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Abstract

This paper reports on mass spectrometry analysis performed downstream a microwave

discharge in Ar-N2-H2 gas mixture in nitriding conditions. Investigations are focused on the

main simple radicals NH2, NH and N, and on the molecular species NH3 and N2H2 produced.

Because of wall desorptions due to catalytic effects, we must develop a specific method

taking into account both wall desorption and dissociative ionization effects, in order to correct

the mass spectrometer signal intensity. The relative concentrations of the previous species are

studied in various gas mixtures. Correlations are made between the plasma chemistry and

plasma parameters (electron density and energy electron distribution function), measured by

means of Langmuir probes spatially resolved within the plasma expansion. These results show

the efficiency of ternary gas mixtures (Ar-N2-H2) to produce electrons and NxHy species used

in plasma nitriding process.

1. introduction.

Microwave discharge sustained in Ar-N2-H2 gas mixtures are used in a wide range of

industrial applications. Like ammonia synthesis /1/, nitriding processes for surface treatment

of metallic or polymer pieces /2,3,4/ and for the elaboration of optical or electronic devices

/5/. The efficiency of such plasma processes depends on the knowledge of the various

elementary mechanisms involved in the gas phase and at the surface of the reactor wall or of

the work pieces. In previous papers /6, 7/, we have shown that the surface oxide reduction of

thin molybdenum films, in the nitriding treatment, depends on the gas composition in the

plasma expansion and on the distance between the work piece surface and the discharge

centre. We confirm correlations between nitrided layers characteristics, discharge expansion
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conditions, gas composition and Langmuir probe measurements performed within the plasma

expansion.

The purpose of this paper is to investigate the various chemical species produced within the

discharge and in the expansion in nitriding treatment conditions. We make correlation

between the gas compositions and the plasma parameters in the working conditions.

Investigations are performed by means of mass spectrometer downstream a microwave

discharge and by means of spatially resolved Langmuir probe in the plasma expansion in

nitriding conditions

2. Experimental set-up.

The experimental setup is shown on Figure 1. It consists of a microwave discharge (SAIREM

generator working at 2.45 GHz) produced in a quartz tube (internal diameter 16mm and

external diameter 19mm). In order to keep a constant wall temperature, the quartz tube is

refreshed by means of air cooling. A Roots pumps (70-700 m3/hour) with an adjustable

rotational speed is used and a gas flow velocity ranges from 10 to 30 m/s is maintained

constant in the stainless tube (inner diameter 50mm) located above the discharge and

collecting species produced within the plasma. The flow is considered as a “plug” flow and

the velocity has been previously measured by means of absorption spectroscopy

measurements on Ar(3P2) metastable species produced in an Ar microwave discharge. The

total pressure in the discharge tube is held constant and ranges from 10 to 100 Pa. The mass

spectrometer (QMG 421 Balzers) is fixed above this stainless steel tube at 30cm from the

discharge. The ionization of neutral species is performed using the electron impact technique

by means of a cross beam source. Before each experiment, the reactor is heated and pumped

at 10-4 Pa and maintained at this pressure for several hours by means of a molecular pump in

order to clean the reactor wall. Because the quadrupole cannot operate at pressure lower than

10-3 Pa, a specific two-stage differential pumping device has been made and is detailed in ref

/8/. It consists of two independent coaxial chambers fitted into each other and equipped with

separated Turbo pumps units. The quadrupole is located at the middle of the inner chamber

(see Figure1). A charged particles collector (Langmuir probe) is located in the grounded

stainless steel tube. Results show that no ion or electron is crossing this area located 20cm

below the mass spectrometer sample hole. Thus, investigations are performed in a region

without charged particle and no reaction between charged particles and neutral species occurs

in this tube between the discharge and the mass spectrometer. The present study gives



3

information of reactivity between neutral species only. Even though, in the microwave

expanding plasma used for molybdenum nitriding process, reactive processes between

charged particles and neutral species are efficient probably until the substrate holder /7/.

3. Mass spectrometry analysis downstream the discharge.

In discharges sustained in the ternary gas mixture Ar-N2-H2, NHx species partly results of

plasma catalysis processes on the reactor wall /9, 10/ or are directly produced in the discharge

bulk. A large part of the mass spectrometer signal intensity is due to desorbed species from

the reactor wall. This effect occurs when the discharge is off or on. So, it is necessary to take

into account this trouble in order to measure the real effect of the discharge on the gas

composition.

