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Abstract. Inspiral signals from binary black holes, in particular those with
masses in the range 10M� <∼ M <∼ 1000M�, may last for only a few cycles within
a detector’s most sensitive frequency band. The spectrum of a square-windowed
time-domain signal could contain unwanted power that can cause problems in
graviational wave data analysis, particularly when the waveforms are of short
duration. There may be leakage of power into frequency bins where no such power
is expected, causing an excess of false alarms. We present a method of tapering
the time-domain waveforms that significantly reduces unwanted leakage of power,
leading to a spectrum that agrees very well with that of a long duration signal.
Our tapered window also decreases the false alarms caused by instrumental and
environmental transients that are picked up by templates with spurious signal
power. The suppression of background is an important goal in noise-dominated
searches and can lead to an improvement in the detection efficiency of the search
algorithms.

PACS numbers: 02.30.Nw, 04.30.-w, 04.80.Nn
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1. Introduction

Interferometric gravitational wave detectors are now operating at sensitivity levels
at which one can expect to detect inspirals from compact binary coalescences at the
rate of one per 5 years (optimistic rate) to one per 5000 years (pessimistic rate).
When upgraded to advanced detectors, these might be as large as 400 per year to
one per 2.5 yrs [1]. Even so, most of the inspiral signals are not likely to stand
above the noise background. A variety of techiques to enhance signal visibility and
reject false alarms are currently being used in gravitational wave searches. Examples
include matched filtering for signals of known phase evolution [2], wavelet transforms
for transient signals of unknown shape [3, 4], coherent search methods for burst
signals [5], etc. Moreover, vetoes based on the expected signal evolution [6] and
instrumental and environmental monitors [7] have been developed over the past decade
to improve detection probability and mitigate false alarms. Detecting a signal buried
in non-stationary noise is a challenging problem as some types of non-stationary noise
artefacts can partially mimic the signal.
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Many of these techniques involve the computation of a correlation integral in
which band-passed data are multiplied by the frequency-domain model waveform or
the discrete Fourier transform (DFT) of the time-domain signal (see, for example, [8]).
Here we consider a matched filtering search for inspiral signals where the DFT of a
time-domain waveform is used to construct the correlation. A problem that has not
been adequately addressed (see, however, Ref. [9]) in this context is the effect of the
window that is used in chopping a time-domain signal before computing its DFT.

Inevitably, all signal analysis algorithms use, implicitly or explicitly, some form
of window function. An inspiral waveform sampled from a time when the signal’s
instantaneous frequency enters a detector’s sensitive bandwidth until the time when
it reaches the frequency of last stable orbit (FLSO) implicitly makes use of a square
window. Signal analysis literature is full of examples of artefacts caused by the use of
such window functions. For instance: leakage of power from the main frequency bin
where the signal is expected to lie into neighbouring bins, loss of frequency resolution
and corruption of parameter estimation [10]. In this paper we explore the problems
caused by using a square window and suggest an alternative that cures some of the
problems.

There is no unique, or favoured, windowing method. One is often guided by
the requirements of a particular analysis at hand. In our case, a square window is
especially bad since the leakage of power outside the frequency range of interest can
lead to increased false alarm rate and poorer estimation of parameters. One reason for
increased false alarm rate could be that the noise glitches in the detector look more
like the untapered waveform and less like a tapered one. We have explored the effect
of a smoother window function, presented in Section 2, which has a far steeper fall-off
of power outside the frequency range of interest. Use of this window has cured several
problems we had with a square window. In Section 4 we will discuss how tapering
helps in a more reliable signal spectral estimation and hence a proper determination
of the expected signal-to-noise ratio. Spectral contamination is worse for larger mass
black hole binaries as they are in the detector’s sensitive band for a shorter time and
the window function can only extend over a short time. It is for such signals that
our tapered window offers the most improvement. In Section 5 we will discuss how
the rate of triggers from a matched filtered search can vary depending on the kind of
window function used. We shall briefly mention in Section 6 what effect our window
function has on parameter estimation, giving the conclusions of our study in Section 7.

