
HAL Id: hal-00630001
https://hal.science/hal-00630001

Submitted on 7 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On magnetic-field-induced non-geodesic corrections to
relativistic orbital and epicyclic frequencies

Pavel Bakala, Eva Šrámková, Zdeněk Stuchlík, Gabriel Török

To cite this version:
Pavel Bakala, Eva Šrámková, Zdeněk Stuchlík, Gabriel Török. On magnetic-field-induced non-geodesic
corrections to relativistic orbital and epicyclic frequencies. Classical and Quantum Gravity, 2010, 27
(4), pp.45001. �10.1088/0264-9381/27/4/045001�. �hal-00630001�

https://hal.science/hal-00630001
https://hal.archives-ouvertes.fr


On magnetic-field induced non-geodesic corrections

to relativistic orbital and epicyclic frequencies
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Abstract.
We discuss non-geodesic corrections to orbital and epicyclic frequencies of charged

test particles orbiting a non-rotating neutron star with a dipole magnetic field. Using
a fully-relativistic approach we consider influence of both the magnetic attraction and
repulsion on the orbital and epicyclic motion. The magnetic repulsion introduces
a rather complex and unusual behaviour of the circular orbital motion that is well
defined down to the radius where the vertical epicyclic frequency looses its meaning.
We demonstrate that for intensity of the magnetic interaction appropriately restricted,
the stable circular orbits extend down to the magnetic innermost stable circular
orbit (MISCO) that is located well under the geodetic innermost stable circular
orbit (GISCO) and even can reach region under the photon circular orbit. The
lowest stable circular orbit at rMISCO

min = 2.73M , associated with the highest possible
orbital frequency νmax

K
= 3284 Hz(1.5M�/M), corresponds to the critical value of

the particle specific charge and the neutron star magnetic dipole moment product
(q̃µ)crit = 1.87M2 . For the magnetic attraction acting above the GISCO, the situation
is much more simple and we demonstrate that the most significant correction arises for
the radial epicyclic frequency and consequently for the location of the MISCO when
strong magnetic attraction pushes its location far behind the location of GISCO. We
show that the Lorentz force also naturally violates the equality of the orbital and
vertical epicyclic frequencies implied by the spherical symmetry of the background
Schwarzschild geometry giving rise the new effect of nodal precession of the orbital
motion plane. Finally we apply the magnetic-attraction corrections on the Relativistic
Precession model of the twin-peak high-frequency quasiperiodic oscillations observed in
the Galactic Low Mass X-ray Binaries, showing possible high relevance of the modified
radial epicyclic frequency.

PACS numbers: 95.30.Sf, 97.10.Gz, 97.10.Ld, 97.80.Jp

1. Introduction

The study of charged particles motion in strong gravitational and electromagnetic

fields related to black holes and neutron stars enables us to understand the nature of

the objects as well as the structure of the force fields and their role in astrophysical

phenomena. The motion has been investigated both for Kerr-Newman black holes
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having intrinsically coupled gravitational and electromagnetic fields and for strong

gravitating objects (black holes and neutron stars) with a test electromagnetic field

influenced by gravity (see, e.g., Johnston & Ruffini, 1974; Prasanna & Vishveshwara,

1978; Prasanna, 1980; Calvani et al., 1982; Balek et al., 1989; Bičák et al.,

1989; Vokrouhlický & Karas, 1991; Stuchĺık & Hled́ık, 1998; Stuchĺık et al., 1999;

Abdujabbarov & Ahmedov, 2009).

It has been shown that magnetic fields around a rotating black hole could be

related to the extraction of the rotation energy from the black hole through the so-called

Blandford-Znajek process enabling formation of the relativistic jets along the black hole

rotation axis (Blandford Znajek, 1977). Motion of charged particles in the magnetic

field generated by accretion discs orbiting black holes was discussed in (Znajek, 1976;

Mobarry & Lovelace, 1986). On the other hand, the magnetic field tied to a neutron

star could substantially influence the structure of an equatorial accretion disc orbiting

the neutron star. Here we focus attention on the equatorial orbital and epicyclic motion

in the combined gravitational and dipole magnetic fields related to a slowly rotating

neutron star. Its spacetime is represented by the Schwarzschild geometry that influences

the structure of the dipole magnetic field.

In the case of motion in test fields on strong gravity backgrounds, the equations of

motion are complex and have to be integrated numerically (Prasanna & Vishveshwara,

1978; Prasanna & Sengupta, 1994; Preti, 2004). Quite recently, off-equatorial circular

orbits were discussed in astrophysically relevant situations (Kovář et al., 2008; Stuchĺık

et al., 2009b). Of high interest is the equatorial motion, especially the circular and quasi-

circular orbits that seem to be crucial from the point of view of accretion processes.

Numerical integration of the motion equations gives a number of interesting results,

but is not sufficient for a complete classification and understanding of the motion in the

equatorial plane. In order to extend the understanding of the charged particle motion, we

consider for the first time its very important aspect, namely the quasi-circular equatorial

epicyclic motion corresponding to oscillations of particles around stable circular orbits.

It is quite interesting that such epicyclic motion can be excited in the innermost parts

of the accretion discs orbiting a neutron star by inhomogeneities (mountains) on its

surface (Stuchĺık et al., 2008).

The epicyclic motion could be relevant in modelling the high-frequency quasi-

periodic oscillations (QPOs) that have been detected during the past two decades from

a number of Low-Mass X-Ray Binaries (LMXBs)‡ containing a neutron star. These

oscillations occur at frequencies lying in the kHz range and often come in pairs of the

lower and upper QPO mode with frequencies νL, νU , forming the so-called twin-peak

QPOs. Notably, νL, νU roughly correspond to Keplerian periods in the close vicinity of

the binary compact object; see, e.g., van der Klis (2006). Moreover, there are indications

that the twin-peak frequencies are clustered near rational ratios that are mostly around

3:2, but also 4:3 and 5:4 ratios (see, e.g., Török et al., 2008a,b,c)).

