
HAL Id: hal-00629902
https://hal.science/hal-00629902v1

Submitted on 29 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lexical Disambiguation in LTAG using Left Context
Claire Gardent, Yannick Parmentier, Guy Perrier, Sylvain Schmitz

To cite this version:
Claire Gardent, Yannick Parmentier, Guy Perrier, Sylvain Schmitz. Lexical Disambiguation in LTAG
using Left Context. 5th Language & Technology Conference - LTC’11, Nov 2011, Poznań, Poland.
pp.395-399. �hal-00629902�

https://hal.science/hal-00629902v1
https://hal.archives-ouvertes.fr

Lexical Disambiguation in LTAG using Left Context

Claire Gardent¹, Yannick Parmentier², Guy Perrier³, Sylvain Schmitz⁴

(1) LORIA – CNRS – 615, Rue du Jardin Botanique – F-54500 Vandœuvre-Lès-Nancy, France
(2) LIFO - Université d'Orléans – 6, Rue Léonard De Vinci – F-45067 Orléans Cedex 2, France

(3) LORIA – Nancy Université, 615, Rue du Jardin Botanique – F54500 Vandœuvre-Lès-Nancy, France
(4) LSV – ENS - 61, avenue du Président Wilson - F-94235 Cachan Cedex, France

claire.gardent@loria.fr – yannick.parmentier@univ-orleans.fr – guy.perrier@loria.fr – sylvain.schmitz@lsv.ens-cachan.fr

Abstract
In this paper, we present an automaton-based lexical disambiguation process for Lexicalized Tree-Adjoining Grammar (LTAG). This
process builds on previous work of Bonfante et al. (2004), and extends it by computing a polarity-based abstraction, which contains
information about left context. This extension allows for a faster lexical disambiguation by reducing the filtering automaton.

Keywords: parsing, lexical disambiguation, lexicalized tree adjoining grammar

1. Introduction

 When deep-parsing natural language with LTAG, one
needs to first retrieve, for each word of the sentence to
parse, the grammatical structures (i.e., LTAG trees) this
word is associated with in the lexicon. This operation is
called lexical selection.1 Unfortunately, in large
lexicalized grammars, a given word may be associated
with hundreds of grammatical structures. This high
lexical ambiguity causes a combinatorial explosion,
which highly impacts parsing times. Indeed, lexical
selection may yield an exponential number of sequences
of structures (in the worst case, one needs to retrieve the
cartesian product of the lexical entries of each word of
the sentence to parse). In order to reduce lexical
ambiguity, one wants to compute, for a given input
sentence, a subset of the grammatical structures, where
useless structures with respect to the input sentence are
discarded. Bangalore and Joshi (1999) proposed to use n-
grams and probabilities to compute the set of most
probable grammatical structures. This probability-based
lexical selection is called supertagging. A major
drawback of this approach is that it heavily relies on the
training corpus used for assigning lexical probabilities.
Supertagging may thus ignore valid structures (i.e.,
structures that are actually needed to parse the input
sentence), which in turn can degrade parsing accuracy.
 To prevent lexical selection from ignoring valid
structures, Boullier (2003) proposed to rather define a
grammatical abstraction (i.e., a morphism), which
produces an abstract grammar from the input one, and to
use this abstract grammar to parse the input sentence. For
each set of abstract structures that succeed in parsing the
input sentence, one selects the original structures
associated with these by the morphism. This technique
improves parsing efficiency only if parsing with the
abstract grammar is less complex than with the input
grammar. In his experiments, Boullier (2003) abstracted a
Context-Free Grammar from an LTAG. Parsing with
LTAG has a polynomial complexity of O(n)⁶ , n being the

1 Lexical selection is related to part-of-speech tagging.
While the latter assigns to a word its possible syntactic
categories in a given context, lexical selection assigns to
a word its possible grammatical structures.

length of the sentence to parse, while parsing with CFG
has a complexity of O(n³). The main drawback of this
approach is that one needs to first parse with the abstract
grammar, which may still be time-consuming.
 Following Boullier (2003), Bonfante et al. (2004)
proposed a non-probabilistic lexical selection, where one
uses a polarity-based abstraction. This abstraction is
inspired by Interaction Grammar (Perrier, 2000).2

