

Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

P. H. S. Kwakman, L. Boer, C. P. Ruyter-Spira, T. Creemers-Molenaar, J. P. F. G. Helsper, C. M. J. E. Vandenbroucke-Grauls, S. A. J. Zaat, A. A. Velde

► To cite this version:

P. H. S. Kwakman, L. Boer, C. P. Ruyter-Spira, T. Creemers-Molenaar, J. P. F. G. Helsper, et al.. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens. European Journal of Clinical Microbiology and Infectious Diseases, 2010, 30 (2), pp.251-257. 10.1007/s10096-010-1077-x . hal-00629938

HAL Id: hal-00629938 https://hal.science/hal-00629938

Submitted on 7 Oct 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Editorial Manager(tm) for European Journal of Clinical Microbiology & Infectious

Diseases

Manuscript Draft

Manuscript Number: EJCMID-D-10-00307R1

Title: Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

Article Type: Article

Keywords: Antibacterial agents; Antimicrobial peptides; honey; MRSA; E. coli ESBL

Corresponding Author: Dr. S.A.J. Zaat,

Corresponding Author's Institution:

First Author: Paul Kwakman

Order of Authors: Paul Kwakman; Leonie de Boer; Carolien Ruyter-Spira; Tineke Creemers-Molenaar; Hans Helsper; Christina Vandenbroucke-Grauls; S.A.J. Zaat; Anje te Velde

Abstract: Purpose. Honey has potent activity against both antibiotic-sensitive and -resistant bacteria and is an interesting agent for topical antimicrobial application to wounds. As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution is a prerequisite for its successful application.

Methods. We investigated the kinetics of killing of antibiotic-resistant bacteria by RS honey, the source for production of Revamil® medical-grade honey, and we aimed to enhance the rapid bactericidal activity of RS honey by enrichment with its endogenous compounds or addition of antimicrobial peptides.

Results. RS honey killed antibiotic-resistant isolates of Pseudomonas aeruginosa, Staphylococcus epidermidis, Enterococcus faecium and Burkholderia cepacia within 2 hours, but lacked such rapid activity against methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase-producing (ESBL) Escherichia coli. It was not feasible to enhance the rapid activity of RS honey by enrichment with endogenous compounds, but RS honey enriched with 75 μ M of the synthetic peptide Bactericidal Peptide 2 (BP2) showed rapid bactericidal activity against all species tested, including MRSA and ESBL E. coli, at up to 10-20-fold dilution.

Conclusions. RS honey enriched with BP2 rapidly killed all bacteria tested and had a broader spectrum of bactericidal activity than either BP2 or honey alone.

Response to Reviewers: Reviewer #1:

This is an interesting paper, but I believe that the abstract does not adequately reflect the content of your paper and needs a complete revision. Surely the purpose was to evaluate the antibacterial effects of a medical grade honey that had been enriched with antimicrobial peptides? Also your methods as described in the abstract suggest that you only tested RS honey without supplements.

AUTHOR: abstract has been adjusted; more emphasis on enrichment with antimicrobial peptides (e.g. pag. 3, line 9-10).

On page 6 in the methods and materials MRSE is not included. AUTHOR: MRSE is now described in the M&M section. On page 7 was TSB prepared according the manufacturer's instructions and further diluted 3% (w/v)? or simply made up according to the manufacturer's instructions, with 1/10 dilution of TSB subsequently used to wash harvested cells?

AUTHOR: TSB was prepared according to the manufacturers' instructions, used full strength to grow the bacteria, and used in a final concentration of 1% (v/v) in 10 mM phosphate buffer pH 7.0. This is corrected in the text (pag. 7, line 17-20).

On page 8, I suggest that "incubations" is changed to "samples from the incubated flasks". AUTHOR: "Incubations" has been changed to "suspensions".

Also in line 50 of page 8 and on page 9 line 2 insert (v/v) after 20% and 40% respectively. AUTHOR: text is adjusted.

Throughout this paper terms such as killing and killed appear rather extreme. Normally terms such as kinetics of inhibition and reducing populations to undetectable levels would be considered to be more suitable.

AUTHOR: we measured bactericidal, not inhibiting activity. When appropriate, 'killing' has been modified to 'reduced to undetectable levels'.

On page 14 the statement that hydrogen peroxide is frequently used in wound cleansing should either be qualified by a suitable citation or modified. My understanding is that it is no longer used extensively in wound care.

AUTHOR: hydrogen peroxide is still used in clinical practice, but indeed not recommended in guidelines due to concerns regarding toxicity/delayed wound healing. This is adjusted in the text (pag. 15, line 13-15).

The discussion might have included other methods of detecting hydrogen peroxide, for example: Bang LM, Buntting C, Molan PC (2003) The effects of dilution rate on hydrogen peroxide production in honey and its implications for wound healing J. Altern. Complement. Med. 9 (21): 267-273 Brudzynski K. (2006).Effect of hydrogen peroxide on antibacterial activities of Canadian honeys. Canadian Journal of Microbiology 52 (12):1228-1237.

AUTHOR: with respect to production of hydrogen peroxide by glucose oxidase in diluted honey, we now added citations referring to White et al. (1963) and Bang et al. (2003) (pag. 15, line 4). In our opinion the study of Brudzynski lacks sufficient novelty with respect to this subject to justify citation.

Furthermore, the effects of honey in inhibiting B. cepacia have been reported in Cooper, R.A., Wigley, P., & Burton, N.F (2000) Susceptibility of multiresistant strains of Burkholderia cepacia to honey. Letters in Applied Microbiology, 31 20-24. Reference to this work would be relevant AUTHOR: this reference is indeed relevant and has been included in the manuscript (pag. 17, line 15).

AOTHOR: uns reference is indeed relevant and has been included in the manuscript (pag. 17, inte i

Reviewer #2: General

The aim of this study should be clearly stated. It appears that the aim of the work was to look at the effectiveness of RS honey over time and to see if its activity could be enhanced with various additives. Although it is not clear why this may be of benefit. There is no discussion of why one wouldn't simply use the peptides or why adding them to the honey would be worthwhile.

AUTHOR: peptide-enriched honey has a broader spectrum of bactericidal activity than either agent alone. The aim is stated more clearly in the abstract (pag. 3, line 9-10)

and the benefit of combining honey with peptides is discussed more elaborate the revised manuscript (pag. 17, lines 13-17 and lines 19-21).

It does not appear that using RS honey as a wound dressing would be particularly advantageous compared to other commercially available, medically registered honeys as it seems to have relatively low antibacterial activity. Comparing RS to other medical honeys would be of benefit to determine if this is the case.

AUTHOR: Revamil is unique with respect to its method of production. It is produced under controlled conditions in greenhouses, resulting in low variation in antibacterial activity compared to other medical grade honeys.

Activity of honey is mostly measured in growth-inhibition assays, but in our opinion measuring the bactericidal activity is a more stringent approach and is highly clinically relevant. Comparison of activity of different honeys indeed is relevant, but will require the use of one test system, since the growth-inhibiting and bactericidal activity of honeys cannot be compared directly. Comparison of bactericidal activity of RS and other honeys was however not the purpose of the present work.

