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Abstract 

We performed the synthesis of a (N-Me-3,5-di-Me-Py)(TCNQ)2 single crystal and we 

resolved the crystallic and molecular structure of this salt. Magnetic susceptibility 

measurements were performed in the temperature range from 2 K to 300 K. The results 

are studied with respect to two energy gaps in the magnetic excitations spectra which 

could signify that the Peierls dielectric phase forms in two grades. 

 

Keywords: A. organic compounds; B. chemical synthesis; C. X-ray diffraction; D. 

magnetic properties; 

 

1. Introduction 
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Organic materials based on TCNQ are considered as a proper systems for the study of 

low-dimensional magnetic models due to their significant property - small modification 

of their crystal structure has a substantial impact on their physical properties. Recently 

we have studied magnetic and thermodynamic properties of samples (N-Me-2,5-di-Me-

Pz)(TCNQ)2 [1] described with a dimerized Heisenberg spin 1/2 chain model and (N-

Me-2,6-di-Me-Pz)(TCNQ)2 [2] described with a spin-ladder model. These compounds 

have very similar composition, in which only the position of the methyl group on the 

cation core is varying, but they differ significantly in the crystal structure, due to small 

changes in cation molecules. 

It was theoretically predicted in the past that the low-dimensional systems may 

exhibit the spin-Peierls transition [3-5]. This transition was experimentally observed for 

the first time in charge-transfer complexes (TTF)[M{S2C2(CF3)2}] (TTF = 

tetrathiafulvalene) (M = Cu, Au) [6, 7] and MEM-(TCNQ)2 (MEM = methyl-ethyl-

morpholinium) [8]. Decades later, the spin-Peierls transition was observed also in 

inorganic compounds, firstly in CuGeO3 [9], which is a main representant of spin-

Peierls inorganic systems, and later also in (VO)2P2O7 [10], which is a model system of 

interacting chains. Moreover, in the latter compound two energy gaps were observed 

[11]. 

Two-gap systems are insufficiently described in the literature. The so-called 

double gap model was introduced for the first time in 1999 [10], for (VO)2P2O7. The 

authors introduced two kinds of coexisting magnetic chains in this model, behaving as 

alternating spin chains with two independent energy gaps. It was the first experimental 

evidence of the coexistence of two different ground states in a quite near distance and 

                                                                                                                                                                              
1  Corresponding author, alena.radvakova@upjs.sk, +421 55 234 2314 
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in quite similar spin chains and the (VO)2P2O7 can be considered as a typical gauge of 

unusual low-dimensional compounds. 

In the crystal structure of the studied compound (N-Me-3,5-di-Me-Py)(TCNQ)2 

two types of columns appear. This has led us to describe the magnetic properties with a 

model of dimerized chains with two gaps. 

In this paper we present the synthesis and the crystal and molecular structure 

investigations of a (N-Me-3,5-di-Me-Py)(TCNQ)2 single crystal. X-ray diffraction 

experiments were performed. Magnetic susceptibility was measured in the temperature 

range from 2 K to 300 K. Analysis of the low-temperature susceptibility revealed that 

two energy gaps occur in the magnetic excitations spectra and that the spin-Peierls 

transition could proceed in a rather unusual way. 

 

2. Experimental 

TCNQ was purified by the recrystallization from acetone and after that the gradient 

sublimation in argon atmosphere was used. Anion-radical salt (ARS) was gained by a 

standard method using reaction of TCNQ reduction by N-Me-3,5-di-Me-pyridine 

iodide, which we get from the reaction of methyliodide with 3,5-diMe-pyridine: 

 MeI + (3,5-diMePy) → [N-Me-3,5-diMePy]+I-; 

 1.5[N-Me-3,5-diMePy]+I- + 2TCNQ → [N-Me-3,5-diMePy](TCNQ)2↓ + 

 0.5[N-Me-3,5-diMePy](I3). 

