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Biotic recoveries following mass extinctions are characterized by a complex set of dynamics, includ-
ing the rebuilding of whole ecologies from low-diversity assemblages of survivors and opportunistic
species. Three broad classes of diversity dynamics during recovery have been suggested: an immedi-
ate linear response, a logistic recovery, and a simple positive feedback pattern of species interaction.
Here we present a simple model of recovery which generates these three scenarios via differences in
the extent of species interactions, thus capturing the dynamical logic of the recovery pattern. The
model results indicate that the lag time to biotic recovery increases significantly as biotic interactions
become more important in the recovery process.

Keywords:

I. INTRODUCTION

Until recently paleontologists have focused on under-
standing the dynamics of the extinction process and as-
sumed that with the amelioration of the causes of the
extinction recovery would be straightforward: diversifi-
cation of new species and migration of surviving species
would ensure rapid repopulation of niches vacated by the
extinction. Little attention was paid to the actual dy-
namics of recovery. Logistic models derived from ecol-
ogy were commonly seen as the appropriate theoretical
framework (e.g. Sepkoski 1978, 1979,1984), coupled with
the dynamics of diversification into empty niches (Valen-
tine 1980; Valentine and Walker 1986), where the rate of
diversification was simply assumed to be diversity depen-
dent. However the lag of some 4 million years between
the end of the end-Permian mass extinction and the on-
set of recovery of most marine and terrestrial ecosystems
(Erwin 1998a, 1998b; 2007; Sahney and Benton 2008)
and the presence of many ’Lazarus’ taxa which disap-
pear from the fossil record before the extinction but then
reappear late in the recovery, suggests something of the
complex ecological and evolutionary dynamics of post-
extinction intervals.

As paleontologists have begun to explore these com-
plex dynamics over the past decade most have followed
a largely empirical approach, documenting local and re-
gional recovery patterns, exploring the structure of re-
covery communities and investigating the correlation to
changes in stable isotopes (e.g. d’Hondt et al 1998; Payne
et al., 2004). As valuable as such data is, increased un-
derstanding of the dynamics of post-extinction diversi-
fication also requires an appropriate theoretical frame-

work, both for understanding and interpreting existing
data and for guiding new research. Recent efforts in this
direction include the explicit modeling of recovery dy-
namics using trophic network models (Solé et al., 2002a;
Roopnarine 2006; Roopnarine et al., 2007; see also Solé
and Bascompte, 2006;Yedid et al., 2009). These models
consider some sort of trophic interaction pattern between
species belonging to different levels. The number of such
levels, their species composition as well as the number
and strength of links evolve with speciation and extinc-
tion.

Here we consider three different recovery scenarios:
First, immediate biotic recovery following a mass extinc-
tion, modeled as a linear response. This appears simi-
lar to at least two events in the fossil record, the end-
Ordovician mass extinction about 439 million years ago
(Ma) and possibly the end-Triassic mass extinction 199
Ma. This may also apply to some smaller biotic crises,
and roughly corresponds to the standard description of
so called neutral communities (e.g. Hubbell 2001; Alonso
et al., 2006), where the intensity of species interactions
do not affect the recovery process. Second, a logistic ex-
pansion, which is the traditional expectation of paleon-
tologists (e.g. Sepkoski, 1984). It is not clear that there
are good empirical examples of this pattern.

Third, we also present a simple model of diversification
driven by biotic interactions between pairs of species.
This model is a first effort at examining the relevance
of positive feedback processes in evolutionary diversifi-
cations and provides well-defined predictions of the time
lags to recovery that should be expected. In each of the
models we consider the equilibrium case where diversity
returns to the pre-extinction level. In other words, the
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FIG. 1: Recovery patterns. Recoveries might essentially con-
sist of refilling available space (until some carrying capacity
M is reached) as indicated in (a). But they also might require
ecosystem rebuilding (b) relying in the reconstruction of lost
interactions, functionality and other attributes.

maximal diversity in the system is pre-determined. In re-
ality of course, the most interesting cases are those where
post-extinction diversity increases.