It looks as though the activity is predominantly due to the osmotic effects of this honey - but it is difficult to tell as no sugar controls were concluded and this would have been useful. AUTHOR: in the current manuscript we focus on the kinetics of bactericidal activity of RS honey, irrespective of the components that contribute to this activity. In the introduction we refer to our recent publication in The FASEB Journal, which reported the full dissection of the mechanism of bactericidal activity of RS honey. In that study we clearly demonstrated that several factors other than sugar contribute substantially to the bactericidal activity of honey.

The manuscript is quite long and there is quite a bit of repetition in the Results and Discussion sections (see below)

"Broad spectrum" should generally be "broad-spectrum" AUTHOR: 'broad spectrum' has been changed to 'broad-spectrum' throughout the text.

Introduction

Line 36 - The variation usually seen in the activity of different types of honey is predominantly due to the floral source of the honey. What is the floral source of this honey? This is important if this honey is intended for medicinal use.

AUTHOR: different honeys show large variation in activity, which is not solely a result of floral origin; despite the identical floral source, different batches of Manuka honey show a very large variation in activity. As mentioned above, RS honey is different from regular honeys in that it is produced under standardized conditions. Details of this production platform are proprietary information of the manufacturer. Since the honey has been granted CE-certification for application on wounds there is no problem regarding its medical use.

As the antibacterial peptides feature extensively in this work it would be worth briefly introducing them in this section.

AUTHOR: a paragraph briefly describing the activity of antimicrobial peptides has been added to the 'Introduction' section (pag. 5, line 4-13).

Methods

Line 41 - how were the bacterial strains identified and stored?

AUTHOR: details regarding bacterial isolates have been added (pag. 6, line 21-23). Strains were identified and stored according to general medical microbiological practice. We consider this common knowledge among the readership of EJCMID, and did not add this to the text.

Results

Quite a bit of material that would be more appropriate for either the Introduction or Discussion sections is included here. While this may be appropriate for this journal it adds unnecessary length to this manuscript, making it repetitive. E.g. page 10 lines 29 -34, 54-58; page 11 lines 5-9, 18-31; page 12 lines 16-24, etc. Some of the figure legends contain too much information, in particular explicitly stating results that are clearly shown in the figures is redundant.

AUTHOR: unneccesary repetitive phrases in results section and in figure legends were removed (e.g. phrases on page 11 lines 5-9 in the original manuscript are removed and the legends of fig. 5 & 6 are now condensed).

It would have been worth including a sugar control in these experiments as the concentrations of RS honey needed to inhibit the test organisms seem quite high compared to those one would expect from other medical grade honeys (see further comment in Discussion section). AUTHOR: discussed in reply to the 'General' comments of this reviewer.

Page 11, line 43 - from figure 5 it does not look like there is a substantial improvement in activity against VREF, although it does look like there is one for MRSE. Is the figure mislabelled? This statement is also made in the Discussion.

AUTHOR: data for VREF and MRSE were indeed mixed up, and is now corrected, thank you.

Page 12, line 38 - the controls with just honey seem to have produced different results from those in the previous experiment when comparing figures 5 and 6.

AUTHOR: in figure 5 & 6, the LC99.9 (the lowest concentration that results in at least 1000-fold reduction in numbers of CFU) is indicated for 2-fold dilution series of honey. Minor inter-experiment variation can thus result in an apparent 2-fold change in activity when survival of bacteria is near the cut-off for the LC99.9. Indeed, the differences in activity of honey in figure 5 & 6 never exceed one dilution step.

Page 12, line 43 - same comment as for Page 11, line 43 above, are MRSE and VREF mixed up? AUTHOR: data for VREF and MRSE were indeed mixed up, and is now corrected, thank you.

Discussion

Much of the Discussion is a repeat of the Results adding unnecessary length to the manuscript. The whole section could be more concise. For example, the MGO paragraph is rather long considering MGO was not tested here.

AUTHOR: we have condensed the paragraph on MGO, and also removed unnecessary repetition.

It would be of interest to name the organisms referred to in reference 13, i.e. which "other bacteria" (page 13 line 34) does RS honey have rapid activity against?

AUTHOR: the ' other bacteria' refers to results of the current manuscript, and not to reference 13 as assumed by the reviewer. The text has been modified for clarity, and the bacteria are now named explicitly (pag. 14, lines 10-14).

No sugar controls were included and the RS honey activity appears be predominantly due to the osmotic effect of the sugars. This honey does not appear to have been selected based on its floral source, as other medical grade honeys generally are, so RS may not have an inherently high level of activity.

AUTHOR: the reviewer has indicated this point previously; see our reply in the 'General' comments section of this reviewer.

Page 15 line 39 - "Because of the lack of rapid bactericidal activity against MGO in Manuka honey" needs a reference. Also this is the first time Manuka is mentioned, for those not well acquainted with the field of antibacterial honey some explanation as to the relevance of discussing it here would be helpful.

AUTHOR: Manuka honey is now briefly described in the introduction (pag. 4, lines 13-17). The statement regarding lack of rapid activity of MGO has been removed in the act of condensation of the paragraph on MGO in the Discussion section, so no reference is required.

Page 16 line 14 - the abbreviation AMP is introduced without definition AUTHOR: this abbreviation was indeed not clarified in the Discussion section, this is now corrected.

Page 17 line 7 - it is not appropriate to say that B. cepacia is "highly" susceptible to the RS honey. Quite high concentrations were used here, see sugars comment above.

AUTHOR: we have modified this phrase, now stating that B. cepacia is relatively susceptible to honey compared to other bacteria (pag. 17, lines 13-15).

Manuscript Click here to download Manuscript: Kwakman RS honey+ AMPs EJCMID revision v2.doc Click here to view linked References

1 2		
3 4 5	1	Title page
6 7	2	
8 9 10	3	Title:
11 12	4	Medical-grade honey enriched with antimicrobial peptides has enhanced activity
13 14 15	5	against antibiotic-resistant pathogens
15 16 17	6	
18 19	7	Authors & affiliation:
20 21 22	8	Paulus H.S. Kwakman ¹ , Leonie de Boer ¹ , Carolien P. Ruyter-Spira ² , Tineke
23 24	9	Creemers-Molenaar ³ , Johannes P.F.G. Helsper ² , Christina M.J.E. Vandenbroucke-
25 26 27	10	Grauls ^{1,4} , Sebastian A.J. Zaat ¹ , Anje A. te Velde ⁵
28 29	11	
30 31 32	12	1 Department of Medical Microbiology, Academic Medical Center, University of
33 34	13	Amsterdam, Amsterdam, The Netherlands
35 36 37	14	2 Plant Research International, Wageningen, The Netherlands
38 39	15	3 Bfactory Health Products, Rhenen, The Netherlands
40 41 42	16	4 Department of Medical Microbiology and Infectious Diseases, VU Medical
43 44	17	Center, Amsterdam, The Netherlands
45 46	18	5 Tytgat Institute for Liver and Intestinal Research, Academic Medical Center,
47 48 49	19	Amsterdam, The Netherlands
50 51	20	
52 53 54	21	Keywords:
55 56	22	Antibacterial agents
57 58 59	23	Antimicrobial peptides
60 61		
62 63 64		1
65		

