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Abstract. Gravitational Wave (GW) burst detection algorithms typically rely on the
hypothesis that the burst signal is “locally stationary”, that is it changes slowly with frequency.
Under this assumption, the signal can be decomposed into a small number of wavelets with
constant frequency. This justifies the use of a family of sine-Gaussian wavelets in the Omega
pipeline, one of the algorithms used in LIGO-Virgo burst searches. However there are plausible
scenarios where the burst frequency evolves rapidly, such as in the merger phase of a binary black
hole and/or neutron star coalescence. In those cases, the local stationarity of sine-Gaussians
induces performance losses, due to the mismatch between the template and the actual signal.
We propose an extension of the Omega pipeline based on chirplet-like templates. Chirplets
incorporate an additional parameter, the chirp rate, to control the frequency variation. In this
paper, we show that the Omega pipeline can easily be extended to include a chirplet template
bank. We illustrate the method on a simulated data set, with a family of phenomenological
binary black-hole coalescence waveforms embedded into Gaussian LIGO/Virgo–like noise.
Chirplet-like templates result in an enhancement of the measured signal-to-noise ratio.

1. Motivations
Current searches for gravitational wave transients in LIGO-Virgo data focus on two signal
classes: short unmodelled bursts and longer quasi-periodic signals from inspiralling black hole
and/or neutron star binaries as predicted by post-Newtonian approximations. To account
for intermediate scenarios, we consider “chirping burst” GW target signals that exhibit
characteristics from both the above categories: a short duration and a “sweeping” frequency.

We propose here an extension of the Omega pipeline [3] (originally known as Q−pipeline)
that searches for chirping bursts. The Omega pipeline projects the data over a family of sine-
Gaussian wavelets with fixed frequency. The idea is to replace these templates by frequency
varying waveforms, referred to as chirplets.

In this paper, we first define chirplets and the related chirplet transform. We discuss
the implementation of the chirplet transform and its insertion into the Omega pipeline, with
attention to how the chirplet template bank is built. Finally, we present a few examples using
simulated data.
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chirplet: f=350.0 Hz, Q=50, d=-5000.0 Hz/s

Figure 1. Example of a chirplet

2. From wavelets to chirplets
2.1. Definition of chirplets
Chirplets are defined in the time domain as:

ψ(τ) ≡ A exp
(
−(2πf)2

Q2
(τ − t)2

)
exp

(
2πi

[
f(τ − t) + d/2 (τ − t)2

])
, (1)

with A = (8πf2/Q2)1/4, a normalization factor ensuring that
∫
|ψ|2 = 1. t and f are the center

time and frequency, respectively and Q is the dimensionless quality factor. See in Fig. 1 for an
example of a chirplet.

The main difference from a sine-Gaussian wavelets is the chirp rate, an additional term in
the phase denoted d that changes the chirplet frequency linearly in time as f(τ) = f + d(τ − t).
The chirp rate controls the slope of the frequency evolution. When d = 0, we retrieve standard
sine-Gaussians. Chirplets are thus associated with a four-dimensional parameter space instead of
three for sine-Gaussians. In the sequel, we will concatenate all those parameters into a descriptor
θ ≡ {t, f,Q, d}.

2.2. Chirplet transform
The chirplet transform T is obtained by correlating the data with the chirplets defined in the
previous section. In the frequency domain, it reads:

T [x;θ] =
∣∣∣∣
∫
X(ξ)Ψ∗(ξ;θ)dξ

∣∣∣∣
2

, (2)

where X(·) and Ψ(·;θ) denotes the Fourier transform of the (whitened) data stream x(·) and
chirplet ψ(·) with descriptor θ resp.

The chirplet Fourier transform can be expressed as

Ψ(ξ;θ) = A exp

(
−Q̃

2

4
(ξ − f)2

f2

)
, (3)



where A = [(Q̃4/Q2)/(2πf2)]1/4 is written in terms of a “complex-valued” quality factor
Q̃ = Q

√
z/|z| where z = 1 + id∆2

t with the chirplet duration1 ∆t = Q/ (2
√
πf).

