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ABSTRACT 

Meticillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of 

nosocomial pneumonia. Inadequate or inappropriate antimicrobial therapy, 

often caused by antimicrobial resistance, is associated with increased 

mortality for these infections. Agents currently recommended for the treatment 

of MRSA pneumonia include vancomycin and linezolid in the USA, and 

vancomycin, linezolid, teicoplanin and quinupristin/dalfopristin in Europe. 

Antimicrobials such as tigecycline and daptomycin, although approved for the 

treatment of some MRSA infections, have not demonstrated efficacy 

equivalent to the approved agents for MRSA pneumonia. Further agents lack 

data from randomised controlled trials (e.g. fosfomycin, fusidic acid or 

rifampicin in combination with vancomycin). Antimicrobial agents that have 

recently been approved or are being investigated as treatments for MRSA 

infections include the lipoglycopeptides telavancin (approved for the treatment 

of complicated skin and skin-structure infections in the USA and Canada), 

dalbavancin and oritavancin, the cephalosporins ceftobiprole and ceftaroline, 

and the dihydrofolate reductase inhibitor iclaprim. To be an effective treatment 

for MRSA pneumonia, antimicrobial agents must have activity against 

antimicrobial-resistant S. aureus, penetrate well into the lung, have a low 

potential for resistance development and have a good safety profile. Here, the 

available data for current and potential future MRSA pneumonia antimicrobials 

are reviewed and discussed. 
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1. Introduction 

Pneumonia is a common infection in communities and healthcare facilities, 

with mortality rates as high as 76% reported under some circumstances in 

ventilated patients [1,2]. Currently accepted categories of pneumonia include 

community-acquired pneumonia (CAP) and nosocomial pneumonia, the latter 

encompassing healthcare-associated pneumonia (HCAP), hospital-acquired 

pneumonia (HAP) and ventilator-associated pneumonia (VAP). CAP is 

defined as pneumonia occurring outside of the hospital or within 48 h of 

hospital admission in patients with no prior contact with the healthcare 

system. HCAP is defined as pneumonia acquired outside of the hospital by 

patients with certain risk factors for infection with pathogens of nosocomial 

origin [3,4]. Patients are required to have at least one of the following risk 

factors for a diagnosis of HCAP: hospitalisation for >2 days in the previous 90 

days in an acute care facility; residence in a nursing home or other long-term 

care facility; previous antibiotic therapy, chemotherapy or wound care in the 

previous 30 days; haemodialysis in a hospital or clinic; home infusion therapy 

or wound care; or a family member infected with a multidrug-resistant (MDR) 

pathogen [1]. HAP is defined as pneumonia occurring after 48 h following 

hospital admission and, similarly, VAP is defined as pneumonia occurring at 

least 48 h after endotracheal intubation [1]. 

 

Nosocomial pneumonia is associated with increased disease severity, 

mortality, length of hospital stay and hospital costs compared with CAP [4]. 

HCAP is more similar to HAP and VAP in terms of causative organisms, 



Page 4 of 53

Acc
ep

te
d 

M
an

us
cr

ip
t

4 

treatment requirements and prognosis than it is to CAP [4]. A distinction can 

also be made between early-onset and late-onset nosocomial pneumonia, 

with late-onset infections (≥5 days of current hospitalisation) more likely to be 

caused by MDR pathogens [1]. Additional risk factors for infection with MDR 

pathogens are antimicrobial therapy in the previous 90 days, current 

hospitalisation of at least 5 days, high frequency of antibiotic resistance in the 

community or hospital unit, presence of risk factors for HCAP, or 

immunosuppressive disease and/or therapy [1]. 

 

Potential pathogens and recommended empirical antimicrobial therapies for 

nosocomial pneumonia, according to the American Thoracic 

Society/Infectious Diseases Society of America (ATS/IDSA) 2005 guidelines 

[1], are shown in Table 1. Other more recent guidance includes the 2008 UK 

HAP treatment guidelines [5] and the wider European perspective of HAP 

published in 2009 [6]. As the ATS/IDSA guidelines are the most widely 

accepted worldwide, these guidelines have been selected as the basis for 

further discussion. An update of the ATS/IDSA 2005 guidelines is expected in 

2010. As the causative pathogen is rarely identified before antimicrobial 

therapy is initiated, the relevance of the categorisation of pneumonia is to 

guide prompt administration of an appropriate (pathogen is susceptible) and 

adequate (high enough level of drug at the site of infection) empirical 

antimicrobial treatment [1]. 

 

Inadequate (insufficient level of agent at the site of infection), inappropriate 

(pathogen resistant to agent) or delayed antimicrobial therapy is associated 
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with increased pneumonia mortality [7–9] as well as increased length of 

hospital stay and costs [10]. Antimicrobial resistance is thought to be an 

important determinant of inadequate or inappropriate antimicrobial 

administration. Kollef et al. [8] demonstrated by multiple logistic regression 

analysis that inappropriate antimicrobial therapy was independently 

associated with prior administration of antibiotics (thought to result in 

subsequent infection with drug-resistant pathogens) in Intensive Care Unit 

(ICU) patients. Furthermore, this same study demonstrated that patients 

infected with meticillin-resistant Staphylococcus aureus (MRSA) were more 

likely to receive inappropriate antimicrobial therapy [8]. Similarly, increasing 

vancomycin minimum inhibitory concentrations (MICs) have been associated 

with administration of inadequate antimicrobial therapy and increased 

mortality due to MRSA bacteraemia [11,12]. 