1
2
4
5 6 7 8
6 7
8
9
10 11
12
13
15
16
11 12 13 14 15 16 17 18
19
20
21 22
23
24 25
26
27
28 29
30
31 22
33
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
35 36
37
38 39
40
41
42 43
44
45 46
47
48 49
50
51 52
53
54
55 56
57
58 59
60
61 62
62 63
64
65

1	honey
2	MRSA
3	E. coli ESBL
4	
5	Running title: Enrichment of medical-grade honey
6	
7	Contact information:
8	Dr. Sebastian A. J. Zaat
9	Department of Medical Microbiology
10	Academic Medical Center
11	Meibergdreef 15
12	1105 AZ Amsterdam
13	The Netherlands
14	tel +31 20 5664863
15	fax +31 20 6979271
16	s.a.zaat@amc.uva.nl
17	

ABSTRACT

Purpose. Honey has potent activity against both antibiotic-sensitive and -resistant
bacteria and is an interesting agent for topical antimicrobial application to wounds.
As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution
is a prerequisite for its successful application.

7 Methods. We investigated the kinetics of killing of antibiotic-resistant bacteria by

8 RS honey, the source for production of Revamil[®] medical-grade honey, and we

9 aimed to enhance the rapid bactericidal activity of RS honey by enrichment with its

10 endogenous compounds or addition of antimicrobial peptides.

Results. RS honey killed antibiotic-resistant isolates of *Pseudomonas aeruginosa*,

12 Staphylococcus epidermidis, Enterococcus faecium and Burkholderia cepacia

13 within 2 hours, but lacked such rapid activity against methicillin-resistant

14 Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase-

15 producing (ESBL) Escherichia coli. It was not feasible to enhance the rapid activity

16 of RS honey by enrichment with endogenous compounds, but RS honey enriched

17 with 75 µM of the synthetic peptide Bactericidal Peptide 2 (BP2) showed rapid

18 bactericidal activity against all species tested, including MRSA and ESBL E. coli,

19 at up to 10-20-fold dilution.

20 Conclusions. RS honey enriched with BP2 rapidly killed all bacteria tested and

21 had a broader spectrum of bactericidal activity than either BP2 or honey alone.

INTRODUCTION

Antibiotic-resistant bacteria pose a very serious threat to public health. For all
antibiotic classes, including the major last resort drugs, resistance is increasing
worldwide [1,2]. Even more alarming, very few new antibiotics are being developed
[1,3], so alternative antimicrobial strategies are urgently needed.

The potent *in vitro* activity of honey against antibiotic-resistant bacteria [4]
and its successful application in treatment of chronic wound infections not
responding to antibiotic therapy [5] resulted in a revival of the interest in honey as
antibacterial agent [6-8]. Important prerequisites for application of honey as
antimicrobial agent are reproducible and rapid bactericidal activity [9] and
knowledge of its mechanism of action.

Honeys collected from the natural environment including Manuka honey, which is used for production of most currently available medical-grade honeys, show large variation in antibacterial activity [10,11]. Manuka honey can contain very high levels of MGO, which is regarded the major antibacterial compound in this honey [12,13]. The honey used as a source for Revamil[®] medical-grade honey (RS honey) is produced under standardized conditions in greenhouses, and is sterilized by gamma-irradiation to kill potentially present bacterial spores. Gamma irradiation is known not to affect honey bactericidal activity [14]. Revamil[®] has broad-spectrum, batch-to-batch reproducible bactericidal activity in vitro. It has been shown that it can strongly diminish microbial colonization of the human skin [15]. We have recently identified all major bactericidal factors in RS honey, i.e. its

high sugar concentration, H_2O_2 , low pH, methylglyoxal (MGO) and the cationic antimicrobial peptide bee defensin-1 [16].

Antimicrobial peptides are known for their potent, rapid broad-spectrum microbicidal activity. Their supposed mechanism of action is direct targeting of microbial membranes [17], although AMPs may also have intracellular targets [18,19]. A cationic domain of these peptides specifically interacts with the negatively charged outer surfaces of micro-organisms and a hydrophobic domain is required for membrane perturbation or penetration, either causing membrane disruption or translocation into the cell [20,21]. Some bacteria have evolved mechanisms to reduce their outer surface negative charge to reduce susceptibility to AMPs [22]. Since this involves complex biosynthetic pathways, the risk for rapid resistance-development against AMPs is considered low [22].

In the current study we show that RS honey has potent bactericidal activity, but this requires prolonged exposure of the target organisms. RS honey lacks rapid bactericidal activity against several important antibiotic-resistant wound pathogens, including methicillin-resistant *Staphylococcus aureus*. We were not able to augment the bactericidal activity of RS honey by enrichment with endogenous honey bactericidal compounds, but addition of the synthetic antimicrobial peptide BP2 did result in broad-spectrum rapid bactericidal activity.

MATERIALS AND METHODS

Honey

Unprocessed Revamil source (RS) honey was kindly provided by Bfactory Health Products (Rhenen, The Netherlands).

Peptides

BP2 (GKWKLFKKAFKKFLKILAC) and LL-37 were synthesized at Pepscan

Systems (Lelystad, The Netherlands) using solid-phase Fmoc (9-

fluorenylmethoxycarbonyl) chemistry with a free amine at the N-terminus and a

free amide at the C-terminus. Peptides were HPLC-purified and purity (>95%) and

mass were confirmed by ionspray mass spectrometry. The lack of disulphide

formation between free cysteines of BP2 was confirmed by Q-TOF/MS analysis.

Microorganisms

Bactericidal activity was assessed against clinical isolates of methicillin-resistant

Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis

(MRSE), vancomycin-resistant Enterococcus faecium (VREF), extended-spectrum

beta-lactamase producing Escherichia coli (E. coli ESBL) and Pseudomonas

aeruginosa ESBL and against the Burkholderia cepacia ATCC 25416 type strain.

Oxacillin susceptibility of *S. aureus* and *S. epidermidis* and vancomycin

susceptibility of E. faecium were determined by Etest (AB Biodisk) according to the

manufacturers' instructions. ESBLs were identified as described by Al Naiemi [23].

Determination of H₂O₂ concentration in honey

Hydrogen peroxide concentrations in honey were determined quantitatively using a modification of a method described by White & Subers [24]. Undiluted and ten-fold diluted samples of honey (40 µl) were mixed in wells of microtiterplates with 135 µl reagent, consisting of 50 µg/ml o-dianisidine (Sigma) and 20 µg/ml horseradish peroxidase type IV (Sigma) in 10 mM phosphate buffer pH 6.5. o-Dianisidine was freshly prepared as a 1 mg/ml stock in demineralized water and peroxidase was diluted from a 10 mg/ml stock in 10 mM phosphate buffer pH 6.5 stored at -20 °C. After 5 min. of incubation at room temperature, reactions were stopped by addition of 120 µl 6 M H₂SO₄ and absorption at 540 nm was measured. Hydrogen peroxide concentrations were calculated using a calibration curve of 2-fold serial dilutions of H_2O_2 ranging from 2200 to 2.1 μ M.