One and half residue of iodide is necessary for binding of the forming iode. Precipitate 

of the salt was filtered and washed with diethyl ether and acetone mixture. In order to 

grow single crystals the recrystallization from acetonitrile/acetone mixture was 

performed. Black-violet needle crystals with length up to 2 mm were obtained. 
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The X-ray study of the crystal structure of the ARS was performed at room 

temperature using an Enraf-Nonius CAD-4 (ω/2θ-scanning, Mo-Kα radiation, graphite 

monochromator) device. The crystal structure was solved by direct methods and 

subsequent Fourier synthesis using the SHELXS-97 software [12]. Structure was 

refined by full-matrix least squares procedures using an anisotropic approximation for 

all non-hydrogen atoms within the SHELXL-97 [13] software. Hydrogen atoms 

coordinates were calculated from the geometric condition. Nitrogen atom in each 

independent cation can be localized in one of three positions to which three methyl 

groups are bound. From these three possible positions we have calculated the one with 

maximal occupation. Main crystallographic data and some experimental characteristics 

are listed in table 1. Bond lengths and valence angles are given in table 2. CCDC 

746389 contains the supplementary crystallographic data for this 

paper. These data can be obtained free of charge from The Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

The magnetization measurements and magnetic susceptibility measurements of 

polycrystalline sample (80.6 mg) were performed in a Quantum Design MPMS device. 

The temperature dependence of susceptibility was investigated in the temperature range 

from 2 K to 300 K in applied magnetic field 100 mT. Diamagnetic contribution to the 

susceptibility was estimated using Pascal’s constants [14, 15] and then subtracted from 

the total susceptibility.  

 

3. Results and Discussion 
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Crystal structure of the salt is formed by four TCNQ anion-radicals A, B, C and D (Fig. 

1a) and two crystallographicaly independent 3,5-dimethyl-N-methyl-pyridine cations E 

and F, situated in general positions (Fig. 1b). 

Performed study showed that this salt has a layered structure (Fig. 2) in which 

layers formed by cations [3,5-di-Me-N-Me]+ alternate along the a axis with layers 

consisting of TCNQ anion radicals. Anion layers separated by cation layers are 

inhomogeneous and consist, in turn, of the type A or B anion radicals (Fig. 3a), or the 

type C or D anion radicals (Fig. 3b). 

Anions form layers along the c axis and irregular columns along the b axis (Fig. 

3). The layers are formed by anions of only one type. In columns the anions alternate in 

sequences (AB)(BA) or (CD)(DC) and structural dimers formed by anions of diverse 

types ((AB) and (CD)) can be distinguished, differing from each other only by the 

deviation angle. The dihedral angles, formed by planes of anions A-A, B-B, C-C and D-

D, are 161.5°, 162.2°, 168.7° and 168.1°, respectively. Anions in dimers are practically 

parallel (dihedral angle between planes laid through all carbon atoms in TCNQ anion is 

equal to 0.4°). The distance between planes in (AB) dimers is 3.19 Å and in (CD) 

dimers is 3.28 Å. 

Anion-radicals TCNQ are characterized by considerable deviations of nitrogen 

atoms from the carbon plane, with values 0.07 �, 0.10 �, 0.16 � and 0.15 � for atoms 

N(1A), N(4B), N(4C) and N(4D), respectively. Cations are practically planar, with 

maximal deviation being only 0.01 � and 0.02 � (atoms N(1E) and �(7F), 

respectively).  

Cation layers separated by anion layers are homogeneous and formed by cations 

of E or F type. Inside the layer the cations differ from each other in their orientation. 
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Interplanar angles between planes laid through the carbon atoms of cations are 66.7° 

and 68.7° for the E and F type of cation, respectively. 

