
HAL Id: hal-00629899
https://hal.science/hal-00629899v1

Submitted on 6 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Estimation of a non-parametric variable importance
measure of a continuous exposure

Antoine Chambaz, Pierre Neuvial, Mark van Der Laan

To cite this version:
Antoine Chambaz, Pierre Neuvial, Mark van Der Laan. Estimation of a non-parametric variable
importance measure of a continuous exposure. Electronic Journal of Statistics , 2012, 6, pp.1059-
1099. �10.1214/12-EJS703�. �hal-00629899�

https://hal.science/hal-00629899v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Estimation of a non-parametric variable importance measure of

a continuous exposure

Antoine Chambaz1, Pierre Neuvial2, Mark J. van der Laan3
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Abstract

We define a new measure of variable importance of an exposure on a continuous out-

come, accounting for potential confounders. The exposure features a reference level x0

with positive mass and a continuum of other levels. For the purpose of estimating it, we

fully develop the semi-parametric estimation methodology called targeted minimum loss

estimation methodology (TMLE) [23, 22]. We cover the whole spectrum of its theoretical

study (convergence of the iterative procedure which is at the core of the TMLE method-

ology; consistency and asymptotic normality of the estimator), practical implementation,

simulation study and application to a genomic example that originally motivated this

article. In the latter, the exposure X and response Y are, respectively, the DNA copy

number and expression level of a given gene in a cancer cell. Here, the reference level

is x0 = 2, that is the expected DNA copy number in a normal cell. The confounder

is a measure of the methylation of the gene. The fact that there is no clear biological

indication that X and Y can be interpreted as an exposure and a response, respectively,

is not problematic.

1 Introduction

Consider the following statistical problem: One observes the data structure O = (W,X, Y )

on an experimental unit of interest, where W ∈ W stands for a vector of baseline covariates,

and X ∈ R and Y ∈ R respectively quantify an exposure and a response; the exposure

features a reference level x0 with positive mass (there is a positive probability that X = x0)

and a continuum of other levels (a first source of difficulty); one wishes to investigate the

relationship between X on Y , accounting for W (a second source of difficulty) and making

few assumptions on the true data-generating distribution (a third source of difficulty). Taking
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W into account is desirable when one knows (or cannot rule out the possibility) that it contains

confounding factors, i.e., common factors upon which the exposure X and the response Y

may simultaneously depend.

We illustrate our presentation with an example where the experimental unit is a set of

cancer cells, the relevant baseline covariate W is a measure of DNA methylation, the exposure

X and response Y are, respectively, the DNA copy number and expression level of a given

gene. Here, the reference level is x0 = 2, that is the expected copy number in a normal cell.

The fact that there is no clear biological indication that X and Y can be interpreted as an

exposure and a response, respectively, is not problematic. Associations between DNA copy

numbers and expression levels in genes have already been considered in the literature (see

e.g., [11, 26, 1, 17, 10]). In contrast to these earlier contributions, we do exploit the fact that

X features both a reference level and a continuum of other levels, instead of discretizing it or

considering it as a purely continuous exposure.

We focus on the case that there is very little prior knowledge on the true data-generating

distribution P0 of O, although we know/assume that (i) O takes its values in the bounded

set O (we will denote ‖O‖ = max{|W |, |X|, |Y |} ), (ii) P0(X 6= x0) > 0, and finally (iii)

P0(X 6= x0|W ) > 0 P0-almost surely. Accordingly, we see P0 as a specific element of the

non-parametric set M of all possible data-generating distributions of O satisfying the latter

constraints. We define the parameter of interest as Ψ(P0), for the non-parametric variable

importance measure Ψ : M → R characterized by

Ψ(P ) = arg min
β∈R

EP

{
(EP (Y |X,W ) − EP (Y |X = x0,W ) − β(X − x0))

2
}

(1)

for all P ∈ M. The methodology presented in this article straightforwardly extends to

situations where one would prefer to replace the expression β(X − x0) in (1) by βf(X) for

any f such that f(x0) = 0 and EP {f(X)2} > 0 for all P ∈ M. We emphasize that we do

not assume a semi-parametric model (which would write here as Y = β(X − x0) + η(W ) +U

with unspecified η and U such that EP (U |X,W ) = 0), in contrast to [15, 14, 28, 21, 20].

This fact bears important implications. The parameter of interest, Ψ(P0), is universally

defined (therefore justifying the expression “non-parametric variable importance measure of

a continuous exposure” in the title), no matter what properties the unknown true data-

generating distribution P0 enjoys, or does not enjoy.

Parameter Ψ quantifies the influence of X and Y on a linear scale, using the reference

level x0 as a pivot (note that this expression conveys the notion that the role of X and Y

are not symmetric). As its name suggests, Ψ belongs to the family of variable importance

measures (a family that includes the excess risk), which was introduced in [21]. However, its

case is not covered by the latter article because X is continuous (we will see how Ψ naturally

relates to an excess risk when X takes only two distinct values). Our purpose here is to fully

develop the semi-parametric estimation methodology called targeted minimum loss estimation

(TMLE) methodology [23, 22]. We cover the whole spectrum of its theoretical study, practical
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implementation, simulation study, and application to the aforementioned genomic example.

In Section 2, we study the fundamental properties of parameter Ψ. In Section 3 we

provide an overview of the TMLE methodology tailored for the purpose of estimating Ψ(P0).

In Section 4, we state and comment on important theoretical properties enjoyed by the TMLE

(convergence of the iterative updating procedure at the core of its definition; its consistency

and asymptotic normality). The specifics of the TMLE procedure are presented in Section 5.

The properties considered in Section 4 are illustrated by a simulation study inspired by the

problem of assessing the importance of DNA copy number variations on expression level in

genes, accounting for their methylation (the real data application we are ultimately interested

in), as described in Section 6. All proofs are postponed to the appendix.

We assume from now on, without loss of generality, that x0 = 0. For any measure λ and

measurable function f , λf =
∫
fdλ. We set L2

0(P ) = {s ∈ L2(P ) : Ps = 0}. Moreover, the fol-

lowing notation are used throughout the article: for all P ∈ M, θ(P )(X,W ) = EP (Y |X,W ),

µ(P )(W ) = EP (X|W ), g(P )(0|W ) = P (X = 0|W ), and σ2(P ) = EP {X2}. In particular,

Ψ(P ) can also be written as

Ψ(P ) = arg min
β∈R

EP

{
(θ(P )(X,W ) − θ(P )(0,W ) − βX)2

}
.

2 The non-parametric variable importance parameter

It is of paramount importance to study the parameter of interest in order to better estimate

it. Parameter Ψ actually enjoys the following properties [see Chapter 25 in 25, for definitions].

Proposition 1. For all P ∈ M,

Ψ(P ) =
EP {X(θ(P )(X,W ) − θ(P )(0,W ))}

EP {X2} . (2)

Parameter Ψ is pathwise differentiable at every P ∈ M with respect to the maximal tangent

set L2
0(P ). Its efficient influence curve at P is D⋆(P ) = D⋆

1(P ) + D⋆
2(P ), where D⋆

1(P ) =

D⋆
1(σ

2(P ), θ(P ),Ψ(P )) and D⋆
2(P ) = D⋆

2(σ
2(P ), θ(P ), µ(P ), g(P )) are two L2

0(P )-orthogonal

components characterized by

D⋆
1(σ

2, θ, ψ)(O) =
1

σ2
(X(θ(X,W ) − θ(0,W ) −Xψ)),

D⋆
2(σ

2, θ, µ, g)(O) =
1

σ2
(Y − θ(X,W ))

(
X − µ(W )1{X = 0}

g(0|W )

)
.

Furthermore, the efficient influence curve is double-robust: for any (P, P ′) ∈ M2, if either

θ(P ′)(0, ·) = θ(P )(0, ·) or (µ(P ′) = µ(P ) and g(P ′) = g(P )) holds, then PD⋆(P ′) = 0 implies

Ψ(P ′) = Ψ(P ).

The proof of Proposition 1 is relegated to Section A.2.
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Let us emphasize again that we do not assume a semi-parametric model Y = βX +

η(W ) + U (with unspecified η and U such that EP (U |X,W ) = 0). Setting R(P, β)(X,W ) =

θ(P )(X,W )−θ(P )(0,W )−βX for all (P, β) ∈ M×R, the latter semi-parametric model holds

for P ∈ M if there exists a unique β(P ) ∈ R such that R(P, β(P )) = 0. Note that β is always

solution to the equation βEP {X2} = EP {X (θ(P )(X,W ) − θ(P )(0,W ) −R(P, β)(X,W ))}.
In particular, if the semi-parametric model holds for a certain P ∈ M, then β(P ) = Ψ(P ) by

(2). On the contrary, if the semi-parametric model does not hold for P , then it is not clear

what β(P ) could even mean whereas Ψ(P ) is still a well-defined parameter worth estimating.

