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A method for detection of known sources

of continuous gravitational wave signals

in non-stationary data

P. Astone1, S. D’ Antonio 2, S. Frasca1,3, C. Palomba1

1 INFN Roma; 2 INFN Roma2; 3 Dip. di Fisica, Univ. di Roma ”Sapienza”

Abstract. A method for searching continuous gravitational wave (g.w.) signals
from isolated neutron stars whose position, frequency and frequency evolution are
known is described in this paper. This method is applied to data of interferometric
detectors such as Virgo. The method is based on the use of 5-vectors, which are
the Fourier components of the signal and data at five frequencies around the
source intrinsic frequency. The main characteristic of the method is its simplicity
and the strong reduction of the computing time needed for the analysis and in
particular for all the simulation procedures. We introduce here also the concept
of “coherence” to state the reliability of a detection.
Pacs. numbers: 04.80Nn,07.05Kf,97.60Jd

1. Introduction: the formulation of the problem

Continuous g.w. signals emitted by asymmetric rotating neutron stars are an
important target for interferometric detectors. In the targeted search for known
sources of this kind, where “known” indicates objects like the Crab or Vela pulsar,
whose position, frequency and frequency evolution are known, we have two different
problems: detection of a signal whose polarization parameters are known (2 degrees
of freedom (d.o.f.) problem) and detection of a signal whose polarization parameters
are not known (4 d.o.f. problem). In the first case, once the signal has been detected,
we should estimate the amplitude and the phase of the wave. In the second case we
should estimate also the two polarization parameters. Various methods have been
developed for this kind of search, see e.g. [1],[2]. We describe here a method based
on the description of the signal and of the data in the domain of their five Fourier
components at the five frequencies ω0, ω0±Ω, ω0±2Ω, where ω0 is the signal intrinsic
angular frequency and Ω is the Earth sidereal angular frequency [3]. The data of an
interferometer like Virgo are characterized by a sensitivity which allows interesting
analysis for g.w. in the range from 10 Hz up to roughly 4kHz. The search method
presented here uses only a small band around the expected signal frequency. Searching
signals in non stationary data requires to prepare the data as explained in Sec. 2.

2. Preparation of the data

The preparation of the data has been discussed in detail in [4], so here we will only
recall some basic features. First of all, let us point out that a basic tool we need for the
analysis is the Fourier transform, which we compute using the Fast Fourier Transform
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implementation (FFT). We start with the construction of a cleaned data base of
FFTs, which is a collection of FFTs built from short (1024 s) chunks of calibrated
data, overlapped by half. These FFTs are constructed using the whole detector band
and have an header with information relevant to the analysis (e.g. the beginning time
of that FFT, the window used . . . ). This data organization is simple and is used not
only for the present coherent search.

The use of a cleaning procedure is important, and it has been developed in such
a way to veto only times where disturbances act and not entire data chunks. The
effect of the cleaning depends on the nature of the data, and is related to the detector
characteristics in the particular considered run. And, even at the same time, it is
different when considering different frequency bands. Once decided a particular source
to look for we proceed with the extraction of a small band, covering a fraction of Hz,
around the expected source frequency at the time of the analysis. The band extraction
can be done in different ways; the one we use is based on the construction of the
so-called “analytical signal” (see [5] and references therein). The analytical signal is
complex and has a sampling rate much lower than the original one (typically 1 second),
and it has the property that its power spectrum in the selected band is identical to the
original power spectrum in that band. Then, given the known position of the source
and proper ephemerides for the detector position and velocity it is possible to remove
the Doppler effect, due to the Earth motion, the Einstein effect and also the effect of
the source spin-down. The correction has to be very accurate, since the integration
time of the search might be very long and even very small errors can sum up to
unacceptable values. For this reason a procedure, based on oversampling the data, by
a factor such to have at least 8 samples for each source period, and on re-sampling,
which consists in the construction of a new time abscissa, as originally proposed in
[6], has been developed. In a forthcoming paper we will give details on this part of
the analysis method. Then, there is a further cleaning step to remove residual noisy
periods, which is based a robust estimation of the noise parameters and is described
in [7]. A final Wiener filter, which basically is a weight on the data, with the inverse
of their local variance, reduces the impact of non-stationary noise. At this point, the
g.w. signal present into the data would be monochromatic with a residual amplitude
and phase modulation due to the effect of detector response, as described in Sec. 4.

For clarity, in the paper we have indicated tensors in gothic and 5-vectors in bold.
If A is a complex quantity, A′ is the complex conjugate. The product of vectors is
always the scalar product‡.