2. Window functions and their temporal and spectral characteristics

Let h(t) denote a continuous differentiable function, for example a gravitational wave
signal emitted by a coalescing compact binary, and let H(f) denote the Fourier
transform (FT) of h(t) defined by

H(f) ≡
∫ ∞

−∞
h(t) exp(2πift) dt. (1)

In reality the signal really does not last for an infinite time. The FT of a signal of
finite duration lasting, say, from −T/2 to T/2, can be represented either by using the
limits of the integral to go from −T/2 to T/2 or by using a window function. The
latter is preferred so as to preserve the definition of the FT.

A window function is a function that has either a finite support or falls off
sufficiently rapidly as t → ±∞. Two simple windows that have finite support are
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the square window sT (t) defined by

sT (t) =
{

1, −T
2 ≤ t ≤ T

2
0, otherwise, (2)

and the triangular window bT (t) defined by

bT (t) =
{

(1 − 2|t|/T ), −T
2 ≤ t ≤ T

2
0, otherwise. (3)

Neither the square nor the triangular window are differentiable everywhere. As a
result, they are not functions of finite bandwidth. In other words, their FTs, ST (f)
and BT (f), do not have finite support in the frequency domain: |S(f)| > 0 for
−∞ ≤ f ≤ ∞. In the case of a square window the FT S(f) is a sinc-function,
|ST (f)| = T sinc(πfT ), which is peaked at f = 0, with a width π/T and falls off as
f−1 as f → ±∞. The lack of finite support in the Fourier domain could sometimes
cause problems, especially when the width of the window in time-domain is too small.
For functions that have infinite bandwidth the sampling theorem does not hold but
this is not a serious drawback if the FT falls off sufficiently fast above the Nyquist
frequency. However, there could be other issues when the window leads to leakage of
power outside a region of interest as we shall see below.

2.1. The Planck-taper window function

A signal h(t) with the window wT (t) applied to it, in other words the windowed signal
hw(t), is defined by

hw(t) ≡ h(t)wT (t). (4)

The convolution theorem states that the FT of the product of two functions h(t) and
wT (t) is the convolution of individual FTs:

Hw(f) =
∫ ∞

−∞
h(t)wT (t) exp(2πift)dt (5)

= H(f) ∗ WT (f) =
∫ ∞

−∞
H(f ′)WT (f − f ′)df ′. (6)

We can now see why a window whose power in the frequency domain does not fall
off sufficiently rapidily might be problematic. The convolution integral will have
contributions from all frequencies. Suppose we are interested in matched filtering the
data with an inspiral signal from a compact coalescing binary whose instantaneous
frequency varies from f1 at time t1 to f2 at time t2. One would normally achieve this
by using a square window sT (t) that is centered at (t1 + t2)/2 with width T = t2 − t1.
However, we can see from (6) that the convolution integral will have contributions
from outside the frequency range of interest.

To circumvent this problem we propose to use a window function that falls off
rapidly outside the frequency range of interest. Inspired by the tapering function used
in Damour et al [11] we define a new window function σ(t) by

σT (t; ε) =





0, t ≤ t1 t1 = −T
2 ,

1
exp(z(t))+1 , z(t) = t2−t1

t−t1
+ t2−t1

t−t2
, t1 < t < t2, t2 = −T

2 (1 − 2ε)
1, t2 ≤ t ≤ t3, t3 = T

2 (1 − 2ε)
1

exp(z(t))+1 , z(t) = t3−t4
t−t3

+ t3−t4
t−t4

, t3 < t < t4, t4 = T
2 ,

0, t4 ≤ t.

(7)
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Figure 1. The Planck-taper window in the time-domain (left), for three different
choices of the parameter ε = 0.01, 0.33, 0.1, and their power spectra (right). For
reference we have included the square window with the same effective width as
the Planck-taper window.

Here T is the width of the window and ε is the fraction of the window width over
which the window function smoothly rises from 0 at t = t1 to 1 at t = t2 or falls from
1 at t = t3 to 0 at t = t4. We shall call σ(t) the Planck-taper window as the basic
functional form is that of the Planck distribution. The motivation for choosing this
window function is to reduce the leakage of power in the frequency domain but at the
same time not to lose too much of the length of the signal in the time-domain. The
choice of ε will affect both aspects significantly. In figure 1 we have shown the window
function for several choices of the parameter ε = 0.01, 0.33, 0.1. At lower frequencies
the spectrum of the Planck-taper window falls off at the same rate (i.e., 1/f) as a
square window. But beyond a certain frequency f0 ∼ (εT )−1, the spectrum falls off
far faster.