We discuss in Section 4.2 what happens if one estimates β(P ) when assuming wrongly that

the semi-parametric holds (the discussion allows to identify the awkward non-parametric

extension of parameter β(P ) that one therefore estimates).

Equality (2) also teaches us that

Ψ(P ) = F(P ) − EP {µ(P )(W )θ(P )(0,W )}
σ2(P )

(3)

for the functional F : M → R characterized by

F(P ) = arg min
β∈R

EP
{
(Y − βX)2

}
≡ EP {XY }

σ2(P )
(4)

(all P ∈ M). In that view, the second term in the right-hand side of (3) is a correction term

added to F(P ) in order to take W into account for the purpose of quantifying the influence

of X on Y on a linear scale. Whereas the roles of X and Y are symmetric in the numerator

of F(P ), they are obviously not in that of the correction term. Less importantly, (2) also

makes clear that there is a connexion between Ψ and an excess risk. Indeed, consider P ∈ M
such that P (X ∈ {0, x1}) = 1 for x1 6= 0. Then Ψ(P ) satisfies

Ψ(P ) =
EP {(θ(P )(x1,W ) − θ(P )(0,W ))h(P )(W )}

σ2(P )

for h(P )(W ) = P (X = x1|W ), i.e., Ψ(P ) appears as a weighted excess risk (the classical

excess risk would be here EP {θ(P )(x1,W ) − θ(P )(0,W )}).
Since Ψ is pathwise differentiable, the theory of semi-parametric estimation applies, pro-

viding a notion of asymptotically efficient estimation. Remarkably, the asymptotic variance

of a regular estimator of Ψ(P0) is lower-bounded by the variance VarP0
D⋆(P0)(O) under P0

of the efficient influence curve at P0 (a consequence of the convolution theorem). The TMLE

procedure takes advantage of the properties of Ψ described in Proposition 1 in order to build

a consistent and possibly asymptotically efficient substitution estimator of Ψ(P0). In view of

(3), this is a challenging statistical problem because, whereas estimating F(P0) is straight-

forward (the ratio of the empirical means of XY and X2 is an efficient estimator of F(P0)),

estimating the correction term in (3) is more delicate, notably because this necessarily involves

estimating the infinite-dimensional features θ(P0)(0, ·) and µ(P0).
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3 Overview of the TMLE procedure tailored to the estimation

of the non-parametric variable importance measure

We assume now that we observe n independent copies O(1) = (W (1), X(1), Y (1)), . . . , O(n) =

(W (n), X(n), Y (n)) of the observed data structure O ∼ P0 ∈ M. The empirical measure is

denoted by Pn. The TMLE procedure iteratively updates an initial substitution estimator

ψ0
n = Ψ(P 0

n) of Ψ(P0) (based on an initial estimator P 0
n of the data-generating distribution

P0), building a sequence {ψkn = Ψ(P kn )}k≥0 (with P kn the kth update of P 0
n) which converges

to the targeted minimum loss estimator (TMLE) ψ∗
n as k increases. This iterative scheme is

visually illustrated in Figure 1, and we invite the reader to consult its caption now.

We determine what initializing the TMLE procedure boils down to in Section 3.1. A

general one-step targeted updating procedure is described in Section 3.2. How to conduct

specifically these initialization and update (as well as two alternative tailored two-step up-

dating procedures) is addressed in Section 5.

3.1 Initial estimator

In this subsection, we describe what it takes to construct an initial substitution estimator of

Ψ(P0). Of course, how one derives the substitution estimator Ψ(P ) from the description of

(certain features of) P is relevant even if P is not literally an initial estimator of P0.

By (2), building an initial substitution estimator Ψ(P 0
n) of Ψ(P0) requires the estimation

of θ(P0), of σ2(P0), and of the marginal distribution of (W,X) under P0. Given P 0
n , initial

estimator of P0 with known θ(P 0
n), σ2(P 0

n) > 0 and marginal distribution of (W,X) under

P 0
n , Ψ(P 0

n) can indeed be obtained (or, more precisely, evaluated accurately) by the law

of large numbers, as discussed below. We emphasize that such an initial estimator may

very well be biased. In other words, one would need strong assumptions on the true data-

generating distribution P0 (which we are not willing to make; typically, assuming that P0

belongs to a given regular parametric model) and adapting the construction of P 0
n based on

those assumptions (typically, relying on maximum likelihood estimation) in order to obtain

the consistency of Ψ(P 0
n).

For B a large integer (say B = 105), evaluating accurately (rather than computing exactly)

the initial substitution estimator Ψ(P 0
n) of Ψ(P0) boils down to simulating B independent

copies (W̃ (b), X̃(b)) of (W,X) under P 0
n , then using the approximation

ψ0
n = Ψ(P 0

n) =
B−1

∑B
b=1 X̃

(b)(θ(P 0
n)(X̃(b), W̃ (b)) − θ(P 0

n)(0, W̃ (b)))

σ2(P 0
n)

+O(B−1/2). (5)

Knowing the marginal distribution of (W,X) under P 0
n amounts to knowing (i) the

marginal distribution of W under P 0
n , (ii) the conditional distribution of Z ≡ 1{X = 0}

given W under P 0
n , and (iii) the conditional distribution of X given (W,X 6= 0) under

P 0
n . Firstly, we advocate for estimating initially the marginal distribution of W under P0
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by its empirical version, or put in terms of likelihood, to build P 0
n in such a way that

P 0
n(W ) = n−1

∑n
i=1 1{W (i) = W}. Secondly, the conditional distribution of Z given W

under P 0
n is the Bernoulli law with parameter 1 − g(P 0

n)(0|W ), so it is necessary that g(P 0
n)

be known too (and such that, P 0
n -almost surely, g(P 0

n)(0|W ) ∈ (0, 1)). Thirdly, the condi-

tional distribution of X given (W,X 6= 0) under P 0
n can be any (finite variance) distribution,

whose conditional mean can be deduced from µ(P 0
n):

EP 0
n
(X|X 6= 0,W ) =

µ(P 0
n)(W )

1 − g(P 0
n)(0|W )

, (6)

and whose conditional second order moment EP 0
n
(X2|X 6= 0,W ) satisfies

EP 0
n

{
(1 − g(P 0

n)(0|W ))EP 0
n
(X2|X 6= 0,W )

}
= σ2(P 0

n). (7)

In particular, it is also necessary that µ(P 0
n) be known too.

In summary, the only features of P 0
n we really care for in order to evaluate accurately

(rather than compute exactly) ψ0
n = Ψ(P 0

n) are θ(P 0
n), µ(P 0

n), g(P 0
n), σ2(P 0

n), and the marginal

distribution of W under P 0
n , which respectively estimate θ(P0), µ(P0), g(P0), σ

2(P0), and the

marginal distribution of W under P0. We could for instance rely on a working model where

the conditional distribution of X given (W,X 6= 0) is chosen as the Gaussian distribution

with conditional mean as in (6) and any conditional second order moment (which is nothing

but a measurable function of W ) such that (7) holds. Let us emphasize that we do use

here expressions from the semantical field of choice, and not from that of assumption; a

working model is just a tool we use in the construction of the initial estimator, and we do

not necessarily assume that it is well-specified. Although such a Gaussian working model

would be a perfectly correct choice, we advocate for using another one for computational

convenience, as presented in Section 5.1.

3.2 A general one-step updating procedure of the initial estimator

The next step consists in iteratively updating ψ0
n = Ψ(P 0

n). Assuming that one has already

built (k−1) updates P 1
n , . . . , P

k−1
n of P 0

n , resulting in (k−1) updated substitution estimators

ψ1
n = Ψ(P 1

n), . . . , ψk−1
n = Ψ(P k−1

n ), it is formally sufficient to describe how the kth update P kn
is derived from its predecessor P k−1

n in order to fully determine the iterative procedure. Note

that the value of ψ1
n = Ψ(P 1

n), . . . , ψk−1
n = Ψ(P k−1

n ) are derived as ψ0
n = Ψ(P 0

n), by following

(5) in Section 3.1 with P 1
n , . . . , P

k−1
n substituted for P 0

n .

We present here a general one-step updating procedure (two alternative tailored two-step

updating procedures are also presented in Section 5.2). We invite again the reader to refer to

Figure 1 for its visual illustration.

Set ρ ∈ (0, 1) a constant close to 1 and consider the path {P k−1
n (ε) : |ε| ≤ ρ‖D⋆(P k−1

n )‖−1
∞ }

characterized by
dP k−1

n (ε)

dP k−1
n

(O) =
(
1 + εD⋆(P k−1

n )(O)
)
, (8)
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x
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x

P 0
n

P0

P k
n

P k
n
(εk

n
) = P k+1

n

D⋆(P k
n
)

Ψ

M

Ψ(P 0
n
)

Ψ(P0)

Ψ(P k+1
n

)

R

{P k
n
(ε) : |ε| < ηk

n
}

Figure 1: Illustration of the TMLE procedure (with its general one-step updating procedure).