15 Liquid bactericidal assay

Bactericidal activity was quantitatively assessed in low protein binding polypropylene microtiterplates (Costar Corning). Bacteria from logarithmic phase cultures in trypticase soy broth (TSB; BD Difco) were washed twice with incubation buffer containing 10 mM phosphate buffer pH 7.0 supplemented with 1% (v/v) TSB and were suspended at a concentration of 5x10⁶ CFU/ml, based on optical density. A 50% (v/v) stock solution of honey was freshly prepared in incubation buffer. For enrichment with antimicrobial peptides, an aliquot of 1.2 mM LL-37 or BP2 stock solutions was added to 50% honey solutions to obtain 37.5 μ M of peptide, thus

corresponding to enrichment of undiluted honey with 75 µM of the respective peptides. Eighty microliter of diluted honey was mixed with 20 µl of a bacterial inoculum containing 5x10⁶ CFU/ml, and plates were incubated at 37°C on a rotary shaker at 150 rpm. At indicated time points, duplicate 10 µl aliguots of undiluted and 10-fold serially diluted suspensions were plated on blood agar. The dilutions were prepared in incubation buffer containing 0.025% sodium polyanetholsulphonate (SPS; Sigma), which neutralizes cationic bactericidal components [25]. Bacterial survival was quantified after overnight growth at 37 °C. The detection level of this assay is 100 CFU/ml. To determine the LC99.9 values of LL-37 and BP2, 25 µl aliguots of 2-fold serially diluted peptide in incubation buffer were prepared in polypropylene microtiterplates (Costar Corning) and to each of the wells 25 µl of a bacterial suspension containing 2x10⁶ CFU/ml was added. After 2 h of incubation on a rotary shaker at 150 rpm at 37°C, triplicate 10 µl aliquots were plated on blood agar plates. The plates were inspected for growth after 24 h. LC99.9 was defined as the lowest concentration of peptide which killed >99.9% of the inoculum of 10⁶ CFU/ml after 2 h. Partial purification of bee defensin-1

We previously demonstrated that bee defensin-1 is the only bactericidal factor in the >5 kDa fraction of RS honey [16]. To prepare a >5 kDa fraction, 15 ml of 20% (v/v) honey was centrifuged in a 5 kDa molecular weight cut-off Amicon Ultra-15 tube (Millipore) at 4000 x g for 45 min. at room temperature. The >5 kDa

2		
3 4 5	1	retentate
6 7	2	deminera
8 9	3	
10 11	C	
12 13		
14 15		
16 17		
18 19 20		
20 21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51 52		
52 53 54		
55 56		
57 58		
59 60		
61 62		
63 64		
65		

retentate was subsequently washed three times in the filter tube with 15 ml of

2 demineralized water and concentrated to 0.3 ml.

RESULTS

Kinetics of bactericidal activity of RS honey

We determined the kinetics of bactericidal activity of different dilutions of RS honey against various antibiotic-resistant pathogens. RS honey at a concentration of 40% (v/v) reduced survival of methicillin-resistant Staphylococcus epidermidis (MRSE), vancomycin-resistant Enterococcus faecium (VREF), enhanced-spectrum beta-lactamase-producing (ESBL) Pseudomonas aeruginosa and Burkholderia cepacia to undetectable levels within 2 hours, while similar activity against methicillin-resistant Staphylococcus aureus (MRSA) and ESBL Escherichia coli required 6 hours of incubation (Fig. 1). RS honey at a concentration of 20% killed B. cepacia within 4 hours of incubation, while activity against all other bacteria required 24 hours of incubation (Fig. 1). RS honey diluted to 10% killed MRSA and MRSE after 24 hours but lacked activity against all other bacteria tested (Fig. 1). Even in undiluted RS honey, survival of MRSA was not affected within 2 hours (supplemental Fig. 2) of incubation and numbers of CFU of E. coli ESBL were only reduced by 2.3-log. After 24 hours incubation in undiluted honey, survival of *E. coli* was reduced to undetectable levels but numbers of CFU of MRSA were only reduced by 1-log (supplemental Fig. 2). In summary, RS honey did not rapidly kill MRSA and *E. coli* ESBL, and rapid activity against all other species tested was abolished upon dilution of the honey to $\leq 20\%$.

H₂O₂ concentration required for rapid killing of MRSA

Since MRSA and *E. coli* ESBL were not rapidly killed by RS honey, we assessed whether the endogenous concentrations of bactericidal compounds in RS honey might be too low for rapid activity. Dilution of RS honey to 30% was optimal for H_2O_2 accumulation, resulting in maximal concentrations of 22.5 ± 1.3 μ g/ml and 148.4 ± 27.8 μ g/ml H₂O₂ after 2 and 24 hours, respectively (Fig. 3a) In incubations not containing honey but only H_2O_2 , 3200 µg/ml H_2O_2 was required to kill MRSA within 2 hours (Fig. 3b). This is 142 times the concentration of H_2O_2 that maximally accumulated in RS honey after a similar 2 hours incubation period, indicating that the H₂O₂ concentration in honey is far too low for rapid activity against MRSA. In view of possible toxicity (see discussion), it is not feasible to increase the concentration of H_2O_2 in honey to the level required for rapid killing. For similar reasons we did not assess enrichment of RS honey with MGO.

16 Bee defensin-1 concentration required for rapid killing of MRSA

Next, we assessed the contribution of bee defensin-1 to rapid bactericidal
activity of RS honey. At the concentration present in undiluted RS honey, bee
defensin-1 effectively killed *Bacillus subtilis*, a highly bee defensin-1-susceptible
organism [16], within 2 hours (Fig. 4a). However, this peptide had no substantial
activity against MRSA, *E. coli* ESBL or VREF (Fig. 4a). Even at an 8-fold higher
concentration, bee defensin-1 reduced numbers of CFU of MRSA after 2 hours by

only 1-log (Fig. 4b), indicating that it also was not feasible to enhance the rapid bactericidal activity of RS honey by increasing the concentration of bee defensin-1.

Enhanced rapid bactericidal activity of LL-37-enriched honey

We subsequently assessed the potential of LL-37, a broad-spectrum human antimicrobial peptide expressed in neutrophils and various epithelial cells [26,27], to enhance the rapid bactericidal activity of honey. RS honey was enriched with tenfold excess (75 µM) of the concentration LL-37 required to reduce survival of MRSA to undetectable levels (Fig. 5a). The lethal concentration of LL-37 for 99.9% of the inocula (LC99.9) of MRSA and *E. coli* in 2 hour incubations were 7.5 and 1.9 µM, respectively (Fig. 5a). Enrichment of RS honey with LL-37 substantially improved the activity against *E. coli* ESBL and VREF but not against other bacteria tested (Fig. 5b). LL-37-enriched honey retained bactericidal activity against E. coli ESBL and VREF up to 20-fold dilution, which was a major improvement compared to non-enriched honey (Fig. 5b). The LC99.9 of LL-37 in honey however was 4-fold higher than in incubation buffer (Fig. 5b), indicating that honey inhibited LL-37. Inhibition was even more clear from the tests with MRSA, MRSE and *P. aeruginosa*. Enrichment with LL-37 did not substantially improve the activity of honey while LL-37 alone effectively killed these bacteria (Fig. 5b).