2.2. Implementation of the window

We discretise (7) by replacing t, t1, t2, t3, t4 with the array indices j, j1, j2, j3, j4. In
this notation the parameter epsilon is approximated by ε ' (j2 − j1)/N, where N
is the number of data points in the waveform. The start and end of the wavefrom
are denoted by j1 and j4, respectively. The values of j2 and j3 have to be chosen
judiciously to avoid leakage of power. We choose j2 and j3 to be the array index
corresponding to the second stationary point after j1 and before j4 (see figure 2).
Applying the transition stage of σ from a crest/trough ensures that the window does
not have a sudden impact on the behaviour of the waveform. The first stationary
point would not be an appropriate choice as it may occur within only a few array
points of j1 or j4, causing ε to be too small. One could choose the 3rd, 4th or 5th,
but using such later maxima would reduce the genuine power of the waveform more
than what might be acceptable.

2.3. Comparison with other windows

We do not compare the performance of Planck-taper with other common windows, e.g.,
Bartlet, Hann or Welch. Such windows transition between 0 and 1 over j = 1, . . . , N/2,
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Figure 2. The window function has
been applied to the start of a cosine
wave using two methods. In the first
case it is applied in the dark shaded
area, over 20 data points (an arbitrary
chosen number). In the second case it
is applied from the second maximum
found from the start of the waveform,
i.e., in the light and dark shaded areas.
In both cases a reference frequency of
the tapered section is plotted. In the
former case this frequency is higher,
demonstrating improvements gained
by using the latter method.

where the window is of length N , producing significant differences between h(t) and
hw(t) in (4). The power is therefore supressed at the beginning and end of h(t). This
is acceptable when computing the power spectral density (PSD) of a data segment,
but would cause a problem if applied to a waveform as the phase (frequency) and
amplitude of h(t) are both instantaneous functions of t, with the most power at the
end of the waveform.

3. Effect of the window function on the signal spectrum

In this section we will examine the power spectrum of the waveform of a coalescing
binary emitted during the inspiral phase. The waveforms are modelled using the
post-Newtonian (PN) approximation. However, even within the PN approximation,
there are several different ways in which one might construct the waveform [12, 13].
Two such models widely used in the search for compact binary coalescences are Taylor
T3 (TT3) and the stationary-phase approximation (SPA). TT3 is a time-domain signal
model in which the amplitude and phase of the signal are both explicit functions of
time. In the so-called restricted PN approximation the signal consists of the dominant
harmonic at twice the orbital frequency, but not higher order PN corrections consisting
of other harmonics, and the phase is a PN expansion that is currently known to
O(v7) in the expansion parameter v – the relative velocity of the two stars. The SPA
is the Fourier transform of the TT3 model obtained by using the stationary phase
approximation to the Fourier integral [14]. A template belonging to the TT3 model
is defined for times when the gravitational wave frequency is within the detector’s
sensitivity band until it reaches FLSO. This means one is in effect multiplying a
square window with a continuous function.

Figure 3 shows the signal-to-noise ratio (SNR) integrand of the TT3 and
SPA models computed using the initial Laser Interferometer Gravitational-wave
Observatory (LIGO) design PSD [12], where the inspiral waveform is defined between
a lower cutoff frequency of 35 Hz and FLSO, for 20 M� and 80 M� equal-mass binaries.
The convolution of the SPA with the FT of a square window [labelled SPA ∗ ST (f)]
and with the DFT of the Planck-taper window in (7) [labelled SPA ∗ΣT (f)] are also
plotted. When the Planck-taper window is used the excess power, i.e., the power above
FLSO, decreases rapidly and the spectrum is close to that of the SPA. Conversely, in
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the case of the square window, the power matches that of the TT3 spectrum. There
is no reason to expect that the DFT of the TT3 model and the convolution of SPA
with a square window should perfectly match as the SPA is an approximation to the
Fourier transform H(f) of TT3.