We purposedly represent the initial estimator P 0
n closer to P0 than its kth and (k+1)th updates

P kn and P k+1
n , heuristically because P 0

n is as close to P0 as one can possibly get (given Pn and

the specifics of the super-learning procedure) when targeting P0 itself. However, this obviously

does not necessarily imply that Ψ(P 0
n) performs well when targeting Ψ(P0) (instead of P0),

which is why we also purposedly represent Ψ(P k+1
n ) closer to Ψ(P0) than Ψ(P 0

n). Indeed,

P k+1
n is obtained by fluctuating its predecessor P kn “in the direction of Ψ”, i.e., taking into

account the fact that we are ultimately interested in estimating Ψ(P 0). More specifically, the

fluctuation {P kn (ε) : |ε| < ηkn} of P kn is a one-dimensional parametric model (hence its curvy

shape in the large model M) such that (i) P kn (0) = P kn , and (b) its score at ε = 0 equals

the efficient influence curve D⋆(P kn ) at P kn (hence the dotted arrow). An optimal stretch εkn
is determined (e.g. by maximizing the likelihood on the fluctuation), yielding the update

P k+1
n = P kn (εkn).
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where D⋆(P k−1
n ) is the current estimator of the efficient influence curve at P0 obtained as

the efficient influence curve at P k−1
n . The path is a one-dimensional parametric model that

fluctuates P k−1
n (i.e., P k−1

n (0) = P k−1
n ) in the direction ofD⋆(P k−1

n ) (i.e., the score of the path

at ε = 0 equals D⋆(P k−1
n )). Here, we choose minus the log-likelihood function as loss function

(i.e., we choose L : M×O → R characterized by L(P )(O) = − logP (O)). Consequently, the

optimal update of P k−1
n is indexed by the maximum likelihood estimator (MLE)

εk−1
n = arg max

|ε|≤ρ‖D⋆(Pk−1
n )‖−1

∞

n∑

i=1

logP k−1
n (ε)(O(i))

= arg max
|ε|≤ρ‖D⋆(Pk−1

n )‖−1
∞

n∑

i=1

log
(
1 + εD⋆(P k−1

n )(O(i))
)
.

The MLE εk−1
n is uniquely defined (and possibly equal to ±ρ‖D⋆(P k−1

n )‖−1
∞ , hence the intro-

duction of the constant ρ in the definition of the path) provided for instance that

max
i≤n

|D⋆(P k−1
n )(O(i))| > 0

(this statement is to be understood conditionally on Pn, i.e. it is a statement about the

sample). Under mild assumptions on P0, ε
k−1
n targets εk−1

0 such that P k−1
n (εk−1

0 ) is the

Kullback-Leibler projection of P0 onto the path {P k−1
n (ε) : |ε| ≤ ρ‖D⋆(P k−1

n )‖−1
∞ }. We now

set P kn = P k−1
n (εk−1

n ), thus concluding the description of the iterative updating step of the

TMLE procedure. Finally, the TMLE ψ∗
n is defined as ψ∗

n = limk→∞ ψkn, assuming that

the limit exists, or more generally as ψkn
n for a conveniently chosen sequence {kn}n≥0 (see

Sections 4.1 and 4.2 regarding this issue).

This is a very general way of dealing with the updating step of the TMLE methodology.

The key is that it is possible to determine how the fundamental features of P kn (ε) (i.e., the

components of P kn (ε) involved in the definition ofD⋆(P kn (ε)) and in the definition of Ψ) behave

(exactly) as functions of ε relative to their counterparts at ε = 0 (i.e., with respect to (wrt)

P kn ), as shown in the next Lemma (its proof is relegated to Section A.2).

Lemma 1. Set s ∈ L2
0(P ) with ‖s‖∞ < ∞ and consider the path {Pε : |ε| < ‖s‖−1

∞ } ⊂ M
characterized by

dPε
dP

(O) = (1 + εs(O)). (9)

The path has score function s. For all |ε| < ‖s‖−1
∞ and all measurable function f of W ,

θ(Pε)(X,W ) =
θ(P )(X,W ) + εEP (Y s(O)|X,W )

1 + εEP (s(O)|X,W )
, (10)

µ(Pε)(W ) =
µ(P )(W ) + εEP (Xs(O)|W )

1 + εEP (s(O)|W )
, (11)

g(Pε)(0|W ) =
g(P )(0|W ) + εEP (1{X = 0}s(O)|W )

1 + εEP (s(O)|W )
, (12)
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σ2(Pε) = σ2(P ) + εEP {X2s(O)}, (13)

EPε
{f(W )} = EP {f(W )(1 + εEP (s(O)|W ))}. (14)

Regarding the computation of Ψ(P kn ), it is also required to know how to sample indepen-

dent copies of (W,X) under P kn (ε), see Section 3.1. Finally, we emphasize that by (14), the

marginal distribution of W under P kn typically deviates from its counterpart under P 0
n (i.e.,

from its empirical counterpart).

TMLE and one-step estimation methodologies.

By being based on an iterative scheme, the TMLE methodology naturally evokes the one-

step estimation methodology introduced by Le Cam [8] (see [25, Sections 5.7 and 25.8] for a

recent account). The latter estimation methodology draws its inspiration from the method of

Newton-Raphson in numerical analysis, and basically consists in updating an initial estimator

by relying on a linear approximation to the original estimating equation.

Yet, some differences between the TMLE and one-step estimation methodologies are par-

ticularly striking. Most importantly, because the TMLE methodology only involves substitu-

tion estimators, how one updates (in the parameter space R) the initial estimator ψ0
n = Ψ(P 0

n)

of Ψ(P0) into ψ1
n = Ψ(P 1

n) is the consequence of how one updates (in model M) the initial

estimator P 0
n of P0 into P 1

n . In contrast, the one-step estimator is naturally presented as an

update (in the parameter space R) of the initial estimator, for the sake of solving a linear

approximation (in Ψ(P )) to the estimating equation PnD
⋆(P ) = 0. The TMLE methodol-

ogy does not involve such a linear approximation; it nevertheless guarantees by construction

PnD
⋆(P kn ) ≈ 0 for large k (see Section 4.1 on that issue). Furthermore, on a more techni-

cal note, the asymptotic study of the TMLE ψ∗
n does not require that the initial estimator

ψ0
n = Ψ(P 0

n) be
√
n-consistent (i.e., that

√
n(ψ0

n − Ψ(P0)) be uniformly tight), whereas that

of the one-step estimator typically does.

However, there certainly exist interesting relationships between the TMLE and one-step

estimation methodologies too. Such relationships are not obvious, and we will investigate

them in future work.

4 Convergence and asymptotics

In this section, we state and comment on important theoretical properties enjoyed by the

TMLE. In Section 4.1, we study the convergence of the iterative updating procedure which is

at the core of the TMLE procedure. In Section 4.2, we derive the consistency and asymptotic

normality of the TMLE. By building on the statement of consistency, we also argue why it is

more interesting to estimate our non-parametric variable importance measure Ψ(P0) than its

semi-parametric counterpart.
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4.1 On the convergence of the updating procedure

Studying the convergence of the updating procedure has several aspects to it. We focus on

the general one-step procedure of Section 3.2. All proofs are relegated to Section A.4.

On one hand, the following result (very similar to Result 1 in [23]) trivially holds:

Lemma 2. Assume (i) that all the paths we consider are included in M′ ⊂ M such that

supP∈M′ ‖D⋆(P )‖∞ = M < ∞, and (ii) that their fluctuation parameters ε are restricted to

[−ρ, ρ] for ρ = (2M)−1. If limk→∞ εkn = 0 then limn→∞ PnD
⋆(P kn ) = 0.

Condition (i) is weak, and we refer to Lemma 4 for a set of conditions which guarantee

that it holds. Lemma 2 is of primary importance. It teaches us that if the TMLE procedure

“converges” (in the sense that limk→∞ εkn = 0) then its “limit” is a solution of the efficient

influence curve equation (in the sense that for any arbitrary small deviation from 0, it is

possible to guarantee PnD
⋆(P kn ) ≈ 0 by choosing k large enough). This is the key to the proofs

of consistency and asymptotic linearity, see Section 4.2. Actually, the condition limk→∞ εkn = 0

can be replaced by a more explicit condition on the class of the considered data-generating

distributions, as shown in the next lemma.

Lemma 3. Under the assumptions of Lemma 2, let us suppose additionally that the sample

satisfies (iii) infk≥0 PnD
⋆(P kn )2 > 0, and (iv) that the log-likelihood of the data is uniformly

bounded on M′: supP∈M′

∑n
i=1 logP (O(i)) < ∞. Then it holds that limk→∞ εkn = 0 and

limn→∞ PnD
⋆(P kn ) = 0.