‡ binary systems containing a neutron star where the companion mass is smaller than the mass of the
neutron star
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Miscellaneous orbital QPO models have been proposed (see, e.g., Lamb et al., 2007;

Aschenbach , 2007; Miller, 2007). In particular, the relativistic precession (RP) model

(Stella & Vietri, 1999) relates the upper and lower kHz QPOs to the Keplerian and

periastron precession frequency on a geodesic orbit located in the inner part of the

accretion disc §. It has been noticed that, in general, correlation νU(νL) is qualitatively

well-fitted by the RP model prediction (see, e.g., Stella & Vietri, 1999, 2002; Belloni et

al., 2007). There are, however, another QPO models based on the oscillations of toroidal

discs (Šrámková et al., 2005; Straub & Šrámková, 2009) or ”discoseismology” (Kato et

al., 1998; Pétri, 2005) and so far no definite agreement on the validity of the QPO models

has been established. Let us stress that the orbital and epicyclic frequencies, that will

be discussed in the present paper, play an important role in all of the mentioned QPO

models.

When modelling individual frequency relations from the RP model, mass and

angular momentum relevant to the best fits are questionably high (M ∼ 2÷ 3M�, j ∼
0.2 ÷ 0.4); (see, e.g., Stella & Vietri, 2002; Boutloukos et al., 2006; Belloni et al.,

2007; Török et al., 2007a) in comparison with the ”canonical value”, M ∼ 1.4M�,

which has been estimated for a variety of well-studied pulsars (e.g., Glendenning, 1997;

Weber, 1999). Also, quality of the fits is not satisfactory with chi-square indicating a

systematic deviation between the expected and empirical trend (Belloni et al., 2007;

Török et al., 2007a,b). In fact, we show that both discrepancies can be corrected by

non-geodesic corrections of the orbital and epicyclic frequencies using the magnetic

attraction introduced in the present paper. On the other hand, the magnetic repulsion

makes the situation worse due to the shift to higher frequencies (neutron star masses).

In the present paper we discuss in detail the non-geodesic, magnetic corrections

to the epicyclic motion using a fully general relativistic approach. These corrections

are assumed to be implied by the Lorentz force acting on a slightly charged matter in

the approximation of a spherically symmetric spacetime. We focus consideration to the

case of motion in the field of magnetized neutron stars. We use the approximation of a

dipole magnetic field whose axis of symmetry coincides with the axis of neutron star’s

rotation. The spacetime outside the neutron star is described by the Schwarzschild

geometry and the effects of frame-dragging and contribution of the electromagnetic

field to the stress-energy tensor are thus neglected ‖. Such approximation is suitable

for describing the charged particles motion around slowly rotating neutron stars with

a relatively weak magnetic field which does not affect the spacetime curvature in the

vicinity of the neutron star, but its structure is governed by the neutron star spacetime

structure ¶.

§ A similar model relates the low-frequency QPO branch to the “Lense–Thirring” orbit precession; see,
e.g., Stella & Vietri (1998).
‖ More general and accurate approximation which takes into account the effects of frame-dragging and
declination of the dipole magnetic field symmetry axis can be found in (Rezzolla et al., 2001a,b).
¶ The neutron star magnetic field is however fully dominant over the magnetic field generated by the
currents in the disc.
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Epicyclic motion and the related frequencies have so far been extensively discussed

for the quasi-circular geodesic motion (see, e.g., Aliev & Galtsov, 1981; Abramowicz &

Kluźniak, 2005; Török & Stuchĺık, 2005). Using the approach of Aliev (2008), we turn

attention for the first time to a detailed study of magnetically influenced perturbative

epicyclic motion around equatorial circular orbits. We calculate the relevant frequencies

of the non-geodesic charged test particles motion and the corresponding shift of the

position of the innermost stable circular orbit that is governed by vanishing of the radial

(vertical) epicyclic frequency. We consider both the cases of magnetic attraction when

the innermost stable orbit is shifted above the GISCO and magnetic repulsion when it is

shifted below the geodesic orbit. We find a variety of interesting new phenomena of the

epicyclic motion, with unusual behaviour of the epicyclic frequencies and their relation

to the orbital (Keplerian) frequency. We also discuss some implications of the magnetic

attraction case for the RP model, in particular the remarkable lowering of the neutron

star mass estimation obtained by fitting the QPO observational data.

2. Circular orbital motion in a dipole magnetic field on the Schwarzschild

background

The line element in the Schwarzschild spacetime has the familiar form

ds2 = −η(r)2dt2 +
dr2

η(r)2
+ r2(dθ2 + sin2 θ dφ2) , (1)

where η(r) is given by

η(r) ≡
(
1 − 2M

r

)1/2

. (2)

We have adopted here geometric units, c = G = 1, that we will use throughout the

paper, if not stated otherwise.

Solving the vacuum Maxwell equations

F µν
;µ = 0 (∗F µν

;µ = 0) (3)

on the background of the spacetime geometry (1) for a static magnetic dipole moment

µ, parallel to the rotational axis of the star, one obtains the formula for an exterior

(r > R, where R is the neutron star radius) four-potential Aµ (e.g., Wasserman &

Shapiro , 1983; Braje & Romani, 2001),

Aα = − δφ
α f(r)

µ sin2 θ

r
, (4)

which has the form of the flat space result, multiplied by a function f(r) given by

f(r) =
3r3

8M3

[
log η(r)2 +

2M

r

(
1 +

M

r

)]
. (5)

In the case of potential (4), the Maxwell tensor Fµν, connected to the four-potential Aµ

through the relation

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
, (6)
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has only two independent non-vanishing components,

Frφ =
µ sin2 θ (f(r) − rf ′(r))

r2
(7)

and

Fθφ = − µf(r) sin 2θ

r
, (8)

which are related to components of a magnetic field three-vector B as follows:

Frφ = Bθ , Fθφ = −Br . (9)

Note that ”coma” in Eq. (7) denotes partial derivative with respect to the radial

coordinate r.

In a curved spacetime with presence of an electromagnetic field, the equation of

motion for a charged test particle of mass m and charge q reads

dUµ

dτ
+ Γµ

αβUαUβ = q̃ F µ
ν Uν (10)

where Uµ is the four-velocity and q̃ ≡ q/m is the specific charge of the particle.

