacting Uαα′ = U (α, α′ = a, b), or non-interacting

U = 0, atoms subject to a resonant coupling field ω = ωba. Within an N -atom

subspace (N = na + nb = const), the transition matrix element of Hamiltonian (1)

between any pair of states of the form |(N − n)a, nb〉 and |(N − n − 1)a, (n + 1)b〉 is

given by ~Ω
√

(N − n)(n + 1), as dictated by the bosonic nature of the atoms. This

system is formally analogous to a spin-J in a transverse magnetic field. Indeed,

defining the operators Ĵx = 1
2
(b̂†â + â†b̂), Ĵy = − i

2
(b̂†â − â†b̂) and Ĵz = 1

2
(b̂†b̂ − â†â)

which obey the standard angular momentum commutation relations, the Hamiltonian

(1) at a single lattice site can be written as a spin Hamiltonian Hspin = 2~ΩĴx, to

within constant energy 1
2
UN(N − 1). The matrix elements of Hspin for the transitions

|J , m〉 → |J , m + 1〉 between the neighboring magnetic sub-states (m = −J , . . . ,J )

are given by ~Ω
√

(J − m)(J + m + 1), which result in non-dispersive precession of the

spin about the field direction with the Larmor frequency Ω being independent of J .

Setting formally J = 1
2
N and m = n− 1

2
N leads to the above matrix elements of (1). A

curious consequence of this analogy is that, within any N -atom subspace, the resonant

coupling field will induce oscillations between states |Na, 0b〉 and |0a, Nb〉 with the same

frequency Ω. And in particular, starting from all the atoms in state |a〉 and arbitrary

site occupation numbers of the corresponding lattice, at time τ = π/2Ω, all the atoms

will simultaneously be transferred to state |b〉.
We now discuss the transfer of selected number of atoms N between the two lattices,

as illustrated in figure 1 (left panel). This atom-number filtering procedure is very simple

yet remarkably efficient and robust, provided

|Uab −
1

2
(Uaa + Ubb)| � ~Ω, (4a)

|Uaa − Ubb|, |Uab − Uaa,bb| � ~Ω. (4b)
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Figure 1. Schematics (left column) and dynamics (right column) of atom transfer
between two optical lattices: selective transfer of (i) single atoms, N = 1; (ii) pairs
of atoms, N = 2; and (iii) triples of atoms, N = 3, via the corresponding N -photon
resonant transitions. The main graphs display the probabilities PNα for N atoms in
the corresponding states |α〉 (α = a, b), while the insets show the probabilities Pna of
initial states |na〉 with n 6= N . (For n > 4, the probabilities Pna oscillate with even
smaller amplitudes and therefore not shown.) The numerical simulations employ the
parameters Uαα′ and Ω listed in the text, the time is in units of Ω−1 and the evolution
terminates at the corresponding τ (N).

The first of these conditions ensures that within the selected N -atom subspace all

the intermediate states are nonresonant, while the remaining conditions are needed to

suppress all the transitions out of the other initial states |na〉 with n 6= N , as clarified

below. For convenience we denote δU ≡ [Uab − 1
2
(Uaa + Ubb)]/~.

(i) Single atom transfer, N = 1. To filter out only the single atoms per site, we tune

the frequency of the coupling field to be resonant with the atomic transition |a〉 → |b〉,
i.e., we set ω = ωba. The field will then induce resonant Rabi oscillations between
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the states |1a, 0b〉 and |0a, 1b〉 with frequency Ω(1) = Ω. If we apply the field for time

τ (1) = π/2Ω(1), resulting in a π-pulse, all the single atoms |1a〉 will be transferred to

|1b〉.

(ii) Two atom transfer, N = 2. To filter out only the pairs of atoms per site, we choose

the frequency of the coupling field according to the condition 2ω = 2ωba +(Ubb−Uaa)/~,

which implies a two-atom (and two-photon) transition |2a, 0b〉 → |1a, 1b〉 → |0a, 2b〉 via

nonresonant intermediate state |1a, 1b〉 detuned by δU . The corresponding two-atom

(-photon) Rabi frequency is then Ω(2) = 2Ω2/δU (the factor of 2 = 2! originates from

double application of bosonic operators b̂†â to the initial state |2a, 0b〉), and at time

τ (2) = π/2Ω(2), corresponding to an effective π-pulse, all the pairs of atoms |2a〉 will be

transferred to |2b〉.