On the other hand, it is possible to obtain another result pertaining to the “convergence”

of the updating procedure directly put in terms of the convergence of the sequences {P kn}k≥0

and {ψkn}k≥0, provided that {εkn}k≥0 goes to 0 quickly enough. Specifically,

Lemma 4. Suppose that P 0
n(‖O‖ ≤ C) = 1 for some finite C > 0. Then obviously P kn (‖O‖ ≤

C) = P kn (|θ(P kn )(X,W )| ≤ C) = P kn (|µ(P kn )(W )| ≤ C) = 1 for all k ≥ 0. Suppose moreover

that for all k ≥ 0, g(P kn )(0|W ) ≥ c > 0 and σ2(P kn ) ≥ c are bounded away from 0. Then

condition (i) of Lemma 2 holds. Assume now that
∑

k≥0 |εkn| < ∞. Then the sequence

{P kn}k≥0 converges in total variation (hence in law) to a data-generating distribution P ∗
n .

Simultaneously, the sequence {ψkn}k≥0 converges to Ψ(P ∗
n).

It is necessary to bound g(P kn ) and σ2(P kn ) away from 0 because conditions (i) and (ii)

of Lemma 2 only imply that g(P kn )(0|W ) ≥ g(P 0
n)(0|W )((1 − ρ)/(1 + ρ))k and σ2(P kn ) ≥

σ2(P 0
n)(1 − ρ)k. Now, it makes perfect sense from a computational point of view to resort to

lower-thresholding in order to ensure that g(P kn )(0|W ) and σ2(P kn ) cannot be smaller than a

fixed constant. Assuming that the series
∑

k≥0 |εkn| converges ensures that {P kn}k≥0 converges

in total variation rather than weakly only. Interestingly, we do draw advantage from this

stronger type of convergence in order to derive the second part of the lemma. In conclusion,

note that Newton-Raphson-type algorithms converge at a k−2-rate, which suggests that the

condition
∑

k≥0 |εkn| <∞ is not too demanding.
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4.2 Consistency and asymptotic normality

Let us now investigate the statistical properties of the TMLE ψ∗
n. We actually consider a

slightly modified version of the TMLE in order to circumvent the issue of the convergence

of the sequence {ψkn}k≥0 as k goes to infinity. The modified version is perfectly fine from a

practical point of view. All proofs are relegated to Section A.5.

Consistency.

Under mild assumptions, the TMLE is consistent. Specifically:

Proposition 2 (consistency). We assume (i) that there exist finite C > c > 0 such that

‖θ(P kn
n )‖∞ ≤ C, g(P kn

n )(0|W ) ≥ c and σ2(P kn
n ) ≥ c for all n ≥ 1, (ii) that θ(P kn

n ), µ(P kn
n ),

g(P kn
n ) and σ2(P kn

n ) respectively converge to θ0 such that ‖θ0‖∞ ≤ C, µ0, g0 and σ2
0 ≥ c in

such a way that P0(θ(P
kn
n ) − θ0)

2 = oP (1), P0(θ(P
kn
n )(0, ·) − θ0(0, ·))2 = oP (1), P0(µ(P kn

n ) −
µ0)

2 = oP (1), P0(g(P
kn
n )(0|·) − g0(0|·))2 = oP (1) and σ2(P kn

n ) = σ2
0 + oP (1), and (iii) that

D⋆
1(P

kn
n ) and D⋆

2(P
kn
n ) belong to a P0-Donsker class with P0-probability tending to 1. In

addition, we suppose that all assumptions of Lemma 3 are met, and that the (possibly random)

integer kn ≥ 0 is chosen so that PnD
⋆(P kn

n ) = oP (1/
√
n).

Define ψ̃∗
n = ψkn

n = Ψ(P kn
n ). If the limits satisfy either θ0(0, ·) = θ(P0)(0, ·) or (µ0 = µ(P0)

and g0 = g(P0)) then ψ̃∗
n consistently estimates Ψ(P0).

It is remarkable that the consistency of the TMLE ψ̃∗
n = Ψ(P kn

n ) is granted essentially

whenever the estimators θ(P kn
n ), µ(P kn

n ), g(P kn
n ), σ2(P kn

n ) converge and that one only of the

limits θ0(0, ·) of θ(P kn
n )(0, ·) and (µ0, g0) of (µ(P kn

n ), g(P kn
n )) coincides with the correspond-

ing truth θ(P0)(0, ·) or (µ(P0), g(P0)). This property is mostly inherited from the double-

robustness of the efficient influence curve D⋆ of parameter Ψ (i.e., PD⋆(P ′) = 0 implies

Ψ(P ′) = Ψ(P )) and from the fact that the TMLE solves the efficient influence curve equation

(i.e., PnD
⋆(P kn

n ) ≈ 0).

Merit of the non-parametric variable importance measure over its semi-parametric

counterpart.

Let us repeat that we do not assume a semi-parametric model Y = βX + η(W ) + U

(with unspecified η and U such that EP (U |X,W ) = 0). However, if P ∈ M is such that

θ(P )(X,W ) = β(P )X + θ(P )(0,W ) (i.e., if the semi-parametric model holds under P ) then

Ψ(P ) = β(P ). Let us denote by MSP ⊂ M the set of all such data-generating distributions.

It is known (see for instance [28]) that β : MSP → R is a pathwise differentiable parame-

ter (wrt the corresponding maximal tangent space), and that its efficient influence curve at

P ∈ MSP is given by

D⋆
SP(P )(O) =

Y − β(P )X − θ(P )(0,W )

v2(P )(X,W )


X −

EP

(
X

v2(P )(X,W )

∣∣∣W
)

EP

(
1

v2(P )(X,W )

∣∣∣W
)


 ,

11



with v2(P )(X,W ) = EP ((Y − θ(P )(X,W ))2|X,W ) is the conditional variance of Y given

(X,W ) under P . Note that the second factor in the right-hand side expression reduces to

(X − µ(P )(W )) whenever v2(P )(X,W ) only depends on W .

For the purpose of emphasizing the merit of the non-parametric variable importance mea-

sure over its semi-parametric counterpart, say that one estimates β(P0) assuming (temporar-

ily) that P0 ∈ MSP (hence Ψ(P0) = β(P0)). Say that one builds P ∗
n,SP ∈ MSP such that (i)

v2(P ∗
n,SP)(X,W ) does not depend on (X,W ), and (ii) PnD

⋆
SP(P ∗

n,SP) = 0. Let us assume that

β(P ∗
n,SP), v2(P ∗

n,SP), µ(P ∗
n,SP) and θ(P ∗

n,SP) respectively converge to β1, v
2
1 > 0, µ1 and θ1

(such that θ1(X,W ) = β1X + θ1(0,W )), and finally that one solves in the limit the efficient

influence curve equation:

EP0
{(Y − β1X − θ1(0,W ))(X − µ1(W ))} = 0 (15)

(this is typically derived from (ii) above; see the proof of Proposition 2 for a typical derivation).

Then (by double-robustness of D⋆
SP), the estimator β(P ∗

n,SP) of β(P0) is consistent (i.e., β1 =

β(P0)) if either θ1 = θ(P0) (that is obvious) or µ1 = µ(P0). For example, let us suppose

that µ1 = µ(P0). In particular, one can deduce from equalities EP0
{X(X − µ(P0)(W ))} =

EP0
{(X − µ(P0)(W ))2} and (15) that

β1 =
EP0

{(θ(P0)(X,W ) − θ1(0,W ))(X − µ(P0)(W ))}
EP0

{(X − µ(P0)(W ))2}

(provided that X does not coincide with µ(P0)(W ) under P0). Equivalently, β1 = b(P0) for

the functional b : M′ = M\ {P ∈ M : X = µ(P )(W )} → R such that, for every P ∈ M′,

b(P ) = arg min
β∈R

EP

{
[θ(P )(X,W ) − θ1(0,W ) − β(X − µ(P )(W ))]2

}
.

Note that one can interpret parameter b as a non-parametric extension of the semi-

parametric parameter β (non-parametric, because its definition does not involve a semi-

parametric model anymore). Now, we want to emphasize that b arguably defines a sensible

target if θ1(0, ·) = θ(P )(0, ·) (in addition to µ1 = µ(P0)), but not otherwise! This illustrates

the danger of relying on a semi-parametric model when it is not absolutely certain that it

holds, thus underlying the merit of targeting the non-parametric variable importance measure

rather than its semi-parametric counterpart.

Asymptotic normality.