3.1. The main species detected

The main species detected in the Ar-N2- H2 discharge afterglow are observed at m/q=1, 2, 14,

15, 16, 17, 18, 28, 30 32 and 40 and correspond to H+, H2
+, N+, NH+, NH2

+, NH3
+ (or OH+), 

H2O
+(residual water), N2

+, N2H2
+, O2

+(residual oxygen) and Ar+ respectively. N2H4
+ and NH4

+

are probably not produced in these experiments. No significant change on the peak intensity is

observed at m/q=32 and 18 when the discharge off is switched on. Because of the low

stability of NH4 species and of its short lifetime in the ground state with respect to the

dissociation process (0.43 ns) /11, 12/, NH4 concentration downstream the discharge is

insignificant. In a previous paper /13/, NH4
+ has been observed by means of mass

spectrometer within a N2-H2 discharge. In this case, this stable ion is probably directly

produced in the discharge and not in the ionization chamber of the mass spectrometer by

direct ionization of the neutral form (NH4). The particular case of N2H4, will be discussed

later in this text.

For all species (i) detected, the signal intensity measured downstream the discharge, where

ion concentration is negligible, is the sum of two contributions. One is due to the direct

ionization of species (i) and the second is due to the dissociative ionization of larger species

(j). This effect can be written /8/,

Ii= I(i+/i) + Σj I(i+/j)=Ti.σ(ι+/i)(εe).ni + Ti. Σj (σ(ι+/j)(εe).nj ) (1)
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Where, σ(ι+/i)(εe) is the ionization cross section due to the direct ionization of i species and

σ(i+/j)(εe) is the dissociative ionization cross section of j species producing i ions. Ti is the

transmission factor. It depends on m/q, on the pressure and on the electron energy in the

ionization chamber. When the measurements are performed within the discharge, we must

add a term to the signal given by Equation 1, which is due to ions (i) produced within the

discharge.

The main problem is now to separate in the total signal intensity the part due to the direct

ionization of i species from the part due to the dissociative ionization processes of j species

larger than i species. In the next part, we will investigate these different contributions in the

case of the different species detected.

3.1.1. The case of NH3.

This species is detected at m/q=17 and consequently, the signal measured can be mixed with

that of OH+ ion, which is due to the dissociative ionization process of H2O (residual water) in

the ionization chamber. The contribution of each dissociation process can be estimated,

considering the change of the signal intensity versus the electron energy used in the ionization

chamber. This method was previously reported by Toyoda et al /14-15/ in the case of CH2 and

CH3 radicals produced in a methane containing discharge. Figure 2 shows the change of the

signal intensity measured for m/q=17 versus the electron energy. Results are compared to the

signal intensity calculated assuming the direct ionization process using cross section values

given by Märk et al /16/, Tarnovsky et al /17/ and Rejoub et al /18/ in the case of

hydrogenated and deuterated molecules. Results are also compared to the signal intensity

calculated assuming the dissociative ionization process of H2O producing OH+ and using the

cross section values measured by Straub et al /19/ in the case of deuterated molecules

(OD+/D2O). Before any comparison, the measured signal intensity obtained for m/q=17 is

corrected, taking into account the change of the emission current intensity versus the electron

energy in the ionization chamber. This effect is due to the angular divergence of the electron

beam at the entrance slit of the ionization chamber. The correction method has been detailed

in previous works /8/ and correction factor has been measured using the signal intensity

corresponding to Ar(m/q=40). In Figure 2, the signal intensity is calculated in reference to the

value obtained at 25 eV using the fit polynomial through the experimental values. It can be

seen that the signal intensity calculated in the case of the direct ionization and using the cross
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section values given by Märk et al /16/ is larger than the signal intensity calculated using the

cross section values given by Tarnovsky et al /17/ or Rejoub et al /18/. This change could be

explain by the fact that both authors Tarnovsky and Rejoub use deuterated ammonia, and

consequently are not disturbed by the signal due to OH+(m/q=17) ion, which is due to the

dissociative ionization of residual water in the reactor. In the present experiments, the signal

intensity value measured ranges between the value calculated assuming only the direct

ionization of NH3 and the value calculated in the case of the dissociative ionization of H2O.

The signal intensity measured for m/q=17 is the sum of the two contributions, one is due to

the direct ionization of ammonia and the other to the dissociative ionization of water. This can

be written,

I(m/q=17)= I(NH3
+/NH3) + I(OH+/H2O)= T(m/q=17)[(σ(NH3

+/NH3) nNH3) +(σ(OH+/H2O)nH2O)]

Where, T(m/q=17) is the transmission factor of the mass spectrometer at m/q=17,

σ(NH3
+/NH3) and σ(OH+/H2O) are the ionization cross section for the direct ionization of

ammonia and for the dissociative ionization of water respectively. nNH3 and nH2O are the

concentration of ammonia and water respectively.