Interaction Grammar can be seen as an extension of
Categorial Unification Grammar where attribute-value
pairs are replaced with attribute-polarity-value triples that
also encode valency constraints. Bonfante et al. (2004)
thus aimed at reducing the combinatorial explosions of a
polarized grammar by preliminary filtering with the
polarity constraints. Concretely, they projected sets of
polarities from the input grammatical structures. These
sets were then combined according to the sentence to
parse, in order to compute neutral sets referring to valid
selections (we will elaborate on this in Section 3). In this
paper, we build on the work of Bonfante et al. (2004),
and propose to compute a polarity-based abstraction,
which also takes into account the linear order of the
words of the sentence to parse to speed up filtering.
 This paper is organized as follows. In Section 2, we
briefly introduce LTAG. Then, in Section 3, we give a
detailed presentation of the polarity-based lexical
selection of Bonfante et al. (2004) and show how we
extend it to reduce the cost of lexical selection. In Section
4, we present an implementation of this extended lexical
selection within an LTAG parser, and an evaluation of
this approach. Finally, in Section 5, we conclude.

2. Lexicalized Tree-Adjoining Grammar

2.1 Definition
A Lexicalized Tree-Adjoining Grammar (Joshi and
Schabes, 1997) is a tree rewriting system, where
elementary trees can be rewritten using one of the two
following operations: substitution and adjunction.

2 In this formalism, grammatical structures are tree
descriptions, where nodes are labeled with polarized
feature-structures and parsing corresponds to computing
syntactic tree models where polarities are neutralized.

 Substitution consists in replacing a leaf node (marked
with a ↓) of an elementary or derived tree with an
elementary tree whose root is labeled with the same
syntactic category as this leaf node. Adjunction consists
in replacing an internal node of an elementary or derived
tree with an elementary tree having both a root node and
a leaf node (marked with *, called foot node) labeled with
the same category as this internal node. As an illustration,
see Fig. 1 below. It shows the substitution (resp.
adjunction) of the tree associated with John (resp.
deeply) into the tree associated with sleeps.
 Furthermore, in a Lexicalized TAG, every elementary
tree is associated with at least one lexical item (called
anchor). If a tree is associated with several lexical items,
there is one anchor, and several co-anchors.

Fig. 1: Tree rewriting in LTAG

2.2. Parsing with LTAG
 A large LTAG is made of thousands of elementary trees.
To reduce redundancy within this huge set of trees, a
three-layer lexicon architecture has been proposed by the
XTAG Group (2001). It consists in dividing the LTAG
lexicon in three sub-lexicons:
 a morphological lexicon associating inflected words

with lemmas,
 a syntactic lexicon associating lemmas with tree

schemas (i.e., unanchored LTAG trees),
 and a grammatical lexicon containing tree schemas

to be anchored. These tree schemas are gathered into
families according to the sub-categorization frame
they describe.

 When parsing with LTAG, (i) the input sentence is first
tokenized, then (ii) each token is associated with the
corresponding entries from the morphological lexicon.
For each selected morphological entry, the syntactic
lexicon is used to retrieve corresponding lemmas. For
each pair (word, lemma), corresponding tree schemas are
selected and anchored. (iii) In a final step, parsing is done
using the selected sub-grammar.
 As mentioned above, step (ii) may yield an exponential
number of sequences of anchored grammatical structures,
while step (iii), i.e., LTAG parsing, has a polynomial
complexity in the length of the input sentence. The global
complexity of (ii)+(iii) can be evaluated as O(|G|.A)⁶
where |G| is the size (i.e., number of structures) of the
input grammar and A the number of transitions of the
automaton that describes the sequences of useful
anchored grammatical structures (Lang, 1994).
 In our work, we aim at reducing the practical cost of
parsing, by discarding as many useless grammatical
structures as possible during lexical selection (step (ii)).
The next section shows how this can be done using a
polarity-based grammar abstraction.

3. Lexical disambiguation
 Following Bonfante et al. (2004 ; 2006), our approach
for lexical disambiguation uses a polarity-based
abstraction over the input grammar. Let us first see how
this abstraction is built by Bonfante et al. (2004) and
applied to LTAG. We shall then show how it can be
extended to improve disambiguation times.