In addition to being consistent under mild assumptions, the TMLE is also asymptotically

linear, and thus satisfies a central limit theorem. Let us start with a partial result:

Proposition 3. Suppose that the assumptions of Proposition 2 are met. If σ2(P kn
n ) = σ2

0 +

OP (1/
√
n) then it holds that
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ψ̃∗
n − Ψ(P0) = (Pn − P0)D

⋆(σ2(P0), θ0, µ0, g0,Ψ(P0))

+ P0D
⋆(σ2(P0), θ(P

kn
n ), µ(P kn

n ), g(P kn
n ),Ψ(P0))(1 + oP (1)) + oP (1/

√
n). (16)

Expansion (16) sheds some light on the first order properties of the TMLE ψ̃∗
n. It no-

tably makes clear that the convergence of ψ̃∗
n is affected by how fast the estimators θ(P kn

n ),

µ(P kn
n ) and g(P kn

n ) converge to their limits (see second term). If the rates of convergence are

collectively so slow that they only guarantee P0D
⋆(σ2(P0), θ(P

kn
n ), µ(P kn

n ), g(P kn
n ),Ψ(P0)) =

OP (1/nr) for some r ∈ [0, 1/2[, then expansion (16) becomes

ψ̃∗
n − Ψ(P0) = P0D

⋆(σ2(P0), θ(P
kn
n ), µ(P kn

n ), g(P kn
n ),Ψ(P0)) + oP (1/nr)

and asymptotic linearity fails to hold. On the contrary, we easily deduce from Proposition 3

what happens when θ0(0, ·) = θ(P0)(0, ·), µ0 = µ(P0), g0 = g(P0), with fast rates of conver-

gence:

Corollary 1 (asymptotic normality). Suppose that the assumptions of Proposition 3 are met.

If in addition it holds that θ0(0, ·) = θ(P0)(0, ·), µ0 = µ(P0), g0 = g(P0) and

P0(θ(P
kn
n )(0, ·) − θ0(0, ·))2 ×

(
P0(µ(P kn

n ) − µ0)
2 + P0(g(P

kn
n )(0|·) − g0(0|·))2

)
= oP (1/n)

then

ψ̃∗
n − Ψ(P0) = (Pn − P0)D

⋆(σ2(P0), θ0, µ0, g0,Ψ(P0)) + oP (1/
√
n)

i.e., the TMLE ψ̃∗
n is asymptotically linear with influence function D⋆(σ2(P0), θ0, µ0, g0,Ψ(P0)).

Thus,
√
n(ψ̃∗

n − Ψ(P0)) is asymptotically distributed from a centered Gaussian law with vari-

ance P0D
⋆(σ2(P0), θ0, µ0, g0,Ψ(P0))

2. In particular, if θ0 = θ(P0) then the TMLE ψ̃∗
n is

efficient.

Corollary 1 covers a simple case in the sense that, by being oP (1/
√
n), the second right-

hand side term in (16) does not significantly contribute to the linear asymptotic expansion i.e.,

the influence curve actually is D⋆(σ2(P0), θ0, µ0, g0,Ψ(P0)). Depending on how θ(P 0
n), µ(P 0

n)

and g(P 0
n) are obtained (again, we recommend relying on super-learning), the contribution to

the linear asymptotic expansion may be significant (but determining this contribution would

be a very difficult task to address on a case by case basis when relying on super-learning).

5 Specifics of the TMLE procedure tailored to the estimation

of the non-parametric variable importance measure

In this section, we present practical details on how we conduct the initialization and updating

steps of the TMLE procedure as described in Section 3. We introduce in Section 5.1 a working

model for the conditional distribution of X given (W,X 6= 0) which proves very efficient

in computational terms. In Section 5.2, we introduce two alternative two-step updating
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procedures which can be substituted to the general one-step updating procedure presented in

Section 3.2. Finally, we describe carefully what are all the features of interest of P0 that must

be considered for the purpose of targeting the parameter of ultimate interest, Ψ(P0), via the

construction of the TMLE.

5.1 Working model for the conditional distribution of X given (W,X 6= 0)

The working model for the conditional distribution of X given (W,X 6= 0) under P 0
n that we

build relies on two ideas:

- we link the conditional second order moment EP 0
n
(X2|X 6= 0,W ) to the conditional

mean EP 0
n
(X|X 6= 0,W ) (both under P 0

n) through the equality

EP 0
n
(X2|X 6= 0,W ) = ϕn,λ

(
EP 0

n
(X|X 6= 0,W )

)
(17)

where ϕn,λ(t) = λt2 + (1 − λ)(t(mn + Mn) −mnMn) (with mn = mini≤nX
(i), Mn =

maxi≤nX
(i)), and λ ∈ [0, 1] is a fine-tune parameter;

- under P 0
n and conditionally on (W,X 6= 0), X takes its values in the set {X(i) : i ≤

n} \ {0} of the observed X’s different from 0.

Since the conditional distribution of X given (W,X 6= 0) under P 0
n is subject to two con-

straints, X cannot take fewer than three different values in general. Elegantly, it is possible

(under a natural assumption on P 0
n) to fine-tune λ and to select three values in {X(i) : i ≤

n} \ {0} in such a way that X only takes the latter values:

Lemma 5. Assume that P 0
n guarantees that σ2(P 0

n) > 0, P 0
n(X 6= 0) > 0, g(P 0

n)(0|W ) ∈ (0, 1)

P 0
n-almost surely, and X ∈ [mn + c,Mn − c] for some c > 0 when X 6= 0. It is possible to

construct P 00
n ∈ M in such a way that (i) W has the same marginal distribution under P 00

n

and P 0
n , µ(P 00

n ) = µ(P 0
n), g(P 00

n ) = g(P 0
n), σ2(P 00

n ) = σ2(P 0
n), and (ii) for all W ∈ W, there

exist three different values x(1), x(2), x(3) ∈ {X(i) : i ≤ n} \ {0} and three non-negative weights

p1, p2, p3 summing up to 1 such that, conditionally on (W,X 6= 0) under P 00
n , X = x(k) with

conditional probability pk.

Hence, we directly construct a P 0
n of the same form as P 00

n . Note that, by (8), because

the conditional distribution of X given (W,X 6= 0) under P 0
n has its support included in

{X(i) : i ≤ n} \ {0}, then so do the conditional distributions of X given (W,X 6= 0) under

P kn (all k ≥ 1) obtained by following the general one-step updating procedure of Section 3.2.

Similarly, because we initially estimate the marginal distribution of W under P0 by its em-

pirical counterpart, then the marginal distributions of W under P 0
n and P kn (all k ≥ 1) have

their supports included in {Wi : i ≤ n}.
We discuss in Section 5.4 why it is computationally more interesting to consider such

a working model (instead of a Gaussian working model for instance). We emphasize that
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assuming X ∈ [mn + c,Mn− c] when X 6= 0 (for a possibly tiny c > 0) is hardly a constraint,

and that the latter must be accounted for while estimating µ(P0), g(P0), and σ2(P0). The

proof of the lemma is relegated to Section A.2.

5.2 Two tailored alternative two-step updating procedures

We present in Section 3.2 a general one-step updating procedure. Alternatively, it is also

possible to decompose each update into a first update of the conditional distribution of Y

given (W,X), followed by a second update of the marginal distribution of (W,X).

First update: fluctuating the conditional distribution of Y given (W,X).

We actually propose two different fluctuations for that purpose: a Gaussian fluctuation on

one hand and a logistic fluctuation on the other hand, depending on what one knows or wants

to impose.

Gaussian fluctuation. In this case too, minus the log-likelihood function is used as a loss

function. Specifically, we first fluctuate only the conditional distribution of Y given

(W,X), by introducing the path {P k−1
n,1 (ε) : ε ∈ R} such that (i) (W,X) has the

same distribution under P k−1
n,1 (ε) as under P k−1

n , and (ii) under P k−1
n,1 (ε) and given

(W,X), Y is distributed from the Gaussian law with conditional mean θ(P k−1
n )(X,W )+

εH(P k−1
n )(X,W ) and conditional variance 1, where the so-called clever covariate H(P )

is characterized for any P ∈ M by

H(P )(X,W ) =
1

σ2(P )

(
X − µ(P )(W )1{X = 0}

g(P )(0|W )

)
.

This definition guarantees that the path fluctuates P k−1
n (i.e., P k−1

n,1 (0) = P k−1
n , provided

that Y is conditionally Gaussian given (W,X) under P 0
n) in the direction of D⋆

2(P
k−1
n )

(i.e., the score of the path at ε = 0 equals D⋆
2(P

k−1
n )). Introducing the MLE

εk−1
n,1 = arg max

ε∈R

n∑

i=1

logP k−1
n,1 (ε)(O(i))

=

∑n
i=1(Y

(i) − θ(P k−1
n )(X(i),W (i)))H(P k−1

n )(X(i),W (i))
∑n

i=1H(P k−1
n )(X(i),W (i))2

,

the first intermediate update bends P k−1
n into P k−1

n,2 = P k−1
n,1 (εk−1

n,1 ).

Logistic fluctuation. There is yet another interesting option in the case that Y ∈ [a, b]

is bounded (or in the case that one wishes to impose Y ∈ [a, b], typically then with

a = mini≤n Y
(i) and b = maxi≤n Y

(i)), which allows to incorporate this known fact

(or wish) into the procedure. Let us assume that θ(P0) takes its values in ]a, b[ and

also that θ(P k−1
n ) is constrained in such a way that θ(P k−1

n )(X,W ) ∈]a, b[. Introduce
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for clarity the function on the real line characterized by Fa,b(t) = (t − a)/(b − a).

