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Probing the physics of neutron stars with

gravitational waves

V. Ferrari
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and Sezione INFN ROMA1, piazzale Aldo Moro 2, I-00185 Roma, Italy

Abstract. In this paper we give a brief overview of how the detection of gravitational
waves emitted by neutron stars may impact on our understanding of the physics of
neutron stars.

PACS numbers: 04.30.Db; 04.40.Dg

1. Introduction

Neutron stars radiate gravitational waves in a number of astrophysical processes. For

instance, if they are rotating deformed stars, if they oscillate as a consequence of some

perturbation, or when they interact with a compact companion in inspiralling binaries.

Modelling these different phenomena is not easy, since we need to combine different

fields of physics including general relativity, magnetohydrodynamics, nuclear physics,

superfluids and superconductors physics, etc. The extreme conditions which prevail in

the inner core of a neutron star (NS) are such that, in that regime, the theory of nuclear

interactions is only partially constrained by the results of high energy experiments in

laboratories; consequently the equation of state which we use to model neutron star

matter relies on models of this interaction which we hope to validate using gravitational

wave (GW) observations. Similarly, the estimate of the degree of asymmetry that

a neutron star can have, and consequently the GW flux it emits when rotating, is

affected by many uncertainties: which is the maximum strain that the crust can support

without breaking? What is the effect of the magnetic field, and of the presence of a

superconductive core, on the stellar shape? In the following sections I will discuss

how the gravitational signal emitted by rotating or oscillating neutron stars, or by a

NS disrupted by the tidal interaction with a black hole, is related to the NS internal

structure and to the structure of the stellar magnetic field.

2. Rotating neutron stars

Rotating NSs emit GWs if they have a certain degree of asymmetry, which can be

generated by different mechanisms. For instance, while a rotating fluid is axisymmetric
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with respect to the rotation axis, this may not be the case for a mature NS, since

deviation from axisymmetry may be supported by anisotropic stresses in the solid crust.

Let us assume that the NS is located at a distance r from Earth, that it has a triaxial

shape and rotates around a principal axis with angular velocity Ω; in this case the

gravitational signal it emits is a sinusoid at twice the rotation frequency:

h+ = h0
1 + cos2 i

2
cos 2Ω(t − r/c) , h× = h0 cos i sin 2Ω(t − r/c) , (1)

where i is the angle between the rotation axis and the line of sight (joining the star and

the Earth centres), and the wave amplitude h0 is given by

h0 =
4GΩ2

c4

I|εQ|
r

. (2)

Thus, the wave amplitude depends on the moment of inertia, I, with respect to the

rotation axis and on the quadrupole ellipticity εQ, which is a measure of the entire

stellar bulk deformation. It is defined as εQ = Q/I, where Q is the star mass-energy

quadrupole moment, whereas the moment of inertia is given by I = J/Ω, J being the

stellar angular momentum. For a stationary, axisymmetric compact object, Q can be

extracted by the far field limit of the metric, being the coefficient of the P2(cos θ)/r3

term in the expansion of g00 in powers of 1/r and in Legendre polynomials Pl(θ) [1]:

g00 → . . . − 2QP2(cos θ)/r3. The above expressions are valid even for highly relativistic

stars, provided the star distortion is small. In the weak field limit εQ can be written

in terms of the inertia tensor eQ = (I11 − I22)/I33. For a homogeneous ellipsoid with

semiaxes a, b, c, in the limit of small asymmetry a ' b, the quadrupole ellipticity can be

written as eQ = (b − a)/a + O(ε2)

Even if the star has an axisymmetric shape, it would radiate GWs if the rotation

and the symmetry axes are misaligned; this may happen as a consequence of some violent

phenomena occurring in the early life of the star, or later, due to accretion if the NS is

in a binary system. Let us assume that α is the wobble angle between the symmetry

and the rotation axis, which we assume to be directed along x3; the motion of the star

is the superposition of two rotations: one about x3 (i.e. about the angular momentum

J), with frequency Ω, said inertial precession frequency, one about the symmetry axis,

with angular velocity ωprec = (I33 − I22)/I33Ω cos α, called the free precession frequency.