Frequency /Hz

f
.|H

(f
)|2

/
S

h
(f

)

20 M�

SPA
TT3

SPA ∗
∑

(f)

SPA ∗ ST (f)

102 103

10−8

10−7

10−6

10−4

10−4

Frequency /Hz
f
.|H

(f
)|2

/
S

h
(f

)

80 M�

SPA
TT3

SPA ∗
∑

(f)

SPA ∗ ST (f)

102 103

10−8

10−7

10−6

10−5

10−4

Figure 3. The plots show the SNR integrand, where the waveform is generated
from a frequency of 35 Hz to the FLSO of the source, computed using the initial
LIGO sensitivity for sources of total mass 20 M� and 80M�. In the case of the
Planck-taper window the SNR integrand falls off far faster than in the case of the
square window or the TT3 model.

4. Effect of the window function on the estimation of the signal-to-noise
ratio

Gravitational wave searches for known signals, such as those emitted from a compact
binary coalescence (CBC) [15, 16], rely upon signal models for two primary reasons.
Firstly, they are used as templates to matched filter the data. Secondly, they are
injected into the data as simulated signals to estimate the efficiency of the detector to
detect such signals. If the signal/template models are generated in the time-domain
then they must undergo a DFT as the data are analysed in the frequency-domain.

The optimal SNR for a signal buried in stationary Gaussian noise, when the signal
and template match exactly, is given by

ρ2 = 4
∫ fnyquist

flower

df
|H(f)|2

Sh(f)
' 4∆f

N/2−1∑

k=1

|Hk|2

Shk
, (8)

where Sh(f) is the detector noise PSD and flower is the detector lower cutoff frequency
chosen so that the contribution to the SNR integral from frequencies f < flower is
negligible. The second of the expressions on the RHS is a discretised evaluation of the
SNR which is often used in numerical calculations. Here Hk, k = 0, . . . , N/2, is the
DFT of the signal defined for positive frequencies and Shk is the discretised PSD.

The amplitude of an inspiral signal increases with the total mass of the system;
conversely, the FLSO of the signal is inversely proportional to the total mass.
Therefore, as the total mass of a system increases, the amplitude of the signal and the
FLSO will have opposing effects. For lower mass systems, the increasing amplitude
causes the SNR to increase as a function of the total mass. However, for higher mass
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systems, the reduction in the FLSO causes the signal to have less power in band. As
a result, the SNR will decrease as a function of the total mass. The relatively low
FLSO of the higher mass templates, coupled with their short duration, lead them to
be particularly susceptible to artefacts of spectral leakage in the DFT.

Figure 4 shows the SNR for TT3 inspiral waveforms, plotted as a function of the
total mass for two choices of the window function: the dashed curve corresponds to the
square window and the solid curve to the Planck-taper window. All other parameters
are the same in both cases. When the Planck-taper window is used, the curve exhibits
the expected behaviour, whereas in the case of a square window , the SNR curve is
‘jagged’ with unphysical behaviour that can only be explained by the excess power
from the DFT of the waveform.
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Figure 4. The SNR vs the total mass
of the source for signals corresponding
to compact binary systems directly
overhead a detector of initial LIGO
design PSD. We plot the SNR
obtained using the DFT of time-
domain waveforms with a square
window (dashed curve) and with the
Planck-taper window (solid curve).

5. Effect of window functions on Trigger Rates

To assess the effect that tapering of templates has on trigger rates, we have applied the
LIGO Scientific Collaboration (LSC) CBC pipeline [17, 18, 15, 16, 19] to data taken
during the fourth science run (S4) of the LIGO, which took place from February 22
- March 23, 2005. The basic topology of the pipeline is similar to that used in many
previous searches [18, 15, 16], and consists of the following main steps:

• The template bank is chosen such that the loss of SNR due to having a finite
number of templates is no more than 3% for any signal belonging to a given
family of waveforms [20, 2].

• Matched filter the data with the generated templates. A trigger is generated at
times when the SNR is larger than a given threshold. The output of this stage is
a list of first-stage single-detector triggers.