Here, we choose the loss function characterized by −La,b(P )(O) = Fa,b(Y ) logFa,b ◦
θ(P )(X,W ) + (1 − Fa,b(Y )) log(1 − Fa,b ◦ θ(P )(X,W )), with convention La,b(P )(O) =

+∞ if θ(P )(X,W ) ∈ {a, b}. Note that the loss La,b(P ) depends on the conditional

distribution of Y given (W,X) under P only through its conditional mean θ(P ). This

straightforwardly implies that in order to describe a fluctuation {P k−1
n,1 (ε) : ε ∈ R} of

P k−1
n , it is only necessary to detail the form of the marginal distribution of (W,X) under

P k−1
n,1 (ε) and how θ(P k−1

n,1 (ε)) depends on θ(P k−1
n ) and ε. Specifically, we first fluctuate

only the conditional distribution of Y given (W,X), by making P k−1
n,1 (ε) be such that

(i) (W,X) has the same distribution under P k−1
n,1 (ε) as under P k−1

n , and (ii)

θ(P k−1
n,1 (ε))(X,W ) = F−1

a,b

(
expit

(
logitFa,b ◦ θ(P k−1

n )(X,W ) + εH(P k−1
n )(X,W )

))
.

Now, introduce the La,b-minimum loss estimator

εk−1
n,1 = arg min

ε∈R

n∑

i=1

La,b(P
k−1
n,1 (ε))(O(i)),

which finally yields the first intermediate update P k−1
n,2 = P k−1

n,1 (εk−1
n,1 ). The following

lemma (whose proof is relegated to Section A.2) justifies our interest in the loss function

La,b and fluctuation {P k−1
n,1 (ε) : ε ∈ R}:

Lemma 6. Assume that the conditions stated above are met. Then La,b is a valid loss

function for the purpose of estimating θ(P0) in the sense that

θ(P0) = arg min
P∈M

P0La,b(P ).

Moreover, it holds that

∂
∂εLa,b(P

k−1
n,1 (ε))

∣∣∣
ε=0

(O) = −D⋆
2(P

k−1
n )(O).

The second inequality is the counterpart of the fact that, when using the Gaussian

fluctuation, the score of the path at ε = 0 equals D⋆
2(P

k−1
n ).

Second update: fluctuating the marginal distribution of (W,X).

Next, we preserve the conditional distribution of Y given (W,X) and only fluctuate the

marginal distribution of (W,X), by introducing the path {P k−1
n,2 (ε) : |ε| ≤ ρ‖D⋆

1(P
k−1
n,2 )‖−1

∞ }
such that (i) Y has the same conditional distribution given (W,X) under P k−1

n,2 (ε) as under

P k−1
n,2 , and (ii) the marginal distribution of (W,X) under P k−1

n,2 (ε) is characterized by

dP k−1
n,2 (ε)

dP k−1
n,2

(X,W ) =
(
1 + εD⋆

1(P
k−1
n,2 )(X,W )

)
. (18)
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This second path fluctuates P k−1
n,2 (i.e., P k−1

n,2 (0) = P k−1
n,2 ) in the direction of D⋆

1(P
k−1
n,2 ) (i.e.,

the score of the path at ε = 0 equals D⋆
1(P

k−1
n,2 )). Consider again minus the log-likelihood as

loss function, and introduce the MLE

εk−1
n,2 = arg max

|ε|≤ρ‖D⋆
1
(Pk−1

n,2 )‖−1
∞

n∑

i=1

logP k−1
n,2 (ε)(O(i)) :

the second update bends P k−1
n,2 into P kn = P k−1

n,2 (εk−1
n,2 ), concluding the description of how we

can alternatively build P kn based on P k−1
n .

Note that, by (18), because the conditional distribution of X given (W,X 6= 0) under

P 0
n has its support included in {X(i) : i ≤ n} \ {0} (a consequence of our choice of working

model, see Section 5.1), then so do the conditional distributions of X given (W,X 6= 0) under

P kn (all k ≥ 1) obtained by following either one of the tailored two-step updating procedure.

Furthermore, it still holds that the marginal distributions of W under P 0
n and P kn (all k ≥ 1)

have their supports included in {Wi : i ≤ n} (because we initially estimate the marginal

distribution of W under P0 by its empirical counterpart).

5.3 Super-learning of the features of interest

It still remains to specify how we wish to carry out the initial estimation and updating

of the features of interest θ(P0), µ(P0), g(P0), and σ2(P0). As for σ2(P0) = EP0
{X2},

we simply estimate it by its empirical counterpart i.e., construct P 0
n in such a way that

σ2(P 0
n) = n−1

∑n
i=1(X

(i))2. The three other features θ(P0), µ(P0) and g(P0) are estimated by

super-learning, and P 0
n is constructed in such a way that θ(P 0

n), µ(P 0
n) and g(P 0

n) equal their

corresponding estimators. Super-learning is a cross-validation based aggregation method that

builds a predictor as a convex combination of base predictors [24, 22] (we briefly describe in

Section 6.5 the specifics of the super-learning procedure that we implement for our application

to simulated and real data). The weights of the convex combination are chosen so as to

minimize the prediction error, which is expressed in terms of the non-negative least squares

(NNLS) loss function [7] and estimated by V -fold cross-validation. Heuristically the obtained

predictor is by construction at least as good as the best of the base predictors (this statement

has a rigorous form implying oracle inequalities, see [24, 22]).

Lemma 1 teaches us what additional features of P k−1
n must be known in order to derive

the kth update P kn from its predecessor P k−1
n , starting from k = 1. Specifically, if we rely on

the general one-step updating procedure of Section 3.2 then we need to know:

- EPk−1
n

(Y D⋆(P k−1
n )(O)|X,W ) and EPk−1

n
(D⋆(P k−1

n )(O)|X,W ) for the update of θ(P k−1
n )

(see (10));

- EPk−1
n

(D⋆(P k−1
n )(O)|W ) for the updates of µ(P k−1

n ), g(P k−1
n ), and the marginal distri-

bution of W under P k−1
n (see the right-hand side denominators in (11), (12), (14));
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- EPk−1
n

(XD⋆(P k−1
n )(O)|W ) for the update of µ(P k−1

n ) (see the right-hand side numerator

in (11));

- EPk−1
n

(1{X = 0}D⋆(P k−1
n )(O)|W ) for the update of g(P k−1

n ) (see the right-hand side

numerator in (12));

- EPk−1
n

{X2D⋆(P k−1
n )(O)} for the update of σ2(P k−1

n ) (see (13)).

It is noteworthy that if either one of the two-step updating procedures of Section 5.2 is

used then the first two conditional expectations do not need to be known, because updating

θ(P k−1
n ) relies on the clever covariate H(P k−1

n ), which is entirely characterized by the current

estimators µ(P k−1
n ), g(P k−1

n ), and σ2(P k−1
n ) of the features µ(P0), g(P0), and σ2(P0), respec-

tively. In the sequel of this sub-section, we focus on the general one-step updating procedure

of Section 3.2. How to proceed when relying on either of the two-step updating procedures

of Section 5.2 can be easily deduced from that case.

Once θ(P 0
n), µ(P 0

n), g(P 0
n), and σ2(P 0

n) are determined (see the first paragraph of this

sub-section) hence D⋆(P 0
n) is known, we therefore also estimate by super-learning the con-

ditional expectations EP0
(Y D⋆(P 0

n)(O)|X,W ), EP0
(D⋆(P 0

n)(O)|X,W ), EP0
(D⋆(P 0

n)(O)|W ),

EP0
(XD⋆(P 0

n)(O)|W ), EP0
(1{X = 0}D⋆(P 0

n)(O)|W ); as for EP0
{X2D⋆(P 0

n)(O)}, we simply

estimate it by its empirical counterpart. Then we constrain P 0
n in such a way that the con-

ditional expectations EP 0
n
(Y D⋆(P 0

n)(O)|X,W ), EP 0
n
(D⋆(P 0

n)(O)|X,W ), EP 0
n
(D⋆(P 0

n)(O)|W ),

EP 0
n
(XD⋆(P 0

n)(O)|W ), EP 0
n
(1{X = 0}D⋆(P 0

n)(O)|W ), and expectation EP 0
n
{X2D⋆(P 0

n)(O)}
equal their corresponding estimators. This completes the construction of P 0

n , and suffices for

characterizing the features θ(P 1
n), µ(P 1

n), g(P 1
n) and σ2(P 1

n) of the first update P 1
n .

