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Abstract. During post-Newtonian evolution of a compact binary, a mass ratio ν

different from one provides a second small parameter, which can lead to unexpected
results. We present a statistics of supermassive black hole candidates, which enables
us first to derive their mass distribution, then to establish a logarithmically even
probability in ν of the mass ratios at their encounter. In the mass ratio range
ν ∈ (1/30, 1/3) of supermassive black hole mergers representing 40% of all possible
cases, the combined effect of spin-orbit precession and gravitational radiation leads to
a spin-flip of the dominant spin during the inspiral phase of the merger. This provides
a mechanism for explaining a large set of observations on X-shaped radio galaxies. In
another 40% with mass ratios ν ∈ (1/30, 1/1000) a spin-flip never happens, while in
the remaining 20% of mergers with mass ratios ν ∈ (1/3, 1) it may occur during the
plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral
as function of the mass ratio and original relative orientation of the spin and orbital
angular momentum. We also derive a formula for the final spin at the end of the
inspiral in this mass ratio range.
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1. Introduction

During galaxy mergers, following a regime of slow approach due to dynamical friction,

eventually the central supermassive black holes (SMBHs) approach each other to a

separation of the order of 103 Schwarzschild radii, when gravitational radiation takes over

as the leading order dissipative effect. The Laser Interferometer Space Antenna (LISA,

see [1]) is expected to detect merging binary SMBHs with masses m1 + m2 ≤ 107 solar

masses (M�) up to redshift z ≈ 30. A post-Newtonian approach is well suited to describe

their forthcoming inspiral, a regime we define in terms of the post-Newtonian (PN)

parameter ε = Gm/c2r ≈ v2/c2 ∈ (εin = 10−3, εfin = 10−1), where r and v characterize

the orbital separation (from the center of mass) and speed of the reduced mass particle,

G is the gravitational constant and c the speed of light. Various corrections to the

conservative dynamics add up to 2 PN, while the gravitational radiation results in

dissipation of energy, angular momentum and orbital angular momentum at 2.5 PN.

The leading order conservative correction to the Newtonian dynamics in a compact

binary, which results in a change of the orbital plane (defined by the direction L̂N of the

Newtonian orbital angular momentum LN = µr×v of the reduced mass particle µ) is the

spin-orbit (SO) interaction [2], [3]. The precessional time-scale (the time during which

the normal to the orbit L̂N undergoes a full rotation) is longer than the orbital period,

however shorter than the characteristic time-scale of gravitational radiation (defined as

L/L̇, where L is the magnitude of the total orbital angular momentum). Combined with

the leading order gravitational radiation backreaction averaged over one quasicircular

orbit, the SO correction provides a fair approximation to orbital dynamics, explored in

Refs. [3], [4].

X-shaped radio galaxies (XRGs) exhibit two pairs of radio lobes and jets [5], [6].

A recent review [7] summarizes the four different models explaining XRGs: galaxy

harbouring twin AGNs, back-flow diversion models, rapid jet reorientation models,

finally a new jet-shell interaction model. A large subset of the observations (excepting

cases, when the jets are aligned with the optical axes of the host ellipticals [8]) are

well-explained by the jet reorientation model, which in turn implies a spin-flip [5], [9] of

the dominant black hole.

The details of how this would occur were worked out in Ref. [4]. A key element was

the determination of the typical mass ratio at SMBH mergers by a series of estimates,

which resulted in mass ratios ν = m2/m1 = 1/30 to ν = 1/3. Because the spin scales

with the mass squared, the second spin was neglected and only the dominant spin S1

(with magnitude S1) kept. We summarize the consequences of this model as follows.

a) For the typical mass ratio the dominance of L over S1 is reversed as the separation

in the binary decreases throughout the inspiral. In the last stages of the inspiral the

spin dominates over the orbital angular momentum S1 � L.