• Check for coincident events between different detectors. For an event to be
deemed coincident, the parameters seen in at least two detectors (for instance,
the masses of the system, the time of coalescence, . . . ) should agree to within a
certain tolerance [21]. The output of this stage is a list of first-stage coincident
triggers.

• Re-filter the data using only templates associated with coincident triggers. This
time, the triggers are subjected to further signal-based vetoes, some of which are
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computationally costly, such as the chi-squared veto [6]. This produces a list of
second-stage single-detector triggers.

• Check for coincident events between detectors using the second-stage single-
detector triggers. This produces a list of second-stage coincident triggers.

In this study the data were filtered using the effective one-body (EOB) templates
[22, 23, 12], tuned to recent results in numerical relativity [24, 25], with a total mass
in the range 25 − 100M�. This choice agrees with the templates used to search for
signals from high-mass CBCs in data from LIGO’s fifth science run (S5). Because
the EOB waveforms used as templates contain the inspiral, merger and ringdown
phases, there was no need to taper the end of the waveform. Therefore, in this case,
the taper specified in (7) was only applied to the start of the waveform. Although
this may reduce the effect the taper has in comparison to tapering both ends of an
inspiral-only template, it is of more interest to evaluate the performance in a realistic
search case. It should be noted that the tapering window is explicitly applied to the
template waveform where the length of the waveform is less than the length of the
data segement that is matched filetered. We do not apply any window to the data
segment.

Figure 5 shows the number of triggers as a function of total mass with and without
tapering. It can be seen that the number of triggers is generally higher when the
templates are not tapered. The only exception seems to be the lowest mass bin in the
second-stage coincident triggers, where the opposite is true. However, the difference in
the number of triggers in this bin is not large, and is likely just a statistical anomaly.
For first-stage single-detector triggers, the number of triggers using tapered templates
is 84% of that obtained using un-tapered templates. The number of second-stage
coincident triggers when using tapered templates is 71% of that obtained for un-
tapered templates. The difference in trigger rates is more significant at higher masses.
This is because the template waveforms for these systems terminate at a frequency
within or below the most sensitive frequency band of the detector, making any leakage
of power to higher frequencies more significant (cf Figure 3, left most panel). The
reduced trigger rate indicates that applying the taper function to the templates could
aid in reducing the false alarm rate in a search for high mass CBCs.

6. Effect of windowing on detection efficiency and parameter estimation

The same data used in Section 5 were re-analysed, but with simulated gravitational
wave signals of the same family as the templates added to the data. This allowed
us to compare the detection efficiencies and accuracy of parameter estimation using
tapered vs. un-tapered templates. We looked at the error in recovered chirp mass and
arrival time, but found a negligible difference between the two cases. ‡

7. Conclusion

We have developed a tapering method that leads to a spectrum for time-domain
waveforms that more closely matches their frequency-domain analogs, containing
significantly less power at unexpected frequencies when compared with the use of a
square window. If tapering is applied to templates in a gravitational wave search the

‡ We have seen some evidence of improvements in parameter estimation for the ambiguity function
of high mass inspiral-only waveforms, but this is outside the context of a gravitational wave search.
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Figure 5. Left : Number of triggers recovered by matched filtering the S4 data
with and without tapering applied to the templates. Right : Number of triggers at
the second stage of the analysis pipeline, after consistency checks and coincidence
tests [21] in the time-of-arrival and masses of the component stars have been
applied.

trigger rates are reduced, especially for high mass templates. In a search, foreground
triggers can be ranked by their probability of occurring as a background trigger;
thus if background triggers are reduced a given foreground trigger may appear more
significant. Another benefit of reduced trigger rates is that the computational cost of
a search will decrease. We have demonstrated that the windowing method would be
beneficial when used in a high mass search.

The tapering method could also be useful in low latency data analysis techniques
where time-domain templates are divided into sub-templates of different frequency
ranges, and matched filtered individually [26]. The relative shortness of some
templates in the higher frequency bands potentially compounds the problem of using
a square window, and tapering the templates may go some way to alleviating this
issue.
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