Now, if one wished to follow exactly the conceptual road consisting in relying on Lemma 1

in order to derive the second update P 2
n from its predecessor P 1

n , one would have to describe

how each conditional (and unconditional) expectation of the above list behaves, as a func-

tion of ε, on the path {P 1
n(ε) : |ε| ≤ ρ‖D⋆(P 1

n)‖−1
∞ }. This would in turn enlarge the above

list of the features of interest of P0 that one would have to consider in the initial construc-

tion of P 0
n . Note that the length of the list would increase quadratically in the number of

updates. Instead, once D⋆(P k−1
n ) is known, we estimate by super-learning the conditional

expectations EP0
(Y D⋆(P k−1

n )(O)|X,W ), EP0
(D⋆(P k−1

n )(O)|X,W ), EP0
(D⋆(P k−1

n )(O)|W ),

EP0
(XD⋆(P k−1

n )(O)|W ), EP0
(1{X = 0}D⋆(P k−1

n )(O)|W ); as for EP0
{X2D⋆(P k−1

n )(O)}, we

simply estimate it by its empirical counterpart. Then we proceed as if the conditional expec-

tations EPk−1
n

(Y D⋆(P k−1
n )(O)|X,W ), EPk−1

n
(D⋆(P k−1

n )(O)|X,W ), EPk−1
n

(D⋆(P k−1
n )(O)|W ),

EPk−1
n

(XD⋆(P k−1
n )(O)|W ), EPk−1

n
(1{X = 0}D⋆(P k−1

n )(O)|W ), and EPk−1
n

{X2D⋆(P k−1
n )(O)}

were equal to their corresponding estimators. By doing so, the length of the list of the features

of interest of P0 is fixed no matter how many steps of the updating procedure are carried out.

Arguably, following this alternative road has little if no effect relative to following exactly

the conceptual road consisting in relying on Lemma 1, because only second (or more) order

expressions in ε are involved.
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5.4 Merit of the working model for the conditional distribution of X given

(W,X 6= 0)

Let us explain here why (a) initially estimating the marginal distribution of W under P0 by its

empirical counterpart and (b) relying on the working model for the conditional distribution of

X given (W,X 6= 0) that we described in Section 5.1 is computationally very interesting. The

key is that, under P 0
n and its successive updates P kn (all k ≥ 1), the distributions of (W,X)

have their supports included in {(W (i), X(j)) : i ≤ j ≤ n} (we say they are “parsimonious”).

Indeed, Lemma 1 and a simple induction yield that, for each k ≥ 1, a single call to

θ(P kn ), µ(P kn ) or g(P kn ) involves a number of (nested) calls to the “past” features of interest

θ(P k
′

n ), µ(P k
′

n ) and g(P k
′

n ) (0 ≤ k′ < k) which is O(k). Furthermore, the evaluation of Ψ(P kn )

(following (5) with P kn substituted to P 0
n) requires in turn B calls (assuming for simplicity

that the functions are not vectorized) to θ(P kn ) (in order to evaluate the numerator of the

right-hand side term of (5)), µ(P kn ) and g(P kn ) (in order to simulate {(W̃ (b), X̃(b)) : b ≤ B}).
Overall, at least O(Bk) calls to the set of all features of interest are performed at the kth

updating step of the TMLE procedure. In practice (even if functions are vectorized) this

leads to a large memory footprint and prohibitive running time of the algorithm, as each of

these calls consists in the prediction of the corresponding feature, as described in Section 5.3.

By taking advantage of the “parsimony” of the distributions of (W,X) under the successive

P kn (k ≥ 0), we manage to alleviate dramatically the time and memory requirements of

our implementation. Indeed, the “parsimony” implies that, at the kth step of the TMLE

procedure (k ≥ 0), it is only required to compute and store O(n2) quantities (including,

but not limited to, θ(P kn )(X(i),W (j)), µ(P kn )(W (i)) and g(P kn )(W (j)) for all 1 ≤ i, j ≤ n) —

see Section 5.3). In particular, the evaluation of Ψ(P kn ) now requires retrieving O(B) values

from a handful of vectors instead of performing O(Bk) memory and time-consuming (nested)

function calls.

6 Application

We first present the genomic problem that motivated this study, in Section 6.1, and earlier

contributions on the same topic, in Section 6.2. Two real datasets are described in Section 6.3.

They play a central role in this article. We both (a) draw inspiration from one of them and

(b) use it in order to set up our simulation study, as presented in Section 6.4. We also apply

the TMLE methodology directly to the other. The specifics of the TMLE procedures that

we undertake both on simulated and real data are given in Section 6.5, and their results are

summarized in Section 6.6, for the simulation study, and in Section 6.7, for the real data

application.
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6.1 Association between DNA copy number and gene expression in cancers

The activity of a gene in a cell is directly related to its expression level, that is, the number of

messenger RNA (mRNA) fragments corresponding to this gene. Cancer cells are characterized

by changes in their gene expression patterns. Such alterations have been shown to be caused

directly or indirectly by genetic events, such as changes in the number of DNA copies, and

epigenetic events, such as DNA methylation. Some changes in DNA copy number have been

reported to be positively associated with gene expression levels [11]. Conversely, DNA methy-

lation is a chemical transformation of cytosines (one of the four types of DNA nucleotides)

which is thought to lead to gene expression silencing [5]. Therefore, DNA methylation levels

are generally negatively associated with gene expression levels.

We propose to apply the methodology developed in the previous sections to the search

for genes for which there exists an association between DNA copy number variation and gene

expression level, accounting for DNA methylation.

6.2 Related works

In the context of cancer studies, various methods have been proposed in order to find asso-

ciations between DNA copy number and gene expression at the level of genes. Because we

cannot cite all of them, we try here to cite one relevant publication for each broad type of

method. Most of them can be classified into two groups, depending on whether DNA copy

number is viewed as a continuous or a discrete variable. When DNA copy number is viewed

as a continuous variable, associations between X and Y are generally quantified using a cor-

relation coefficient [11]. When it is viewed as a discrete variable, associations are typically

quantified using a test of differential expression between DNA copy number states [26]. A

common limitation to this two types of methods is that they are generally good at identifying

genes that were already known, but less so at finding novel candidates. This is not surprising:

for correlation-based methods, high correlation between X and Y requires both X and Y

to vary substantially, in which case it is likely that these (marginal) variations have already

been reported. For methods based on differential expression between copy number states, the

latter often correspond to biological or clinical groups which are already known and for which

differential expression analyses have already been carried out.

In the present paper, we acknowledge the fact that while DNA copy number is observed

as a quantitative variable, the copy neutral state (two copies of DNA) generally has positive

mass, in the sense that for a given gene, a positive proportion of samples have two copies of

DNA.

Another major difference between our method and the ones cited above is that we explicitly

incorporate DNA methylation into the analysis. Several papers where DNA copy number,

gene expression and DNA methylation are combined have been published recently, but they

typically analyze one dimension of (W,X, Y ) at a time, and then use an ad hoc rule to
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merge or intersect the results [1, 17]. The CNAmet method [10] relies on two scores: a

score of differential expression between copy number levels on the one hand, and between

DNA methylation levels on the other hand. Then both scores are summed. In the method

proposed here, the three dimensions are studied jointly.

6.3 Datasets

We exploit glioblastoma multiforme (GBM, the most common type of primary adult brain

cancers) and ovarian cancers (OvCa, a cancerous growth arising from the ovary) data from

The Cancer Genome Atlas (TCGA) project [2], a collaborative initiative to better under-

stand several types of cancers using existing large-scale whole-genome technologies. TCGA

has recently completed a comprehensive genomic characterization of these types of tumor, in-

cluding DNA copy number (X) , gene expression (Y ), and DNA methylation (W ) microarray

experiments [18, 19].

Probe-level normalized GBM and OvCa data can be downloaded from the TCGA reposi-

tory at http://tcga-data.nci.nih.gov/tcga/. In order to study associations between X,

Y and W at the level of genes, these probe-level measurements first need to be aggregated

into gene-level summaries. We choose to define X, Y and W as follows for a given gene:

- DNA methylation W is the proportion of “methylated” signal at a CpG locus in the

gene’s promoter region;

- DNA copy number X is a locally smoothed total copy number relative to a set of

reference samples;

- expression Y is the “unified” gene expression level across three microarray platforms,

as defined by [27].

After this pre-processing step, each gene is represented by a 3 × n matrix, where 3 is

the number of data types and n is the number of samples. Figure 2(a) represents DNA

methylation, DNA copy number, and gene expression data for one particular gene, EGFR,

which is known to be altered in GBM. The association between copy number and expression

is non-linear, and high methylation levels are associated with low expression levels.

6.4 Simulation scheme

Because association patterns between copy number, expression and methylation are gener-

ally non-linear, setting up a realistic simulation model is a difficult task. We design here a

simulation strategy based on perturbations of real observed data structures, which mimics

situations such as the one observed in the Figure 2(a) for the EGFR gene in GBM. This strategy

implements the following constraints:
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(a) real dataset (b) simulated dataset
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Figure 2: Illustrating DNA methylation, DNA copy number, and gene expression data. In

both graphics, we represent kernel density estimates (diagonal panels), pairwise plots (lower

panels), and report the pairwise Pearson correlation coefficients (upper panels). (a). Real

dataset corresponding to the EGFR gene in 187 GBM tumor samples. For 130 among the

187 samples, only DNA copy number and gene expression data were available (circles in

lower middle plot). (b). Simulated dataset consisting of n = 200 independent copies of the

synthetic observed data structure described in Section 6.6. Note that the constant OX2 is

added to each value of X so that graphics corresponding to real and simulated data can be

more easily compared.
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- there are generally up to three copy number classes: normal regions, and regions of copy

number gains and losses;

- in normal regions, expression is negatively correlated with methylation;

- in regions of copy number alteration, copy number and expression are positively corre-

lated.