 

Staphylococcus aureus is a major cause of HCAP, HAP and VAP, and 

increasingly CAP in some countries, particularly the USA [13]. Staphylococcus 

aureus is uniquely problematic due to its ubiquity, expression of virulence 

factors and high frequency of resistance to many antimicrobial agents [14]. 

Staphylococcus aureus was the only pathogen that correlated with mortality in 

a multiple logistic regression analysis carried out in a large retrospective 

cohort study of inpatients with culture-positive pneumonia in the USA [4]. 

MRSA is growing in prevalence and is now endemic in many healthcare 

facilities and communities [15]. In 2003, >60% of S. aureus isolates from US 

ICUs were meticillin-resistant [16]. In Europe, there is a North to South trend 

in the proportion of S. aureus that is meticillin-resistant, ranging from 0% in 
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northern European countries to >50% in more southern countries [17]. Some 

strains of MRSA, particularly those of community origin [community-acquired 

MRSA (CA-MRSA)], produce the Panton–Valentine leukocidin (PVL) toxin, 

which is associated with necrotizing infections, often in previously healthy 

individuals [18]. PVL-producing strains may become of increasing importance 

if CA-MRSA strains continue to invade the hospital setting but they will not be 

discussed further in this article in order to maintain a focus on nosocomial 

pneumonia in which PVL-producing strains are much less prevalent. 

 

A summary of the antimicrobial agents currently approved for the treatment of 

MRSA pneumonia in the USA and Europe as well as those that may provide 

treatment options in the future can be found in Table 2 and are discussed 

further hereafter. 

 

2. Antimicrobial agents approved for the treatment of MRSA 

pneumonia 

Only vancomycin and linezolid are currently approved in the USA for the 

treatment of MRSA pneumonia. In some European countries, teicoplanin and 

quinupristin/dalfopristin (Q/D) are available in addition to vancomycin and 

linezolid for this indication. 

 

2.1. Vancomycin 

Vancomycin is a glycopeptide antibiotic that disrupts cell wall synthesis in 

Gram-positive bacteria by inhibiting peptidoglycan biosynthesis (Fig. 1). It is 
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generally considered slowly bactericidal. Although currently the treatment of 

choice, there are limitations of vancomycin for the treatment of pneumonia 

and other serious infections caused by MRSA [19]. Vancomycin has been 

shown to be less effective than -lactams for the treatment of meticillin-

susceptible S. aureus infections [20–23]. In addition, vancomycin penetrates 

poorly into the lung at therapeutic doses, which is associated with pneumonia 

treatment failure despite in vitro susceptibility of the bacterial isolates 

[21,24,25]. 

 

Combining vancomycin with rifampicin, fusidic acid or fosfomycin is 

theoretically effective for the treatment of MRSA pneumonia although data 

from randomised controlled (RCTs) trials are lacking. A recent study of 93 

patients in South Korea demonstrated that vancomycin plus rifampicin was 

more effective in the treatment of MRSA nosocomial pneumonia than 

vancomycin alone [26]. Further clinical data are required to assess whether 

such therapy has clinical utility. 

 

Vancomycin resistance is currently uncommon but seems likely to increase as 

use of this agent for the treatment of ever more frequent MRSA infections 

becomes more commonplace [27]. Since the first documented clinical 

infection with vancomycin-intermediate S. aureus (VISA) in 1996 in Japan 

(Mu50) [28], clinical isolates have been observed throughout the world. 

Vancomycin MICs have been observed to be increasing over time (‘MIC 

creep’) [29,30], with increased rates of mortality and treatment failure seen in 

patients with bacteraemia caused by S. aureus with increased vancomycin 
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MIC values [11,12]. Staphylococcus aureus strains may also be ‘tolerant’ to 

vancomycin, defined as a MIC/minimum bactericidal concentration ratio of 

≥32. This takes into account susceptible strains that show increased 

resistance to killing, potentially resulting in treatment failures [31]. 

 

Susceptibility to vancomycin decreases under persistent exposure and 

improves upon removal of the selection pressure [32,33], such that increased 

use of vancomycin to treat escalating MRSA infections will intuitively lead to 

more resistance. 

 

Complete resistance to vancomycin is conferred by the vanA determinant, first 

detected in 1988 in a vancomycin-resistant enterococci (VRE) isolate [34]. In 

vitro studies have shown that vanA has the capacity to be transferred from 

VRE to S. aureus by naturally occurring horizontal gene transfer, thus creating 

a vancomycin-resistant S. aureus (VRSA) [35]. In 2002, the first vanA-

containing VRSA was isolated from a dialysis patient in Michigan, USA [36]; 

such isolates have since been detected throughout the world although the 

incidence remains low. 