23 Enhanced bactericidal activity of BP2-enriched honey

1	The synthetic antimicrobial peptide Bactericidal Peptide 2 (BP2) has potent
2	activity in physiological salt concentrations and in plasma, and is effective in vivo in
3	a mouse model of biomaterial-associated infection[28]. The LC99.9 concentrations
4	of BP2 for MRSA and <i>E. coli</i> in 2 hour incubations were 1.9 and 3.8 μ M,
5	respectively (Fig. 6a). RS honey enriched with tenfold excess (75 μ M) of the
6	concentration BP2 required to reduce survival of MRSA to undetectable levels (Fig.
7	6a) retained bactericidal activity against all bacteria tested up to 20-fold dilution,
8	except for <i>P. aeruginosa</i> (Fig. 6b), which was killed by up to a 10-fold dilution of
9	this enriched RS honey (Fig. 6B). Non-enriched RS honey lacked rapid bactericidal
10	activity for all bacteria tested when diluted more than 2.5-fold.
11	The activity of BP2 against <i>E. coli</i> ESBL and VREF was not inhibited in
12	honey (Fig. 6b). Killing of MRSA, MRSE and P. aeruginosa ESBL required 2-4 fold
13	higher concentrations of BP2 in honey than in buffer (Fig. 6b). This indicates a
14	slight reduction of BP2 activity in honey, but markedly less than the observed
15	inhibition of LL-37 in honey. We conclude that enrichment with 75 μM BP2
16	markedly enhanced the rapid bactericidal activity of RS honey.
17	

DISCUSSION

The potent activity against antibiotic-resistant pathogenic bacteria makes honey an interesting agent to treat topical infections not responding to antibiotics. Ideally, honey used for such applications should have rapid and broad-spectrum bactericidal activity. In addition, honey should remain active upon dilution, since honey will rapidly be diluted at the wound interface due to its hygroscopic characteristics and the presence of wound exudate.

RS honey has reproducible, broad-spectrum bactericidal activity in vitro and effectively reduces microbial colonization of human skin [15]. Our present results, however, show that the activity of this honey against the major wound-infecting pathogens MRSA and *E. coli* ESBL is not rapid. Honey does have rapid activity against *P. aeruginosa*, *E. faecium* and *S. epidermidis* but this activity is lost when RS honey becomes diluted. Of note, *B. cepacia*, an otherwise notoriously antibiotic resistant pathogen, proved to be the most honey-susceptible organism. Enhancement of activity of RS honey with its endogenous microbicidal compounds

appeared not to be feasible, but addition of the cationic antimicrobial peptide BP2
did increase the activity to the desired levels.

We recently identified all bactericidal factors in RS honey using an approach of successive neutralization of individual factors combined with activity-guided isolation of factors responsible for residual bactericidal activity [16]. Thus, we determined that the high sugar concentration, H₂O₂ production, MGO, the low pH

and bee defensin-1 were responsible for bactericidal activity of RS honey. In order to enhance the rapid bactericidal activity of RS honey, we first assessed the potential of H_2O_2 and of bee defensin-1. Upon dilution of honey, H_2O_2 is produced by the glucose oxidase enzyme from the bees [24,29]. Production of H_2O_2 was highest in RS honey diluted to 30%, in which 22.5 and 148 µg/ml accumulated after 2 and 24 hours, respectively. In a study with 90 different honeys, 12 ± 19 μ g/ml hydrogen peroxide (range 0 - 72 μ g/ml) accumulated in honey diluted to 20% (w/v) after 4 hours [24], indicating that RS honey produces relatively high levels of H_2O_2 .

MRSA is highly susceptible to H_2O_2 -mediated killing by RS honey upon incubation for 24 hours [16]. Killing of MRSA within 2 hours by H₂O₂ in absence of honey required a concentration as high as $3200 \ \mu g/ml H_2O_2$ (corresponding to a 0.32% (w/v) solution). Wound cleansing with a 3% (w/v) solution of H_2O_2 has been a clinical practice, but at this concentration H_2O_2 is toxic to human cells and skin tissue and tissue exposure can result in delayed wound healing [30-32]. Although the concentration of H₂O₂ required to kill MRSA was about 10-fold lower than the concentration used for wound cleansing, we did not consider increasing the levels of H_2O_2 as a possibility to improve the rapid bactericidal activity of RS honey. Bee defensin-1 (also referred to as royalisin [33]) is a 51-residue

antimicrobial peptide identified in honey bee hemolymph, royal jelly and in honey
[16,33,34]. Because of its complicated folding with three intramolecular cysteine
bonds, synthetic production of bee defensin-1 is not possible and recombinant
production would be highly challenging. Bee defensin-1 effectively kills *B. subtilis*

but lacks activity against all other bacteria tested at a concentration equivalent to
that in undiluted honey. Even at an 8-fold higher concentration, bee defensin-1
only slightly reduced survival of MRSA. The narrow spectrum of its bactericidal
activity renders bee defensin-1 unsuited for enhancement of the bactericidal
activity of honey.

MGO is present in RS honey at a relatively low concentration (0.25 mM) compared to the concentrations reported for Manuka honey (up to 16.1 mM) [12]. MGO is a reactive metabolite that can exert toxic effects by direct inhibition of enzymes, by genomic modifications resulting in carcinogenesis and by protein modifications resulting in the formation of advanced glycation endproducts [35]. The latter are believed to be main determinants for pathological effects related to diabetes [36,37]. Because of the concerns regarding potential toxicity of MGO we did not pursue to augment the activity of RS honey with this compound.

Other honey bactericidal factors are the high sugar concentration and low pH. Honey is a super-saturated sugar solution, so it is not possible to further increase its sugar concentration. RS honey has a pH of 3.2, which is at the lower end of the pH range found for honeys (3.2 - 4.5) [16]. Even such a low pH only contributed to the activity against B. subtilis after 24 hours of incubation, and not to the activity against other bacterial species [16]. Therefore, the sugar concentration and low pH were not suited as factors for enhancement of the bactericidal activity of honey.

In contrast to bee defensin-1, most antimicrobial peptide (AMPs) have broad-spectrum bactericidal activity. The human α -helical AMP LL-37 is one of the best characterized AMPs [38-41]. Despite its potent activity in incubation buffer. LL-37 was strongly inhibited in the presence of honey. BP2 is a synthetic AMP with very rapid broad-spectrum microbicidal activity, which is retained in plasma and in physiological salt solution [28]. BP2 also effectively kills S. epidermidis in vivo, in a murine model of biomaterial-associated infection [28], indicating its potential for clinical application. The activity of BP2 against *E. coli* ESBL and VREF was not inhibited in honey, and activity against MRSA, MRSE and P. aeruginosa ESBL required only slightly higher (2-4 fold) concentrations in honey than in buffer. Thus, BP2 certainly was suited for enrichment of honey. B. cepacia is notorious for its intrinsic resistance against antibiotics [42,43] and AMPs [44] and is indeed not susceptible to LL-37 [44] or to BP2 [28]. Our results

demonstrate however that *B. cepacia* is relatively susceptible to honey compared to other tested bacteria, which is in accordance with findings of Cooper et al. [45]. Not surprizingly, addition of BP2 to RS honey did not enhance the bactericidal activity against *B. cepacia* (not shown).