3. The periodic wave

The continuous g.w. signal emitted by a generic rotating rigid star can be described
by a polarization ellipse. The polarization ellipse is characterized by the ratio η = b

a

of its semi-minor to its semi-major axis and by the angle ψ defining the direction of
the major axis a respect to the celestial parallel of the source (counterclockwise). The
ratio η varies in the range [−1, 1], where η = 0 for a linearly polarized wave and η = ±1
for a circularly polarized wave (η = 1 if the circular rotation is counterclockwise). For
a monochromatic signal with angular frequency ω0 the metric perturbation tensor can
be expressed as

h(t) = h0 (H+e⊕ +H×e⊗) ej(ω0t+γ) (1)

‡ we recall that if a and b are complex vectors their scalar product is a · b =
P

i
aib

′
i
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where e⊕ and e⊗ are the two basis polarization tensors and the plus and cross

amplitudes are given by

H+ =
cos 2ψ − η sin 2ψ

√

1 + η2
(2)

H× =
sin 2ψ + η cos 2ψ

√

1 + η2
(3)

The two complex amplitudes satisfy the condition |H+|2 + |H×|2 = 1. We can reverse
the previous equations to express η, ψ as a function of H+, H×. This can be done
using combinations of the two amplitudes which do not depend on the absolute phase
γ. For instance, introducing the quantities

H+H
′

× =
1 − η2

1 + η2

1

2
sin 4ψ + 

−η
1 + η2

= A + B (4)

|H+|2 − |H×|2 =
1 − η2

1 + η2
cos 4ψ = C (5)

we immediately find

η =
−1 +

√
1 − 4B2

2B
(6)

cos 4ψ =
C

(2A)2 + C2
(7)

sin 4ψ =
2A

(2A)2 + C2
(8)

Formally identical relations will be used to estimate the unknown source parameters
from the estimation of H+, H×, see Sec. 8.

4. The detector response

The gravitational wave strain at the detector is

h(t) = h0 (A+H+ +A×H×) e(ω0t+γ) (9)

where (see, e.g., [3])

A+ = a0 + a1c cosΩt+ a1s sin Ωt+ a2c cos 2Ωt+ a2s sin 2Ωt

A× = b1c cosΩt+ b1s sin Ωt+ b2c cos 2Ωt+ b2s sin 2Ωt (10)

where the Earth sidereal angular frequency Ωt can be expressed in terms of the
local sidereal time Θ, the source right ascension α and the detector longitude β:
Ωt = Θ − α+ β. The coefficients in Eq. 10 are

a0 = − 3

16
(1 + cos 2δ) (1 + cos 2λ) cos 2a

a1c = − 1

4
sin 2δ sin 2λ cos 2a

a1s = − 1

2
sin 2δ cosλ sin 2a

a2c = − 1

16
(3 − cos 2δ) (3 − cos 2λ) cos 2a

a2s = − 1

4
(3 − cos 2δ) sinλ sin 2a (11)
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b1c = − cos δ cosλ sin 2a

b1s =
1

2
cos δ sin 2λ cos 2a

b2c = − sin δ sinλ sin 2a

b2s =
1

4
sin δ (3 − cos 2λ) cos 2a (12)

where δ is the source declination, λ and a are respectively the detector latitude and
azimuth.

As shown by Eq. 9, h(t) is the product of two terms: the first, (A+H+ +A×H×),
is a “slow” amplitude and phase modulation at the sidereal frequency, as can be seen
from Eq. 10, while the second, e(ω0t+γ), is a “fast” term, due to the intrinsic source
frequency.

5. The signal 5-vect

As can be immediately seen from Eqs. 9,10, the signal in the detector is completely
defined by its Fourier components at the five frequencies ω0, ω0 ± Ω, ω0 ± 2Ω and can
be, then, described in terms of a five component complex vector, which we call the
signal 5-vect. Let us introduce a generator 5-vect, W∗, with components

W∗
k = e− k Ω t = Wke

+k(α−β) (13)

where

Wk = e− k Θ (14)

with −2 ≤ k ≤ 2. The generator extracts the five Fourier components of the signal at
the frequencies ω0 − 2Ω, ω0 −Ω, ω0, ω0 + Ω, ω0 + 2Ω. The signal in the detector, Eq.
9, can then be re-written as

h(t) = h0A ·W e(ω0t+γ) (15)

where

A = H+A+ +H×A× (16)

is the signal 5-vect. It is a combination of the two complex amplitudes H+, H× with
the + and × 5-vects, A+, A×, which have components