Identifying the pattern of recovery might help to es-
tablish the relevance of biotic interactions in rebuilding
functional ecosystems at evolutionary scales. In a re-
lated ecological context, recent attempts to explain cur-
rent patterns of biodiversity at local and regional scales
(e.g. Hubbell 2001) assumed ecosystems as neutral enti-
ties, where interactions among species are not important.
This perspective has recently being challenged (Wooton
2005; seealso Pueyo 2006 and Pueyo et al), showing that
neutral models predicts poorly field experimental results,
indicating and essential role of species interactions. In
this context, more general models can be defined by ex-
panding the neutral approach and considering different
levels of heterogeneous interactions (Solé et al., 2002b).

The results obtained from our model suggest that the
greater the interactions among pairs of existing species
in the generation of new species, the longer the delay
in recovery. The long delay together with a rapid rise of
diversity could result from two different processes: (a) in-
creasing numbers of ecological interactions might provide
the context for new opportunities to speciate, but build-
ing new links is a slow, costly process, strongly dependent
on external and internal constraints. Alternatively, (b)
as the number of species and thus interaction grows, the
potential combinations eventually may allow a rapid in-
crease in species. Our approach is the simplest one able
to capture these two ingredients.

II. MATHEMATICAL MODEL

The simplest model able to cope with biotic recovery
would be a logistic one (Sepkoski, 1984). Here, if S indi-
cates the number of species and μ is speciation rate, we
have:

dS

dt
= μS

(
1−

S

M

)
(1)

where M is the maximum number of allowed species.
In classical population dynamics (Case, 1999) this max-
imum is the so called carrying capacity (usually indi-
cated as K) and gives the maximal number of individu-
als, whereas μ would be the per capita growth rate. Here
speciation is defined as the difference μ = o− e between
origination (o) and extinction (e) rates. Specifically, as
described by Sepkoski (1984) these are per-taxon rates
and are expected to be stochastic parameters. In a de-
terministic context (to be followed here) these parame-
ters are considered average values roughly constant over
(geologic) time.
This model however is unable to explain the spectra of

recovery patterns observed in the fossil record even if we
widely vary the model parameters. The reason is that the
underlying assumptions involve a system in which eco-
logical interactions are solely based on the available re-
sources, with no explicit interaction among species. The
situation is schematically drawn in figure 1(a), where
species are indicated as gray balls and they monotonously
fill the available space.
One way of generalizing the previous approach is to

consider a dependence of speciation dynamics on species
interactions. The underlying assumption, schematically
drawn in figure 1(b) is that post-extinction biotic recov-
ery (and indeed ecosystem rebuilding in general) is not
described by means of a neutral process. Instead, it deals
with the full spectrum of biotic interactions displayed by
species belonging to different trophic levels and having
different ecological interactions, from mutualism to par-
asitism. In such a context, the opportunities available to
a given species to speciate are dependent upon the bi-
otic structure of the current community. Actually, some
general patterns exhibited by complex ecosystems over
evolutionary time scales, such as community rebuilding
after a major extinction event are closely related to some
phenomena occuring at short, ecological time scales, such
as ecological succession (Solé et al., 2002; Solé and Bas-
compte 2006).
We can make such approach explicit by considering

three basic scenarios of diversity increase. The logic of
these scenarios is sketched in figure 2a-c. We will re-
duce our description to a single macroscopic variable S
(number of species) and a single free parameter μ repre-
senting speciation rate. The three diagrams indicate how
these two ingredients influence each other. Here we do
not indicate explicitely the negative feedback associated
with limited resources. As will be shown below, these
three plots can be directly translated into explicit equa-
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FIG. 2: Three possible mechanistic scenarios for recovery.
Here S indicates the number of species and μ speciation rates.
In (a) a constant, diversity-independent rate is at work. In (b)
speciation rate is species-dependent: the more species present
the more species are generated. The third case (c) involves a
positive feedback where the presence of species also enhances
speciation rates.

tions for diversity dynamics. In order to further define
our three models, let us consider a more microscopic de-
scription. If “0” denotes an empty niche (allowed to exist
provided that resources are available) and Si corresponds
to a given species i, it is possible to describe the three
previous possibilities in terms of three simple transitions
among states. These are:

0
μ
−→ Si (2)

0 + Si
μ
−→ Si + S′i (3)

0 + Si + Sj
μ
−→ Si + S′i + Sj (4)

where each of these transitions occurs at a rate μ. The
first case would correspond to figure 2a, a situation in
which empty niches are simply refilled by invading species
and thus μ effectively represents immigration rate. The
second (figure 2b) implies the presence of empty niche
and an available species (here indicated as Si) in order
to speciate and obtain a new species (here indicated as
S′i). Finally, if species Si requires species Sj to generate
a new species (since Si is, say, a parasite of species Sj)
then the two of them are necessary to effectively obtain
an speciation event (figure 2c).
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FIG. 3: Recovery patterns under each of the three scenarios of
the model, involving different types of ecological interactions:
(a) β = 0, (b) β = 1 and (c) β = 2. Both the diversity over
time (left) and the spindle diagrams (right) are shown. Here
we have used μ = 1 (continuous lines) and μ = 0.5 (dashed
lines, (c)). The spindle diagram for the third case corresponds
to the later value.