Since for NS deviations from spherical simmetry are small, i.e. (I33 − I22)/I33 � 1, then

ωprec � Ω. In this case the gravitational wave signal is [2]

h+ = h0 sin α

[
1

2
cos α sin i cos i cos Ω(t − r/c) − sin α

1 + cos2 i

2
cos 2Ω(t − r/c)

]

h× = h0 sin α

[
1

2
cos α sin i cos i sin Ω(t − r/c) − sin α cos i sin 2Ω(t − r/c)

]
; (3)

the wave amplitude h0 is still given by Eq. (2), where now in the weak field limit

the quadrupole ellipticity is eQ = (I33 − I22)/I33. Thus, for an axysimmetric freely

precessing body GW emission has two harmonic components: one at the rotation
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frequency Ω ‡ and one at twice the rotation frequency.

Equation (2) shows that, in general, the gravitational wave amplitude depends on

the moment of inertia and on the quadrupole ellipticity. Theoretical studies on the

moment of inertia of neutron stars have been performed in several papers [4, 5]; these

studies use a large set of equations of state (EOS) proposed to describe NS matter at

supranuclear densities, and show that I ∼ [1 − 3] × 1038 kg m2, depending on the EOS

and on the rotation rate. It is now interesting to summarize what we presently know

about the quadrupole ellipticity.

2.1. The quadrupole ellipticity

A first upper limit on εQ can be put by looking for the maximal strain that the crust

can sustain without breaking. The most detailed modelling of crustal strains indicates

that [6]

εQ < 2 × 10−5
(ubreak

0.1

)
, (4)

where ubreak is the crustal breaking strain. Recent molecular dynamics simulations [7]

suggest that ubreak may be as large as 0.1, i.e. the NS crust could be much stronger than

previously thought. If this is the case, the NS crust would break if the deformation were

to exceed about 20 cm.

In “ordinary” NS the core is supposed to be fluid and the crust solid. However, it

has been proposed that solid phases may also be present in the core, in which case stars

with larger deformations may be possible. For instance, for a solid strange quark star

one may have [8] εQ < 6× 10−4(ubreak/10−2), whereas if the star has a crystalline colour

superconducting quark core εQ < 10−3(ubreak/10−2) [9]. Thus, the maximum quadrupole

deformation sustainable by a neutron star (or a quark star) depends upon the physics

of the crust and upon the equation of state (EOS) of matter at supranuclear density.

2.1.1. The effect of a magnetic field. A magnetic field may distort the star to an extent

which depends on its strength in the stellar interior, on the field structure, and on the

core EOS. For a star with a fluid core we can summarize the magnetic field effects with

the following “order of magnitude”-formula [10, 11]

εQ ≈ 10−12

(
B

1012 G

)2

. (5)

Typical values of pulsars field strength range within ∼ 109 − 1012 G and these fields

are too weak to induce sizeable deformations. The presence of a superconducting core

could produce larger asymmetries. For instance, for a type II superconducting core it

could be as large as [12, 13]

εQ ≈ 10−9

(
B

1012 G

) (
Hcrit

1015 G

)
, (6)

‡ An expansion of the quadrupole formula up to second order in the wobble angle shows that this
component is, more precisely, emitted at a frequency Ω + ωprec[3]
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where Hcrit is a critical field strength.

The geometry of the magnetic field inside the NS is also important. In general,

the magnetic field is expected to have both poloidal and toroidal components. Indeed,

toroidal fields should form during the first seconds after core collapse, when the star

is likely to be rapidly and differentially rotating, since the fluid motion would drag

the poloidal field lines [14]; in addition, convective motions could also create toroidal

components by dynamo processes[15]. These toroidal fields are expected to survive

when the proto-neutron star cools down and the crust forms. Moreover, it has been

shown that purely poloidal or purely toroidal fields are unstable on timescales much

shorter than the star’s life [16, 17], thus, both fields have to be included to construct

accurate, and stable, models of magnetic stars. It is known that a toroidal field tends

to make the star prolate (eQ < 0), while the poloidal field tends to make it oblate (see

for instance [18]). If the star has a prolate shape it would be secularly unstable: the

wobble angle between the angular momentum and the star magnetic axis would grow

on a dissipation timescale, until they become orthogonal (“spin flip”). This instability

should be associated to an intense flux of gravitational waves, potentially detectable