We shall study epicyclic, near circular motion in the equatorial plane of a neutron

star with a dipole magnetic field. In order to obtain maximal information on the

epicyclic motion, we shall consider its properties down to minimal radius R = 2.25M

allowed for internal Schwarzschild geometry with uniform energy density distribution

(Stuchĺık, 2000). On the other hand, we put limit of validity of our result in the field

of astrophysically plausible neutron stars using the minimal radius R ∼ 3.5M allowed

for a variety of realistic equations of state (see Appendix for details). The Lorentz

force in the equation of motion, and consequently the described effects on the orbital

motion, depend on the product of µ and q̃ determining magnitude of the magnetic

interaction. Therefore, instead of changing magnitude and orientation of µ we can,

without any loss of generality, study only influence of changes of the specific charge q̃.

We shall focus on a typical LMXBs neutron star with a relatively weak magnetic field

strength B = 107 Gauss, mass M = 1.5M� and radius R = 4M . Then the magnetic

dipole moment µ = 1.06 x 10−4 m2 and it changes linearly with the field strength B

(see Appendix). In order to keep the magnetic force fixed, the specific charge q̃ must

be changed inversely to changes of B, if the neutron star parameters R and M remain

fixed.

2.1. Orbital angular velocity of equatorial circular orbits

Symmetry properties of the spacetime geometry (1) and electromagnetic field (4) allow

for charged test particles motion restricted to the equatorial plane θ = π/2. Throughout

this paper we confine ourselves to studying only circular equatorial motion +. The four-

velocity then has only two non-vanishing components, Uµ = (U t, 0 , 0 , Uφ). Solving the

radial component of Eq. (10) together with the normalization condition UµUµ = −1 for

+ See Kovář et al. (2008) for discussion of the existence of non-equatorial, so called ”halo”, orbits.
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metric (1) and potential (4) we obtain two pairs of the nonzero components of Uµ in

the form

Uφ
± =

−q̃ µ χ (r) ± Ψ (r)

2r3 (r − 3M)
, (11)

U t
± =

√√√√r − q̃ µ Φ(r) Uφ
±

(r − 3M)
, (12)

and the appropriate angular velocities Ω± = Uφ
±/U t

± then read

Ω± =
−q̃ µ χ (r) ± Ψ (r)

r3/2
√

4r4 (r − 3M) − 2q̃ µΦ (r) [−q̃ µ χ (r) ± Ψ (r)]
(13)

Here Φ(r), χ(r) and Ψ(r) are given by

Φ(r) ≡ f(r) − rf ′(r) , (14)

χ(r) ≡ (r − 2M) Φ(r) , (15)

Ψ(r) ≡
√

4Mr4(r − 3M) + (q̃µ χ(r))2 . (16)

For uncharged particles we arrive at the Keplerian geodesic limit with orbital angular

velocity Ω±(q̃ = 0) = ±ΩK = ±
√

M/r3.

The constants of motion of charged particles at the equatorial circular orbits are

given by the relations

E = −Ut = η(r)2 U t, (17)

L = Uφ + q̃ Aφ = r2 Uφ − q̃ µ
f(r)

r
(18)

with E being the specific energy and L being the generalized specific angular momentum.

It is apparent from the form of Eqs (11 - 13) that for a fixed magnetic dipole moment

of the neutron star, the 4-velocity components Uφ
± and U t

± are symmetric with respect

to simultaneous interchange of their sign (orientation of the orbital angular velocity Ω)

and the sign of the specific charge q̃. It is therefore sufficient to analyse only one of

these solutions - in the following we choose Uφ
+, U t

+ and Ω+.

The existence of the circular orbits is limited by the condition that both U t
+ and

Uφ
+, defined by Eqs(11) and (12), take real values. The reality conditions related to the

magnitude of the magnetic interaction given by q̃ µ are given by the relations

4r4 (r − 3M) − 2q̃ µΦ (r) [−q̃ µ χ (r) ± Ψ (r)] > 0 (19)

and

4Mr4(r − 3M) + (q̃µ χ(r))2 > 0 . (20)

The first of these conditions is satisfied for all values of q̃ µ at all radii r > 2M . The

second condition puts limit on the allowed values of q̃ µ at radii 2M < r < 3M . The

limit region starts for q̃ µ = 0 at r = 3M , reaches its maximum of q̃ µ = ± 1.971 M2 at

r = 2.441M and takes the value of q̃ µ = ± 1.333 M2 for r → 2M .
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Figure 1. The orbital frequency ν = Ω/2π as a function of the specific charge q̃ and
radial coordinate for the test neutron star with M = 1.5M� and µ = 1.06 x 10−4 m2.

In Fig.1 we illustrate behaviour of the orbital angular velocity Ω (related frequency

ν = Ω/2π) in dependency on the specific charge q̃ for fixed magnetic dipole moment

µ = 1.06 x 10−4 m2 and neutron star mass M = 1.5M�. For such a value of µ, the

critical values of the specific charge are given by q̃ = ± 8.986 x 1010 at r = 2.441M

and by q̃ = ± 6.8 x 1010 for r → 2M . From Fig.1 it follows that for positively charged

particles the Lorentz force has a repulsive character and lowers the orbital frequency

Ω with respect to the Keplerian frequency ΩK corresponding to the geodesic motion

(q̃ = 0), while for negatively charged particles the force is attractive and Ω grows with

respect to Keplerian frequency ΩK .

Considering both attractive and repulsive character of the Lorentz force, there exist

three qualitatively different types of the orbital angular velocity Ω profile behaviour. For

a sufficiently small charge, corresponding to orbital motion that is not very far from the

geodesic motion, there is a minimum possible value of r for which the circular orbits may

exist. With increasing magnitude of the specific charge (both positive and negative),

there appears a second region of the existence of circular orbits close to the horizon with

a certain maximal value of the radial coordinate. With growing charge both regions

merge and circular orbits exist for all r > Rg. A surprising behaviour of Ω arises for

negatively charged particles under the circular photon orbit at rph = 3M since they orbit
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in the opposite direction as compared to those orbiting above rph. (A similar effect was

investigated by Balek et al. (1989) for ultrarelativistic charged particles orbiting in the

field of Kerr-Newman black holes.) We should stress, however, that for astrophysically

plausible situations, with neutron stars modelled by using realistic equations of state,

validity of our results, being restricted to exterior regions of the neutron stars, is limited

to r > 3.5M , or r > 2.8M in the most exotic case of the so called Q-stars (see Appendix).