In order to take into account the three situations, the
previous equation (1) can be generalized as:

dS

dt
= μΦβ(S)

(
1−

S

M

)
(5)

where the function Φβ(S) includes the possibility of con-
sidering the key role of existing species to rebuild the
ecosystem through speciation.
One of the simplest choices is a power functional form,

i. e.

Φβ(S) = Sβ (6)

with β ≥ 0. This choice is consistent with the previous
representation of the three scenarios in terms of reactions.
By considering these three case studies, the model natu-
rally produces the three main types of recovery pattern.
These correspond to:

A. Linear model, β = 0

In this case we have a system in which the increase in
species numbers would follow a linear equation:

dS

dt
= μ

(
1−

S

M

)
(7)
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where available resources (such available space and nutri-
ents) allow species diversity to linearly increase through
time until the maximum is reached. Using hereafter
(without loss of generality) M = 1, it is not difficult to
solve this equation, which gives an asymptotic increase:

S(t) = 1− (1− S0)e
−μt (8)

This corresponds to a situation in which species coming
from an external (biogeographic) pool invade the area
of interest. Examples would include re-forestation after
a devastating forest fire or re-population following a re-
gionally extensive volcanic eruption. The resulting pat-
tern (figure 3a) shows a monotonous increase on diver-
sity takes place promtly reaching pre-extinction levels. In
this figure (right column) we also show the corresponding
spindle diagram, which provides a complementary pic-
ture of the diversification process, showing how relative
diversity expands or shrinks through (geological) time.
This model belongs to the class of models used in is-

land biogeography, where islands free of species are col-
onized by the mainland pool. Such colonization process
is typically assumed to be a linear function of the species
abundances. Similarly, the extinction rate is also consid-
ered a constant process.

B. Density-dependent, β = 1

This corresponds to the logistic case (Sepkoski, 1984).
Species essentially interact because of their limiting re-
sources (i.e. they compete), and no further biotic inter-
actions are involved. The solution to (5) with M = 1
now reads:

S(t) =

[
1 +

(
1− S0

S0

)
e−μt

]
−1

(9)

again asymptotically reaching the carrying capacity. The
two basic trends present in logistic growth (initial expo-
nential increase followed by saturation) are clearly ob-
served in figure 3(b).

C. Hyperbolic case, β = 2

This scenario considers the interaction among pairs of
existing species. It assumes that speciation requires pairs
of species to be interacting, not only through compe-
tition. This requirement strongly constrains the speed
of speciation events, since interactions are necessary to
evolve (co-evolve). A given parasite, for example, needs
a host to reproduce. The presence of such a pair is also
needed for the parasite to evolve new traits and even-
tually lead to a new species. A similar argument can
be made with predator-prey or mutualistic interactions.
The dynamics are now governed by:

dS

dt
= μS2(1− S) (10)
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FIG. 4: Recovery pattern for the hyperbolic (β = 2) model.
Here a pulse extinction occurs at time zero. The initial di-
versity after the pulse extinction is S0 = 0.01 and speciation
rates are varied in a given range (2 ≥ μ ≥ 0). There is always
a delay, even when large rates are used, although it becomes
shortened in a nonlinear way. Here equation (10) has been
numerically integrated using Euler’s method

.