Assuming only the direct ionization of the water, the signal intensity measured for m/q=18 is

given by,

I(m/q=18)=T(m/q=18) σ(H2O
+/H2O)nH2O

Where T(m/q=18) is the transmission factor for m/q=18, σ(H2O
+/H2O) is the ionization cross

section for the direct ionization of the water and nH2O is the residual water concentration.

Mixing these two last equations, the contribution to the signal intensity due to the direct

ionization of ammonia is given by,

I(NH3
+/NH3)= I(m/q=17) –[T(m/q=17)/T(m/q=18) σ(OH+/H2O)/σ(H2O

+/H2O) I(m/q=18))] (2)

In this equation, the ratio T(m/q=17)/T(m/q=18) is calculated using results reported in ref (8).

Consequently, the part due to the direct ionization of NH3, can be calculated by means of the

signal intensity measured at m/q=17 and m/q=18 and using Equation 2. Results are reported

on Figure 2. It can be seen a good agreement between results of Equation 2 and the previous

ones calculated considering the direct ionization cross section values given in the literature in
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the case of deuterated species (Tarnovsky or Rejoub /17-18/). The part due to the direct

ionization of NH3 ranges from 70 to 90% of the total signal intensity measured for m/q=17,

when electron energy ranges from 25 to 70 eV. The part of the signal results mainly of the

dissociative ionization of water and can be easily suppressed considering the difference

between the signal measured when the discharge is on and off. This simple way for the signal

correction will be used in the next part of the article in order to suppress the contribution due

to the wall desorption in the afterglow.

3.1.2. The case of NHx radicals.

The same considerations have been performed in the case of the simple radicals NH2
+, NH+

and N+ detected in the discharge afterglow.

Figure 3 displays the signal intensity of NH2 taking into account the change of the emission

current intensity versus the electron energy. The results are compared to the values calculated

assuming only the direct ionization of NH2 and using the ionization cross-section values given

by Tarnovsky et al /17/. They are also compared to the calculated values obtained assuming

the dissociative ionization process of ammonia and using the ionization cross section values

given by Tarnovsky /17/ and Märk et al /16/. Results obtained using these two references are

quite different. In one case (Tarnovsky), we can consider that there is no contribution due to

the dissociative ionization of ammonia. In the second case (Märk), this contribution would be

quite obvious. Assuming that this last case gives an overestimation of the dissociative

ionization effect, we will consider it in the following part of this paper, to correct the signal of

NH2. In these conditions (using Märk et al cross section values), results show that the part of

the direct ionization of NH2 is larger than 70% of the total signal, when electron energy

ranges from 25 to 70eV.

As previously done for NH3 and NH2, Figures 4 and 5 give results obtained in the case of NH

and N. Experimental values are compared versus the electron energy to the signal intensity

calculated assuming only the direct ionization of the two radicals. We use the cross section

values measured by Tarnovsky et al /17/ for NH and Brook et al /20/ for N. It can be seen a

good agreement between experimental and calculated values for both species. This shows that

the signal measured for m/q=14 and 15 result mainly of the direct ionization of NH and N.

3.1.3. The case of N2H2 (diimide)
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Figure 6 displays the signal intensity measured for m/q=30 versus the electron energy. As

previously, intensities values are corrected taking into account the change due to the emission

current in the ionization chamber. Comparison is performed with calculated values assuming

only the dissociative ionization of Hydrazine (N2H4), and using ionization cross section values

given by Syage et al /21/. A good agreement is observed between the two curves. This show

that the signal intensity measured for N2H2
+ could be ascribed to the dissociative ionization of

hydrazine. However, N2H4
+ ion is not detected in these experiments and is expected to be

easily detected at these electron energies when N2H4 is produced /22/. Although, the signal

intensity measured for N2H2
+ is the same that the value calculated assuming only the

dissociative ionization of hydrazine, the previous remarks show that N2H4 is not significantly

produced in the present experiments and the signal measured for m/q=30 is probably mainly

due to the direct ionization of N2H2. Comparison of experimental values to calculations

assuming only the direct ionization of N2H2, is necessary in order to confirm the previous

conclusion. However, no data about this ionization process is available in the literature.