The test particle motion in combined gravitational and magnetic fields can be

described by the effective potential Veff(r, θ) generally determining 3D motion that is

reduced to 2D motion in the symmetry (equatorial) plane. Examples of such effective

potential corresponding to our discussion can be found in Aliev & Galtsov (1981);

Kovář et al. (2008). The epicyclic motion along a stable circular orbit, given by the

condition dVeff/dr = 0, is governed by the second derivatives of the effective potential.

In such approximation the effective potential takes the form corresponding to the linear

harmonic oscillation, therefore, the radial and vertical epicyclic frequencies are related

to the effective potential by

ω2
r ∼ ∂2Veff

∂r2
, ω2

θ ∼ ∂2Veff

∂θ2
. (21)

Clearly, vanishing of the radial ωr and vertical ωθ epicyclic frequencies generally

determines the marginally stable circular orbits that are defined by vanishing of the

second derivatives of the effective potential, putting thus limits on the existence of

astrophysically important stable circular orbits.

A detailed analysis of the effective potential that can give an overview of the stability

for the charged particle circular motion can be found, e.g., in Kovář et al. (2008),

even for off-equatorial circular orbits. Here we use a more straightforward and simple

perturbative analysis of the epicyclic motion along equatorial stable circular orbits.

3. Epicyclic frequencies and stability of circular motion

Formulae for the radial and vertical epicyclic frequencies of a charged test particle in

the presence of a general electromagnetic field have been derived by Aliev & Galtsov

(1981); Aliev (2008). One may obtain the formulae by perturbing the particle’s

position around the equatorial circular orbit (r, θ) = (r0, π/2), i.e., by assuming that

xµ(τ) = zµ(τ) + ξµ(τ) where ξµ(τ) is a small perturbation. Substituting this into the

equation of motion (10) and restricting to first-order terms in ξµ one arrives at the

relation for ξµ that takes the form of equation for a linear harmonic oscillator

d2ξa

dt2
+ ω2

aξ
a = 0, a ∈ (r, θ) (22)

with the appropriate epicyclic angular frequencies defined as (Aliev, 2008)

ωr =

(
∂V r

∂r
− γr

AγA
r

)1/2

, A ∈ (t, φ) (23)

ωθ =

(
∂V θ

∂θ

)1/2

, (24)
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where γµ
α and V µ have the form

γµ
α = 2Γµ

αβU
β(U t)−1 − q̃

U t
F µ

α , (25)

V µ =
1

2

[
γµ

αUα(U t)−1 − q̃

U t
F µ

α Uα(U t)−1
]

. (26)

Note that the derivatives in Eqs.(23) and (24) must be taken at the appropriate

equatorial circular orbit (r, θ) = (r0, π/2) with U t and Uφ given by Eqs. (12) and

(11).

In the spacetime geometry (1) and the magnetic field (4), the explicit expressions

for the epicyclic angular frequencies are given by

ω2
r =

{(
Uφ
)2

r6(3r − 8M) + 2M(M − r)r3
(
U t
)2

+ q̃ µ
[
Φ(r)

(
2Uφr3(3r − 7M) + q̃ µ χ(r)

)

+ Uφr5(r − 2M)f ′′(r)
] }/

r7
(
U t
)2

, (27)

ω2
θ =

Uφ
(
Uφr3 − 2q̃ µ f (r)

)

(U t)2 r3
. (28)

One can easily check that in the absence of the Lorentz force (µ = 0 or q̃ = 0) the

expressions for the orbital (13) and epicyclic (27, 28) frequencies merge into the well-

known formulae for geodesic motion in the Schwarzschild geometry:

Ω = ωθ = ΩK =
√

M/r3 , ωr =
√

M(r − 6M)/r2. (29)

Figure 2. Left: Contour plot of the radial epicyclic frequency νr = ωr/2π as a function
of the specific charge q̃ and the radial coordinate. Right: Same as the left panel, but
for the vertical epicyclic frequency νθ = ωθ/2π. Plots are constructed for the test
neutron star with M = 1.5M� and µ = 1.06 x 10−4 m2.
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3.1. Radial epicyclic frequency

In the context of the perturbation analysis, the existence of real values of the radial

epicyclic frequency ωr implies the stability of the circular orbit with respect to small

radial perturbations (which lead to oscillation behaviour of the perturbed radial

coordinate of the orbiting particle). In the left panel of Fig. 2, the line of ωr = 0

in the q̃− r plane denotes the boundary of region where the stable circular orbits exist.

Outside this region the appropriate (a = r) solution of Eq. (22) looses its oscillatory

character. In the region corresponding to attractive Lorentz force ωr decreases with

growing q̃ and the marginally stable orbit with respect to radial oscillations moves away

from the analogous orbit in the purely geodesic case, rms = 6M . On the other hand,

in the region of the repulsive Lorentz force ωr grows as the negative charge q̃ increases

and the boundary of region with ”radially stable” orbits approaches the horizon where

ωr diverges to infinity.

3.2. Vertical epicyclic frequency

Analogically, the existence of the vertical epicyclic frequency implies the stability of the

circular orbit with respect to small vertical perturbations. The region where such stable

circular orbits may exist is shown in the right panel of Fig. 2. As seen from the Figure,

the behaviour of ωθ exhibits a bit more complicated features than it was in the case of

ωr. There are two separate curves of ωθ = 0 defining a part of the boundary of region

with circular orbits that are stable with respect to vertical perturbations. One of the

curves lies in the area of repulsive Lorentz force, while the other one corresponds to

area with attractive character of the Lorentz force. Contrary to the radial case, this

region of ”vertical stability” never reaches the horizon. For relatively small values of

both positive and negative charge corresponding to near geodesic motion, the rest of the

boundary of the region where the vertically stable circular orbits exist coincides with

the boundary of region defining the existence of circular orbits itself (see Fig. 1).