A+
−2 = (

a2c

2
+ 

a2s

2
) ej 2(α−β)

A+
−1 = (

a1c

2
+ 

a1s

2
) ej(α−β)

A+
0 = a0

A+
1 = (

a1c

2
− 

a1s

2
) e−j(α−β)

A+
2 = (

a2c

2
− 

a2s

2
) e−j 2(α−β) (17)

A×
−2 = (

b2c

2
+ 

b2s

2
) ej 2(α−β)

A×
−1 = (

b1c

2
+ 

b1s

2
) ej (α−β)

A×
0 = 0

A×
1 = (

b1c

2
− 

b1s

2
) e−j (α−β)

A×
2 = (

b2c

2
− 

b2s

2
) e−j 2(α−β) (18)
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It can be easily shown that both the terms A+ ·W and A× · W are real: thus h(t)
is the complex linear combination of two real functions. It can also be seen that the
product A ·W is real only in the case of linear polarization and, in this case, the
signal is modulated only in amplitude.

6. The data 5-vect

We need to introduce also a 5-vect for the data, that is noise plus, possibly, a signal.
At the output of the detector we have:

x(t) = h(t) + n(t) (19)

which, in terms of the five Fourier components, becomes the data 5-vect

X =

∫

T

x(t)We−jω0tdt = h0e
jγS + N (20)

where T is the observation time and

S =

∫

T

s(t)We−jω0tdt (21)

with s(t) = h(t)
h0ejγ . S is the “empirical” computation of the signal 5-vect A, which

theoretical components have been written in Eqs. 17 and 18, scaled by a factor which
is proportional to the observation time. In absence of a signal, the noise 5-vect would
be

N =

∫

T

n(t)We−jω0tdt (22)

obtained from the data extracting the five Fourier components at the frequencies
ω0 + kΩ, k = −2, ..., 2. A data 5-vect has 10 d.o.f. (5 independent complex
components).

6.1. The 5-vector S versus A: empirical construction of 5-vects

The construction of the signal 5-vect S is “empirical” and this is a very important
point of the method. As will be described in Sec. 7, the detection of the signal in the
4 d.o.f. case is based on the construction of a filter matched to the signal + and ×
components: if these components were obtained using Eqs. 17 and 18, the matching
condition would not take into account the presence of holes in the data and the effect
of all the operations done on the data, such as cleaning or Wiener weighting. Then, in
practice we simulate in time domain the signal + and × components, which depend
only on the source and detector position, with an arbitrary amplitude, and we obtain
the time vectors s+(t), s×(t). We then operate on them with all the procedures used
for the data and compute the corresponding empirical 5-vect S+, S× by using Eq. 21.
In the 2 d.o.f. we need to compute just one “empirical” 5-vect S, see Sec. 7.1.

Given the finite duration of the Fourier transform in Eq. 21 part of the energy
of the Fourier components will be spread into lateral bands. We checked that the
energy we loose for this reason is less than (1-2) % in all practical cases we met in the
analysis.

7. The detection

In the following we will always refer to the signal 5-vect as A, but all the equations
are valid, and applied in practice, to its empirical realization S.
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7.1. 2 d.o.f case

This is the case when we know the two polarization parameters, η, ψ, and we want
to detect the signal and estimate its amplitude and phase. The shape of the signal is
known and the matched filter theory can be used. Given X, the 5-vect of the data,
and A, the 5-vect of the signal, the matched filter transfer function is A

′

|A|2 . The filter

output is the estimation of the signal complex amplitude:

ĥ = ĥ0ejγ =
X · A
|A|2 (23)

7.2. 4 d.o.f case

In this case we don’t know the polarization parameters and thus the detection can’t
be done using the matched filter theory, as we don’t know the relative weight of the
plus and cross components of the signal, i.e. we don’ t know its shape. In fact we can
only estimate the two observables

ĥ+ =
X · A+

|A+|2 ; ĥ× =
X ·A×

|A×|2 (24)

They are the estimation, respectively, of the amplitudes h0e
jγ ·H+, h0e

jγ ·H×.

7.3. The detection statistics

To construct a detection statistics we have to use the two basic observables of Eq. 24.
Let us introduce the following detection statistics:

S = c+|ĥ+|2 + c×|ĥ×|2. (25)
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Figure 1. ROC curves for different detection statistics: simple mean (dashed
line), F-stat (dot-dashed), best ROC (continuous), best SNR (dotted). We notice
that in each graph some of these curves -not always the same- are superposed.

Left: ratio of the two modes
|A+|

|A×|
= 3. Right: ratio of the two modes

|A+|

|A×|
= 1.