In ARS with composition Ct+(TCNQ)2
- (where Ct+ is cation) tetramers usually 

form in the TCNQ columns due to the metal-insulator transition because when the 

conductivity band is filled up to 1/4 the period must, in conformity with Peierls 

theorem, increase fourfold [16]. However, in our compound two types of structural 

dimers form – (AB) and (CD). For the interpretation of the physical properties of this 

ARS it is necessary to know the charge distribution on TCNQ molecules. This 

distribution was calculated by the method presented in [17]. From the data in Table 2a 

and 2b we calculated HOSE (Harmonic Oscillator Stabilization Energy) energies for 

quinoid and Kekule’s TCNQ structures for A, B, C and D particles and their charges. 

The partial charges are –0.10 e (A), –1.09 e (B), –0.52 e (C) and –0.89 e (D) (Table 2c).  

 With regard to the accuracy of this interpretation we suppose that structural 

dimers (AB) and (CD) carry the charge about -1 and consequently the spin 1/2 and 

therefore with decreasing temperature further ordering should occur in the (N-Me-3,5-

Di-Me-Py)(TCNQ)2 crystal, caused by the spin-Peierls transition, due to which spinless  

structure tetramers with the charge -2 form. 

 The temperature dependence of magnetic susceptibility of this ARS confirms 

stated presumption. The magnetic susceptibility � of the sample shows a broad 

maximum at Tmax = 26.5 K ± 1 K (Fig. 4). After substracting the diamagnetic 

contribution, approximated by Pascal’s constants and found to be -13.587·10-5   

emu·mol-1, the susceptibilty data were fitted by the Currie-Weiss law in the temperature 

region from 130 K to 300 K. We determined the value of the Curie constant C to be 

0.299 emu·K·mol-1 and that of Weiss constant � to be -48.7 ± 2 K, confirming the 
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presence of antiferromagnetic interactions. As can be seen in Fig. 4, this dependence is 

typical for quasi-one-dimensional systems with antiferromagnetic interaction. 

The temperature dependence of the effective magnetic moment was fitted with 

formula (Fig. 5): 

TP
TP

eff +
⋅

=
2

1μ ,     (1) 

which yields the values P1 = 1.6 �B/K and P2 = 28.3 K. The value of the effective 

moment 1.6 �B corresponds to 0.89 unpaired electrons.  

Considering two types of structure dimers in the structure of ARS we can expect 

the appearance of two gaps in the magnetic excitations spectra. Therefore the 

temperature dependence of magnetic susceptibility was described with the formula: 

�
�
�

�
�
� Δ

−+�
�
�

�
�
� Δ

−+=
TT

A
TT

A
T

C 2211 expexp*χ ,  (2) 

where the first term describes the contribution from paramagnetic impurities (free 

fragments of magnetic structure) and the second and third terms describe the 

contributions from (AB) and (CD) type of dimers. This formula fits with parameters �* 

= 0.0186 emu·K·mol-1, A1 = 0.167 emu·K·mol-1, A2 = 0.127 emu·K·mol-1, Δ1 = 74.1 K 

and Δ2 = 26.6 K (Fig. 4) satisfactorily the temperature dependence of magnetic 

susceptibility. The amount of paramagnetic impurities was estimated from the value of 

the Curie constant and is equal to 0.9 %.  

As we know, the value of the exchange integral decreases exponentially with the 

increase of the interplanar distance. Therefore such considerable difference between the 

gap widths for (AB) and (CD) type of dimers can be explained by different interplanar 

distances in dimers (3.19 Å in A-B dimers and 3.28 Å in C-D dimers).  
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4. Conclusion 

This study shows that in the presented ARS (N-Me-3,5-Di-Me-Py)(TCNQ)2 an unusual 

dielectric state is observed in which Peierls dielectric phase forms in two grades. At 

room temperature two types of strucure dimers exist and doubling of the period is 

observed. At temperatures below 50 K further ordering occurs, with dimers coupling to 

tetramers. Two gaps in the magnetic excitations spectra correspond to two types of 

structure dimers. Nevertheless, to confirm our presumptions resulting from the crystal 

structure and magnetic susceptibility analyses, the measurements of magnetisation in 

high magnetic fields and EPR measurements should be performed. 
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Figure Captions 

 

Fig. 1. ORTEP view and atom labeling of (N-Me-3,5-Di-Me-Py)(TCNQ)2 – in anion (a) 

and cation (b). 