3.3. Stable orbits and magnetic innermost stable circular orbit (MISCO)

Clearly, stable orbits have to be stable to both radial and vertical perturbations

simultaneously. From the above discussion of behaviour of the radial and vertical

epicyclic frequency it is apparent that the region of circular orbits which are stable

with respect to both radial and vertical perturbations is defined by the intersection of

regions where the radial and vertical epicyclic frequencies are defined. As shown in the

left panel of Fig.3, there exists a critical value of the specific charge, q̃crit, inside the

area of the repulsive Lorentz force, such that for q̃ > q̃crit the boundary of the region

of stable orbits in the q̃ - r plane is defined by the ωθ = 0 curve. For q̃ < q̃crit, the

boundary of stable orbits region is formed by the curve of ωr = 0. These curves thus

define the location of the marginally stable orbit for particles of a given q̃ with a fixed

µ. For such orbits we introduce the term MISCO (Magnetic Innermost Stable Circular
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Orbit) to distinguish them from the corresponding geodesic innermost stable circular

orbits that we will refer to as GISCO. In the Schwarzschild spacetimes rGISCO = 6M .

It is, therefore, clear that the repulsive Lorentz force gives rise to a new class of stable

circular orbits with r < rGISCO = 6M that extends below the circular photon orbit.

The critical charge q̃crit corresponds to the lowest MISCO orbit with radial coordinate

rMISCO
min = 2.73M and the highest possible orbital angular frequency Ωmax for a given

mass of the neutron star. The location of MISCOmin orbit is given by the condition

that equations ωr = 0 and ωθ = 0 are fulfiled simultaneously, the critical value of the

product of the particle specific charge and the neutron star magnetic dipole moment

is thus given by (q̃µ)crit = 1.869M2 . For the test neutron star of M = 1.5M� and

µ = 1.06 x 10−4 m2, we have q̃crit = 8.76 x 1010 and νmax = Ωmax/2π = 3124 Hz.

Figure 3. Left: The region of stable circular orbits filled up by the contour plot of
the orbital frequency ν = Ω/2π. Right: Same as the left panel, but filled up by the
contour plot of the nodal precession frequency νn. Constructed for M = 1.5M� and
µ = 1.06 x 10−4 m2.

4. Relations of the non-geodesic orbital and epicyclic frequencies

The orbital and epicyclic frequencies exhibit a qualitatively different behaviour in

regions of attractive and repulsive magnetic interaction that strongly depends on the

particular value of q̃. For the test neutron star we present in Fig.4 non-geodesic orbital

and epicyclic frequency profiles in typical situations representing both the repulsive

attractive magnetic interaction. In the region of magnetic repulsion (q̃ > 0) two

qualitatively different types of the frequency profile behaviour are given by conditions

q̃ > q̃crit (q̃ < q̃crit) when the region of stable orbits is given by ωθ = 0 (ωr = 0).

The resulted frequency profiles are given for four representative values of q̃ lying in

both attractive and repulsive regions. Namely we choose q̃ = 1.0 x 1011, q̃ = 8.7 x 1010,
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q̃ = −6.0 x 1010 and q̃ = −1.5 x 1011. Absolute values of all used specific charge values

are very low in comparison with q̃ = 1.111 x 1018 corresponding to matter consisting

purely of ions of hydrogen.

4.1. Magnetic repulsion

The top left panel of Fig.4 displays behaviour of the investigated frequencies in the

repulsive region for q̃ = 1.0 x 1011 (q̃ > q̃crit), whereas Ω and ωr are defined for all radii

above the horizon. Ω exhibits a maximum and converges to 0 at the horizon, while ωr

monotonously grows diverging to infinity at the horizon. On the other hand ωθ exhibits

a maximum and falls to zero. Therefore, the region of stability of the circular orbits is

defined by the radial coordinate rMISCO where ωθ = 0.

Different features are shown in the top right panel of Fig. 4 which illustrates the

situation for q̃ = 8.7 x 1010 (still in the repulsive region but for q̃ < q̃crit). Contrary

to the previous case there exists an interval of radial coordinate values over which Ω is

not defined and where no circular orbits exist. Similarly, ωr is discontinuous and the

boundary of the stability region rMISCO is now defined by the radial coordinate satisfying

ωr = 0. Close to the horizon a new separate region appears where the circular orbits

may again exist, although they are stable only with respect to radial perturbations.

For the value of q̃ used here, the upper boundary of such region slightly outreaches the

minimal possible size of the stellar compact object, R = 2.25M .

Generally, for stable circular orbits in the repulsive region, ωr increases with

growing charge, while both Ω and ωθ exhibit opposite behaviour. Both the orbital and

vertical epicyclic frequencies are lower than the Keplerian frequency ΩK , and the orbital

frequency exceeds the epicyclic one. The influence of the Lorentz force enables extension

of the region with stable circular orbits deep below the Schwarzschild rGISCO = 6M and,

surprisingly, even below the radius of the circular photon orbit rph = 3M .

4.2. Magnetic attraction

The bottom left panel of Fig.4 illustrates the behaviour of the orbital and epicyclic

frequency profiles in the attractive region for q̃ = −6.0 x 1010. Ω displays a discontinuity

that is characteristic for the whole attractive region and changes its sign at radius

r = 3M corresponding to the circular photon orbit. The region of inversely orbiting

radially unstable circular non-geodesic orbits does not reach the horizon for the chosen

value of q̃. The boundary of the stability region rMISCO is again defined by the radial

coordinate where ωr = 0.