 

Vancomycin is frequently combined with -lactam antimicrobials. In 2002, a 

class of MRSA strains that developed vancomycin resistance in the presence 

of -lactam antibiotics [-lactam-induced vancomycin-resistant meticillin-

resistant S. aureus (BIVR)] were reported in Japan [37]. Although defined 

phenotypically, the mechanism of this acquired resistance is not yet 

understood. Up to 20% of MRSA strains in a further Japanese study exhibited 
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the BIVR phenotype [38]. Recent results indicate that BIVR may be 

associated with increased mortality in patients with MRSA bacteraemia [39]. 

 

Vancomycin is associated with nephrotoxicity and ototoxicity, although the 

frequency of these adverse reactions was higher in early reports and is 

attributed to the low purity of early formulations [40]. Nephrotoxicity due to 

vancomycin is of great concern owing to the contribution of acute kidney injury 

to poor clinical outcome in critically ill patients in the ICU, a population 

particularly vulnerable to MRSA infection [41–44]. Concurrent 

aminoglycosides and other known nephrotoxic agents are thought to increase 

the risk of nephrotoxicity during vancomycin therapy, in addition to medical 

conditions including sepsis, liver disease, obstructive uropathy and 

pancreatitis [45]. Monitoring of trough serum vancomycin concentrations is 

recommended to reduce vancomycin nephrotoxicity in patients with unstable 

renal function or in those receiving aggressive or prolonged vancomycin 

therapy or concomitant nephrotoxic agents [45]. 

 

2.2. Linezolid 

Linezolid is approved for the treatment of nosocomial pneumonia in the USA 

and Europe, including cases caused by MRSA. In the USA it represents the 

only alternative to vancomycin for this indication. Linezolid is a synthetic 

oxazolidinone that prevents binding of the 30S and 50S ribosomal subunits, 

thus inhibiting the initiation of protein synthesis (Fig. 1) [46]. Linezolid has 

activity against Gram-positive pathogens, including bacteriostatic in vitro 
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activity for staphylococci, but has limited activity against Gram-negative 

bacteria [46]. 

 

Two retrospective subgroup analyses of ventilated and non-ventilated patients 

with MRSA [47,48] from nosocomial pneumonia clinical trials [49,50] showed 

that linezolid-treated patients had higher survival and clinical cure rates than 

vancomycin-treated patients. It has been suggested that this may be due to 

the favourable intrapulmonary distribution of linezolid [51]. However, the 

viability and validity of these subset analyses has been questioned [52,53] 

such that further trials are required before linezolid can be recommended to 

be used preferentially over vancomycin for the treatment of MRSA 

pneumonia. A recent trial of patients with MRSA VAP failed to show statistical 

superiority of linezolid over vancomycin, although linezolid-treated patients 

had numerically better values compared with vancomycin-treated patients with 

respect to microbiological eradication (56.5% and 47.4%, respectively), 

clinical cure (66.7% and 52.9%, respectively), survival rate (86.7% and 70.0%, 

respectively), length of hospitalisation (18.8 days and 20.1 days, respectively), 

duration of ventilation (10.4 days and 14.3 days, respectively) and length of 

ICU stay (12.2 and 16.2 days, respectively) [54]. 

 

Resistance was first observed in a clinical S. aureus isolate in 2001 [55], 

although the LEADER surveillance programme has shown that 99.55% of 

isolates remained susceptible to linezolid in the USA in 2006 [56]. 
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Thrombocytopenia is a commonly observed adverse reaction to linezolid 

therapy, with occurrence rates of ca. 30% [57–59], a rate much higher than 

that reported in phase 3 trials [46]. Thrombocytopenia is more common 

following prolonged treatment (>14 days) and in patients with renal 

insufficiency [58,60]. The inhibition of mitochondrial protein synthesis by 

linezolid can result in potentially severe clinical effects, including 

optic/peripheral neuropathy and lactic acidosis [61]. These events are not 

frequently observed and are mostly reversible following termination of linezolid 

treatment, but there are reports of severe irreversible effects such as 

permanent blindness in patients treated for only a short time [62]. As a 

reversible, non-selective monoamine oxidase inhibitor, linezolid in 

combination with serotonergic agents has been associated with serotonin 

syndrome [63]. The linezolid licence recommends that treatment be restricted 

to a maximum of 28 days [46]. 

 

2.3. Teicoplanin 

Teicoplanin is a glycopeptide with bactericidal activity against many Gram-

positive pathogens, including MRSA. It is approved for the treatment of lower 

respiratory tract infections, including those caused by MRSA, in some parts of 

Europe but not in the USA. 

 

Linezolid was shown to be superior to teicoplanin for the treatment of 

suspected or confirmed Gram-positive infections (skin infections, pneumonia 

and bacteraemia) [64] and equivalently effective for the treatment of Gram-

positive infections in the critically ill [65]. A retrospective analysis comparing 
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the two drugs also indicated the clinical superiority of linezolid over 

teicoplanin, with numerically better response to therapy (although not 

statistically significant) for S. aureus infections, including MRSA [66]. 