b) The angle α between the orbital angular momentum and total angular

momentum J (with magnitude J), also the angle β between the dominant spin and
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total angular momentum evolve as:

α̇ = − L̇

J
sin α > 0 , (1)

β̇ =
L̇

J
sin α < 0 . (2)

c) The approximate expression relating α to the post-Newtonian parameter ε, mass

ratio ν and initial angle α + β span by the dominant spin with the orbital angular

momentum (this angle being a constant during the inspiral) is:

tanα ≈ sin (α + β)

ε−1/2ν + cos (α + β)
. (3)

(In Eq. (41) of Ref. [4] the left hand side was given as sin 2α/ (1 + cos 2α).)

In a criticism to the work presented in Ref. [4], Gopakumar recently argued that ”it

is unlikely that the spin-flip phenomenon will occur during the binary black hole inspiral

phase” [10]. This misconception comes from mixing up the instantaneous change in the

direction of the total angular momentum, dĴ/dt =
(
L̇/J

) [
L̂ −

(
L̂ · Ĵ

)
Ĵ

]
6= 0 with its

averaged expression
〈
dĴ/dt

〉
= 0 over the precessional time-scale. The angles α and β

are not constants during the post-Newtonian evolution, as claimed in Ref. [10], they

rather change as given in Eqs. (1)-(2).‡
In the present paper we revisit some of the arguments of the spin-flip mechanism

and also provide more details on it as compared to Ref [4]. In Section 2 we revisit

the typical mass ratio argument, following a recent statistics of supermassive black hole

candidates, resulting a newly established mass distribution. We comment on how these

findings would affect the typical mass ratio range at SMBH encounters. In Section 3

we analyze how the spin-flip angle depends on the mass ratio and relative orientation

of the spin and orbital angular momentum. We also derive a formula for the final spin

during the inspiral. Finally we present our Concluding Remarks.

2. The sky in black holes: new statistics, consequences for the mass ratio

at SMBH encounters and chances of the spin-flip during the inspiral

First we summarize the arguments of Ref. [4] on the mass ratios at SMBH encounters.

The mass distribution ΦBH(m) of the galactic central SMBHs in the mass range

3 × 106 ÷ 3 × 109 M� is well described by a power-law with an exponential cutoff,

but for our purposes can be adequately approximated by a broken power-law [11]-[13]

(confirmed by an observational survey [14]). The break is at about 108M�. In agreement

with these arguments and observations we assume ΦBH(m) ∝ m−k, with k ∈ (1, 2)

below, and ΦBH(m) ∝ m−h, with h ≥ 3 above the break. Then the probability for a

specific mass ratio arose as an integral over the black hole mass distribution, folded with

‡ Only when the total and orbital angular momenta are aligned, become the angles α and β individually
constant, as they identically vanish. Therefore in the aligned configuration no spin-flip could ever occur
by the combined mechanism of SO precession and gravitational radiation.
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the rate F to merge, and by adopting the lower values of the exponents. For the merger

rate we assumed that it scales with the capture cross section S (the dependence on the

relative velocity of the two galaxies was neglected, as the universe is not old enough for

mass segregation). For the capture cross-section we assumed S ∝ ν−1/2, motivated by

the following arguments:

• for galaxies an increase with a factor of 10 in radius (102 in cross-section) accounts

for an increase with a factor of 104 in mass (from the comparison of our Galaxy

with dwarf spheroidals [15]-[16],

• there is a well established correlation between the SMBH mass and the mass of the

host bulge [17],

• the mass of the central SMBH scales with both the spheroidal galaxy mass

component and the total, dark matter dominated mass of a galaxy [18].

As a result of these considerations we have found that most likely the mass ratio is

in the range ν ∈ (1/30 , 1/3). A typical value to consider would be ν = 1/10, thus one

of the SMBHs being 10 times as massive as the other.

New work on the statistical analysis of 5,895 NED candidate sources [19] has been

carried out in the mass range from 105 M� to above 109 M�. Below about 106 M�

all candidates are probably compact star clusters, however the rest are likely SMBHs.