The frequency profiles constructed for q̃ = −1.5 x 1011, shown in the bottom right

panel of Fig.4, are qualitatively somewhat different when compared with the previous

magnetic attraction case. Even in the attractive region, sufficiently large values of

negative q̃ enable extension of the region of existence of the circular orbits down to the

horizon, however, such orbits are, contrary to the case of magnetic repulsion, unstable

with respect to both radial and vertical perturbations. The region of vertical stability



On magnetic-field induced corrections to relativistic orbital and epicyclic frequencies 13

Figure 4. Illustration of the radial epicyclic, νr = ωr/(2π), vertical epicyclic, νθ =
ωθ/(2π), and orbital, ν = Ω/(2π), frequency behaviour in case of the intrinsic external
dipole magnetic field B = 107 Gauss on the surface of the star with M = 1.5 M� and
R = 4M compared to the pure Schwarzschild geodesic case (quantities νK = ν0

θ and
ν0
r ). The top panels illustrate the situation in the repulsive region, for q̃ = 1.0 x 1011

(left), and for q̃ = 8.7 x 1010 (right). Bottom panels show the behaviour of frequencies
from the attractive region for q̃ = −6.0 x 1010 (left) and q̃ = −1.5 x 1011 (right).

is restricted from below by the radial coordinate for which ωθ = 0, while the region of

both radial and vertical stabilities is again limited by rMISCO such that ωr(rMISCO) = 0.

Generally, in the attractive region the orbital and epicyclic frequency profiles exhibit

opposite behaviour from that in the repulsive region. With increasing negative q̃ the

frequency ωr decreases, while both Ω and ωθ grow. Now both orbital and vertical

epicyclic frequencies exceed the Keplerian one ΩK , and, moreover, ωθ > Ω. However, at

the circular photon orbit radius rph = 3M both Ω and ωθ coincide with the Keplerian

angular velocity Ω0 independently of q̃. In the case of magnetic attraction the MISCO

radius strongly draws apart from the Schwarzschild rGISCO = 6M with growing q̃.

Finally, we can conclude that at astrophysically relevant values of radial coordinate

(r > 3.5M) sensitivity of ωr to q̃ is significantly higher than sensitivity of the two

remaining frequencies for both attractive and repulsive magnetic interactions. This is

qualitatively in accordance with what one would expect, as the Lorentz force acting on

charged particles moving in the equatorial plane has only radial non-zero component.
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Figure 5. The behaviour of νn at the innermost stable circular orbit in the presence
of the intrinsic external dipole magnetic field with B = 107 Gauss on the surface of
the test neutron star with M = 1.5 M� and R = 4M as a function of q̃. Left: In the
repulsive region the frequency has its maximum νn = νmax = 3124 Hz for q̃ = q̃crit at
the lowest stable circular orbit. Right: In the attractive region the frequency has its
maximum νn = 78.3 Hz for q̃ = −1.8 x 1011 which corresponds to the shift of MISCO
to 9.9 M.

5. Nodal precession

The presence of the Lorentz force violates the ν = νθ equality implied by the spherical

symmetry of the background Schwarzschild geometry. In the repulsive region, both

ν and νθ decrease as the specific charge q̃ grows, while in the attractive region these

frequencies increase with rising negative specific charge. However, νθ is changing faster

than ν which gives rise to the nodal precession of the plane of the orbital motion. The

nodal precession is present in addition to the relativistic precession of periastron having

frequency νp(r) = ν(r) − νr(r). The nodal precession frequency is given by the formula

νn(r) = ν(r) − νθ(r). (30)

This nodal precession of frequency νn is qualitatively similar to the Lense-Thirring

precession (LTP) occurring in rotating, axially symmetric spacetimes. For attractive

magnetic interaction some of its features differ from those of the repulsive interaction.

It is, however, common for both attractive and repulsive magnetic interactions that for

a fixed value of q̃ the frequency νn(r) exhibits a maximum at the MISCO orbit and

decreases with increasing r.

As follows from definition of νn given by Eq.(30), for the attractive interaction the

nodal precession induced by the Lorentz force has an opposite phase as compared to

the LTP, reflected by its negative values on the right panel of Fig.3. It is interesting to

plot νn(rMISCO) versus negative q̃ for fixed µ and M (see the right panel of Fig.5). For

the attractive magnetic interaction the nodal precession frequency νn(rMISCO) is small

(νn << 1 Hz) except for a relatively narrow range of q̃ (about q̃ ∼ −1.8 x 1011) where

it demonstrates a sharp maximum νn(rMISCO) = 0.106 ν(rMISCO).

For the repulsive magnetic interaction the nodal precession phase is consistent with

the LTP phase. When q̃ < q̃crit, the frequency νn(rMISCO) grows along with growing
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Figure 6. The RP model rough fits of the observational twin-peak kHz QPO data
for a wide set of LMXBs. The thick solid curve refers to the case with M = 1.4M�
and with the orbital and epicyclic frequencies being corrected by the presence of the
Lorentz force induced by q̃ = 5.0 x 1010 and µ = 1.06 x 10−4 m2. For illustration we also
present fits corresponding to pure Schwarzschild geodesic case (thin dashed curves),
namely for M = 2M� that was discussed by Belloni et al. (2007), and for M = 1.4M�
for the comparison with the non-geodesic case.

q̃. For MISCO orbits with q̃ > q̃crit, there is νθ(rMISCO) = 0, the nodal precession

frequency νn(rMISCO) = νK(rMISCO) and decreases with growing q̃. It is evident that

for the repulsive interaction νn(rMISCO) exhibits a sharp maximum at q̃ = q̃crit which is

identical with the νmax of the lowest stable circular orbit (see the left panel of Fig.5).

6. Implications for the relativistic precession QPO model

The widely discussed relativistic precession QPO model identifies the frequencies of the

lower and upper QPO peaks (νL and νU , respectively) as

νL(r) = ν(r) − νr(r), νU(r) = ν(r). (31)

It has been shown by Belloni et al. (2007) that these relations qualitatively well describe

the trends presented in the observational data, but the characteristic mass of neutron

stars in LMXBs obtained by such fits, M ∼ 2M�, is too high in comparison with the

canonical value, M ∼ 1.4M�. Moreover, it was demonstrated by Török et al. (2007a)

that decreasing the radial epicyclic frequency may in general notably improve the quality

of fits based on the RP model. The significant reduction of νr(r) along with keeping the
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Figure 7. Left: The location of MISCO in the attractive region as a function of
the test particle’s specific charge q̃ and the intrinsic magnetic dipole moment µ of
the star. The curves at the 3D-plot surface and their projections into the µ − q̃
plane denote rMISCO = 10M, 100M, 1000M . Right: Projection of the astrophysically
relevant region from the left panel to the µ− q̃ plane with distinctive values of rMISCO.

other frequencies more or less the same well corresponds to above discussed features of

the frequencies in the region of the attractive Lorentz force.