 

Although there is evidence to suggest that the tissue penetration of teicoplanin 

may be better than that of vancomycin [67], lung penetration may be 

suboptimal. A study in critically ill patients with VAP indicated that high 

teicoplanin doses are required to reach adequate trough concentrations in the 

lung [68]. In addition, owing to a common target in the bacterial cell wall, 

reduced susceptibility to teicoplanin in S. aureus manifests in the same way 

as that of vancomycin, and a general term for strains with reduced 

susceptibility to either agent is glycopeptide-intermediate S. aureus (GISA) 

[69]. 

 

Teicoplanin is generally considered to have a favourable safety profile 

compared with vancomycin, with lower risk of nephrotoxicity and reactions 

resulting from histamine release (such as red man syndrome). However, 

thrombocytopenia is more commonly observed during teicoplanin than 

vancomycin therapy, especially when administered at does higher than those 

normally recommended [70,71]. 

 

2.4. Quinupristin/dalfopristin 

Q/D consists of two streptogramin components; quinupristin inhibits late-stage 

protein synthesis whilst dalfopristin inhibits early-stage protein synthesis (Fig. 

1) [72]. Q/D has demonstrated good in vitro activity against many Gram-
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negative and Gram-positive pathogens, including S. aureus resistant to 

meticillin and vancomycin [72]. Q/D is approved for the treatment of MRSA 

pneumonia in some European countries but not in the USA [72]. The 

ATS/IDSA nosocomial pneumonia guidelines do not recommend Q/D for the 

treatment of MRSA pneumonia owing to clinical cure rates being lower than 

those of vancomycin in clinical trials (30.9% for Q/D vs. 44.4% for vancomycin 

in the bacteriologically evaluable population, and 19.4% vs. 40%, respectively, 

in the all-treated population with a baseline pathogen) [1,73]. 

 

3. What drug attributes should antimicrobials for MRSA 

pneumonia possess? 

New agents are urgently needed to expand the limited repertoire of available 

agents approved for the treatment of MRSA pneumonia. To be a useful agent 

to treat MRSA pneumonia, several characteristics are important. Activity 

against key pneumonia pathogens, including MRSA and other resistant 

strains, is essential (Table 1). Bactericidal activity would be preferable, as the 

rapid resolution of serious infections has many benefits. However, the 

importance of bactericidal versus bacteriostatic activity is still a matter of 

debate [74,75]. The clinical outcome of respiratory infections is dependent on 

sustained antimicrobial concentrations at the site of infection [76], therefore it 

is important that the agent reaches microbiologically active concentrations in 

the relevant parts of the lung and is not inactivated by pulmonary surfactant. 

Low nephrotoxicity is also important; many patients with MRSA pneumonia 

are critically ill in the ICU with multiple organ dysfunction. Antimicrobial-
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induced nephrotoxicity resulting in acute kidney injury may contribute to poor 

clinical outcome in this population [41–44]. As the use of agents with activity 

against MRSA looks certain to increase in the future, an agent with low 

potential for resistance development would be ideal. 

 

4. Approved anti-MRSA agents not currently indicated for the 

treatment of MRSA pneumonia 

Agents approved in some countries for the treatment of MRSA infections other 

than pneumonia that have potential utility for the treatment of MRSA 

pneumonia include tigecycline and telavancin. Daptomycin will not be 

discussed as although this agent has demonstrated good activity against 

MRSA it is inactivated by pulmonary surfactant in animal models [77] and did 

not achieve non-inferiority to vancomycin in clinical trials of pneumonia [78]. It 

is thus unlikely that daptomycin has clinical utility for the treatment of MRSA 

pneumonia. 

 

4.1. Tigecycline 

Tigecycline is a semisynthetic glycycline with antimicrobial activity (generally 

bacteriostatic) against a broad range of Gram-positive, Gram-negative and 

anaerobic pathogens, although it is ineffective against Pseudomonas 

aeruginosa [79]. Like the tetracyclines, tigecycline inhibits protein translation 

by binding the 30S ribosomal subunit, preventing peptide elongation (Fig. 1) 

[80]. 
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Tigecycline is approved in the USA and some European countries for the 

treatment of complicated skin and skin-structure infections (cSSSIs) and 

complicated intra-abdominal infections as well as for the treatment of CAP 

(not including infections caused by MRSA) in the USA. 

 

Early clinical experiences with tigecycline for the treatment of VAP and/or 

bacteraemia caused by MDR Acinetobacter baumannii were positive. 

However, development of resistance in MDR Gram-negative bacilli and 

subsequent poor outcome has been observed in patients with infections 

treated with tigecycline [81]. Furthermore, in a phase 3 study, tigecycline (plus 

ceftazidime and aminoglycoside for P. aeruginosa coverage, if required) did 

not achieve non-inferiority to imipenem (plus an aminoglycoside and 

vancomycin for MRSA coverage, if required) for the treatment of HAP [82]. 

This reflected the lower clinical cure rates for the subgroup of patients with 

VAP [47.9% for tigecycline vs. 70.1% for imipenem (per-protocol analysis) and 

46.5% for tigecycline vs. 57.8% for imipenem (intent-to-treat analysis)] [82]. 