The latter is approximately the situation we have for the Vela pulsar.
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The coefficients of the linear combination in Eq. 25 can be chosen to fulfill different
requirements. We have studied some situations, which we think are more significant,
and compared them by computing the corresponding ROC curves, i.e. the detection
probability as a function of the false alarm probability. A simple choice is to take the
two coefficients equal, which means to take the simple mean: c+ = c× = 1

2 . If we
take the two coefficients proportional to the square of the absolute values of the signal
5-vects,

c+ = |A+|2, c× = |A×|2

we have the well known F-statistics [8], which is an equalization of the response at the
two modes. Another possible choice is to take the two coefficients proportional to the
4th power of the absolute values of the signal 5-vects

c+ = |A+|4, c× = |A×|4

This corresponds to weight more the most sensitive mode (we call this choice “best
ROC”, see later). The last choice we consider is to take only the most sensitive mode
(one weight is 1 and the other is 0); it can be demonstrated that this produces the
highest output SNR (we call this “best SNR”).

We have performed a set of simulations and computed the ROC curves for the

four cases we considered, and considering several values of the ratio |A+|
|A×| between the

+ and × modes. Results are plotted in Fig. 1 for two different ratios of the two modes:
|A+|
|A×| = 1 (right plot), |A

+|
|A×| = 3 (left plot), and taking the input signal-to-noise ratio

SNR = 1.5. Left plot shows that the use of coefficients proportional to |A+,×|4 is the
best choice in that case, with the “best snr” statistic which is just slightly worse. Right
plot shows that in some particular cases, like this in which the two modes have the
same weight, apart from the simple mean the other statistics are basically equivalent.

Even if it is not evident from the figure, let us comment that we have analyzed
many different sets of parameters, obtaining in all cases that the choice c+,× = |A+,×|4
is the best.

8. Estimation of the source parameters

Starting from ĥ+ and ĥ×, see Eq. 24, we can estimate the signal four parameters.
The estimation of the amplitude at the detector is

ĥ0 =

√

|ĥ+|2 + |ĥ×|2 (26)

To estimate η, ψ, similarly to what has been done in Sec. 3, we may write

ĥ+ĥ
′
× = A+ jB (27)

|ĥ+|2 − |ĥ×|2 = C (28)

and we get, formally, the same results as in Eqs. 6, 7, 8:

η̂ =
−1 +

√
1 − 4B2

2B
(29)

cos 4ψ̂ =
C

(2A)2 + C2
(30)

sin 4ψ̂ =
2A

(2A)2 + C2
(31)
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Figure 2. Accuracy and precision in parameter estimation. The two top and the
bottom left plots show, as a function of SNR, the mean value of the estimation
of h0 (normalized to the injected value), η and ψ obtained in a Monte Carlo
simulation. In this example the injected signals had parameters ψ = 30o and
η = 0.4 and came from the direction of the Vela pulsar. The bottom right plot
shows the standard deviation of the estimation for h0 (continuous line), η (dotted
line), ψ (dashed line).

The estimation of the initial phase γ is obtained from

ejγ̂ =
ĥ+

H+(η̂, ψ̂)
=

ĥ×

H×(η̂, ψ̂)
(32)

We have performed simulations by injecting signals in gaussian noise to study the
characteristic of the estimators. In particular, Fig. 2 shows the average value and
standard deviation of the estimation of h0 (normalized to the injected value), η and
ψ as a function of the SNR taking ψ = 30o and η = 0.4 for the injected signals and
assuming they come from the direction of the Vela pulsar. Very similar results are
obtained for different values of the parameters.

We notice that for SNR > 2 the estimation is good in all cases: the estimators
are unbiased and the precision of the estimation increases linearly with the SNR.

9. The reliability of the detection: the coherence

Once a detection has been done, we characterize its reliability by introducing a
parameter, which we call the “coherence” , defined as

c =
|ĥÂ|2
|X|2 ; 0 ≤ c ≤ 1 (33)

where, in the 4 d.o.f case, Â = ĥ+A+ + ĥ×A× is the estimated signal 5-vect, ĥ is the
estimated complex amplitude and X the data 5-vect. In the 2 d.o.f case we simply
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have Â = A. If we introduce the normalized 5-vects, X̃ = X

|X| , Ã = Â

|Â|
, and since

ĥ = X·Â
|Â|2

, we can write

c = |X̃ · Ã|2 (34)
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Figure 3. Probability density functions for the coherence (both theoretical and
obtained from simulations) for the 2 d.o.f. case (monotonic functions) and the 4
d.o.f case.

which does not depend on the amplitudes of both X and Â. The coherence here is a
number (between 0 and 1) which measures the resemblance among the shape of the
expected signal and the data. In fact it does not depend on scaling factors on the
signal, but only on its shape. Using simulations we have numerically found that, in
the absence of signals, the coherence is distributed according to a β distribution.