According to Stothard et al /23/, the main channel reaction of NH2 +NH2 at low pressure and

ambient temperature is producing N2H2 and H2. The reaction rate constant is rather significant

k=1.3.10-12 cm3 s-1. But, the energy difference between NH2+NH2 and N2H4, is too large and a

three body channel reaction must be considered in order to produce N2H4 and to dissipate the

energy excess. The third body could be no reactive species in the gas volume (k=7.0.10-14

cm3s-1 in He at 1mbar) or at low pressure it is more probably the wall reactor. Considering a

Ni(100) surface at temperature ranges from 200 to 450K, Huang et al /24/ have shown that the

primary mechanism for diimide formation is the recombination of an adsorbed NH surface

intermediate.

This first study shows that in the case of NH and N the signal measured by mass spectrometry

is mainly due to the direct ionization of the neutral radical. However, in the case of NH2 and

NH3, it results of two contributions: The direct ionization and the dissociative ionization of

larger species. These contributions depend on the electron energy in the ionization chamber.

The figure 7 displays the part due to the direct ionization of NH3 and NH2 compared to the

total signal intensity measured for m/q=16 and 17, versus electron energy, and considering the

cross section values given by Märk et al /16/ for NH2 (case of an overestimation). For both

species, the dissociative ionization contributes to less than 30% to the total signal for electron

energy lower than 70 eV.

3.2. The correction of the mass spectrometry signal.
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Before any analysis by means of mass spectrometer in nitriding conditions, it is necessary to

correct the signal intensity measured for each species, removing the part due to the

dissociative ionization of larger species. As previously shown on Figures 2, 3, 4 and 5, this

part remains lower than 30%, in our experimental conditions. In the case of NH and N, this

correction can be neglected. In the case of NH3, the dissociative ionization is mainly due to

desorbed water from the wall, which can be easily withdrawn considering the difference

between the signal intensity measured with and without discharge. In case of NH2, the part

due to the dissociative ionization is mainly due to NH3 and the correction factor depends on

the electron energy and is displays on Figure7. In the case of N2H2, correction is not possible

because ionization cross section values are not available.

In a previous work /10/, we report a more accurate method taking into account the different

dissociative processes contributing to the signal intensity measured for each species.

Polynomial equations are calculated using the relative concentrations values, NH2/NH3,

NH/NH3 and N/NH3. The coefficients of these polynomial equations depend on the cross

sections values of the different ionization processes involved. This should be a more accurate

method that the previous one. However, because of the strong uncertainty on the cross section

values reported in the literature, 15% for the parent ionization cross section values and 18%

for the dissociative ionization cross section values/17/, the different coefficient of the

polynomial equations are determined with a too large uncertainty (typically from 30% to

60%, according to the coefficient). The error on relative density is very large and can be over

100% according to the experimental conditions, especially in gas composition with high N2%

and H2%, producing a large amount of NH3. For these reasons in the present works

corresponding to experiments performed in nitriding conditions, this method cannot be used

because of the too large error and the previous one is preferable.

3.3. Mass spectrometer diagnostics in nitriding conditions.

In previous works, it was shown that a (Ar-25%N2-30%H2) plasma exposure at 8cm from the

centre of the discharge seems the most efficient ternary gas mixture to reduce the oxide layers

remaining at the surface of a molybdenum film /7/. Correlations had already been performed

with electron density and plasma propagation conditions. As previously related this gas

composition lead to a better plasma expansion due to a larger electron density than in pure

nitrogen or in other ternary gas mixture with lower H2 contents /7,8/. The present work gives
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complementary results about the chemical gas composition in such ternary gas mixture used

in expanding microwave plasma.

Two gas mixtures have been investigated to carry out this study. They are:

The gas mixture 1:

It contains (0 to 30%) H2 injected in the binary mixture (64%Ar-36%N2). It corresponds to a

gas flow containing 180 sccm Ar, 100 sccm N2.

The gas mixture 2:

It contains (0 to 15%) H2 injected in the binary mixture (91%Ar-9%N2). It corresponds to a

mixture with 1000 sccm Ar and 100 sccm N2.

In the different series N2 gas flow is equal to 100 sccm and the total pressure Ar+N2 is kept

constant and is equal to 100 Pa. The pressure is controlled by changing the rotational speed

of the Roots blower pumps. The second gas mixture contains more Argon than the first one,

and recombination processes of NHx radicals are expected to be less important than in the first

one because of the dilution. For the two gas mixture, the microwave power used for the

chemical analysis is 150 W.

3.3.1. The case of NHx species.

Analysis, corresponding to different nitriding conditions, are performed downstream the

discharge. Figure 8 and 9 displays the relative signal intensity measured by means of mass

spectrometer, N/NH3, NH/NH3 and NH2/NH3, versus %H2 injected in Ar+N2 binary mixture,

considering the two previous gas mixtures respectively. In these figures the main radical

produced is NH2 then NH and N. The ratio NHx/NH3 slowly decreases with increasing % H2.