 

Pharmacokinetic/pharmacodynamic studies in humans indicate that 

tigecycline has good penetration into alveolar cells but achieves only low 

levels in epithelial lining fluid (ELF) [83,84]. Such results indicate that 

tigecycline may potentially be underdosed for the treatment of pneumonia 

[83]; effectiveness at higher doses is being investigated in ongoing trials, 

although the impact of such doses on tolerability needs to be carefully 

evaluated. 

 



Page 16 of 53

Acc
ep

te
d 

M
an

us
cr

ip
t

16 

4.2. Telavancin 

Telavancin is a bactericidal lipoglycopeptide derivative of vancomycin with a 

multifunctional mechanism of action, disrupting bacterial cell wall synthesis 

and membrane integrity (Fig. 1) [85]. Telavancin has displayed good activity 

against clinically important Gram-positive pathogens, including MRSA, and 

has displayed rapid concentration-dependent bactericidal activity against S. 

aureus in time–kill studies [86,87]. As with other similar agents, telavancin 

does not have activity against Gram-negative pathogens and is less active 

against vanA-expressing strains of VRE [88]. Telavancin has demonstrated 

good penetration into human ELF and alveolar macrophages, being present at 

concentrations greater than the MIC90 (MIC for 90% of the organisms) for 

MRSA (0.5 g/mL) for the entire dosing interval, and Monte Carlo simulation 

has indicated that the levels of telavancin in ELF are ca. 75% of those in 

plasma [89,90]. In a staphylococcal biofilm model, telavancin was more 

effective than vancomycin and teicoplanin, displaying bactericidal activity [91]. 

 

In phase 3 trials, telavancin demonstrated non-inferiority to vancomycin for the 

treatment of Gram-positive cSSSI [92] and is approved in the USA and 

Canada for this indication. Preliminary data from phase 3 trials of Gram-

positive nosocomial pneumonia showed that clinical cure rates in clinically 

evaluable patients at test-of-cure visit were comparable for telavancin and 

vancomycin [82.7% and 80.9%, respectively; 95% confidence interval (CI) of 

difference in clinical cure rate −4.1 to 7.7] and were higher for telavancin than 

vancomycin in patients with MRSA pneumonia (81.8% and 74.1%, 
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respectively; 95% CI of difference −3.5 to 19.3) and VAP (80.3% and 67.6%, 

respectively; 95% CI of difference −1.8 to 26.8) [93]. 

 

Telavancin has displayed low potential for resistance development in vitro and 

in vivo, potentially due to its unique dual mechanism of action [87,94]. The 

most common side effects reported for telavancin in the phase 3 cSSSI trials 

(>10% incidence) were taste disturbance, nausea, headache, vomiting and 

foamy urine, and in the phase 3 HAP trials (>8% incidence) were diarrhoea, 

renal impairment, anaemia, constipation and hypokalaemia [92,93]. Renal 

dysfunction was observed in 3% of telavancin-treated patients and 1% of 

vancomycin-treated patients in the cSSSI trials [92] and in 10% of telavancin-

treated patients and 8% of vancomycin-treated patients in the HAP trials [93]. 

 

5. Potential new agents for the treatment of MRSA pneumonia 

Agents with activity against MRSA that are currently at various stages of 

development and investigation for the treatment of pneumonia (and are thus 

not approved at present) include the lipoglycopeptides dalbavancin and 

oritavancin, the cephalosporins ceftobiprole and ceftaroline, and the 

dihydrofolate reductase (DHFR) inhibitor iclaprim. 

 

5.1. Lipoglycopeptides: dalbavancin and oritavancin 

Dalbavancin is a lipoglycopeptide derived from teicoplanin with Gram-positive 

activity [95]. Dalbavancin has the same mechanism of action as vancomycin 

(Fig. 1) but has a uniquely long half-life (5–7 days), which allows once-weekly 
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intravenous dosing as part of a two-dose regimen [95]. In vitro studies 

demonstrated that dalbavancin was bactericidal against S. aureus, including 

strains resistant to meticillin and strains with reduced susceptibility to 

vancomycin, although dalbavancin is inactive against pathogens possessing 

the vanA gene [95]. 

 

Dalbavancin demonstrated non-inferiority to linezolid for the treatment of 

cSSSI in phase 3 trials [96]. In these trials, the type and severity of adverse 

events were similar between the treatment groups, with the most frequent 

dalbavancin-associated adverse events being nausea, diarrhoea, elevated 

blood lactate dehydrogenase or -glutamyltransferase level, headache and 

vomiting [96]. 

 

There are no trials currently underway for dalbavancin for the treatment of 

pneumonia such that further data are required to assess the usefulness of 

dalbavancin for this indication. 

 

Oritavancin is a semisynthetic lipoglycopeptide derivative of vancomycin. Like 

telavancin, oritavancin is thought to have a dual mechanism of action 

involving disruption of cell wall synthesis and membrane permeability (Fig. 1) 

[97,98]. Oritavancin has demonstrated bactericidal activity against stationary-

phase and biofilm S. aureus in vitro [99]. Drug concentrations in ELF indicate 

that oritavancin may need to be dosed more aggressively for the treatment of 

pneumonia [100]. In phase 3 studies investigating oritavancin for the 

treatment of cSSSI, oritavancin demonstrated comparable efficacy to 
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vancomycin as well as a favourable safety profile. There are no pneumonia 

trials currently underway; further data are required to assess the usefulness of 

oritavancin in the treatment of pneumonia. 