by advanced LIGO and VIRGO [12, 19]. However, whether the toroidal component of

the magnetic field actually prevails in the NS interior over the poloidal one is actually

unclear. Recent studies on the subject try to establish which are the possible field

configurations [11, 18, 20, 21]. As an example, in a recent paper [21] models of non

rotating NSs endowed with a strong, stationary magnetic field have been constructed in

the framework of General Relativity. In these models the poloidal component extends

throughout the star and in the exterior, whereas the toroidal component is confined into

a torus-shaped region inside the star. These twisted torus configurations have been found

to be a quite generic outcome of dynamical simulations in the framework of Newtonian

gravity which, due to magnetic helicity conservation, appear to be stable on dynamical

time-scales [17, 22]. In these configurations the toroidal field never contributes to more

than ∼ 13% of the total magnetic energy stored inside the star [21]. Consequently, the

quadrupole ellipticity εQ is always positive, and its maximum value is obtained in the

purely poloidal limit. Therefore, twisted torus configurations are not compatible with

the spin-flip mechanism. For these stars εQ can be written as

εQ . k

(
Bpole[G]

1016

)2

× 10−4 , (7)

where Bpole is the strenght of the l = 1 magnetic field component at the pole, which is

the quantity estimated from spin-down measurements, and k is a parameter which, for a

neutron star with mass M = 1.4 M�, is in the range k ∼ (4−9) depending on the stellar

compactness, i.e. on the EOS of matter in the NS interior. Less compact stars have

larger deformations. Equation (7) shows that very high values of εQ (∼ 10−3 − 10−4)

could be obtained only for extremely strong magnetic fields, of the order of those

observed in magnetars. Since these large deformations cannot be supported by a NS

crust, they can occur only during the first few hours of the stellar life, when the star

is still liquid and no crust has formed yet; if this happens, the deformation may persist
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Figure 1. Gravitational signal emitted by a rotating NS with the ellipticity given in
Eq. (7), assuming B = 1015 G, wobbling angle α = 3◦, distance d =1 kPc and an
integration time of three months. The two lines refer to two NS with the same mass
M = 1.4M� and different EOS, named APR2 [23] and GNH3 [24]. The APR2 star
has a larger compactness (R = 11.58 km) than the GNH3 star (R = 14.19 km).

since as the star cools down the crust would freeze in a non-spherical shape. However, if

the star is endowed with a magnetic field so large as to produce such large deformation,

it would dissipate its rotational energy predominantly in the electromagnetic channel,

spinning down the star in a quite short time, which depends on the magnetic field

strenght. Thus the NS would be a strong emitter of gravitational waves, but only for a

quite short period of time. For instance, if we assume that the initial magnetic field is

B = 1015 G and that the wobble angle is α = 3◦, a NS at a distance of 1 kPc initially

rotating at, say, 300 Hz, would stay in the bandwidth of ground based interferometers

less than three months, producing the signal shown in Fig. 1§.

2.1.2. Are neutron stars freely precessing? This is an interesting question, because it

is related to the inner structure of a neutron star. On one side we have compelling

observational evidence: free precession has been seen in the radio signature of PSR

B1828-11 [26] and supported by a subsequent analysis [27]. The wobble angle estimated

for this source is ' 3◦. On the other hand, models of neutron stars assuming superfluid

vortex pinning of the star crust to the core are incompatible with a free precession, since

vortex pinning would exert a large torque on the crust and the wobble angle would be

damped in a short time, much shorter than that associated to the energy loss due to

gravitational wave emission [28]. Mechanisms that would sustain precession, such as

those associated to accretion torques or to electromagnetic effects, do not appear to

have a significant effect [28]. Further studies on the problem of vortex pinning indicate

that hydrodynamic forces present in a precessing star would be sufficient to unpin all

§ Indicating with Bdipole the mean surface dipole field, the electromagnetic spindown can be evaluated

using the formula Bdipole = 3.2× 1019
√

P Ṗ G, where P is the rotation period [25].
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of the vortices of the inner crust, so that long period free precession would be possible;

conversely, pinning would be effective in absence of precession and this would explain

the giant glitches observed in many radio pulsars [29].