3. Building template banks with chirplets
By varying the chirplet parameters, we obtain a continuous signal space. In this space, we
need to select a finite-size family of representatives which will be used to analyze the data.
The coverage of the chirplet space has to meet two conflicting goals i.e., satisfy a worst case
mismatch with a minimum number of templates. We adopt the method proposed in [4, 3] which
consists of sampling the space with equi-spaced templates using the intrinsic metric deduced
from the mismatch T

[
ψ(θ′);θ

]
between two neighboring templates with a small discrepancy

δθ ≡ θ′ − θ in their parameters. The metric results from the second-order expansion of the
mismatch µθ(δθ) ≡ 1 − T [ψ(θ + δθ);θ] ≈ δs2 when δθ → 0 and leads to2:

δs2 =
Q4d2 + 16π2f4

4Q2f2
δt2 +

2 +Q2

4f2
δf2 +

δQ2

2Q2
+

Q4

128π2f4
δd2 − Q2d

2f2
δtδf − δfδQ

Qf
. (4)

There are several differences and additional terms from the sine-Gaussian metric, due to
the non-zero chirping rate. Along the time axis and for small f . Q

√
d, the sampling step

δt ∝ f/(Qd) is finer than that of the sine-Gaussian case δt ∝ Q/f . We note also that the
sampling step along the chirping rate axis scales with δd ∝ (f/Q)2. We thus expect to get many
chirplets in the low-frequency band and for large values of Q.

The chirplet space equipped with the above metric (off-diagonal terms being neglected for
simplicity [3]) can be discretized by a cubic lattice with templates placed at the vertices. The
worst case occurs when the real signal is farther apart from all vertices, at the center of the
cube. Let us denote δs = µ1/2, this worst-case distance, which corresponds to the half-length
of the cube diagonal and assign a maximum value µ1/2

max that we can tolerate. Since we are in
a four-dimensional space, the length ` of the cube edge is equal to that of its half-diagonal.
Therefore, we must have ` ≤ √

µmax. The discretization along each axis of the parameter space
which results directly from this condition ensures that µθ(θ − θn) ≤ µmax for any θ with θn

the closest vertex of the lattice. In the following, we set the maximum mismatch to the value
µmax = 0.2 typically used when applying standard Omega. Fig. 2 shows an example of a chirplet
template bank resulting from this template placement scheme.

In Fig. 3, we apply the same scheme in two different settings. In both cases we computed the
number of templates necessary to cover the signal space in the sine-Gaussian (standard Omega)
and chirplet (chirpletized Omega) cases. This computation is done at a fixed time t. We compare
the result to the estimate given by the ratio of the whole space volume V =

∫
|µ?|1/2d3θ? (where

θ? = {f,Q, d} and δs2 = |µ?| denotes the metric in Eq. (4) without the components associated
to the time axis) to the size of a cubic element of the lattice. We find3:

N ≡ V/`3 ∝ f−2
minQ

3
maxdmax, (5)

where we assume that for each coordinate the lower boundaries (min) are much smaller than
the higher boundaries (max).

It is important to note that both the count and estimate are obtained assuming an infinite
bandwidth. Since the data are sampled, we are restricted to a limited Nyquist frequency.

1 By definition, ∆t ≡ 2
√
π

R
(τ − t)2ψ2(τ)dτ .

2 This calculation assumes that the detector noise has a flat spectrum. Contrarily to the sine-Gaussian case, this
approximation has significant effect since the chirplet frequency varies across the detector bandwidth.
3 This result is valid both when neglecting or retaining the off-diagonal terms of the metric. The scaling is
actually exact when the off-diagonal terms are included and valid to a good approximation when Qmax � 2 in
the other case.
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Figure 2. Example of a chirplet family resulting from the template placement procedure
presented in Sec. 3. In this graph, each box represents the time-frequency tile associated with a
chirplet. The oblique boxes are associated to non-zero values of the chirping rate d. The slope
of the upper and lower edges equals d.

Chirplets with frequency exceeding this limits are aliased and have to be discarded. Fig. 3
also show the number of non-aliased chirplets. This number is about a factor of 10 larger than
the number of sine-Gaussians required to cover the entire parameter space.