3.1 Bonfante et al. (2004)'s lexical disambiguation
 Bonfante et al. (2004) define a general layout for lexical
disambiguation, that fits a large number of lexicalized
grammar formalisms. They apply this layout to Lambek
Grammar (Lambek, 1958) and LTAG. Their lexical
disambiguation is a three-step process:

1. (grammar polarization) First, the input grammar
is polarized. Every grammatical structure g is
associated with a set of polarities Sg made of
polarities of the form (f,v,p) where f is a feature
(constant), v a value (constant), and p a (possibly
negative) integer. Since the grammar is
lexicalized, we can associate each word w of the
lexicon with its corresponding multiset of
polarities M (recall that a word can anchor
several grammatical structures, each associated
with a possibly non-unique set of polarities).

2. (abstraction) Second, an abstract lexical
selection is operated using the previously
computed polarized grammar. Concretely, this
abstract lexical selection amounts to first
computing the cartesian product P of the
multisets associated with the words w1 … wn of
the input sentence : P = M1 × … × Mn. Then, a
binary rewriting rule (called neutralization rule)
is applied on the elements E = (S1, … , Sn) of this
product P as follows.
Let (S, S') be a couple of polarity sets in E,
these are replaced with a set S'' such that:
▪ if a feature f with value v is present in both S
and S' as (f,v,p) and (f,v,p') respectively, then
the polarity (f,v,p + p') is added to S'' .
▪ any polarity (f,v,p) in (S U S') \ (S ∩ S') is
copied into S''.
This rewriting goes on (in an arbitrary order)
until all elements of E have been consumed,
thus producing one polarity set per element E.

3. (filtering) In the end, the elements E of P are
filtered to keep only those whose abstraction
after neutralization is a set made of exactly one
polarity (cat, axiom, +1) and an arbitrary
number of polarities of the form (f,v,0), and
nothing else. For each such element, the
associated grammatical structures in the input
grammar are lexically selected.

 Note that this general layout relies on the computation
of a huge number of sequences of structures (i.e., the
elements of the product P). As pointed out by Perrier
(2008), among possible implementations of this lexical
selection, using automata helps in sharing information
(i.e., merging sequences with identical sets of polarities).

 Also, a crucial point of this approach lies in the
definition of polarization. Polarization should include
enough information (i.e., enough features) to distinguish
between useful grammatical structures in the context of
the sentence to parse, and useless ones, and yet it should
not lead to a complex, time-consuming abstraction (i.e.,
applying neutralization to polarized structures should stay
computable in reasonable times).

3.2 Application to LTAG
 Let us now see how this lexical selection is applied to
LTAG, where grammatical structures are trees.

1. The first step (polarization) consists in
associating each tree t of the input LTAG with a
set of polarities of the form (cat, x, n), where :
▪ x is either the category of the root, then n is 1
minus the number of substitution or foot nodes
labeled with the category x, or
▪ x is not the category of the root, and then n is
-1 times the number of substitution or foot
nodes labeled with the category x, or
▪ x is a lexical item (i.e., a word) labeling a co-
anchor (e.g., a preposition), and then n is -1
times the number of such co-anchors.3

That is, we consider only one type of feature (category).
The trees from Fig. 1 are polarized as follows:

polarities(tJohn) = {(cat, NP, +1)}
polarities(tsleeps) = {(cat, S, +1) (cat, NP, -1)}
polarities(tdeeply) = {(cat, VP, 0)}

2. The second step (abstraction) consists in
computing the cartesian product of the set of
polarities according to the sentence to parse:4

P=
 {polarities(tJohn)}×{polarities(tsleeps)}×{polarities(tdeeply)}

Neutralization consists in summing, for each
element E of P, the polarities for compatible

 (f,v) pairs. In our toy example, we obtain:

 neutralization(E)={(cat, S, +1) (cat, NP, 0) (cat, VP, 0)}

3. The third step (filtering) keeps among
neutralized elements of P, those which are well-
formed. In our case, there is only one element in
P and its neutralization is well-formed for an
axiom S (i.e., if we are parsing a sentence).

 Note that lexical selection based on polarization and
abstraction as presented here does not rely on any
particular word order. One can compute well-formed
elements of P (i.e., apply neutralization) following or not
the word order defined by the input sentence.