Fig. 2. The crystal structure of (N-Me-3,5-Di-Me-Py)(TCNQ)2. 

Fig. 3. Two types of anion-radical layers, formed by anions of different types – a) 

shows the layer formed by A and B type of anions, b) shows the layer formed by C and 

D type of anions. 

Fig. 4. Temperature dependence of magnetic susceptibility (open circles) fitted with 

formula (2) (black solid line). Separate terms of the formula represent the contributions 

from paramagnetic impurities (pink dashed line), from AB strucuture dimers (blue 

dotted line) and from CD strucuture dimers (green dash-and-dot line). 

Fig. 5. Temperature dependence of effective magnetic moment (open circles) of ARS 

(N-Me-3,5-Di-Me-Py)(TCNQ)2 fitted with formula (1) (solid line); inset shows linear fit 

(solid line) of inverse susceptibility (open circles) in the temperature region from 130 

K to 300 K. 
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Table 1. Basic crystalographic data 

Compound (N-Me-3,5-di-Me-Py)(TCNQ)2 

Chemical formula C32H20N9 

Molecular mass 530.57 

Crystal system Monoclinic         

Space group P� 

a/Å 27.578(4) 

b/Å 12.977(2) 

c/Å 7.796(1) 

α/° 90 

β/° 93.36(2) 

γ/° 90 

U/Å3 2785.2(7) 

Z 4 

λ/Å 0.7107 

Dcalc, /g⋅�m-3 1.26 

μ/mm-1 0.080 

Number of measured reflections 5204 

Number of independent reflections 5204 

Number of observed reflections [F0 > 4σ(F0)] 2959 

Parameters refined 740 

(2θ)max, ° 50.00 

Interval for h -32 ≤ h ≤ 32 
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Interval for k 0 ≤ k ≤ 15 

Interval for l 0 ≤ l ≤ 9 

R – factor (F0 > 4σ(F0)) 0.043 
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Table 2a. Bond distances in cations 

 A B C D 

N(1)-C(1) 1.134(6) 1.139(6) 1.151(7) 1.132(7) 

N(2)-C(2) 1.145(6) 1.140(6) 1.152(6) 1.136(6) 

N(3)-C(11) 1.137(6) 1.140(6) 1.155(7) 1.138(7) 

N(4)-C(12) 1.140(6) 1.141(6) 1.153(6) 1.128(7) 

C(1)-C(3)) 1.439(6) 1.421(6) 1.411(7) 1.431(7) 

C(2)-C(3) 1.432(7) 1.414(6) 1.409(6) 1.429(7) 

C(3)-C(4) 1.377(8) 1.423(8) 1.400(8) 1.406(8) 

C(4)-C(9) 1.446(6) 1.409(6) 1.431(6) 1.419(6) 

C(4)-C(5) 1.448(6) 1.415(6) 1.435(6) 1.416(6) 

C(5)-C(6) 1.334(8) 1.381(8) 1.351(8) 1.370(8) 

C(6)-C(7) 1.449(6) 1.405(6) 1.437(6) 1.426(6) 

C(7)-C(10) 1.367(8) 1.420(8) 1.388(8) 1.392(8) 

C(7)-C(8) 1.445(6) 1.408(6) 1.425(6) 1.412(7) 

C(8)-C(9) 1.336(8) 1.365(8) 1.342(8) 1.366(8) 

C(10)-C(11) 1.436(6) 1.415(6) 1.405(7) 1.425(7) 

C(10)-C(12) 1.439(6) 1.416(6) 1.410(6) 1.432(7) 

 

 A B C D 

N(1)-C(1)-C(3) 177.6(8) 177.4(8) 177.8(9) 171.5(9) 