Two comments can be made at this point: the larger number of templates indicate that
with chirplets, we define and explore a much larger signal space than with sine-Gaussians (we
investigate this question further in Sec. 5). As the computing cost scales approximately linearly
with the number of templates, analyzing the data with chirplets requires with a ten-fold increase
in computing resources (a factor that will be rapidly absorbed by the exponential growth of
computing power).

4. From “standard” to “chirpletized” Omega
In this session we discuss other aspects of the analysis pipeline, in addition to the implementation
of the chirplet template bank.

4.1. Filtering
The modulus of Ψ(·) in Eq. (3) is a Gaussian function as in the sine-Gaussian case. This
allows the use of the same filtering scheme as in the standard Omega pipeline to generate the
chirplet transform. The Omega scheme [3] operates in the frequency domain following Eq. (2).
It consists in multiplying the Fourier transform of the data, computed with the FFT algorithm,
with that of the templates and take the inverse Fourier transform of the product. Omega uses
a bi-square frequency window that approximates the Gaussian shape. The compact support of
the bi-square window prevents aliasing.

This scheme can be applied to the chirplet case with two differences. First, the template Ψ is
now complex, thus we need to multiply the data spectrum both in modulus and phase. Second,
the template bandwidth now results from the quadratic sum ∆2

f = (∆finite size
f )2+(∆chirp

f )2 of two
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Figure 3. Size of the chirplet template bank in two cases: (left) assuming chirp rate limits
between ±dmax for any frequencies; (right) assuming frequency dependent limits consistent with
the Newtonian model of the inspiralling binary chirp: CM5/3

minf
11/3 . d . CM

5/3
maxf11/3. The

results are compared to the size of the sine-Gaussian template bank used by standard Omega.
See text for a detailed discussion. All template banks are generated using the same maximum
mismatch µmax = 0.2.

components, one due to the finite size of the chirplet ∆finite size
f = 1/∆t and the other due to its

sweeping frequency ∆chirp
f = d∆t, where ∆t is the chirplet duration (defined above). According

to [3], the width of the bi-square window should be set to the chirplet frequency bandwidth ∆f

rescaled by a factor of
√

11.

4.2. Pre- and post-processing
In this paper we focus on a single-detector network, where most of the pre- and post-processing
can be adopted from the standard Omega pipeline. Pre-processing consists of whitening the
input data stream. Post-processing consists of selecting among the chirplets with partial time
and frequency overlap to the one with maximum correlation with the data. Each chirplet is
associated with a time-frequency tile, defined by [t ± ∆t/2, f ± ∆f/2] where ∆t and ∆f are
the chirplet duration and bandwidth, respectively. Two chirplets overlap if their time-frequency
tiles overlap.

5. Performances of Chirpletized Omega
In this section we present a comparison between the standard version of the Omega pipeline,
which uses sine-Gaussian wavelets, and its chirpletized version. We configure the pipelines with
identical values for the parameters they have in common (frequency and Q range and maximum
mismatch). We identify cases where we can expect advantages from analyzing the data with
chirplets.

5.1. Analyzing chirplets with sine-Gaussians
The signal space associated with sine-Gaussians is contained in the larger space associated with
chirplets. We estimate the signal-to-noise ratio (SNR) loss occurring when analyzing a chirplet
by correlating this signal against a sine-Gaussian template bank. The chirplet parameters have
been set to Q = 50, f = 256 Hz and d = 2048 Hz/s. Those parameters correspond to observable
physical signals in the LIGO/Virgo frequency band (for instance, the selected chirping rate is
approximately that of an inspiralling binary chirp with total mass M ∼ 3M� – assuming equal
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Figure 4. Correlation measurement between a single chirplet and a sine-Gaussian template
bank. The parameters of the analyzed chirplet is indicated with a black cross in this diagram.

masses – at f = 256 Hz according to the Newtonian model). Fig. 4 presents the result of this
analysis. Consistently to the metric estimate, the loss is

√
128πf2/(dQ2) ∼ 50% in the present

case. Note also that the maximum correlation is shifted to lower Q which may lead to a possible
bias in the estimation of this parameter.