3 In step 2, input words which can be coanchors in the
lexicon, are associated with trees made of a single root
node. These trees bring the +1 polarity needed to
neutralize the coanchor in a valid lexical selection.
4 Note that in our toy example, there is only one tree per
word of the input sentence (i.e., there is no lexical
ambiguity), and thus P has a single element. The purpose
here is merely to illustate the lexical selection process.

 Also, as mentioned above, using deterministic automata
to implement this lexical selection allows to factorize
information, which is very important to deal with the
huge number of sequences of structures. The idea of this
automaton-based implementation is the following. States
are associated with sets of polarities. We create an empty
initial state. We create as many edges from the initial
state as candidate polarized grammatical structures for
the first word of the input sentence. These edges lead to
new states whose set of polarities is the sum of the
polarities of the original state and those of the structure
labeling the edge. We merge states with similar sets of
polarities. We go on with the second word, that is, we
create as many edges from these new states as candidate
polarized structures for this word, leading to new states,
and so on. As an illustration, consider Fig. 2 below. In
this figure, one can see the lexical selection for the
sentence “John eats a cake”. For the word John, there is
only one associated grammatical structure in the lexicon,
namely that for proper nouns. It is polarized as (cat, NP,
+1). For eats, there is an ambiguity between intransitive
and transitive verbs. There are thus two new states,
depending on which tree is used. When the sentence is
fully processed, we obtain two final states, among which
only one is well-formed (state number 7).

Fig. 2: Automaton-based lexical selection

3.3 Lexical disambiguation using word order
 As mentioned above, the polarity-based lexical selection
introduced in Section 3.1 does not rely on a specific
order. In particular, polarization and abstraction do not
use any information about the word order within the input
sentence. In order to enhance lexical selection, we
propose to use such information by extending Bonfante
et al. (2004)'s lexical selection as follows.
 The polarization of input grammar (step 1) is extended
to produce pairs of sets of polarities. That is, polarization
generates for each input grammatical structure, a pair of
sets of polarities, where the first element is the classical
polarization of Bonfante et al. (2004), and the second
element a polarization related to left context. This second
polarization is similar to that presented in Section 3.2
except that it only considers the root node and
substitution nodes that are on the left of the anchor. For
instance, the word eats in Fig. 2 is now polarized as:

 polarities(eats) = polarities(ttrans) U polarities(tintrans) =
 { ({(cat,S,+1) (cat, NP, -1)},{(cat, S, +1) (cat,NP,-1)})
 ({(cat,S,+1) (cat, NP, -2)},{(cat, S, +1) (cat,NP,-1)}) }

 Abstraction (step 2) is then applied to these pairs of sets
of polarities. The definition of the neutralization rule
extends that of Bonfante et al. (2004), by applying on
pairs of sets, while following the word order of the input
sentence. Let (a1, b1) and (a2,b2) be two such pairs:

 neutralization((a1,b1), (a2,b2)) =
 (neutralization(a1,a2), neutralization (b1,b2))

Furthermore, b1 and neutralization(b1,b2) are constrained
to only contain polarities of the form (f,v,i) where i ≥ 0.
 Finally, filtering (step 3) remains identical to that of
Bonfante et al. (2004), and applies on the first element of
the neutralized pairs.
 Let us now see how this extension impacts the
automaton-based implementation of lexical selection.
Consider the sentence “say it to her”, and a lexicon that
associates the verb say with an imperative, a transitive
and a ditransitive grammatical structure. We can build an
automaton for lexical selection as previously (see Fig. 3).

Fig. 3: Lexical selection using left context

 We notice that only the imperative lexical entry for say
prevents the left context abstraction from having negative
polarities (i.e., transitive and ditransitive grammatical
structures have “uncombinable” substitution nodes on the
left of the anchor). Once an abstraction has a non-empty
set of left polarities, there cannot be any other abstraction
that could combine to produce a well-formed polarity set.
In Fig. 3, we can thus discard states 2 and 3, and we do
not need to build states 5, 6, 8, 9, 11 and 12.