N(2)-C(2)-C(3) 176.4(8) 176.7(8) 178.8(8) 178.1(8) 

C(4)-C(3)-C(2) 122.1(5) 120.8(5) 119.8(5) 121.5(5) 

C(4)-C(3)-C(1) 121.5(5) 121.1(5) 121.7(6) 121.5(6) 

C(2)-C(3)-C(1) 116.3(6) 118.0(6) 118.4(6) 117.0(6) 

C(3)-C(4)-C(9) 121.9(5) 122.0(5) 123.1(5) 121.1(5) 

C(3)-C(4)-C(5) 122.1(5) 120.4(5) 119.7(5) 122.0(5) 

C(9)-C(4)-C(5) 116.0(5) 117.6(5) 117.2(6) 116.9(6) 

C(6)-C(5)-C(4) 121.2(5) 122.0(6) 120.7(6) 122.9(6) 

C(5)-C(6)-C(7) 121.9(5) 118.9(6) 121.3(6) 119.2(6) 
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C(10)-C(7)-C(8) 121.2(4) 120.3(5) 122.3(5) 121.2(5) 

C(10)-C(7)-C(6) 121.2(5) 120.0(5) 119.9(5) 120.2(5) 

C(8)-C(7)-C(6) 117.6(5) 119.6(6) 117.7(6) 118.6(6) 

C(9)-C(8)-C(7) 119.5(5) 120.8(6) 120.6(6) 121.3(6) 

C(8)-C(9)-C(4) 123.7(5) 121.0(5) 122.2(5) 121.2(6) 

C(7)-C(10)-C(11) 123.8(5) 121.7(5) 121.7(5) 124.5(5) 

C(7)-C(10)-C(12) 122.9(5) 123.0(5) 124.5(5) 119.9(6) 

C(11)-C(10)-C(12) 113.3(6) 115.1(6) 113.6(6) 115.6(6) 

N(3)-C(11)-C(10) 179.4(9) 176.9(8) 177.5(8) 177.3(9) 

N(4)-C(12)-C(10) 177.7(8) 179.3(9) 178.1(8) 179.4(9) 
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Table 2b. Bond distances in anions 

 E F 

N(1)-C(1) 1.29(1) 1.33(1) 

N(2)-C(2) 1.37(1) 1.40(1) 

N(1)-C(6) 1.48(1) 1.49(1) 

C(1)-C(2) 1.35(1) 1.36(1) 

C(2)-C(3) 1.37(1) 1.35(1) 

C(2)-C(7) 1.45(1) 1.52(1) 

C(3)-C(4) 1.32(1) 1.41(1) 

C(4)-C(5) 1.35(1) 1.37(1) 

	(4)-C(8) 1.52(1) 1.47(1) 
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 E F 

C(5)-N(1)-C(1) 118.2(6) 122.1(6) 

C(5)-N(1)-C(6) 120.1(7) 118.4(7) 

C(1)-N(1)-C(6) 121.7(7) 119.4(7) 

C(2)-C(1)-N(1) 123.0(7) 119.3(7) 

C(1)-C(2)-C(3) 115.1(7) 120.5(7) 

C(1)-C(2)-C(7) 121.9(8) 118.5(7) 

C(3)-C(2)-C(7) 123.0(8) 121.0(7) 

C(4)-C(3)-C(2) 122.7(7)  

C(3)-C(4)-C(5) 119.1(7)  

C(3)-C(4)-C(8) 120.1(7)  

C(5)-C(4)-C(8) 120.8(7)  

N(1)-C(5)-C(4) 121.9(6)  
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Table 2c. Partial charges on four types of anions.    

 A B C D 

Partial charge [e] –0.10 –1.09 –0.52 –0.89 
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Figure 1a
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Figure 1b
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Figure 2
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Figure 3a
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Figure 3b
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Figure 4
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Figure 5