Moreover, it should be remembered that if the star has a prolate deformation, the

internal dissipation would increase the wobble angle through the spin-flip mechanism.

However studies on the effect of magnetic fields and limits imposed by crustal strain

indicate that it is unlikely that neutron stars have a prolate shape [11, 21, 28].

From this short review it emerges that, in order to explain the observed free

precession in PSR B1828-11 (and in some other sorces), further studies on the role

of a superfluid inside the star and its interaction with the crust, and on magnetic field

effects are needed. The hope is that gravitational wave observations will contribute to

solve this puzzle.

3. Stellar pulsations

The detection of gravitational waves emitted by a star oscillating in its quasi-normal

modes appears a promising strategy for constraining the physics of neutron stars. Indeed

different families of modes can be associated with different core physics. For example, the

frequency of the fundamental f-mode (which should be the most efficient GW emitter)

scales with the average density of the star, the pressure p-modes are associated to the

sound speed inside the star, the gravity g-modes are sensitive to thermal/composition

gradients and the w-modes are spacetime oscillations. Pulsation modes are also

associated to the dynamical behaviour of the crust and of the internal magnetic field.

As an example, in Fig. 2 we plot the f-mode frequency for neutron/hybrid stars modeled
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Figure 2. The frequency of the fundamental mode is plotted as a function of the mass
of the star, for neutron/hybrid stars (continuous lines) and for strange stars modeled
using the MIT bag model, spanning the allowed range of the parameters of the model
(shadowed region).

with a number of EOSs representative of the current literature on the subject (continuous
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lines), and for strange stars, i.e. stars entirely made of strange, up and down quarks,

modeled using the MIT bag model and spanning the allowed range of parameters (the

Bag constant, the coupling constant αS and the quark masses. See [30] for details). From

figure 2 we see that strange stars cannot emit gravitational waves with νf . 1.7 kHz,

for any values of the mass in the range we consider. Note that 1.8 M� is the maximum

mass above which no stable strange star can exist. There is a small range of frequency

where neutron/hybrid stars are indistinguishable from strange stars; however, there is a

large frequency region where only strange stars can emit. For instance if M = 1.4 M�,

a signal with νf & 2 kHz would belong to a strange star. Even if we do not know the

mass of the star (as it is always the case for isolated pulsars) the knowledge of νf allows

to gain information about the source nature; indeed, if νf & 2.2 kHz, apart from a very

narrow region of masses where stars with hyperons would emit (EOS BBS2 and G240),

we can reasonably exclude that the signal is emitted by a neutron star. In addition, it is

possible to show that if a signal emitted by an oscillating strange star is detected, since

νf is an increasing function of the bag constant B it would be possible to set constraints

on B much more stringent than those provided by the available experimental data [30].

In principle oscillation modes may be excited as a consequence of any

internal/external perturbation, such as a glitch or accretion processes. However, we

do not know how much energy is actually channeled in the various modes. Let us take

as a bench-mark the energy involved in a typical pulsar glitch, which is of the order of

∼ 10−13M�c2. Assuming that the star is at a distance d = 1 kpc, and is oscillating, say,

in the f-mode with frequency and damping time νf ∼ 1500 Hz and τf ∼ 0.1 s, then the

wave amplitude corresponding to this oscillation would be A ≈ 5 × 10−24; this is too

low to be detected with present or advanced Virgo/LIGO, but it would be detectble by

3rd generation detectors like ET [31, 32].

Oscillations from newly-born neutron stars are more promising, because in this

case more energy can be channeled in the modes. During the early phases of the stellar

evolution, in particular during the first minute after core collapse, the mode frequencies

of the hot remnant would change, as shown in Fig. 3a); these changes would trace the

star evolution, while it cools down and thermal and entropy gradients in its interior

are smoothed out [33]. As an example, in Fig. 3b) we show the signal which would

be emitted by the newly born star oscillating in the fundamental mode or in the first

g-mode. Assuming the energy stored in the f-mode to be ∆Ef = 1.6 × 10−9 M�c2, and

the star to be located in the Galaxy, the signal to noise ratio would be SNR = 2.7 for