4. Implementation and evaluation
 In order to evaluate the benefits brought by left context,
we implemented polarity-based lexical selection using
left context within the TuLiPA parser (Parmentier et al.,
2008).5 TuLiPA is an open source parser for mildly
context-sensitive formalisms which supports LTAG and
already includes the automaton-based lexical selection of
Bonfante et al. (2004). This makes it easier to compare
the two approaches. To exhibit the benefits of left-context
disambiguation, we used two types of resources, a toy
LTAG and a large one. These are described below. The
question of which metrics to use to evaluate the gain of

5 See http://sourcesup.cru.fr/tulipa.

polarity filtering is not trivial. We chose to compare the
sizes of automata when using left context or not. Another
interesting metrics would be total parsing times, even if
the additional cost of automaton-based filtering is
expected to be small compared with the cost of parsing
with highly ambiguous grammars. Due to time and space
restrictions, this is left for future work.

4.1 Qualitative study
 In a first experiment, we performed polarity-based
lexical selection using a toy LTAG made of 12 tree
schemas (intransitive verb with clitic / canonical/
extracted subject, active transitive verb with clitic /
canonical / extracted subject, passive transitive verb with
clitic / canonical / extracted subject, proper nouns, clitics
and auxiliaries), 9 lemmas, and 30 morphological entries
(note that there is no part-of-speech tagging ambiguity in
our toy lexicon, i.e., lexical ambiguity here is purely
grammatical). The results are given in Table 1.

Sentence # lex#pol #st.1 #st.2
Jean aime Marie 12 2 26 4
(John loves Mary)
Marie dort 3 1 5 3
(Mary sleeps)
Ils dorment 3 1 5 3
(They sleep)
Jean qui dort aime Marie 36 8 78 7
(John who sleeps loves Mary)
Marie est appelée par Jean 6 1 21 9
(Mary is called by John)
Jean qui dort est aimé par Marie 18 4 63 13
(John who sleeps is loved by Mary)

Table 1. Polarity-based lexical disambiguation

 In Table 1, the column labelled #lex gives the general
lexical ambiguity of the sentence (i.e., cardinality of the
cartesian product of the lexical entries selected by each
word). The column #pol gives the remaining lexical
ambiguity once polarity filtering has been performed (in
this toy example, the remaining ambiguity is the same
using left-context optimization or not). The column #st.1
gives the size (i.e., number of states) of the polarity-based
automaton of Bonfante et al. (2004), and #st.2 the size of
the automaton that uses left context. One can notice that
using left context significantly reduce the size of the
polarity-based automaton, even with a small grammar
and short sentences.

4.2 Quantitative study
 In a second experiment, we used the French LTAG of
Crabbé (2005). This grammar is compiled from a
metagrammar developed in the XMG language (Duchier
et al., 2004).6 It is made of 6,080 tree schemas, and
focusses on verbal, adjectival and nominal predicatives.

6 Crabbé's metagrammar is available at
https://sourcesup.cru.fr/scm/viewvc.php/trunk/METAGR
AMMARS/FrenchTAG/?root=xmg and its French
documentation at http://www.linguist.univ-paris-
diderot.fr/~bcrabbe/frenchgrammar/index.html

We used this grammar to evaluate polarity-based lexical
disambiguation on a subset of the Test Suite for Natural
Language Processing (Lehmann et al., 1996). This
subset contains 90 sentences whose length ranges from 2
to 12 words. Fig. 4 displays the average number of states
of the automaton (y-axis) depending on the length of the
input sentence (x-axis). One can notice the combinatorial
explosion of the size of the automaton of Bonfante et al.
(2004) with sentences having more than 7 words.

Fig. 4: Distribution of the size of polarity automata

 As suggested by Fig. 4, for polarity filtering to stay
computationally tractable when parsing real data,
optimizations are needed. From these first experiments,
using information about left context seems to be adequate
in practice. This still needs to be confirmed with other
evaluation resources and metrics.

5. Conclusion
 In this paper, we presented an extension of the technique
of Bonfante et al. (2004) for lexical disambiguation. This
extension consists in defining a grammar abstraction
containing information about left context. In LTAG, this
information corresponds to substitution sites located on
the left of the anchor. This abstraction makes it possible
to reduce on-line the size of the automaton used for
lexical selection, thus improving parsing time efficiency.
 As advocated by Bonfante et al. (2009), using
information about context (e.g., dependency constraints)
for improving lexical disambiguation may be applied to
several types of lexicalized grammar through the concept
of companionship. Similarly, it would be interesting to
apply left context abstraction to other formalisms.
 Another interesting question concerns the definition of
polarization. How to polarize a grammar so that invalid
grammatical structures can be filtered out as soon as
possible while keeping neutralization computationally
tractable ? For LTAG, we chose to use only polarities
related to syntactic categories. For Interaction Grammar,
other types of features are used (e.g., morpho-syntactic
features), leading to a complex abstraction because of
neutralization cost. There is a trade-off to be found.