In summary, we were able to enhance the bactericidal activity of honey by enrichment with the antimicrobial peptide BP2. BP2-enriched RS honey had rapid bactericidal activity up to a high dilution against all bacteria tested and had a broader spectrum of bactericidal activity than either agent alone. This offers prospects for development of clinically applicable honey-based antimicrobials with rapid and broad-range microbicidal activity.

1 2 3 4 5	
5 6 7 8 9 10 11 12 13	
14 15 16 17	
18 19 20 21 22 23 24 25	
25 26 27 28 29 30	
31 32 33 34 35 36 37 38 39	
40 41 42	
43 44 45 46 47 48	
49 50 51 52 53 54	
55 56 57 58 59 60	
61 62 63	

1 Funding

•	This conduction a second state of here a			the Distals Missister
2	This work was supported by a	SENTER grant	(ISGE2055) from	n the Dutch Ministry

3 of Economic Affairs.

- **Conflict of interest**
- 6 None to declare

FIGURE LEGENDS

2

Fig. 1 Kinetics of killing of various antibiotic-resistant bacteria by RS honey.

Bacteria were incubated in honey diluted to 40% (squares), 20% (triangles) and

10% (diamonds). At indicated time points survival was determined quantitatively.

Fig. 2 Bactericidal activity of undiluted RS honey. Bactericidal activity of undiluted honey against MRSA (white bars) and E. coli ESBL (grey bars). Inocula of approximately 10⁵ CFU in 4 microliter were added to 0.5 ml undiluted honey. At indicated time points, samples were diluted with one volume of incubation buffer and subsequently survival was quantified as described for the liquid bactericidal assay.

Fig. 3 Concentration of H₂O₂ required for activity against MRSA. (A)

Production of H_2O_2 in diluted RS honey. Accumulation of H_2O_2 in indicated

concentrations RS honey was assessed at 2 hours (squares) or 24 hours

(triangles) after dilution. (B) Bactericidal activity of solutions containing only H_2O_2 .

Survival of MRSA was assessed after 2 hours (white bars) or 24 hours (grey bars)

of incubation with the indicated concentrations of H_2O_2 .

Fig. 4 Bactericidal activity of bee defensin-1. Bactericidal activity of bee

defensin-1 was assessed using the >5 kDa fraction of RS honey in which bee

defensin-1 is the only antibacterial factor present [16]. (A) Bactericidal activity of
bee defensin-1 against various bacteria was assessed after 2 hours (grey bars) or
24 hours (hatched bars) of incubation at the concentration of this peptide as
present in undiluted RS honey. As a control, bacteria were incubated for 2 hours in
incubation buffer (white bars). (B) Bactericidal activity of concentrated bee
defensin-1 against MRSA after 2 hours of incubation. Incubation in buffer was used
as a control.

Fig. 5 Efficacy of LL-37 to enhance rapid bactericidal activity of RS honey. (A) Survival of MRSA (squares) and *E. coli* ESBL (triangles) after 2 hours of incubation in indicated concentrations of LL-37 in incubation buffer. (B) Bactericidal activity of LL-37 enriched RS honey. Indicated microorganisms were incubated for 2 hours in 2-fold serial dilutions of 75 µM LL-37 (white bars), RS honey alone (grey bars) or RS honey enriched with 75 µM LL-37 (black bars). The highest dilutions of these preparations killing at least 99.9% of the inocula are indicated. Mean ± SEM values of independent triplicate incubations are shown.

19 Fig. 6 Efficacy of BP2 to enhance rapid bactericidal activity of RS honey. (A)

Survival of MRSA (squares) and *E. coli* ESBL (triangles) after 2 hours of incubation
in indicated concentrations of BP2 in incubation buffer. (B) Bactericidal activity of
BP2-enriched RS honey. Indicated microorganisms were incubated for 2 hours in
2-fold serial dilutions of 75 µM BP2 (white bars), RS honey alone (grey bars) or RS

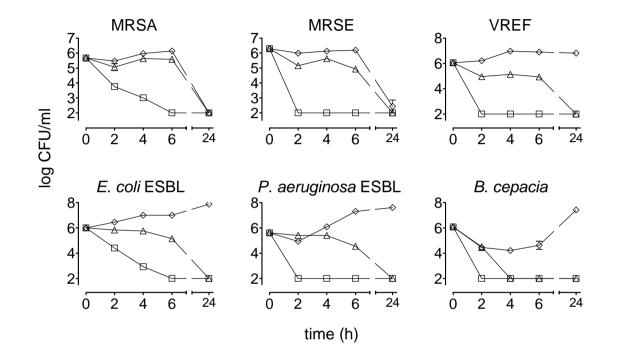
- 1 honey enriched with 75 µM BP2 (black bars). The highest dilutions of these
- 2 preparations killing at least 99.9% of the inocula are indicated. Mean ± SEM values
- 3 of independent triplicate incubations are shown.

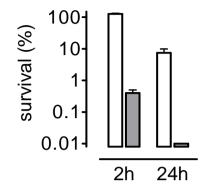
	1	
	2	
	3 ⊿	
	1234567890123456789012345678901234567890123456789	
	6	
	7	
	8	
1	9	
1	1	
1	2	
1	3	
1	4	
⊥ 1	5	
1	7	
1	8	
1	9	
2	0	
2	⊥ 2	
2	3	
2	4	
2	5	
2	6	
2	7 8	
2	9	
3	0	
3	1	
3	2	
3	3 4	
3	5	
3	6	
3	7	
3	8	
4	0	
	1	
4		
4		
4 4	4	
4	6	
4	7	
4	8	
4	9	
5 5	0 1	
5	2	
5	3	
5	4	
5 5	5	
5 5	6 7	
5	, 8	
5	9	
6		
6	1	
6	2 3	
6 6	4	