2 d.o.f. : f(c) = 4 · (1 − c)3 (35)

4 d.o.f. : f(c) = 12 · c · (1 − c)2 (36)

In Fig. 3 the distributions of the coherence (both theoretical and obtained from
simulations) are shown. We see that the use of the coherence gives more stringent
constrains in the 2 d.o.f. case than in the 4 d.o.f case in the sense that it is harder to
get higher values of coherence with only noise in the 2 d.o.f. case. The properties and
the use of the coherence will be discussed in detail in a forthcoming paper.

10. Considerations on the application to real data

The method has been developed having in mind the real characteristics of
interferometric g.w. detectors. Indeed, as explained in Sec. 2, an important part of
the pipeline has been designed to take into account non-stationarities and disturbances
present in the data. Also the detection procedure, see Sec. 7 on the construction of
the “empirical” 5-vects, has been designed to work with real data taking properly into
account the presence of holes and other non-stationarities.

The analyzed data are always characterized by an uncertainty, both in amplitude
and in phase, due to the calibration and reconstruction procedures. These errors,
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which typically vary with frequency, are not under our direct control, and they will
influence the analysis results. A scaling factor on the reconstructed data will influence
the estimation of an upper limit or the estimation of the amplitude of the signal.
The error on the phase will just affect the estimation of the absolute phase (unless it
significantly changes over a band of the order of 10−5 Hz, something which normally
does not happen). In typical data taking runs the relative error in amplitude amounts
to a few percent and the error in phase to a few tens of mrad.

11. Advantages of the use of the 5-vect formalism

There are several advantages in using the 5-vect formalism. First of all the application
of a matched filter, see Sec. 7, consists in the scalar product between 2 complex
vectors each with five components. On the contrary, the application of a matched
filter between a time domain signal and a time domain template, this is what is
done typically, implies a scalar product among two vectors with O(107) components
(assuming a sampling rate of 1 Hz and an observation time of 107 s). Then we
have a computational gain of O(106) respect to the classical application of the
matched filter. This gain is particularly important when several (thousand or tens
of thousand) simulated signals must be generated and analyzed to make studies of
detection efficiency or to set upper limit on signal amplitude. Another advantage of
this formalism is that the signal 5-vects do not depend on frequency. As a consequence
it is straightforward, and computationally cheap, to extend the search to a band of
frequencies (i.e. taking into account the possibility that the g.w. signal frequency is not
simply twice the source angular frequency). Moreover, also the extension to multiple
detectors is immediate. These last two issues will be discussed in a forthcoming paper.

Conclusions

We have presented a method we are using to analyze Virgo data to search for known
sources of continuous g.w., such as the Vela pulsar. At its hearth there is the idea of
5-vector, i.e. a complex vector which five components are the data or signal Fourier
components at the source intrinsic angular frequency ω0 and at ω0±Ω, ω0±2Ω, being
Ω the Earth sidereal angular frequency. The method is, according to us, particularly
interesting as it is very simple and drastically reduces the computational time needed
for the analysis, in particular when multiple signal injections are needed to evaluate
statistics or upper limits. The use of 5-vects makes simple the extension of the method
for the analysis of a wider frequency band, for the analysis of data from more detectors
and for the analysis done dividing the observation time into sub-periods, which can
be useful in some cases to enhance the reliability of the detection.

Appendix A

We have computed the relation among the description of the wave we are using, see
Eq. 1, and the description, widely used in the community, of the wave emitted from
a non axi-symmetric neutron star, rotating around a principal axis of inertia. The
parameters used in this formalism, see e.g. [1], are the two mode amplitudes

a+ = a0
1 + cos2ι

2
; a× = a0cosι (37)



A method for detection of known sources of continuous gravitational wave signals...11

where ι is the angle between the pulsar rotation axis and the direction of the detector.
The amplitude at the detector which we use, h0, is related to a+, a× by

h0 =
√

a2
+ + a2

× (38)

Combining the above equations we have

h0 = a0

√

1 + 6cos2ι+ cos4ι

4
(39)

It is also straightforward to show that the relation between η and the angle ι is given
by

η = − 2cosι

1 + cos2ι
= −a×

a+
(40)
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