Acknowledgement
The implementation of the left-context automaton has
been inspired by Johannes Dellert's code within TuLiPA.

References
Bangalore, S., and Joshi, A. (1999). Supertagging: An

Approach to Almost Parsing. In: Computational
Linguistics, 25(2). Pp. 237-265. MIT Press.

Bonfante, G., Guillaume, B., and Morey, M. (2009)
Dependency Constraints for Lexical Disambiguation.
11Th Int. Conference on Parsing Technologies, IWPT
2009, Paris, France. Pp. 242-253.

Bonfante, G., Guillaume, B., and Perrier, G. (2004).
Polarization and abstraction of grammatical
formalisms as methods for lexical disambiguation. 20Th

Int. Conference on Computational Linguistics,
COLING 2004, Geneva, Switzerland. Pp. 303-309.

Bonfante, G., Le Roux, J., and Perrier, G. (2006). Lexical
disambiguation with polarities and automata. 11Th Int.
Conference on Implementation and Application of
Automata, CIAA 2006, Taïpei, Taïwan. Pp. 281-282.

Boullier, P. (2003). Supertagging: a Non-Statistical
Parsing-Based Approach. 8Th Int. Workshop on
Parsing Technologies, IWPT 2003, Nancy, France. Pp.
55-66.

Crabbé, B. (2005). Représentation informatique de
grammaires fortement lexicalisées : application à la
grammaire d'arbres adjoints. PhD Thesis. Université
Nancy 2, France.

Duchier, D., Le Roux, J., and Parmentier, Y. (2004). The
Metagrammar Compiler: an NLP Application with a
Multi-Paradigm Architecture. 2Nd Oz-Mozart Int.
Conference, MOZ 2004, Charleroi, Belgium. Pp 175-
187. Lecture Notes in Computer Science, Vol. 3389,
Springer Verlag.

Joshi, A., and Schabes, Y. (1997). Tree-Adjoining
Grammar. In: Handbook of Formal Languages. In:
Rozenberg G. and Saloma A. (Eds.) Springer Verlag.
Vol. 3. Pp. 69-123.

Lambek, J. (1958). The Mathematics of Sentence
Structure. American Mathematical Monthly, 65(3). Pp.
154-170.

Lang, B. (1994). Recognition can be harder than parsing.
In: Computational Intelligence, vol. 10. Pp. 486-494.

Lehmann, S., Oepen, S., Regnier-Prost, S., Netter, K.,
Lux, V., Klein, J., Falkeda, K., Fouvry, F., Estival, D.,
Dauphin, E., Compagnion, H., Baur, J., Balkan, L.,
and Arnold, D. (1996). TSNLP — Test Suites for
Natural Language Processing. 16Th Int. Conference on
Computational Linguistics, COLING 1996,
Copenhagen, Denmark. Pp. 711-716.

Parmentier, Y., Kallmeyer, K., Lichte, T., Maier, W., and
Dellert, J. (2008). A Syntax-Semantics Parsing
Environment for Mildly Context-Sensitive
Formalisms. 9Th Int. Workshop on Tree-Adjoining
Grammar and Related Formalisms, TAG+9. Tübingen,
Germany. Pp. 121-128.

Perrier, G. (2000). Interaction Grammars. 18Th Int.
Conference on Computational Linguistics, COLING
2000, Saarbrücken, Germany. Pp. 600-606.

Perrier, G. (2008). Désambiguisation lexicale à l'aide
d'automates de polarités. Rapport de recherche INRIA.

 http://hal.inria.fr/docs/00/27/84/43/PDF/automates2008
.pdf Access date: August, 26, 2011. 11 pages.

XTAG Research Group (2001). A Lexicalized Tree-
Adjoining Grammar for English. Technical report -
IRCS, University of Pennsylvania. 341 pages.