In the first gas mixture, the ratio NH2/NH3 ranges from 0.1 to 0.5 all over the %H2 under

investigation. The ratio NH/NH3 and N/NH3 ranges roughly from 0.1 to 0.01 and lower than

0.01 for the first ratio and the second respectively. In the gas mixture2, the relative NH2

concentration produced is larger than in the gas mixture 1, and is over 1. The two other ratios

N/NH3 and NH/NH3 are almost identical to those obtained in the former gas mixture. This

increase in the relative NH2 concentration can be explained by the larger Ar flow rate used in

the mixture 2. Radicals produced in such conditions are more diluted and the recombination

process is decreasing. The effect of the dilution is more evident on NH2 that on the two other

radicals which concentrations are one or two magnitude orders lower.

Figure 10, shows the relative concentration of ammonia compared to the argon (NH3/Ar),

versus the %H2 mixed to Ar+N2, in the two gas mixtures (64%Ar-36%N2) and (91%Ar-
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9%N2). It can be seen that for the two binary gas mixtures under investigation, the relative

concentration of NH3 remains nearly the same and roughly linearly depends on H2% injected.

No saturation is observed on the figure. Comparison with results displayed on Figure 8 and 9

prove that the concentration of radicals NH2, NH and N also increase with % H2 increasing in

both Ar-N2 binary mixtures. On Figure 10 are also reported three ternary gas mixtures which

will be discussed later in the text.

Two different reaction channels are involved to produce NxHy species in an Ar-N2-H2

discharge. They are plasma catalysis processes (heterogeneous reactions) /9/ or volume

reactions (homogeneous reactions) /25/. In the present experiments, the concentration of

NH2>(NH or N). In a previous work /10/, we have shown that NH>NH2 at low % N2 injected

(98.7%Ar-1.3%N2). For larger N2%, NH concentration is similar to NH2 concentration or

even lower in N2-H2 gas mixture. This agrees with the present experiments. However, Helden

et al /25/ obtained in N2-H2 a NH concentration larger than NH2 and they show that the NH

concentration decreases and NH2 concentration increases with %N2 decreasing. This is in

contradiction with our results. Such different behaviour can be understood considering a

change in the dominant reactive mechanism involved. In the present experiments, the inner

reactor diameter is 50mm and the pressure is 100Pa, whereas in the case of Helden et al /25/,

the plasma is expanding supersonically in the reactor, which inner diameter is 400mm and the

pressure is 20KPa in the cascaded arc plasma source and 20 Pa to 100 Pa in the reactor.

Because of the low pressure and of the low reactor diameter, the dominant reaction channels

are probably heterogeneous reaction in our experiments, whereas homogeneous mechanisms

are dominant in the case of Helden et al /25/, where NH and NH2 are mainly produced by the

reactions,

N+H2 →NH + H (k=4.10-16 m3s-1)

NH3 +H→NH2 + H2 ((k=4.10-18 m3s-1 at 1750K).

Because of the large activation energy needs for the last reaction, radical concentrations are

NH>NH2 in the bulk plasma, where homogenous reaction dominate. However, the reaction

rate can be enhanced by means of fast H atom injected within the plasma /25/. Similar

processes with fast ions have been related in the case of ion-molecule reaction /26/.
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It is worth noting that in this reactive scheme, NH3 is supposed produced by catalytic plasma

reaction /9/ and reacts with the species produced in the plasma expansion because of the

recirculation flow produced within the reactor.

In the case where the surface reaction dominates, NH produced within the discharge, reacts on

the reactor wall (stainless steel) according to /9, 10/,

NHs+ H→NH2s

As previously, NH3 results of the surface reactions,

NH2s+H→NH3

And

NHs+H2→NH3.

Where, NHs is adsorbed NH species.

As previously related, at low %N2 injected, NH>NH2. This behaviour as been observed on

Ni(100) surface by Huang et al /24/ and it can be explained by the large adsorption of H2 on

the wall, which stabilise NH and stop the surface reaction of NHs with Hs, producing NH2. 

3.3.2. The case of N2H2:

Figure 11 shows the relative concentration ratio (N2H2/NH3) versus % H2 injected in the two

previous binary mixtures Ar+N2. It can be seen that the relative density of N2H2 produced

remains the same in both mixtures and that a maximum is observed at about 5% H2.

According to Huang et al /24/, the primary mechanism for diimide formation is the

recombination of an adsorbed NH surface intermediate. This mechanism can be written,

NHs+NHs→N2H2.