 

5.2. Cephalosporins: ceftobiprole and ceftaroline 

Cephalosporins inhibit bacterial cell wall formation by binding penicillin-binding 

proteins (PBPs) and preventing peptidoglycan cross-linking in the cell wall 

(Fig. 1). 

 

Ceftobiprole is a fifth-generation cephalosporin with activity against Gram-

positive and Gram-negative organisms. As ceftobiprole is structurally 

engineered to bind to PBP2a, as encoded by the mecA gene of -lactam-

resistant MRSA, it has bactericidal activity against MRSA [101]. Ceftobiprole 

has similar activity to cefepime against P. aeruginosa [102]. Ceftobiprole is 

thought to be stable against staphylococcal -lactamases but its activity does 

not cover extended-spectrum -lactamase (ESBL)-producing bacteria [101]. 

 

Ceftobiprole demonstrated non-inferiority to vancomycin for the treatment of 

cSSSI in two phase 3 trials [103,104]. Ceftobiprole has also demonstrated 

non-inferiority to ceftriaxone, with or without linezolid, for the treatment of CAP 

requiring hospitalisation in phase 3 trials, with cure rates of 87% for 

ceftobiprole and 88% for the comparator agents [105,106]. In a further phase 

3 trial, ceftobiprole achieved non-inferiority for the treatment of HAP compared 

with ceftazidime plus linezolid (clinical cure in clinically evaluable patients 77% 
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for ceftobiprole and 76% for combination therapy), but was inferior for the 

treatment of ventilated patients; further analysis of this subset of patients is 

ongoing [106,107]. 

 

In serial-passage studies of ceftobiprole against MRSA, PBP2a-mediated 

resistance has been observed, with high-level resistance also observed in a 

mecA-negative MRSA strain, suggesting that multiple mechanisms of 

resistance development may be possible [108]. The clinical relevance of this 

in vitro resistance is unresolved. 

 

Ceftobiprole is generally well tolerated. In single-dose [109] and multiple-dose 

[110] pharmacokinetic evaluations in healthy volunteers, no serious adverse 

events were reported and most events were mild. In phase 3 trials of cSSSI, 

the overall incidence of adverse events was similar between ceftobiprole- and 

vancomycin-treated patients [103,104]. In phase 3 and pharmacokinetic 

studies, nausea, dysgeusia, vomiting and headache were the most common 

adverse events [103,104,109,110]. 

 

Ceftaroline has demonstrated a greater range of Gram-positive activity than 

other members of the cephalosporin class, including activity against S. aureus 

strains that are resistant to meticillin, linezolid and daptomycin [111–115]. 

Ceftaroline also has activity against some Gram-negative organisms but is not 

active against P. aeruginosa and its activity is reduced against ESBL-

producing bacteria. Ceftaroline achieved non-inferiority to vancomycin plus 

aztreonam in phase 3 trials for cSSSI [113,116]. In two phase 3 trials for 
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bacterial CAP requiring hospitalisation, ceftaroline demonstrated non-

inferiority to ceftriaxone [117]. 

 

Although the broad spectrum of ceftaroline can be considered a favourable 

attribute, some believe that its use for the treatment of MRSA infections may 

result in the emergence of resistant Gram-negative isolates, although this is 

yet to be investigated [113]. This may be of particular concern given that 

ceftaroline is not active against P. aeruginosa, a common VAP pathogen. 

 

In a phase 2 study of ceftaroline for the treatment of cSSSI, the overall 

incidence of adverse events was similar between ceftaroline and standard 

cSSSI treatment [118]. The most common treatment-related adverse events 

(≥6% frequency) for ceftaroline were crystalluria, headache, insomnia, nausea 

and elevated levels of blood creatine phosphokinase, alanine 

aminotransferase or aspartate aminotransferase. Safety data from the CAP 

trials have not yet been published. 

 

5.3. Dihydrofolate reductase inhibitors: iclaprim 

Iclaprim is a synthetic diaminopyrimidine that functions by inhibiting the 

microbial DHFR enzyme, which depletes the bacterial cell of thymidine 

monophosphate and thus affects RNA, DNA and protein synthesis (Fig. 1) 

[106]. Iclaprim is bactericidal against clinically important Gram-positive 

pathogens, including MRSA [119,120]. Iclaprim appears to have a lower 

potential for resistance development than trimethoprim. Additionally, 

resistance is less likely to develop as a result of the use of other MRSA 
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antimicrobials, as iclaprim has a different mechanism of action than many of 

the agents that are currently available or in development. However, the 

antibacterial effect of DHFR inhibitors can be antagonised in vitro by 

supplementing thymidine owing to bacterial uptake of exogenous thymidine 

and its subsequent conversion into thymidine monophosphate by thymidine 

kinase, bypassing the DHFR inhibition [121,122]. Because thymidine is found 

in large concentrations in human pus, some believe that iclaprim and other 

DHFR inhibitors are less effective in purulent infections [123]. 