5.2. Analyzing inspiralling binary chirps with chirplets
One case study — As an illustration, we show here results from chirpletized Omega on
simulated Gaussian noise, colored with the spectral characteristics of LIGO/Virgo noise
with simulated gravitational wave signals. The signal we consider here results from the
phenomenological approximation introduced in [2] of the coalescing binary black-hole chirp
signals and includes the inspiral, merger and ringdown parts of the coalescence.

In Fig. 5, we compare the results from the standard and chirpletized Omega pipelines obtained
for a black-hole binary chirp embedded in simulated Gaussian noise at large SNR. Chirplets with
a positive slope are preferred to sine-Gaussian with constant frequency: the correlation of the
most significative chirplet is, in this example, ∼ 45% larger than the most significative sine-
Gaussian. Work is currently in progress to understand how the background in chirpletized
Omega is different from standard Omega. Preliminary studies in Gaussian noise suggest that
the background rates are comparable, so that we can expect an increase of ∼ 30−40% in distance
reach by using chirplets.

Note that the chirplet slope provides indication of the frequency evolution of the observed
signal and thus may be very useful in the a posteriori interpretation of an event.

Systematic study — We also performed a more systematic comparison over a population of
inspiralling binaries. We considered a total of 5500 binaries with equal mass components. The
total mass M is extracted from a flat distribution in the 4−100M� range. The signal amplitudes
are scaled so that the SNR is distributed over an interval ranging from ∼ 10 to ∼ 103.



Figure 5. (top/left) Inspiralling black-hole binary (with masses m1 = 14M�, m2 = 16M�
and non-precessing spin parameters χ1 = −0.68 and χ2 = −0.48) signal in simulated Gaussian
LIGO/Virgo-like noise. (top/right) Spectrogram (bottom/left) Significant time-frequency tiles
for standard Omega (using sine-Gaussian wavelets only) (bottom/right) Significant time-
frequency tiles for chirpletized Omega (using chirplets).

We obtain an estimate of the injected SNR from the amplitude of the most significant
template. In the ideal case where signal and template are identical, the estimate equals the
injected value. In Fig. 6, we show the relative difference of the SNR estimated by chirpletized
Omega and standard Omega. Chirpletized Omega estimates a higher SNR across the mass range.
However, there are two regimes: for the high-mass range M & 60M�, the SNR improvement is
small (∼ 5%) while it is more pronounced (∼ 20%) for the low-mass range M . 60M�. The
improvement may go upto ∼ 40% for M . 20M�.

Generally speaking, the spectrum of the GW chirp is shifted toward low frequencies when the
binary mass increases. The frequency associated with the innermost stable circular orbit (ISCO),
which corresponds to the transition between inspiral and merger phase of the coalescence, is
below 70 Hz for masses M & 60M�. In this condition, the chirp phase of the waveform with
a spectral content at frequencies below ISCO is outside the detector sensitive band4 and thus
does not contribute significantly to the SNR. Sine-Gaussian waveform provides a good enough
fit of the remaining few waveform cycles associated with the merger and ringdown parts of the
coalescence. This explains the two regimes in Fig. 6.

4 This statement is valid for the LIGO detector noise curve which was used for the systematic study. The mass
cut-off is higher for the Virgo detector as its sensitive band extends to lower frequencies.
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Figure 6. SNR enhancement from standard Omega to chirpletized Omega. The largest
improvements about ∼ 30 to 40% are mainly due to binaries in the low mass range M < 20M�.

6. Status and future plans
We introduced a new chirplet-based extension of the Omega pipeline. We show preliminary
results using coalescing binary mergers waveforms. Versatility (robustness to signal model
uncertainty) and algorithmic simplicity are two advantages of this methodology when compared
to more standard approaches for the detection of such waveforms.

The single-detector network search code is ready and it can be downloaded [1] and used to
produce chirpletized Omega scans similar to the one we show in Fig. 5.

We continue to study the response of the code to real noise and we aim at a complete,
operating pipeline using chirplets as templates, and new clustering strategies tailored to these
templates, as well as a multi-detector network strategy.
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