The admixture of H2 in the gas composition increases the coadsorbed hydrogen density (on a

Ni(100) surface), and stabilizes the NH intermediate, increasing the surface concentration of

imide in the hydrogen-deficient surface environment in the 200K-450K /24/. Consequently

the diimide concentration is significantly increased in the presence of post-adsorbed hydrogen

even in a 10-7 Torr hydrogen flow /24/. For larger %H2 injected in the gas mixture, the surface

sites are saturated with hydrogen and the recombination surface mechanism of NHs producing

N2H2 is now decreasing. Thus, there is a maximum of efficiency to produce N2H2 by means of
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the previous surface reaction. In our results, this maximum is observed at about 5% H2

injected.

3.4. Correlation between plasma chemistry and plasma parameters.

In order to make correlations between the plasma parameters in the expanding plasma and the

gas composition, investigations have been performed by means of Langmuir probe

downstream the discharge in the reactor previously used for plasma nitriding treatment /7, 8/.

The Langmuir probe is fixed in the expanding plasma along the expansion axis and can be

moved according to this axis from the tube discharge exit to the substrate holder. This

experimental set-up is detailed in ref 7 and 8. The electron energy distribution function has

been measured using the Druyvesteyn equation and the numerical simulation of harmonic

component method previously reported /27/. Measurements have been performed at injected

powers equal to 400 W and 200 W and in three gas mixtures, corresponding to Ar-30%N2-

12%H2, Ar-8%N2-10%H2, Ar-25%N2-30%H2. As previously reported /7/, a ternary mixture

containing Ar-N2-H2 can be used to produce plasma expansion below the discharge tube exit

in the reactor even with a large amount of H2 and N2 (more than 50%) mixed in Ar. Whereas

in a binary mixture containing Ar-N2 or Ar-H2, the plasma expansion is strongly shrinking in

the discharge tube for H2 or N2 concentration larger than (1% for H2 and 5% for N2). Figure

12 shows the electron density measured at 400W, versus the distance in the plasma expansion.

Measurements have been performed in the three previous mixtures, Ar-30%N2-12%H2, Ar-

8%N2-10%H2 and Ar-25%N2-30%H2, in the binary mixtures, Ar-1%N2, Ar-50%N2 and in

pure Ar. The electron density is calculated using the electron current value measured at the

plasma potential /27/. Binary mixtures containing Ar-H2 are strongly disturbed even at a low

%H2 injected (<1%) and accurate results are not available. As expected the electron density

decreases with increasing distance from the tube discharge exit. It can be seen that when N2 is

injected in argon, the electron density decreases with the % N2 increasing, the same effect

could be observed with H2. This behaviour can be ascribed to the increase of inelastic

collisions in the gas mixture. Surprisingly, in the ternary gas mixtures Ar-25%N2-30%H2 and

Ar-8%N2-10%H2, the electron density increases compared to results obtained in pure argon

discharge even for a (N2+H2) admixture larger than 50%. Nevertheless in the case of Ar-

30%N2-12%H2, the electron density remains very low, lower than in Ar-50%N2.

Figure 13 displays the electron distribution function measured at 200 W, 3cm below the

discharge exit in the three ternary gas mixtures under investigation (Ar-30%N2-12%H2, Ar-
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8%N2-10%H2 and Ar-25%N2-30%H2). It can be seen that for Ar-30%N2-12%H2, the electron

distribution function is smaller than those obtained for the two other gas mixtures and in Ar-

8%N2-10%H2, the electron distribution function is the largest. As expected, these results agree

with the previous ones displayed on Figure 12, the electron density can also be calculated

using the electron distribution functions /27/. These results prove the good efficiency of the

second and third gas mixtures for the plasma expansion even at 200W, and the difficulty

encountered with the first one to sustain the plasma expansion at a power lower than 400W.

Comparison with previous results obtained by means of mass spectrometer in the same gas

mixtures (see the Figure 8, 9, 10), show that the two first gas mixtures correspond to plasma

containing low density of NHx radicals and NH3 molecules. Whereas the third gas mixture

corresponds to plasma containing a large amount of NHx radicals and NH3 molecules. In the

particular case of the second gas mixture, N2 and H2 and NHx species are largely diluted in

Ar, compared to the two other ones. These remarks show that the plasma expansion in the

reactor is efficient in plasma containing N2 or H2 strongly diluted in Ar or in plasma

containing a large concentration of N2 and H2 (more than 50%) and producing a large amount

of ammonia and radicals NHx. This behaviour can be explained looking at the ionization

threshold values of the different species observed in these plasmas. The ionization threshold

values of Ar, N2 and H2 are 15.75, 15.58 and 15.426 eV respectively /28/. The ionization

threshold of NH3 is 10.166 eV, that of NH2 is 11.22 eV and NH is 12.8 eV /28/. Moreover the

ionization cross section values of NHx species are larger than ionization cross section values

of N2 and H2 /16, 17, 18, 28/. Consequently, NHx radicals or NH3, increases the efficiency of

ionization processes within the plasma, and therefore increase the electron density.