 

In a phase 2 trial comparing iclaprim with vancomycin for the treatment of 

cSSSI, clinical cure was similarly high for patients treated twice daily with 

iclaprim 0.8 mg/kg, iclaprim 1.6 mg/kg or vancomycin 1 g (92.9%, 90.3% and 

92.9%, respectively) [124]. Iclaprim was well tolerated during this 

investigation. Of 32 patients who received iclaprim 1.6 mg/kg, 2 patients 

experienced pruritus and erythema that was deemed related to the study 

drug, whereas no patients who received iclaprim 0.8 mg/kg reported any 

adverse event. Two phase 3 studies demonstrated the non-inferiority of 

iclaprim to linezolid for the treatment of cSSSI while indicating a favourable 

safety profile [125]. 

 

Iclaprim showed good pulmonary distribution in healthy human subjects [126]. 

A phase 2 trial comparing iclaprim with vancomycin for the treatment of non-

CAP pneumonia has been terminated for non-clinical reasons [127]. Further 

data from pneumonia trials are required to assess the potential usefulness of 

this agent in the treatment of drug-resistant pneumonia. 
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6. Conclusions 

MRSA has become an important pneumonia pathogen with high morbidity, 

mortality and healthcare costs and with relatively few agents approved for the 

treatment of MRSA pneumonia. Vancomycin exhibits poor penetration into 

lung tissue, and increasing MIC values for S. aureus are associated with 

treatment failure and poor microbiological eradication. Older agents such as 

fosfomycin, fusidic acid and rifampicin in combination with vancomycin are 

theoretically effective; however, clinical data from RCTs are lacking. Linezolid 

has exhibited better performance than vancomycin in post hoc analyses from 

clinical studies with regard to mortality and pathogen eradication. However, in 

the only RCT (which was considered underpowered) there was no advantage 

of linezolid with regard to survival, only in respect to secondary end-points. 

Studies have indicated that teicoplanin may not be as effective as linezolid for 

the treatment of Gram-positive infections, and Q/D has demonstrated lower 

efficacy than vancomycin for the treatment of MRSA pneumonia. 

 

Some RCTs of novel MRSA antibiotics for nosocomial pneumonia have 

produced disappointing results. Of the newer drugs discussed in this article, 

thus far only telavancin has achieved comparable clinical cure rates to 

vancomycin for the treatment of nosocomial pneumonia in phase 3 trials, 

although it is currently not approved for this indication. Whether any of the 

agents discussed here will provide a viable alternative for the treatment of 

MRSA pneumonia will be revealed in the future. 
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In summary, there is an urgent need for new antimicrobials that have good 

safety profiles, adequate lung penetration, low potential for resistance 

development and clinical efficacy for the treatment of MRSA pneumonia. 
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Fig. 1. (A) Sites of action of current and potential antimicrobial agents for the 

treatment of meticillin-resistant Staphylococcus aureus (MRSA) pneumonia. 

(B) Cell wall synthesis inhibitors prevent peptidoglycan polymerisation and 

cross-linking, catalysed by penicillin-binding proteins (PBPs), by binding PBPs 

or their D-Ala-D-Ala target. 
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Table 1 

Potential pathogens and recommended empirical antimicrobial therapy for the treatment of nosocomial pneumonia according to 

the American Thoracic Society/Infectious Diseases Society of America (ATS/IDSA) guidelines [1] 

 Potential pathogens Recommended therapy 

HAP and VAP in patients with no known risk factors for 

MDR pathogens, early onset (until Day 4) and any 

disease severity 

Streptococcus pneumoniae 

Haemophilus influenzae 

MSSA 

Antibiotic-sensitive enteric 

Gram-negative bacilli 

Ceftriaxone 

or 

levofloxacin, moxifloxacin, ciprofloxacin 

a 

or 

ampicillin/sulbactam 

or 

ertapenem 

Edited Table 1
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HAP, VAP and HCAP in patients with late-onset disease 

or risk factors for MDR pathogens and all disease 

severity 

Pathogens as above, plus: 

Pseudomonas aeruginosa 

ESBL-positive Klebsiella 

pneumoniae b 

Acinetobacter spp. b 

MRSA 

Legionella pneumophila b 

Antipseudomonal cephalosporin 

(cefepime, ceftazidime) 

or 

antipseudomonal carbapenem 

(imipenem or meropenem) 

or 

-lactam/-lactamase inhibitor 

(piperacillin/tazobactam) 

plus c 

antipseudomonal fluoroquinolone 

(ciprofloxacin or levofloxacin) 

or 

aminoglycoside (amikacin, gentamicin 

or tobramycin) 

plus 

linezolid or vancomycin d 

HAP, hospital-acquired pneumonia; VAP, ventilator-associated pneumonia; MDR multidrug resistant; MSSA, meticillin-susceptible 

Staphylococcus aureus; HCAP, healthcare-associated pneumonia; ESBL, extended-spectrum -lactamase; MRSA, meticillin-

resistant S. aureus. 
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a The frequency of penicillin-resistant S. pneumoniae and MDR S. pneumoniae is increasing; levofloxacin or moxifloxacin are 

preferred to ciprofloxacin. In the authors’ opinion, ciprofloxacin as empirical antimicrobial therapy for early-onset HAP is insufficient 

owing to limited activity against pneumococci, which occur frequently in early-onset pneumonia. 

b If an ESBL-positive strain, such as K. pneumoniae, or an Acinetobacter spp. is suspected, a carbapenem is a reliable choice. If L. 

pneumophila is suspected, the combination antibiotic regimen should include a macrolide (e.g. azithromycin), or a fluoroquinolone 

(e.g. ciprofloxacin or levofloxacin) should be used rather than an aminoglycoside. 

c Combination therapy with fluoroquinolones or aminoglycosides is recommended but remains an issue of debate as clinical data 

are contradictory. 

d If MRSA risk factors are present or there is a high incidence locally. 