Consider an astrophysically relevant situation of a rather slowly rotating neutron

star that possesses a dipole magnetic field and is orbited by a thin accretion disc

consisting of charged test particles moving along nearly circular geodesics in the

equatorial plane. In addition we assume the dipole magnetic field to be fully dominant

in the total electromagnetic field in the vicinity of the star, so that the influence of

magnetic field generated by the currents in the disc and the influence of the total disc

charge are both negligible. This criterion is fulfilled if the specific charge of the material

in the disc is very low. Further, such a configuration allows us to use the test particle

approximation, and this is in agreement with the assumed rather small non-geodesic

corrections to geodesic orbital motion.

Considering the RP model in the line with the corrected frequencies introduced

above, the new fits can provide the characteristic neutron star mass close to M ∼ 1.4M�.

In Fig.6 we illustrate this finding for µ = 1.06 x 10−4 m2 and q̃ = 5 x 1010 when the

innermost stable circular orbit is shifted to rMISCO ∼ 7M . Such a rough fit for a wide

set of LMXBs∗ is shown together with the fits for the pure Schwarzschild geodesic cases

with M = 2M� (Belloni et al., 2007) and M = 1.4M�. However, a detailed analysis

for the particular LXMB sources should be carried out taking into account the above

derived formulae].

Natural and simple implication of the RP model (and several other orbital models)

identifies the highest observed frequency of the particular source with the orbital

∗ Data from Boutloukos et al. (2006); Wijnands et al. (2003); Linares et al. (2005); Belloni et al. (2007).
] Influence of the neutron star rotation (spin j) is shown to be relatively weak for both, radial and
vertical, epicyclic frequencies, and it is quite negligible for small values of the spin (j < 0.1) (Török et
al., 2008a).
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frequency at the appropriate ISCO, and thus allows for the estimation of mass of the

source (see, e.g, van der Klis, 2005; Lamb et al., 2007). A straightforward replacement

of the GISCO orbital frequency by the corrected MISCO orbital frequency provides a

significant decrease of the estimated mass.

Fig.7 illustrates high sensitivity of the MISCO orbit location on the intensity of

the attractive magnetic interaction. With growing values of q̃ or µ, rMISCO rapidly

draws apart from the radius of GISCO. In the case of the test neutron star with

fixed µ = 1.06 x 10−4 m2, we find that for q̃ = 6.0 x 1010 corresponding to bottom

left panel of Fig. 4 there is rMISCO = 7.48M , while for q̃ = 1.5 x 1011 corresponding

to bottom right panel of Fig. 4 we obtain rMISCO = 9.32M . For the extremal specific

charge q̃ = 1.111 x 1018 corresponding to the case of matter purely consisting of ions of

hydrogen, the location of MISCO orbit flies away to rMISCO = 177864.76M .

It is widely expected (e.g., Kluzniak et al., 1990; van der Klis, 2006) that magnetic

field of the central compact objects in LMXBs should be given by the intrinsic exterior

magnetic field, B ∈ 106 ÷ 109 Gauss. There are also several indices supporting the

evidence of matter being accreted in the region with r ≤ 10M (see, e.g., van der Klis,

2006). Our results then imply that the specific charge related to the accreting matter

should not exceed q̃ ∼ 1.86 x 1012 (1.87 x 1011, 1.90 x 1010, 1.91 x 109) for B = 106 Gauss

(107, 108, 109 Gauss).

7. Conclusions

The aim of this paper is to study the influence of the Lorentz force generated by a

magnetic field of a neutron star on the quasi-circular, epicyclic orbital motion. In

particular we focus on the behaviour of non-geodesic orbital and epicyclic frequencies

in dependence on the neutron star magnetic dipole moment and the specific charge of

the orbiting matter.

In general, the Lorentz force may be of attractive or repulsive character depending

on the sign of orbiting particle’s specific charge, and the magnetic dipole moment and

orbital velocity orientations. When the specific charge is large enough, the influence

of both types of the force allows for the existence of circular orbits for all radii above

the horizon. In the attractive region a discontinuity appears, only unstable circular

orbits exists under the circular photon orbit at rph = 3M being oppositely oriented

to those located above rph. Surprisingly, in the repulsive region, the stable circular

orbits associated with the radial and vertical epicyclic oscillations can extend below the

circular photon orbit radius rph. A critical charge q̃crit exists for given µ, corresponding

to the lowest stable circular orbit at rMISCO
min = 2.73M with the highest possible orbital

frequency Ωmax of stable circular motion ††. In contrast, inside the attractive region, the

MISCO orbits always appear above rGISCO = 6M and the rMISCO can be substantially

shifted above r = 6M . We can conclude that the presence of the Lorentz force strongly

††However, it should be stressed that for the repulsive magnetic interaction applicability of the stable
orbits region has to be confronted with the location of the neutron star surface (see Appendix)
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affects the location of the inner edge of the thin accretion disc.

In both repulsive and attractive regions of the magnetic interaction, the behaviour

of the orbital and epicyclic frequency profiles is quite complicated, giving rise to two

separated regions of the circular orbital motion for certain values of q̃. Generally,

for stable circular orbits in the repulsive region ωr increases with growing specific

charge, while both Ω and ωθ decrease. In the attractive region, on the other hand, the

frequencies exhibit opposite behaviour. For both regions of the magnetic interaction and

astrophysically relevant values of radial coordinate (r > 3.5M) sensitivity of the radial

epicyclic frequency ωr to q̃ is significantly higher than sensitivity of the two remaining

frequencies.

The presence of the dipole magnetic field also violates the ν = νθ equality

corresponding to the spherical symmetry of the background Schwarzschild geometry.

As a result, nodal precession of the orbital motion plane arises, having opposite phase

for attractive and repulsive magnetic interaction .