This work shows that the SMBH mass function is a broken power law with M−2
BH at

low masses, and M−3
BH at high masses, with a break near 1.25 × 108 M�; this general

behaviour has been long known, and has now been rederived with a very large sample.

The key difference with respect to previous work was the careful attention paid in order

to have equal probability for detecting a SMBH in a galaxy, regardless to the Hubble

type. The mass distribution of the SMBHs is represented on Fig 1. This particular

distribution can be interpreted in the context of the merger model [20] with a merger

rate scaling as (mass)+2, very much stronger than what we favored in Ref [4]. The

extreme mass dependence describes well a M−3 black hole mass distribution consistent

with the high end of the mass distribution; on the other hand a mass dependence of

the merger rate close to (mass)+4/3, suggested by gravitational focusing arguments [20]

describes well the lower mass distribution nearer to M−2. It remains to be seen, whether

all details of the mass function can be understood using either of these mass ratio

dependences. Of course these simple merger rate calculations assume an environment

without cosmological expansion. However, for the densest part of the cosmos the local

expansion is very weak [21], and that is where most of the mergers happen.

However, for the determination of the typical mass ratio the essential result is only

slightly changed. A merger rate running with mass+2 analytically gives a M−3
BH mass

function (see [20]), as observed; we use this rate to estimate here the typical mass

ratios for high BH masses. Redoing the integrals of Section 2 of Ref. [4] with k = 2,

h = 3 (denoted there α, β) and ξ = 2 (as in [20], so much more extreme than what was

assumed in [4]), then all four integrals are still dominated by the lower bound; only the

second of the integrals has q ≡ ν−1 in its lower bound, and so the four integrals have the
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q-dependencies of q0, q+1, q−1 and again q−1. We can ignore the second integral, since

it all refers to lower masses merging with lower masses. The most important integrals

are those combining a SMBH above the break with a SMBH either below or above the

break. Then the distribution in q is found as q−1, a logarithmically even distribution in

(dq)/q over a range of q from 1 to 1000, so a logarithmic average of 30. Weighting the

two parts of the distribution, the larger mass ratios are favored, which would skew the

logarithmic average of the mass ratio to q > 30, thus ν < 0.03.

The logarithmically even distribution means that the mass ratio ranges ν from 1

to 1/3, from 1/3 to 1/10, from 1/10 to 1/30, from 1/30 to 1/100, from 1/100 to 1/300

and finally from 1/300 to 1/1000 are roughly equally likely. A glance at Table 1 of Ref.

[4] shows, that concerning the behaviour of the ratio of the dominant spin and orbital

angular momentum magnitudes, we have three regimes:

(1) ν ∈ (1/3, 1) when S1 < L throughout the inspiral,

(2) ν ∈ (1/30, 1/3) when the initial S1 < L is reversed to S1 > L during the inspiral

and

(3) ν ∈ (1/1000, 1/30) when S1 > L holds throughout the inspiral.

For the mass ratio ranges (1) and (3) no spin-flip can occur during the inspiral,

while for (2) it should. For (1) there is chance for a spin-flip to occur during the

plunge, as some numerical simulations have already found this for equal masses [22].

For (3) by contrast there is no possibility for a spin-flip by the combined mechanism

of SO precession and gravitational radiation. These mass ratio ranges then occur with

(1) 20%, (2) 40% and (3) again 40% probability. This means that the spin-flip still

typically occurs during the inspiral.

3. Spin-flip angle distribution

In this section we will present an analysis of the spin-flip angle occurring during the

inspiral phase in the mass ratio range ν ∈ (1/30, 1/3) as a function of the mass ratio.

The spin-flip model be understood as follows. Initially the galactic SMBH has

conserved spin, along which the primary jet can form. When the two galaxies collide, the

SO induced spin precession starts, while gravitational radiation is diminishing the orbital

angular momentum. The direction of the total angular momentum stays unchanged.