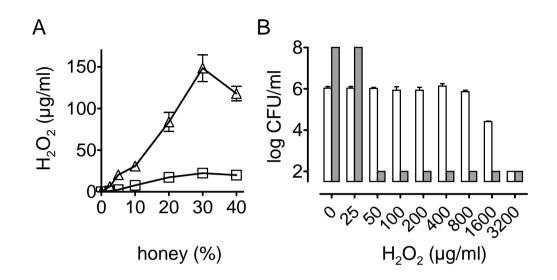
REFERENCES

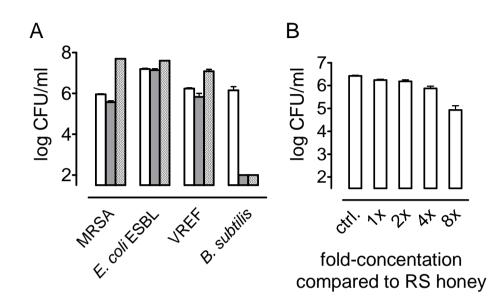
4 5	1	REFERENCES	
6 7	2		
8 9	3		
10 11 12	4	1. Walsh, C. (2003) Antibiotics: Actions, Origins, Resistance. American Socie	ty
13 14 15	5	for Microbiology (ASM) Press, Washington DC.	
16 17 18	6	2. Levy, S. B., Marshall, B. (2004) Antibacterial resistance worldwide: causes	\$,
19 20 21	7	challenges and responses. Nat.Med. 10, S122-S129	
22 23 24	8	3. Fischbach, M. A., Walsh, C. T. (2009) Antibiotics for Emerging Pathogens	
25 26 27	9	<i>Science</i> 325 , 1089-1093	
28 29 30	10	4. Cooper, R. A., Molan, P. C., Harding, K. G. (2002) The sensitivity to honey	1
31 32	11	of Gram-positive cocci of clinical significance isolated from wounds. J.App	Ι
33 34 35 36	12	Microbiol 93 , 857-863	
37 38 39	13	5. Efem, S. E. E. (1988) Clinical Observations on the Wound-Healing	
40 41 42	14	Properties of Honey. British Journal of Surgery 75, 679-681	
43 44 45	15	6. Bonn, D. (2003) Sweet solution to superbug infections? Lancet Infect.Dis.	3,
46 47	16	608	
48 49 50 51	17	7. Dixon, B. (2003) Bacteria can't resist honey. Lancet Infect. Dis. 3, 116	
52 53 54	18	8. Lusby, P. E., Coombes, A., Wilkinson, J. M. (2002) Honey: a potent agent	
55 56 57 58 59 60	19	for wound healing? <i>J.Wound.Ostomy.Continence.Nurs.</i> 29 , 295-300	
61 62 63 64 65			22

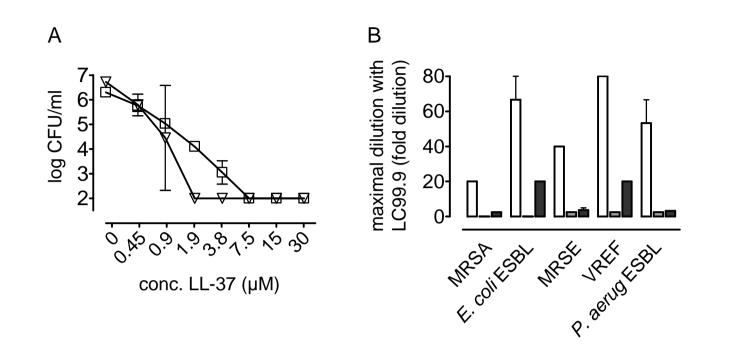
1 2			
3 4 5	1	9.	Simon, A., Traynor, K., Santos, K., Blaser, G., Bode, U., Molan, P. (2009)
6 7	2		Medical honey for wound carestill the 'latest resort'?
8 9 10 11	3		Evid.Based.Complement Alternat.Med. 6, 165-173
12 13	4	10.	Molan, P. C. (1992) The Antibacterial Activity of Honey .2. Variation in the
14 15 16	5		Potency of the Antibacterial Activity. Bee World 73, 59-76
17 18 19	6	11.	Allen, K. L., Molan, P. C., Reid, G. M. (1991) A survey of the antibacterial
20 21 22 23	7		activity of some New Zealand honeys. J Pharm.Pharmacol. 43, 817-822
24 25	8	12.	Adams, C. J., Boult, C. H., Deadman, B. J., Farr, J. M., Grainger, M. N.,
26 27 28	9		Manley-Harris, M., Snow, M. J. (2008) Isolation by HPLC and
29 30	10		characterisation of the bioactive fraction of New Zealand manuka
31 32 33	11		(Leptospermum scoparium) honey. Carbohydr.Res. 343, 651-659
34 35 36	12	13.	Mavric, E., Wittmann, S., Barth, G., Henle, T. (2008) Identification and
37 38	13		quantification of methylglyoxal as the dominant antibacterial constituent of
39 40 41	14		Manuka (Leptospermum scoparium) honeys from New Zealand.
42 43 44	15		Mol.Nutr.Food Res 52 , 483-489
45 46 47	16	14.	Postmes, T., van den Bogaard, A. E., Hazen, M. (1995) The sterilization of
48 49	17		honey with cobalt 60 gamma radiation: a study of honey spiked with spores
50 51 52 53	18		of Clostridium botulinum and Bacillus subtilis. <i>Experientia</i> 51 , 986-989
54 55	19	15.	Kwakman, P. H. S., Van den Akker, J. P. C., Guclu, A., Aslami, H.,
56 57	20		Binnekade, J. M., de Boer, L., Boszhard, L., Paulus, F., Middelhoek, P., Te
58 59 60 61	21		Velde, A. A., Vandenbroucke-Grauls, C. M. J. E., Schultz, M. J., Zaat, S. A.
62 63 64			23
65			


1 2			
3 4 5	1		J. (2008) Medical-grade honey kills antibiotic-resistant bacteria in vitro and
6 7 8	2		eradicates skin colonization. Clin Infect Dis 46, 1677-1682
9 10 11	3	16.	Kwakman, P. H. S., Te Velde, A. A., de Boer, L., speijer, D.,
12 13	4		Vandenbroucke-Grauls, C. M. J. E., Zaat, S. A. J. (2010) How honey kills
14 15 16	5		bacteria. <i>FASEB J</i> 24 , 2576-2582
17 18 19	6	17.	Huang, H. W. (2000) Action of antimicrobial peptides: two-state model.
20 21 22	7		Biochemistry 39 , 8347-8352
23 24 25	8	18.	Shai, Y. (2002) Mode of action of membrane active antimicrobial peptides.
26 27 28	9		Biopolymers 66 , 236-248
29 30 31	10	19.	Kobayashi, S., Takeshima, K., Park, C. B., Kim, S. C., Matsuzaki, K. (2000)
32 33	11		Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers:
34 35 36	12		proline as a translocation promoting factor. <i>Biochemistry</i> 39 , 8648-8654
37 38 39	13	20.	Epand, R. M., Vogel, H. J. (1999) Diversity of antimicrobial peptides and
40 41 42	14		their mechanisms of action. Biochim.Biophys.Acta 1462, 11-28
43 44 45	15	21.	Matsuzaki, K. (1999) Why and how are peptide-lipid interactions utilized for
46 47 48	16		self-defense? Magainins and tachyplesins as archetypes.
49 50 51	17		Biochim.Biophys.Acta 1462 , 1-10
52 53 54	18	22.	Devine, D. A., Hancock, R. E. (2002) Cationic peptides: distribution and
55 56 57	19		mechanisms of resistance. Curr.Pharm.Des 8, 703-714
58 59 60			
61 62 63			
64 65			24