Orbital motion and related epicyclic frequencies have been considered by several

authors as a key agent in their models of the high-frequency QPOs (Kato et al., 1998;

Stella & Vietri, 1999; Kluźniak & Abramowicz, 2001; Török et al., 2005; Stuchĺık &

Kotrlová, 2009); in this paper we focused our attention to the relativistic precession

QPO model. The models mostly assume geodesic motion although some non-geodesic

corrections have been studied in the past, e.g., due to pressure gradient forces (Blaes et

al., 2006, 2007; Šrámková et al., 2005; Straub & Šrámková, 2009), or due to diamagnetic

forces in hot plasma interacting with the central compact object magnetic field (e.g.,

Vietri & Stella, 1998). However, non-geodesic corrections that arise from the interaction

of dipole magnetic field with test particle’s specific charge (i.e., the Lorentz force) have

not been considered in this context yet. The formulae derived in this work therefore

represent first attempt to describe the appropriate problem within the scope of general

relativity. We have shown that such effects are of high importance and for attractive

magnetic interaction they can improve significantly the fitting of high-frequency QPOs

data for some LMXB sources by RP model.

Recently, sophisticated attempts appeared that are able to explain the high

frequency QPOs by the models of oscillating toroidal disc (Rezzolla et al., 2003a,b;

Lee et al., 2004; Li & Narayan, 2004; Montero et al., 2004; Zhang, 2004; Zanotti et al.,

2005; Schnittman & Rezzolla, 2006) or by discoseismology of (warped) discs (Wagoner,

1999; Wagoner et al., 2001; Kato, 2004; Blaes et al., 2007). In all of these models, the

orbital and epicyclic frequencies of the geodetical motion have an important role. It

would be interesting to check, if the orbital and epicyclic frequencies of magnetic non-

geodesic motion of slightly charged particles could be relevant for oscillations of slightly

charged toroidal and warped discs.

In the present work we considered dipole magnetic field on the background of the

spherically symmetric Schwarzschild geometry. Generalization of our results to axially

symmetric spacetimes (e.g., Hartle-Thorne or Lense-Thirring solutions) that describe

the influence of the neutron star rotation is the subject of our future study.
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Kovář J, Stuchĺık Z and Karas V 2008 Class. Quantum Grav. 25 095011
Lamb F K and Boutlokous S 2007 Short-period Binary Stars: Observation, Analyses, and Results ed.

E F Milone, D A Leahy & D Hobill (Dordrecht: Springer)
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Appendix A. Radius and magnetic dipole moment of neutron stars

Presented analysis of circular and epicyclic motion is relevant in the exterior of the

neutron star only. Therefore, it is very important to fix the neutron star radius R.

In order to obtain a complete view of the motion, we study its properties down to

R = 2.25M that represents an innermost limit on the neutron star radius, being

given by the limit on existence of internal (but unrealistic) Schwarzschild spacetime

with uniformly distributed energy density - for such configuration the central pressure

diverges (Stuchĺık, 2000; Stuchĺık et al., 2001). † On the other hand, realistic equations

of state for both neutron and quark stars put the neutron (quark) star radius into the

interval (3 − 5)M ; we take intermediate value of R = 4M for our test neutron star.

Most of the realistic equations of state put the lower limit on the neutron star radius at

the value of R = 3.5M (Glendenning, 1997) which is considered here as a limit radius

of astrophysically plausible neutron stars. Nevertheless, existence of extremely compact

neutron stars with R < 3M is still discussed and is not excluded; for example, realistic

models of the so called Q-stars allow R ∼ 2.8M (Bahcall et al., 1989; Miller et al.,

1998; Stuchĺık et al., 2009a). Clearly, in vicinity of extremely compact neutron stars

the exotic phenomena related to the magnetic repulsion under the photon circular orbit

could be observed, giving thus signature of existence of these extreme objects.

Intrinsic magnetic dipole moment of a neutron star can be obtained from the

presumed magnetic field strength at the neutron star surface. The orthonormal basis of

local static observers in the Schwarzschild spacetime reads

et̂ =

{
1

η(r)
, 0, 0, 0

}
, er̂ =

{
0, η(r), 0, 0

}
, (A.1)

eθ̂ =

{
0, 0,

1

r
, 0

}
, eφ̂ =

{
0, 0, 0,

1

r sin θ

}
.

Locally measured magnetic field strength is given by the projection of the Maxwell

tensor into the orthonormal basis of a static observer Fα̂β̂ = eµ
α̂eν

β̂
Fµν , at the surface

of the star. For such an observer located at the equator of the star with radius R, the

magnetic field three-vector has only one nonzero component,

B θ̂ = Fr̂φ̂ =
η(R)

R
Frφ . (A.2)

Therefore, using Eqs. (5) and (7), one may write

µ =
4M3R3/2

√
R − 2M

6M(R − M) + 3R(R − 2M) log η (R)2 B θ̂ . (A.3)

For a neutron star with a rather weak magnetic field strength, B = 107 Gauss '
2.875 x 10−16 m−1 , mass M = 1.5M� and radius R = 4M , we have µ = 1.06 x 10−4 m2

(B [cm−1] = (G1/2/c2) B [Gauss] ' 2, 875 x 10−25 B [Gauss]). We have used neutron

† Admitting existence of hypothetical gravastars (Mazur & Mottola, 2004; Chirenti & Rezzolla, 2007)
we can extend our analysis down to the gravitational radius Rg = 2M .
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Figure A1. Intrinsic magnetic dipole moment µ of the star as a function of the star
radius R and mass M for a fixed magnetic field strength B at the star surface. The
z-axis is scaled in relative units of µ/B while the colour scaling at the 3D-plot surface
shows values of µ for B = 107 Gauss = 2.875 x 10−16 m−1.

stars of such parameters as the test model for our analysis. Dependence of the magnetic

dipole moment µ (expressed in terms of the surface value of the magnetic field strength

B) on the neutron star mass M and its radius R is illustrated in Fig A1.

The electromagnetic four-potential (4) used here corresponds to the case of

magnetic dipole moment connected to the central compact object (neutron star). In

the case of Schwarzschild black holes with magnetic field generated by a current loop

in the accretion disc (Petterson, 1974), the discussed solution is valid only for particles

orbiting at the radius higher than the loop radius. Discussion on the so-called internal

solution of the four-potential and orbits of the particles below the loop radius can be

found in Preti (2004).
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