The constancy of Ĵ over the precessional time-scale is due to the fact, that the change

in the total angular momentum J̇ =L̇L̂ is about the orbital angular momentum, which

(disregarding gravitational radiation) undergoes a precessional motion about J. This

shows that the averaged change in J is along J (simple precession, [3]). This conclusion,

however, depends strongly on whether the precessional angular frequency Ωp is larger

than α̇ and β̇. Indeed, if these are comparable, the component perpendicular to J in the

change J̇ =L̇L̂ will not average out during one precessional cycle, as due to the increase

of α it can significantly differ at the beginning and at the end of the same precessional

cycle. Such a situation would occur, when the spin and the orbital angular momentum

are of comparable magnitude (S1 ≈ L, a regime through which a binary with typical
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Figure 1. Aitoff projection in galactic coordinates of 5,895 NED SMBH candidate
sources. The complete sample is complete in a sensitivity sense, in order to derive
densities one needs a volume correction. The color code is Orange, Green, Blue,
Red, Black corresponding to masses above 105M�, 106M�, 107M�, 108M�, 109M�,
respectively. With the exception of the less numerous first range (Orange), representing
compact star clusters, the rest are SMBHs.

mass ratio will pass through during the inspiral) and also roughly aligned, a regime

known as transitional precession. During simple precession Eqs. (1)-(2) governing the

evolution of the angles α and β also hold in an average sense over the precessional

time-scale. In what follows, we assume simple precession.

The magnitude of the spin is unaffected by gravitational radiation, therefore by the

simple rule of addition of vectors the spin has to align close to the Ĵ direction. The

second jet then can start to form. In the intermediate phase when the spin precesses,

instead of jet formation the precessing magnetic field creates a wind, sweeping away the

base of the old jet, which in many cases can be observed.

3.1. Spin and orbital angular momentum orientations, final spin formula

The key equation to start with is Eq. (3). In order to see the validity of this equation,

also to generalize it to the cases of non-extreme rotation, we need to evaluate

S1 ≈ m1RV1 ≈ m1
Gm1

c2
c
V1

c
≈ G

c
m2

1χ1 ,

L ≈ LN ≈ µrv =
G

c

v

c

c2r

Gm
µm =

G

c
ε−1/2m1m2 =

G

c
m2

1

(
ε−1/2ν

)
. (4)

Here V is some characteristic rotational velocity, R the radius of the SMBH (of the order

of its Schwarzschild radius) and χ1 ∈ (0, 1) is the dimensionless (χ1 = 1 for extreme
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rotation). Therefore

S1

L
≈ χ1ε

1/2ν−1 . (5)

Next we express J/S1 first from J = L cos α + S1 cos β by rewriting β = (α + β) − α,

and secondly from the equality of the projections perpendicular to L̂ of the total and

spin angular momenta J sin α = S1 sin (α + β), so that we can equal them. By also

employing Eq. (5) and basic trigonometry we obtain

tanα ≈ sin (α + β)

χ−1
1 ε−1/2ν + cos (α + β)

. (6)

This is the desired generalization of Eq. (3).

It is worth to note that when applied to the final configuration εfin, Eq. (6)

also stands as a formula for the final spin at the end of the inspiral, giving the polar

angle of the final spin αfin with respect to the axis Ĵ in terms of the mass ratio, spin

magnitude and angle span with the orbital angular momentum. Related formulae based

on numerical runs were advanced in Refs. [23]. These results are not immediate to

compare with ours, as Eq. (6) should be applied at the end of the inspiral; although in

the mass ratio range where it is valid, one would intuitively expect that as not much

orbital angular momentum is left at the end of the inspiral in comparison with the

dominant spin, the direction of the latter will not be significantly changed during the

plunge.