Consequently, the plasma expansion is easier in gas mixture containing large amounts of NHx

species. H. Nigai et al /29/, have observed that the admixture of a little amount of N2 in H2,

drastically increases the electron density, since the total ionization cross section of N2 is larger

than that of H2 and the dissociation of H2 is enhanced to generate more H radicals, which

contribute to the etching of organic low k film. In our experiments, the electron density

increases with NHx concentration increasing. This could also contributes to increase NHx

dissociation processes and to enhance oxide reduction at the surface layer, as it was

previously related /7-8/.

4. Conclusion.
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Investigations have been performed downstream a microwave discharge sustained in Ar-N2-

H2 gas mixtures, by means of mass spectrometry. In a first time we develop a method in order

to correct the measured signal disturbed by wall desorption and dissociative ionization

processes. In a second part we study the relative concentration of the main radicals and

molecules produced in various gas compositions previously used for thin molybdenum layers

nitriding treatment. Then we make correlations between the plasma chemistry and the plasma

parameters measured by means of Langmuir probe spatially resolved in the plasma expansion.

Results show that with ternary mixtures (Ar-N2-H2) a large amount of N2+H2 can be mixed

in the discharge (up to 50%), even at low power (200W) without plasma shrinking. In binary

gas mixture plasma expansion cannot be obtained at such power for concentration larger than

5% for N2 or 3% for H2 mixed to Ar. This behaviour can be explained by the large amount of

NHx radicals, and NH3 produced. Due to the low ionization threshold values of these species

compared to those of N2, H2 and Ar, the production of these species gives rise to an increase

of ionization process number and of the electron density. Consequently, the plasma expansion

in the reactor is improved. Moreover, the electron density increase gives rise to an increase of

dissociation processes, producing NHx radicals. As it has been already reported, in the case of

H atoms, these radicals could act on the substrate layers, reducing oxide /7, 8/.

Acknowledgements: This work has been supported by La Région Limousin.

References

[1] Uyama. H, Matsumoto. O 1989 plasma Chemistry and plasma process 9 13-24 or Uyama.

H, Nakamura. T, Tanaka. S, Matsumoto. O 1993 plasma chem. And plasma process 13 117-

131

[2] Schram. D. C 2002 Pure.Appl.Chem74 369-380

[3] Jauberteau. I, Jauberteau. J. L, Cahoreau. M, Aubreton. J 2001 Trends in vacuum Science

and Technology 4 78-99 Editor Menon. J Resarch Trends, Trivandrum, India

[4] Leroy. C, Czerwiec. T, Gabet. C, Belmonte. T 2001 Surface and Coating Technology 142-

144 241-247

[5] Kobayashi. N, 1998 Journal of Crystal Growth 195 228-233

[6] Jauberteau. I, Jauberteau.J.L, Aubreton.J, 2002 J. Phys. D : Appl. Phys 35 665

[7] Jauberteau. I, Jauberteau.J.L, Goudeau. P, Soulestin. B, Marteau. M, Cahoreau. M,

Aubreton.J 2009 Surface and Coating Technology 203 1127-1132



15

[8] Jauberteau. J. L, Jauberteau. I, Aubreton.J, 2007 International Journal of Mass

Spectrometry 15-24

[9] Gordiets. B, Ferreira. C. M, Pinheiro. M. J, Ricard. A, 1998 Plasma source Sci. Technol

7 379-388

[10] Jauberteau. J. L, Jauberteau. I, Aubreton. J, 2002 J. Phys. D : Appl. Phys 35 665-674

[11] Williams. B. W, Porter. R. F 1980 J. Chem. Phys 73 5548-5604

[12] Smith. J. M, Chupka. W. A 1996 Chem. Phys. Letters 250 589-596

[13] Fujii. T, Iwase. K, Selvin. P. C 2002 International Journal of Mass spectrometry

216 169-175

[14] Kojima. H, Toyoda. H, Sugai. H 1989 Appl. Phys. Letters 55 13 1292-1294

[15] Toyoda. H, Kojima. H, Sugai. H 1989 Appl. Phys . Letters 54 16 1507-1509

[16] Märk. T. D, Egger. F, Cheret. M 1977 J. Chem. Phys 115 5053-5058

[17] Tarnovsky. V, Deutsch. H, Becker. K 1997 International Journal of Mass spectrometry