superficially resembling the logistic equation. However,
the feedback implicit on the dependence of speciation
on interactions among species leads to a very different
dynamical behavior, characterized by a long lag after a
rapid, strong perturbation is performed on the system
(Erwin, 1996) and is illustrated in figure 3(c), where two
different speciation rates have been used. The long delay
is clearly apparent in both cases. This situation corre-
sponds to hyperbolic replicator dynamics, similar to the
one displayed by models of hypercyclic organization (Sza-
thmáry and Maynard Smith, 1997). In figure 4 we show
the effects of continuously varying speciation rates on the
time evolution of species numbers after the pulse extinc-
tion event.
This hyperbolic growth model has been used to de-

scribe the dynamics of marine biodiversity through the
Phanerozoic (Markov and Korotayev, 2007) and seems
to better fit available data than the exponential one (see
Benton, 1995). Such type of model has also been applied
to the dynamics of world population and economics (Jo-
hansen and Sornette, 2001 and references cited).
In general, for any β ≥ 0 and if S0 < 1, the solution

S(t) ∈ (0, 1) for any t > 0. So, when comparing growth
rates of the different solutions with the same initial con-
dition S0, it follows

dS

dt

∣∣∣∣
β<1

>
dS

dt

∣∣∣∣
β=1

>
dS

dt

∣∣∣∣
β>1

, (11)

where the derivatives are evaluated at the same moment.
In particular, it follows that the growth rate of the num-
ber of species (i.e. diversification rate) according to the
model with β > 1 is very much lower than the the lo-
gistic case (β = 1) as long as S(t) � 1, i.e., when the
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R

(equation 19). The delay time
quickly decays with increasing speciation or decreasing pulse
size perturbation.

community is starting to define their biotic interactions.
Therefore, β reflects the dependence of diversification
rates on species interactions. In other words, how fast
diversity will increase from a given initial condition (such
as immediately after a major extinction) if β-dependent.
Larger β values imply slower speeds of diversity growth
(as indicated by the smaller derivatives) thus suggesting
that perhaps the tempo and mode of recovery dynam-
ics is strongly influenced by the ecological constraints
associated to speciation events. If true, this should be
observed in terms of different types and durations of re-
covery times, as shown in the next section.

III. DELAY TIMES TO RECOVERY

One of the fundamental questions relating recovery
patterns involves the time lags to be expected until com-
plete recovery is reached. As we noted before, the most
interesting case occurs when total diversity is uncon-
strained in a non-equilibrium system, but here we con-
tinue to examine the restricted case where an equilib-
rium diversity is defined. Moreover, speciation rates must
strongly influence the speed of recovery. This is illus-
trated in figure 4 for the β = 2 case using different spe-
ciation rates. As can be appreciated, a wide range of
delay times is observable. In order to compare them, let
us assume that the initial condition S0 is the same for
all models and satisfies S0 � 1 (that corresponds to the
condition after a mass extinction), and let us fix a value
S∗ close to (but less than) the carrying capacity. Our
goal here is to obtain well-defined estimates of recovery

delay times T
(β)
R for different β values.

For β = 0, we have, from equation (7) and M = 1,

T
(0)
R =

1

μ

∫ S∗

S0

dS

1− S
(12)

which gives after integration to a delay time:

T
(0)
R =

1

μ
log

(
1− S0

1− S∗

)
(13)

Similarly, the recovery time for the logistic model (β =
1) can be easily obtained. By integrating equation (1)
with M = 1, we obtain

μt = log

(
1− S0

1− S(t)

)
+ log

(
S(t)

S0

)
(14)

and so the recovery time for this case will be

T
(1)
R =

1

μ

[
log

(
1− S0

1− S∗

)
+ log

(
S∗

S0

)]
(15)

A similar calculation can be performed for β = 2, which
gives a recovery time

T
(2)
R =

1

μ

[
log

(
1− S0

1− S∗

)
+ log

(
S∗

S0

)
+

1

S0
−

1

S∗

]
(16)

The recovery time for the general model with a given
integer β ≥ 2 is given by:

T
(β)
R = T

(1)
R +

1

μ
Γ(S0, S

∗, β) (17)

where Γ(S0, S
∗, β) is given by the sum:

Γ(S0, S
∗, β) =

β−1∑
m=1

(S∗)m − Sm
0

mSm
0 (S

∗)m
(18)

These previous expressions can be simplified under the
previous assumptions on S0 and S∗, namely,

1− S∗ ∼ O(S0) (19)

with S0 � 1, that is, assuming a large extinction event
and an almost full recovery of diversity. In this case,
we have the following approximate estimations for delay

times T
(i)
R

T
(0)
R ≈ −

logS0

μ
, (20)

T
(1)
R ≈ −

2 logS0

μ
, (21)