3.1.1. Particular cases. There are three particular configurations worth to mention:

i) The spin is aligned with the orbital angular momentum: α + β = 0, thus from

Eq. (6) α = 0 and there is no room for any spin-flip. This would be the situation for

perfectly wet mergers, which align the spin with the orbital angular momentum.

ii) The spin is anti-aligned with the orbital angular momentum, α + β = π.

Therefore depending on which of the S1 and L are larger, the angle α is either 0 or

π.

iii) For the parameter ranges when the denominator vanishes α + β =

arccos
(
−χ−1

1 ε−1/2ν
)
, from Eq. (6) we obtain α = π/2, therefore β is also determined.

3.1.2. Discussion as function of mass ratios. Keeping in mind that due to Eqs. (1)-(2)

the angle α+β is a constant during the inspiral (a parameter), and the dimensionless spin

χ1 behaves similarly, also regarding the mass ratio as a third parameter characterizing

the particular merger, the angle α in general remains a function of ε, thus it evolves

together with the orbital separation r and velocity v.

For the mass ratio ν = 1/10 we have (S1/L)in ≈ χ1ε
1/2
in ν−1 = 0.316χ1 and

(S1/L)fin ≈ χ1ε
1/2
finν−1 = 3.162χ1. As tan α ≤ S1/L and tanβ ≤ L/S1 (the equalities

arising when the spin and orbital angular momentum are perpendicular) we have

tan αin ≤ 0.316χ1 and tan βfin ≤ 0.316χ−1
1 . For extreme rotation (χ1 = 1) we obtain

αin, βfin ≤ 0.306 = 17.541◦.
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For ν = 1/3 we obtain tan αin ≤ (S1/L)in ≈ χ1ε
1/2
in ν−1 = 0.095χ1 and for extreme

rotation αin ≤ 0.095 = 5.44◦. In fact at the beginning of the inspiral this latter condition

(meaning that the orbital angular momentum is roughly the total angular momentum)

holds in the whole mass ratio range ν ∈ [1/3, 1]. Under these conditions Eq. (6) can be

approximated as

αin ≈ χ1ε
1/2
in ν−1 sin βin = 0.032χ1ν

−1 sin βin . (7)

For ν = 1/30 we obtain tan βfin ≤ (L/S1)fin ≈ χ−1
1 ε

−1/2
fin ν = 0.105χ−1

1 and for

extreme rotation βfin ≤ 0.105 = 6.04◦. In fact at the beginning of the inspiral this latter

condition (meaning that the dominant spin is roughly the total angular momentum)

holds in the whole range ν ∈ [1/1000, 1/30]. Under these conditions Eq. (6) can be

expanded (to first order in βfin, with χ−1
1 ε

−1/2
fin ν of the order of β) as

βfin ≈ χ−1
1 ε

−1/2
fin ν sin αfin = 3.162χ−1

1 ν sin αfin . (8)

For slowly rotating SMBHs with χ1 ≈ 0.1 the above formula would hold only in the

range ν ∈ [1/1000, 1/300] .

3.2. The spin-flip angle during the inspiral

A minimal value for the spin-flip angle σ arises by forming the difference between the

angles β, characterizing the orientation of the spin with respect to the inertial direction

Ĵ. Thus

σmin = βin − βfin = αfin − αin . (9)

In the second equality we have used that αin + βin = αfin + βfin.

However we have to take into account, that the above is only true in a 2-dimensional

picture. In reality the 3-dimensional SO precession will complicate the situation, and

the above angle emerges only if the number of precessions during the inspiral is an

integer multiple of 2π. If instead is of the type (2k + 1) π the spin-flip angle will be

maximal, to be calculated as

σmax = βin + βfin − lπ = 2 (αin + βin) − lπ − (αin + αfin) , (10)

where l = 0 if βin + βfin ≤ π and l = 1 if π < βin + βfin < 2π.