1 2				
3 4 5	1	23.	Naiemi, N. A., Duim, B., Savelkoul, P. H., Spanjaard, L., de Jonge, E., Ba	art,
6 7	2		A., Vandenbroucke-Grauls, C. M., de Jong, M. D. (2005) Widespread	
8 9 10	3		transfer of resistance genes between bacterial species in an intensive cal	re
11 12 13	4		unit: implications for hospital epidemiology. J Clin Microbiol. 43, 4862-486	54
14 15 16	5	24.	White, J. W. Jr., Subers, M. H. (1963) Studies on honey inhibine. 2. A	
17 18 19	6		chemical assay. Journal of Apicultural Research 2, 93-100	
20 21 22	7	25.	Dankert, J., Van der Werff, J., Zaat, S. A. J., Joldersma, W., Klein, D., He	ess,
23 24	8		J. (1995) Involvement of bactericidal factors from thrombin-stimulated	
25 26 27	9		platelets in clearance of adherent viridans streptococci in experimental	
28 29 30	10		infective endocarditis. Infect.Immun. 63, 663-671	
31 32 33	11	26.	Sorensen, O., Arnljots, K., Cowland, J. B., Bainton, D. F., Borregaard, N.	
34 35	12		(1997) The human antibacterial cathelicidin, hCAP-18, is synthesized in	
36 37 38	13		myelocytes and metamyelocytes and localized to specific granules in	
39 40 41	14		neutrophils. <i>Blood</i> 90, 2796-2803	
42 43	15	27.	Frohm, N. M., Sandstedt, B., Sorensen, O., Weber, G., Borregaard, N.,	
44 45 46	16		Stahle-Backdahl, M. (1999) The human cationic antimicrobial protein	
47 48	17		(hCAP18), a peptide antibiotic, is widely expressed in human squamous	
49 50 51 52	18		epithelia and colocalizes with interleukin-6. Infect.Immun. 67, 2561-2566	
53 54	19	28.	Kwakman, P. H. S., Te Velde, A. A., Vandenbroucke-Grauls, C. M. J. E.,	
55 56 57 58 59 60 61 62 63	20		van Deventer, S. J. H., Zaat, S. A. J. (2006) Treatment and prevention of	
64 65				25


1 2			
3 4 5	1		Staphylococcus epidermidis experimental biomaterial-associated infection
6 7 8	2		by bactericidal peptide 2. Antimicrob. Agents Chemother. 50, 3977-3983
9 10 11	3	29.	Bang, L. M., Buntting, C., Molan, P. (2003) The effect of dilution on the rate
12 13	4		of hydrogen peroxide production in honey and its implications for wound
14 15 16 17	5		healing. J.Altern.Complement Med. 9, 267-273
18 19	6	30.	Lineaweaver, W., Mcmorris, S., Soucy, D., Howard, R. (1985) Cellular and
20 21 22	7		Bacterial Toxicities of Topical Antimicrobials. Plastic and Reconstructive
23 24 25	8		Surgery 75 , 394-396
26 27 28	9	31.	Wilson, J. R., Mills, J. G., Prather, I. D., Dimitrijevich, S. D. (2005) A toxicity
29 30	10		index of skin and wound cleansers used on in vitro fibroblasts and
31 32 33 34	11		keratinocytes. Adv. Skin Wound. Care 18, 373-378
35 36	12	32.	Watt, B. E., Proudfoot, A. T., Vale, J. A. (2004) Hydrogen peroxide
37 38 39	13		poisoning. <i>Toxicol.Rev.</i> 23, 51-57
40 41 42	14	33.	Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T.,
43 44	15		Kobayashi, K. (1990) A potent antibacterial protein in royal jelly. Purification
45 46 47	16		and determination of the primary structure of royalisin. J Biol. Chem. 265,
48 49 50	17		11333-11337
51 52 53	18	34.	Casteels-Josson, K., Zhang, W., Capaci, T., Casteels, P., Tempst, P. (1994)
54 55	19		Acute transcriptional response of the honeybee peptide-antibiotics gene
56 57 58	20		repertoire and required post-translational conversion of the precursor
59 60 61	21		structures. <i>J.Biol.Chem.</i> 269 , 28569-28575
62 63 64			26
65			


1 2 2			
3 4 5	1	35.	Kalapos, M. P. (2008) The tandem of free radicals and methylglyoxal.
6 7 8	2		<i>Chem.Biol.Interact.</i> 171 , 251-271
9 10 11	3	36.	Brownlee, M. (2001) Biochemistry and molecular cell biology of diabetic
12 13 14	4		complications. Nature 414, 813-820
15 16 17	5	37.	Stitt, A. W. (2003) The role of advanced glycation in the pathogenesis of
18 19 20	6		diabetic retinopathy. Exp.Mol.Pathol. 75, 95-108
21 22 23	7	38.	Zanetti, M., Gennaro, R., Romeo, D. (1995) Cathelicidins: a novel protein
24 25	8		family with a common proregion and a variable C-terminal antimicrobial
26 27 28	9		domain. FEBS Lett. 374, 1-5
29 30 31	10	39.	Lehrer, R. I., Ganz, T. (2002) Cathelicidins: a family of endogenous
32 33 34	11		antimicrobial peptides. Curr.Opin.Hematol. 9, 18-22
35 36 37	12	40.	Niyonsaba, F., Ogawa, H. (2005) Protective roles of the skin against
38 39 40	13		infection: Implication of naturally occurring human antimicrobial agents
41 42	14		[beta]-defensins, cathelicidin LL-37 and lysozyme. Journal of Dermatological
43 44 45	15		<i>Science</i> 40 , 157-168
46 47 48	16	41.	Putsep, K., Carlsson, G., Boman, H., Andersson, M. (2002) Deficiency of
49 50 51	17		antibacterial peptides in patients with morbus Kostmann: an observation
52 53 54	18		study. The Lancet 360 , 1144-1149
54 55 56 57			
58 59			
60 61 62			
63 64 65			27


2				
3 4 5	1	42.	Govan, J. R., Deretic, V. (1996) Microbial pathogenesis in cystic fibrosis:	
6 7 8	2		mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol.F	Rev.
9 10 11	3		60 , 539-574	
12 13	4	43.	Clore, G. M., Appella, E., Yamada, M., Matsushima, K., Gronenborn, A. I	M.
14 15 16	5		(1990) Three-dimensional structure of interleukin 8 in solution. Biochemis	stry
17 18 19	6		29 , 1689-1696	
20 21 22	7	44.	Turner, J., Cho, Y., Dinh, N. N., Waring, A. J., Lehrer, R. I. (1998) Activiti	es
23 24	8		of LL-37, a cathelin-associated antimicrobial peptide of human neutrophi	ls.
25 26 27 28	9		Antimicrob.Agents Chemother. 42 , 2206-2214	
29 30	10	45.	Cooper, R. A., Wigley, P., Burton, N. F. (2000) Susceptibility of	
31 32 33	11		multiresistant strains of Burkholderia cepacia to honey. Lett Appl Microbi	ol
34 35 36	12		31 , 20-24	
37 38 39	13			
40 41	14			
42 43				
44 45 46				
47 48				
49 50				
51 52				
53				
54 55				
56 57				
58				
59 60				
61				
62 63				20
64 65				28