T
(2)
R ≈

1

μS0
, (22)
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and, for the general model with β ≥ 2,

T
(β)
R ≈

1

μ(β − 1)Sβ−1
0

. (23)

It is easy to compare the previous estimates and find
that the following inequalities hold:

T
(2)
R � T

(1)
R ∼ 2T

(0)
R (24)

in other words, recovery times rapidly increase as biotic
interactions become more important within a commu-
nity. Although lag times are comparable under scenarios
not considering species interactions, the situation sharply
changes at β = 2. This result confirms the expectation
of a qualitatively different pattern when recovery relies
upon ecosystem rebuilding, comprising both the presence
of species and their interactions, The simplicity and gen-
erality of our analytic expressions allow to test our pre-
dictions with real data.
The relationship between delay times changes with

both the size of the extinction event and the rate of spe-
ciation in the hyperbolic case (figure 5). The theory pre-

dicts a rapid decay in T
(2)
R inversely proportional to μ as

well as a rapid increase with larger extinction events.

IV. DISCUSSION

Mass extinctions have received considerable attention
from paleontologists, evolutionary biologists and others
over the past several decades (see Jablonski, 2005 and
references therein). The subsequent process of biotic re-
covery has received much less attention, in part we think,
because of the assumption that once the cause of the
extinction was ameliorated the survivors would quickly
respond. The growing number of studies of biotic recov-
eries (Erwin 1996, 1998a, 2001; Benton and Twitchett,
2003; Lockwood, 2004; Wagner et al., 2006; Payne et
al, 2006; Aberhan et al., 2007) suggest more complex
dynamics are occurring. Although paleontologists once
assumed (often tacitly) that survivors simply diversified
into the empty ecospace produced by the mass extinc-
tion (see Erwin 1993 for discussion) the biogeographic
variability in recovery rates and processes (e.g. Jablon-
ski 1998), as well as the recognition that some clades may
survive the extinction only to succumb during the subse-
quent radiation, indicates that more complex processes
may be operating. In addition, from theoretical grounds
we would expect clades at different trophic levels (e.g.
producers, herbivores, carnivores) and functional groups
(e.g. grazers, detritivores) to respond at different rates.
In this paper we have taken a theoretical approach to

the problem of recovery based on the simplest and most
general approximation that can be taken. Without con-
sidering the particularities of the underlying ecological
network, we have explored the consequences of including
(or not) pairwise species interactions as part of the con-
straints involved in generating new species. Each of three
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FIG. 6: Patterns of recovery in a complex ecosystems involv-
ing two tropic levels (producers and consumers). In (a) a
schematic diagram shows that the philogenetic branching as-
sociated to consumers (left tree) and producers (right tree)
are linked through the presence of ecological interactions of
different signs. Speciation within the producers trigger speci-
ation in consumers (positive interaction) whereas increasing
numbers of consumer species might eventually reduce the di-
versity of producers (negative arrow). A simple mathematical
model (equations 22-23) illustrates the different nature of the
recovery patterns for the two levels (see text). Parameters
chosen here: M = 1.5, μ = 0.1, δ = 0.25, ε = 0.05, e = 0.06.
Recovery patterns for the two trophic levels are different (b-
c).

recovery scenarios predicted by the model presented here
may characterize different recovery periods. But they
may also characterize and distinguish, within a particular
period, the recovery dynamics of different taxa, trophic
levels, or biogeographical areas. The rapid linear recov-
ery of primary producers, for example, contrasts with
observed delays in higher trophic levels (e.g. Hart 1996,
D’Hondt et al. 1998). Within taxa, or feeding groups,
omnivore and detritivore species typically recover faster
than strict hervibores and carnivores (Smith and Jeffrey
1998; Fara 2000). Finally, biogeographic differences in
recovery patterns (e.g. Jablonski 1986, 1998) may also
reflect differences in the relevance of biotic interactions
for diversification among different areas. Therefore, iden-
tifying the pace of recovery informs on the processes re-
sponsible of diversification.