Page 48 of 53

Acc
ep

te
d 

M
an

us
cr

ip
t

1 

Table 2 

Summary of current and potential future agents for the treatment of meticillin-resistant Staphylococcus aureus (MRSA) pneumonia 

 Class Current MRSA 

indications 

Pneumonia data Significant clinical side effects 

Vancomycin Glycopeptide Vancomycin-susceptible 

MRSA infections 

Approved for the 

treatment of 

pneumonia 

caused by MRSA 

Nephrotoxicity, ototoxicity 

Linezolid Oxazolidinone Nosocomial pneumonia, 

cSSSI 

Approved for the 

treatment of 

pneumonia 

caused by MRSA 

Myelosuppression (particularly 

thrombocytopenia), lactic acidosis, 

optical/peripheral neuropathy, 

serotonin syndrome 

Daptomycin Lipopeptide cSSSI, bacteraemia, 

right-sided infective 

endocarditis 

Inferior to 

vancomycin in 

phase 3 trials 

(inactivated by 

pulmonary 

surfactant) 

Myopathy, peripheral neuropathy 

Edited Table 2
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Teicoplanin Glycopeptide Not USA: potentially 

serious Gram-positive 

infections 

Approved in some 

European 

countries. 

Potentially not as 

effective as 

linezolid for the 

treatment of HAP 

Myelosuppression (particularly 

thrombocytopenia) 

Quinupristin/dalfopristin Streptogramin 2 Not USA: cSSSI, 

nosocomial pneumonia 

and VRE infections 

when there is 

documentation such 

that no other agent is 

suitable 

Approved in some 

European 

countries. Lower 

cure rates than 

vancomycin in 

phase 3 HAP 

trials 

Myelosuppression, 

myalgia/arthralgia, 

hyperbilirubinaemia 
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Tigecycline Glycylcycline cSSSI, cIAI Approved for CAP 

indication (non-

MRSA); inferior to 

imipenem for 

nosocomial 

pneumonia in 

phase 3 trials 

Hepatic dysfunction, pancreatitis 

Telavancin Lipoglycopeptide Approved for cSSSI in 

USA and Canada. 

Under review in the 

USA for nosocomial 

pneumonia and in 

Europe for cSSSI and 

nosocomial pneumonia 

Non-inferior to 

vancomycin for 

Gram-positive 

nosocomial 

pneumonia in 

phase 3 trials 

Adverse events in phase 3 trials: 

cSSSI (>10% incidence), taste 

disturbance, nausea, headache, 

vomiting, foamy urine; HAP (≥10% 

incidence), diarrhoea, renal 

impairment. Renal dysfunction 

appears to be related to the 

glycopeptide class 
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Ceftobiprole Cephalosporin Investigational, approved 

in the USA for cSSSI 

pending investigation of 

study conduct issues 

Non-inferior to 

linezolid ± 

ceftriaxone for 

CAP and HAP; 

inferior for VAP in 

phase 3 trials 

Adverse events in phase 3 cSSSI 

trials (≥8% incidence): nausea, 

infusion-site reaction, dysgeusia, 

diarrhoea, headache 

Ceftaroline Cephalosporin Investigational, NDA 

expected to be filed for 

cSSSI and CAP in 2009 

Phase 3 CAP trials 

ongoing 

Full phase 3 results not yet 

published 

Dalbavancin Lipoglycopeptide Investigational, all 

marketing applications 

currently withdrawn 

pending new phase 3 

cSSSI trials 

No pneumonia 

trials underway 

Adverse events in phase 3 cSSSI 

trials (≥2% incidence): nausea, 

diarrhoea. Renal dysfunction 

appears to be related to the 

glycopeptide class 

Oritavancin Lipoglycopeptide Investigational, the FDA 

has requested further 

data for cSSSI 

indication 

No pneumonia 

trials underway 

Full phase 3 results not yet 

published. Renal dysfunction 

appears to be related to the 

glycopeptide class 
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Iclaprim Dihydrofolate 

reductase 

inhibitor 

Investigational, the FDA 

has requested further 

data for cSSSI 

indication 

No pneumonia 

trials underway 

Full phase 3 results not yet 

published 

cSSSI, complicated skin and skin-structure infection; HAP, hospital-acquired pneumonia; VRE, vancomycin-resistant enterococci; 

cIAI, complicated intra-abdominal infection; CAP, community-acquired pneumonia; VAP, ventilator-associated pneumonia; NDA, 

new drug application; FDA, US Food and Drug Administration. 
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