(iii) Three atom transfer, N = 3. To filter out only the triples of atoms per site,

we choose the frequency of the coupling field according to the condition 3ω = 3ωba +

3(Ubb − Uaa)/~, which implies a three-atom (-photon) transition |3a, 0b〉 → |2a, 1b〉 →
|1a, 2b〉 → |0a, 3b〉 via nonresonant intermediate states |2a, 1b〉 and |1a, 2b〉 both detuned

by the equal amount of 2δU . The corresponding three-atom (-photon) Rabi frequency

is then Ω(3) = 6Ω3/(2δU)2 (the factor of 6 = 3! originates from triple application of

b̂†â to state |3a, 0b〉). Note that since both intermediate states |2a, 1b〉 and |1a, 2b〉
have the same detuning 2δU , the second-order ac Stark shifts of states |3a, 0b〉 and

|0a, 3b〉 are the same, given by 3Ω2/(2δU), and the differential shift on the three-photon

transition |3a, 0b〉 → |0a, 3b〉 vanishes. Hence, applying the field for time τ (3) = π/2Ω(3),

corresponding to an effective π-pulse, all the triples of atoms |3a〉 will be transferred to

|3b〉.
The above procedure can be generalized to multiphoton transfer of any number

of atoms N between the two lattices. Under the N -photon resonance condition

Nω = Nωba + 1
2
N(N − 1)(Ubb −Uaa)/~, the effective N -atom (-photon) Rabi frequency

is then given by

Ω(N) =
N ! ΩN

[(N − 1)!]2δUN−1
=

NΩ

(N − 1)!

(
Ω

δU

)N−1

.

However, due to the above scaling of Ω(N) and condition Ω � |δU |, the corresponding

transfer time τ (N) = π/2Ω(N) will become prohibitively long for N ≥ 4 in a realistic

optical lattice experiment, as discussed below.

In figure 1 (right panel) we demonstrate, via numerical solution of the corresponding

Schrödinger equations, that the transfer of the selected number of atoms N = 1, 2 and

3 between the two lattices is indeed very efficient, with the probabilities PNb
(τ (N)) of

the final states |Nb〉 at the corresponding times τ (N) being close to unity, while the

probabilities Pna of initial states |na〉 with n 6= N changing very little during the

transfer. For these simulations, we choose Uaa/~ ' 2π × 104 s−1, and, upon assuming

aaa ' abb ' aab, Va/Vb = 3 and δr = 0, obtain from equations (3) Ubb ' 0.44Uaa
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Figure 2. Filtering out of the initial Poisson distribution with mean atom number
〈n〉a = 1.5 (top panel graph) single atoms (i), pairs of atoms (ii), and triples of atoms
(iii). In the lower panel graphs, the empty (red) bars show the atom-number probability
distributions Pna(τ (N)) remaining in the first lattice after the transfer. The transfer
fidelities F (N) are defined in equation (5). All parameters are as in figure 1.

and Uab ' 0.63Uaa. We then have δU ' 2π × 930 s−1 and set Ω = 2π × 100 s−1.

The corresponding one-, two- and three-atom transfer times are given, respectively, by

τ (1) = 2.38 × 10−3 s, τ (2) = 1.16 × 10−2 s and τ (3) = 0.144 s, which are shorter than the

typical lifetimes (0.5 s) of cold atoms in optical lattice MI shells with n ≤ 3 [6].

Hence, using our procedure one can separate the spatial MI shells of the optical

lattice with different atom numbers n [6, 7], placing in another lattice only the desired

Nth shell, which can be a filled sphere (or circle in 2D), or a hollow sphere (ring in

2D), depending on whether it is extracted from the central part of the trap or not.

This is then followed by discarding (releasing) the atoms of the first lattice. Another

useful application of our atom-number filtering technique is a preparation of pure

samples of the interaction-bound lattice dimers [13, 14, 15, 16], or trimers [17], without

resorting to more complicated procedures involving Feshbach association, purification

and dissociation of atom pairs [13, 18].

As an example, in figure 2 we illustrate the filtering out of the initial Poisson atom-

number distribution Pna(0) = 〈n〉ne−〈n〉/n!, corresponding to a frozen SF phase with

mean occupation number 〈n〉a = 1.5, the desired number of atoms N = 1, 2 or 3. The

only variables adjusted to each N case are the coupling field frequency ω and transfer

time τ (N), with all the other parameters the same, as described above in connection

with figure 1. We quantify the transfer using the fidelity

F (N) =
PNb

(τ (N))∑
n>0 Pnb

(τ (N))
, (5)

for which we obtain very high values F (1) = 0.999, F (2) = 0.987 and F (3) = 0.958.
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To conclude, we have proposed and analysed a very efficient and robust procedure

to filter out from an optical lattice with an arbitrary inhomogeneous site occupation

number only preselected number of bosonic atoms per site and place them into another

internal atomic state, creating thereby a lattice with desired site occupation number,

which we envision to have a number of interesting applications.
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[3] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[4] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1998 Phys. Rev. B 40 546
[5] DeMarco B, Lannert C, Vishveshwara S and Wei T-C 2005 Phys. Rev. A 71 063601
[6] Campbell G K, Mun J, Boyd M, Medley P, Leanhardt A E, Marcassa L G, Pritchard D E and

Ketterle W 2006 Science 313 649
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