There is actually a simple connection between our
model, which only includes a homogeneous set of species,
and models considering multiple trophic levels. As an
example, let us consider a two-trophic system com-
posed by two species assemblages: producers and pri-
mary consumers. We thus consider two simultaneously
evolving groups (figure 6a) which interact through co-
evolving ecological links. Indicating as S1 and S2 the
number of species at each level, a macroscopic view of
the ecologically-driven evolutionary dynamics can be ob-
tained from the following set of equations:

dS1

dt
= μS1(M − S1)− δS1S2 (25)



7

dS2

dt
= εS1S2 − eS2 (26)

We can see that the previous equations, describing
changes in the number of species through time, are not
formally different from a standard Lotka-Volterra model
of consumer-producer dynamics. However, the interpre-
tation of the parameters must be based on a different cri-
terion: μ is again speciation rate for producers, whereas
δ and ε need to be interpreted as the consumer-driven
species extinction rate and the consumer (externally-
driven) extinction rate, respectively. An example of the
dynamics displayed by this model is shown in figure 6.
After a major extinction (reducing both assemblies to
5% of their pre-extinction equilibrium diversity) produc-
ers recover first, followed by consumers after a long de-
lay (fig 6 b-c). The first group follows a rapid recov-
ery characteristic of the simple model discussed here for
β=̃1. Consistently with our prediction, consumers need
a much larger time, because the speciation rate εS1S2

that appears in the right-hand side of equation (23) is
the product of two species numbers, thus consistent with
the β = 2 model discussed before. This observation helps
interpret the meaning of our former model in light of the
position of the group (e.g. trophic level) whose recov-
ery pattern is analyzed within a given ecological network
(e.g. food web). In this sense, long delays should be ex-
pected as we move up through the food chain (Solé et
al., 2002).
There are two ways to achieve greater understanding of

recovery dynamics. Most paleontologists have followed a
largely empirical approach of developing detailed analy-
ses of the recovery patterns within local or regional areas,
sometimes integrating the fossil data with geological or
geochemical information. Here the hope is that through
the accumulation of a wealth of data some empirical gen-
eralities might emerge. The alternative approach is to
develop, test and refine models of the processes that may
be involved in recovery, to serve as a guide to empirical
exploration.
The number of available models of recovery is very

limited, however. As mentioned, Sepkoski (1984) in-
voked a simple pattern of logistic growth following the
end of a biotic perturbation, although with different in-
trinsic rates of increase between his Evolutionary Faunas.
The teserae models of Valentine (1980; see also Valentine
and Walker 1986, 1987) have had a more pervasive ef-
fect. Instantiations of earlier less-rigorously formulated
ideas on filling empty ecospace, they explicitly considered
how clades might diversify into open ecospace. These
models invoked empty niches (not simply unutilized re-
sources) as a critical component and did not examine
how species interactions might facilitate diversification.
These models, strongly influenced by the ecology of that
time (MacArthur and Levins 1967, Rosenzweig 1975)
considered competition between species as the only inter-
action regulating diversity recoveries, which inextricably
leads to logistic recovery patterns. However, other types
of interactions, i.e. facilitation, mutualism or predation,

played a crucial role in the rebuilding process and add
complexity to the diversification process. Indeed, current
ecological models of filling niche space assume species’
niches that are partially determined by their interactions
with other species within the community, both as re-
sources and as consumers, and speciation occurs within
this ecological context where network structure plays a
key role (Williams & Martinez 2000, Drossel et al. 2004;
Pascual and Dunne 2004; Montoya et al., 2006; Dunne
et al. 2008).
We began developing a new generation of recovery

models several years ago. Initially (Sole et al 2002) we
evaluated a simple model with three trophic levels cor-
responding to primary producers, herbivores and carni-
vores and found that recovery would initiate at the lowest
level of the food chain, and delays in recovery times in-
creased as we move up in the food web. These results
immediately suggested that empirical studies should in-
vestigate the relative timing of post-extinction recoveries
at different trophic levels, using carbon isotope fluctua-
tions as a proxy for primary productivity (e.g. d’Hondt
et al 1998).
More useful, however, would be a suite of process-based

models, testable with evidence from the fossil record,
which would capture the range of possible post-extinction
recovery dynamics (Roopnarine et al., 2007). This would
allow paleontologists to plan field work with the intent
of testing these alternative models and allow iterative
refinement of such models. With this paper we have be-
gun development of such a theoretical toolkit, with the
first process-based model to capture species interactions
as an essential component. The results make several spe-
cific predictions that can be further tested with data from
different recovery events. In particular, if species inter-
actions are a significant component of post-extinction di-
versification then the length of the delay before the onset
of rapid recovery should scale with the speciation rate.
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