Virgo+, and SNR = 8 for Advanced Virgo. Even more interesting is what the g-modes

would tell us about the evolution of the star if the wave signal is detected. Indeed, the

g-mode frequency is directly related to entropy and temperature gradients, therefore,

the slope of the corresponding strain amplitude would tell us how fastly these gradients

are smoothed out inside the star by dissipative processes, essentially driven by neutrino

diffusion and emission. In this case assuming a mode energy ∆Eg = 6.7 × 10−9 M�c2,

the signal to noise ratio would be SNR = 1.7 for Virgo+, and SNR = 8 for Advanced

Virgo.
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Figure 3. In panel a), the frequencies of the fundamental mode, and of the first g-mode
of an evolving proto–neutron star are plotted as functions of the time elapsed from the
gravitational collapse, during the first 5 seconds of evolution. In panel b) we plot the
signal emitted by the star oscillating in the f- and g-mode, assuming a distance d = 10
kPc and energies ∆Ef = 1.6× 10−9 M�c2 and ∆Eg = 6.7× 10−9 M�c2, respectively.

Needless to say that ET would be a fantastic instrument to explore the evolution

of young NSs.

4. Tidal disruption in BH-NS coalescing binaries

Black hole - neutron star coalescing binaries are among the most promising candidates

for detection by ground-based laser interferometers. When the NS is disrupted before

reaching the innermost stable circular orbit, the wave amplitude of the emitted signal is

expected to decrease abruptly, and to exhibit a cutoff frequency νGWtide, corresponding

to the orbit at which the disruption occurs [34]. The frequency cutoff is thus a distinctive

feature of the GW signal emitted by BH-NS coalescing binaries and denotes the tidal

disruption of the star. A further reason of interest in these sources is that they have

been invoked as possible progenitors of short gamma-ray bursts [35]. In a recent paper

[36], using a quasi-stationary approach and an improved version of the affine model we

studied the disruption of a neutron star due to the tidal interaction with a black hole,

calculating νGWtide for several equations of state describing matter inside the neutron

star, and for a large set of the binary parameters, i.e. the neutron star mass, MNS,

the black hole angular momentum a/MBH , the mass ratio q = MBH/MNS. The results

are summarized in Fig. 4, where we plot the NS radius versus νGWtide, for a system

composed by a NS with mass MNS = 1.4 M� and a black hole with angular momentum

a/MBH = 0.9 and mass MBH = 7 M� (q = 5). Each point refers to a different EOS, and

the horizontal and vertical error bars are due to the errors which affect the estimate of

the binary parameters, assuming that they have been extracted from a detected chirp

using the matched filtering technique. For instance, for a system composed by a NS

with mass in the range (1.2−1.6) M� and a total mass within ∼ (5−26) M�, (i.e. mass

ratios q ∼ (3 − 15)), the fractional error on the chirp mass M = η3/5(MBH + MNS) is
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smaller than ∼ 10−3, while for the symmetric mass ratio η = MBHMNS/(MBH +MNS)2

is of the order of ∼ 1−3 ·10−2. These data refer to advanced LIGO, assuming the source

at a fixed distance of 300 Mpc. In Fig. 4 we assume, as an example, that the measured
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Figure 4. RNS versus νGWtide is plotted for MNS = 1.4M�±∆MNS, q = 5±∆q and
a/MBH = 0.9± 10%. The black continuous lines are the parabolic fits of the extreme
points of the horizontal error bar for each EOS. The vertical dashed line corresponds
to a supposed detected value of νGWtide equal to 1300 Hz; the two horizontal dashed
lines identify the uncertainty on the evaluation of RNS .

cutoff frequency is 1300 Hz (vertical dashed line), and we find that it is compatible with

10.8 km ≤ RNS ≤ 11.4 km, i.e. RNS is found with an error of 2.7%. The error would

be smaller(larger) if the detected value of νGWtide is smaller(larger); for instance, for

1400 Hz and 1200 Hz it would be 3.3% and 2.5% respectively. Knowing νGWtide could

thus help placing a constraint on the radius of a NS disrupted by the BH tidal field,

and would rule out some of the proposed equations of state.

Thus, as in the case of rotating and pulsating stars, the detection of a gravitational

wave emitted by a neutron star disrupted by the tidal interaction with a black hole

would provide valuable information on the source structure and on the behaviour of

matter in the stellar core.
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