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2Department of Mathematics, University of Michigan, Ann Arbor, Michigan

(Dated: March 17, 2010)

We give a very short proof that the vacuum Einstein equations in 4 + 1 dimensions have no
cohomogeneity-two Bianchi IX continuously self-similar solutions.

Introduction. In a recent paper [1] it was shown that in five spacetime dimensions one can perform a consistent
cohomogeneity-two symmetry reduction of the vacuum Einstein equations which – in contrast to the spherically
symmetric reduction – admits time dependent asymptotically flat solutions. The key idea was to modify the standard
spherically symmetric ansatz by replacing the round metric on the three-sphere with the homogeneously squashed
metric, thereby breaking the SO(4) isometry to SO(3) × U(1). In this way the squashing parameter becomes a
dynamical degree of freedom and Birkhoff’s theorem is evaded. This model (which we shall refer to as the BCS
model) provides a simple theoretical setting for studying the dynamics of gravitational collapse in vacuum. Numerical
simulations indicate that the spherically symmetric solutions, Minkowski and Schwarzschild, play the role of attractors
in the evolution of generic regular initial data (small and large ones, respectively) and the transition between these
two outcomes of evolution exhibits a discretely self-similar critical behavior [1]. In this respect the BCS model is
very similar to the Einstein-massless scalar field system [2–4]. However, there is one interesting difference between
these two models which we want to point out here. The difference is concerned with the existence of continuously
self-similar (CSS) solutions. In [5] Christodoulou proved that the Einstein-massless scalar field system possesses CSS
solutions. These solutions, suitably truncated, provide examples of naked singularities developing from regular initial
data (however, being unstable [6], they do not contradict the weak cosmic censorship conjecture). We will show
below that the BCS model has no CSS solutions. This result indicates that the CSS naked singularities found by
Christodoulou for the self-gravitating massless scalar field are, in a sense, matter generated (mathematically, they are
due to the fact that only derivatives of the scalar field appear in the equations).

The BCS ansatz and self-similarity. After [1] we parametrize the metric as follows

ds2 = −Ae−2δdt2 +A−1dr2 +
1
4
r2

(
e2B(σ2

1 + σ2
2) + e−4Bσ2

3

)
, (1)

where A, δ, and B are functions of (t, r), and σi are left invariant one-forms on SU(2) which in terms of the Euler
angles take the form

σ1 = cosψ dθ + sinψ sin θ dφ, σ2 = − sinψ dθ + cosψ sin θ dφ, σ3 = dψ + cos θ dφ. (2)

Substituting this ansatz into the vacuum Einstein equations we get the following system of PDEs
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These equations have the scaling symmetry (t, r) → (λt, λr) so it is natural to look for continuously self-similar (CSS)
solutions, that is solutions which are scale invariant. Such solutions depend on a single variable ρ = r/t and then the
system (3-6) reduces to ordinary differential equations (where prime is d/dρ and Z = eδρ/A)

ρA′ = −2A+
2
3

(
4e−2B − e−8B

)
− 2ρ2A(1 + Z2)B′2 , (7)

A′ = −4ρAB′2 , (8)
ρZ ′ = Z + 2Z(1− Z2)ρ2B′2 , (9)

B′′ =
(2Z2 − 3)B′ + 2ρ2(1 − Z4)B′3

ρ(1 − Z2)
+

4
3
e−2B − e−8B

ρ2A(1 − Z2)
. (10)
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The combination of equations (7) and (8) yields the constraint

3A− 3A(1 − Z2)ρ2B′2 − 4e−2B + e−8B = 0. (11)

We are interested in regular solutions, where ’regular’ means twice continuously differentiable. At the origin regular
solutions must satisfy the following initial conditions

B(ρ) ∼ bρ2, A(ρ) ∼ 1 − 4b2ρ4, Z(ρ) ∼ ρ , (12)

where we used the remaining scaling freedom to set Z ′(0) = 1 for convenience. It follows from (12) and Eq.(9) that
if Z < 1 then Z(ρ) ≥ ρ, hence there is an ρ0 such that Z(ρ0) = 1. Geometrically, ρ0 corresponds to the similarity
horizon (the light cone of the singularity).

Proof. We will show that solutions starting from initial conditions (12) cannot be regular at ρ0. Assume for contra-
diction that the solution (A(ρ), Z(ρ), B(ρ)) is regular on the closed interval I = {ρ : 0 ≤ ρ ≤ ρ0}. First, note that the

function A is positive on I since from Eq.(8) we have A(ρ) = exp
(
−4

ρ∫
0

sB′(s)2ds
)

. Second, it follows from Eq.(10)

that if B′(ρ1) = 0 for some ρ1 then B′′(ρ1) has the same sign as B(ρ1). Thus, the function B(ρ) is monotone on I
and B′(ρ) has the sign of b. Next, let us define the function

H = 8e−2B − 5e−8B − 3ρAB′ − 3A . (13)

With the use of this function (which we found by an arduous trial and error), the rest of the proof amounts to a one-
line exercise in elementary calculus The initial conditions (12) imply that H(ρ) ∼ 9bρ2 near the origin. Differentating
H and using the constraint (11), we obtain

H ′ +
(

1
ρ(1 − Z2)

+ 3B′
)
H = 27e−8BB′ , (14)

hence H(ρ) cannot have a zero for ρ < ρ0 because if H(ρ) = 0 then H ′(ρ) has the same sign as B′(ρ) and therefore
b. Similarly, H(ρ0) cannot vanish because L’Hopital’s rule gives H ′(ρ0) = 54e−2B(ρ0)B′(ρ0). However, H(ρ0) must
vanish for regular solutions, as follows immediately from (14). This contradiction ends the proof.

[1] P. Bizoń, T. Chmaj, and B. G. Schmidt, Phys. Rev. Lett. 95, 071102 (2005).
[2] D. Christodoulou, Comm. Math. Phys. 105, 337 (1986)
[3] D. Christodoulou, Comm. Math. Phys. 109, 613 (1987)
[4] M. W. Choptuik, Phys. Rev. Lett. 70, 9 (1993).
[5] D. Christodoulou, Ann. Math. 140, 607 (1994)
[6] D. Christodoulou, Ann. Math. 149, 183 (1999)


	Contents of nocss.tex
	Go to page 1 of 2
	Go to page 2 of 2