The difference between σmax and σmin is due to the fact, that the realignment of

the spin along Ĵ is not perfect. The closer Sfin
1 is to Ĵ, the less their difference ought

to be due a more perfect alignement, therefore σmax − σmin = βfin − βin should go to 0

with decreasing ν.

For generic mass ratios ν ∈ (1/30, 1/3), Eqs. (6), (9) and (10) give the range of

allowed spin-flip angle for each relative orientation α+β of the spin with respect to the

plane of motion and each χ1. The generic numerical solution for σmin in the case χ1 = 1

is represented on Fig 2 as function of the relative orientation of the spin and orbital

angular momentum α + β and mass ratio ν. For a given mass ratio the spin-flip angle

has a maximum shifted from π/2 towards the anti-aligned configurations. The figure
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confirms the prediction, that significant spin-flip will happen during the inspiral in the

mass ratio range ν ∈ (1/30, 1/3). For mass ratios smaller than 1/100 the spin does not

flip at all, as the infalling SMBH acts as a test particle.

Figure 2. The spin-flip angle σmin as function of the relative orientation of the spin
and orbital angular momentum α + β (a constant during inspiral), and mass ratio ν.
For a given mass ratio the spin-flip angle has a maximum shifted from π/2 towards the
anti-aligned configurations. The mass ratios ν = 1; 1/3; 1/30 and 1/1000 are located
on the log ν−1 axis at 0; 1.09; 3.40 and 6.91, respectively, confirming the prediction,
that a significant spin-flip will happen in the mass ratio range ν ∈ (1/30, 1/3). For
mass ratios smaller than 1/100 the spin does not flip at all, as the infalling SMBH acts
as a test particle.

4. Concluding Remarks

In light of the new data on a large sample of SMBH candidates we have established

that the mass ratios obey an even logarithmic distribution in ν. In the mass ratio

range ν ∈ (1/30, 1/3) of SMBH mergers representing 40% of all possible cases, we have

investigated the SO precession driven conservative and gravitational radiation driven

dissipative contributions to the orbital evolution during the inspiral, averaged over the

precession time-scale. In this mass range the ratio of the dominant spin magnitude and

orbital angular momentum magnitude S/L changes from less than one to larger than one

during the inspiral. As the direction of the total angular momentum is unchanged on all
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time-scales larger than the precession time-scale, while the magnitude of the the orbital

angular momentum decreases due to gravitational radiation and the magnitude of the

spin stays constant, the spin direction has to change. The spin-flip of the dominant spin

therefore occurs during the inspiral. If jet activity is involved, X-shaped radio galaxies

arise by this mechanism and a large set of observations on X-shaped radio galaxies could

be explained.

In another 40% of the mergers with mass ratios ν ∈ (1/30, 1/1000) the spin-flip

never happens by this mechanism, while in the remaining 20% of mergers with mass

ratios ν ∈ (1/3, 1) it may occur during the plunge.

SMBH mergers of equal mass to ν = 1/3 are only half as likely as the mass ratios

1/30 to 1/3, therefore the occurrence of the spin-flip can be considered typical during the

inspiral. We analyzed the magnitude of the spin-flip angle occurring during the inspiral

as function of the mass ratio and original relative orientation of the spin and orbital

angular momentum and supported by numerical analysis the theoretical prediction (Fig

2). We also derived a formula for the final spin at the end of the inspiral in this mass

ratio range.

During the inspiral the following relations among the relevant time-scales hold: tilt

/ spin-flip time-scale ≥ inspiral time-scale � precession time-scale � orbital time-scale

(for all mass ratios in the typical range). Interestingly enough, the spin-flip time-scale

for a typical mass ratio of 1/10 is only about three years, while the precession time-scale

is less then a day [4]. Thus rapidly rotating relativistic jets coming close to our line of

sight could produce significant variability at all wavelengths years before the coalescence.

Therefore electromagnetic counterparts / precursors to the strongest gravitational wave

emission are also likely to occur.
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