167/168 69-78

[18] Rejoub. R, Lindsay. B. G, Stebbings. R. F 2001 J. Chem. Phys 115 5053-5058

[19] Straub. H. C, Lindsay. B. G, Smith. K. A, Stebbings. R. F 1998 J. Chem. Phys 108 109-

116

[20] Brook. E, Harrison. M. F. A, Smith. A. C. H 1978 J. Phys. B: Atom. Molec. Phys 11

3115-3132

[21] Syage. J. A 1992 J. Chem. Phys 97 6085-6107

[22] Foner. S. N, Hudson. R. L, 1978 J. Chem. Phys 68 3162-3168

[23] Stothard. N, Humpfer. R, Grotheer H. H 1995 Chem. Phys. Letters 240 474-480

[24] Huang. S. X, Rufael. S. T, Gland. J. L 1993 Surface sciences Letters 290 L673-676

[25] van Helden J. M, van Den Oever. P. J, Kessels. W. M. M, van de sanden. M. C. M,

Schram. D. C, Engeln. R, 2007 J. Phys. Chem. A 111 11460-11472

[26] Weber. M. E, Armentrout. P. B 1989 J. Chem. Phys 90 2213-

[27] Jauberteau. J. L, Jauberteau. I 2008 Plasma Source. Sci Technol 17 015019

[28]National Institue of Standards and Technology (NIST),

http://physics.nist.gov/PhysRefData/Ionization.html

[29] Nagai. H, Takashima. S, Hiramatsu. M, Hori. M, Goto. T 2002 J. Appl. Phys 91 2615-

2621



16

Figure captions.

Figure 1. Experimental set-up.

Figure 2. Mass spectrometer signal intensity measured for NH3
+ (m/q=17) versus electron

energy in the ionization chamber. Comparison with the signal intensity calculated using cross

section values given in the literature in the cases of the direct ionization of NH3 (Märk,

Tarnovsky, Rejoub) and of the dissociative ionization of water producing OH+ (m/q=17)

(Straub).

Figure 3. Mass spectrometer signal intensity measured for NH2
+ (m/q=16) versus electron

energy in the ionization chamber. Comparison with the signal intensity calculated using cross

section values given in the literature in the cases of the direct ionization of NH2 (Tarnovsky)

and of the dissociative ionization of NH3 (Märk, Tarnovsky).

Figure 4. Mass spectrometer signal intensity measured for NH+ (m/q=15) versus electron

energy in the ionization chamber. Comparison with the signal intensity calculated assuming

the direct ionization of NH using cross section values given in the literature (Tarnovsky).

Figure 5. Mass spectrometer signal intensity measured for N+ (m/q=14) versus electron

energy in the ionization chamber. Comparison with the signal intensity calculated assuming

the direct ionization of N using cross section values given in the literature (Brook).

Figure 6. Mass spectrometer signal intensity measured for N2H2
+ (m/q=30) versus electron

energy in the ionization chamber. Comparison with the signal intensity calculated assuming

the dissociative ionization of hydrazine, using cross section values given in the literature

(Syage). 

 

Figure 7. Contribution to the total signal intensity measured at m/q=17 and 16 of the direct

ionization of NH3 and NH2, versus electron energy.

Figure 8. The relative signal intensity measured by means of mass spectrometer N/NH3,

NH/NH3 and NH2/NH3, versus %H2 injected in Ar+N2 binary mixture, in the case of the first

gas mixture.
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Figure 9. The relative signal intensity measured by means of mass spectrometer N/NH3,

NH/NH3 and NH2/NH3, versus %H2 injected in Ar+N2 binary mixture, in the case of the

second gas mixture.

Figure 10. The relative concentration of ammonia compared to the argon (NH3/Ar), versus

%H2 mixed to Ar+N2, in the two gas mixtures (64%Ar-36%N2) (circle) and (91%Ar-9%N2)

(square). The ternary mixtures pointed on the graph bring back to comments displayed in

section 3.4.

Figure 11. The relative concentration ratio (N2H2/NH3) versus % H2 injected in the binary

mixtures (64%Ar-36%N2) (full circles) and (91%Ar-9%N2) (empty squares).

Figure 12. The electron density measured by means of a langmuir probe versus distance from

the tube discharge exit. Measurements are performed at 400W, in different gas mixtures.

Figure 13. The electron energy distribution function measured by means of a langmuir probe

and numerical simulation of harmonic components method, in the case of the three ternary gas

mixtures under investigation.
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