Our simulation scheme relies on three real observed data structures O1 = (OW1 , OX1 , O
Y
1 ),

O2 = (OW2 , OX2 , O
Y
2 ), O3 = (OW3 , OX3 , O

Y
3 ) corresponding to three samples from different copy

number classes: loss (class 1), normal (class 2), and gain (class 3). We simulate a synthetic

observed data structure O = (W,X, Y ) ∼ P s as follows. Given a vector p = (p1, p2, p3)

of proportions such that p1 + p2 + p3 = 1, we first draw a class assignment U from the

multinomial distribution with parameter (1, p) (in other words, U = u with probability pu).

Conditionally on U , a measure W of DNA methylation is drawn randomly as a perturbation

of the DNA methylation in the corresponding real observed data structure OU : given a vector

ω = (ω1, ω2, ω3) of positive numbers,

W = expit
(
logit

(
OWU

)
+ ωUZ

)
,

where Z is a standard normal random variable independent of U . Finally, a couple (X,Y ) of

DNA copy number and DNA expression is drawn conditionally on (U,W ) as a perturbation of

the couple (OXU , O
Y
U ) in the corresponding real observed data structure OU (with an additional

centering applied to X so that the pivot value be equal to 0): Given σ2 > 0, two variance-

covariance 2 × 2-matrices Σ1 and Σ3 and a non-increasing mapping λ0 : [0, 1] → [0, 1],

- if U = 2, then (X,Y ) = (0, OY2 +λ0(W )+σ2Z
′), where Z ′ is a standard normal random

variable independent of (U,W );

- if U 6= 2, then (X,Y ) is drawn conditionally on (U,W ) from the bivariate Gaussian

distribution with mean (OXU −OX2 , O
Y
U ) and variance-covariance matrix ΣU .

In particular, the reference/pivot value x0 = 0. Note that λ0 is chosen non-increasing in order

to account for the negative association between DNA expression and methylation. Further-

more, the synthetic observed data structure O drawn from P s is not bounded.

We easily derive closed-form expressions for the features of interest θ(P s), µ(P s), g(P s),

and σ2(P s), which we report in the Appendix (see Lemma 7). Relying on Lemma 7 makes it

possible to evaluate the value of Ψ(P s), by following the procedure described in Section 3.1

(see details in Section 6.6).

Finally we provide in Figure 2(b), for the sake of illustration, a visual summary of a

simulation run with n = 200 independent copies of the synthetic observed data structure O

drawn from P s and based on real observed data structure from two GBM samples for the
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EGFR gene which are described in Table 1. The parameters for this simulation were chosen as

follows: p = (0, 1/2, 1/2), ω = (0, 3, 3), λ0 : w 7→ −w, σ2 = 1, Σ3 =

(
9.96 1

1 0.43

)
.

6.5 Library of algorithms for super-learning

We explain in Section 5.3 that we rely on super-learning [24, 22] in order to estimate some

relevant infinite-dimensional features of P0, including (but not limited to) θ(P0), µ(P0) and

g(P0). This algorithmic challenge is easily overcome, thanks to the remarkable R-package

SuperLearner [12] and the possibility to rely on the library of R-packages [13] built by the

statistical community. As for the base predictors, they involve (by alphabetical order):

- Generalized additive models: we use the gam R-package [4], with its default values.

- Generalized linear models: we use the glm R-function with identity link (for learning

θ(P0) and µ(P0)) and logit link (for learning g(P0)), and with linear combinations of

(1, X,W ) or (1, X,W,XW ) (for learning θ(P0)) and linear combinations of (1,W ) or

(1,W,W 2) (for learning µ(P0) and g(P0)).

- Piecewise linear splines: we use polymars R-function from the polspline R-package [6],

with its default values.

- Random forests: we use the randomForest R-package [9], with its default values.

- Support vector machines: we use the svm R-function from the e1071 R-package [3], with

its default values.

Note that none of the statistical models associated to the above estimation procedures con-

tains P s (see Lemma 7).

6.6 Simulation study

We conduct twice a simulation study where B′ = 103 datasets of n = 200 independent

observed data structures are (independently) generated under P s (i.e., under the simulation

scheme described in Section 6.4). In each simulation study and for every simulated dataset, we

perform the TMLE methodology for the purpose of estimating the target parameter Ψ(P s).

From one simulation study to the other, we only change the set up of the super-learning

procedure, by modifying the library of algorithms involved in the super-learning of the features

of interest:

- the first time, we proceed exactly as described in Section 6.5 (we say that the full-SL is

undertaken);

- the second time, we decide to include only algorithms based on generalized linear models

(we say that the light-SL is undertaken).
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We do not use any index to refer to the super-learning set up (full-SL or light-SL) for the

sake of alleviating notations.

In each simulation study (i.e., for each set up of the super-learning procedure full-SL and

light-SL) and for each b ≤ B′, we record the values ψkn,b = Ψ(P kn,b) of the initial substitution

estimator (k = 0) and subsequent updated substitution estimators (k = 1, 2, 3) targeting

Ψ(P s), as derived on the bth simulated dataset (whose empirical measure is denoted by Pn,b).

The targeted update steps rely on the Gaussian fluctuations presented in Section 5.2 (the

results are very similar when one applies either the general one-step updating procedure of

Section 3.2 or the second tailored alternative two-step updating procedure of Section 5.2).

We do not record the next updates because the ad hoc stopping criterion that we devise

systematically indicates that this is not necessary (heuristically, the criterion elaborates on

the gains in likelihood and the variations in the resulting estimates).

The value of Ψ(P s) is evaluated by simulations, following (5) in Section 3.1 with P s

substituted for P 0
n (we rely on B = 105 simulated observed data structures, whose empir-

ical measure is denoted by PB; the features θ(P s) and σ2(P s) are explicitly known, see

Lemma 7). In order to get a sense of how accurate our evaluation of Ψ(P s) is, we also

use the same large simulated dataset to evaluate VarP sD⋆(P s)(O) (as the empirical variance

VarPB
D⋆(P s)(O); again, D⋆(P s) is known explicitly by Lemma 7). Denoting by ψB(P s) and

vB(P s) the latter evaluations, we interpret the intervals [ψB(P s) ± ξ1−α/2
√
vB(P s)/n] and

[ψB(P s)± ξ1−α/2
√
vB(P s)/B] as (1−α)-accuracy intervals for the evaluation of Ψ(P s) based

on n = 200 and B = 105 independent observed data structures. The gray intervals in Figure 3

represent these accuracy intervals for α = 5%, n = 200 (light gray) and B = 105 (dark gray).

Note that (by the convolution theorem) the length of [ψB(P s)± ξ0.975
√
vB(P s)/n] is the op-

timal length of a 95%-confidence interval based on an efficient (regular) estimator of Ψ(P s)

relying on n observations (assuming that the asymptotic regime is reached). The numerical

values are reported in Table 2.

The results of this joint simulation study are summarized by Figure 3 (which shows kernel

density estimates of the empirical distributions of {ψkn,b : b ≤ B′} for 0 ≤ k ≤ 3) and Table 3.

They illustrate some of the fundamental characteristics of the TMLE estimator and related

confidence intervals: convergence of the iterative updating procedure, robustness, asymptotic

normality, and coverage.

Convergence of the iterative updating procedure, and robustness. A substantial

bias in the initial estimation is revealed by the location of the mode of {ψ0
n,b : b ≤ B′}

in Figure 3, both for the full-SL and light-SL procedures. We see that the full-SL initial

estimator is less biased than its light-SL counterpart. As one can judge visually or by

the first rows of Tables 3(a) and 3(b), this initial bias is diminished (if not perfectly

corrected) at the first updating step of the TMLE procedure, illustrating the robustness

of the targeted estimator. The empirical distributions of {ψkn,b : b ≤ B′} for k = 1, 2, 3
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sample name methylation OWi copy number OXi expression OYi
TCGA-02-0001 (i = 2) 0.05 2.72 -0.46

TCGA-02-0003 (i = 3) 0.01 9.36 1.25

Table 1: Real methylation, copy number and expression data used as a baseline for simulating

the dataset according to the simulation scheme presented in Section 6.6. A visual of the

simulated dataset is provided in Figure 2(b).

ψB(P s) vB(P s) [ψB(P s) ± ξ0.975
√
vB(P s)/N ]

N = 200 N = 105

0.2345 0.05980232 [0.2006; 0.2684] [0.2329; 0.2360]

Table 2: Values of ψB(P s) and vB(P s), estimators of Ψ(P s) and VarP sD⋆(P s)(O), and

95%-accuracy intervals [ψB(P s)± ξ0.975
√
vB(P s)/n], [ψB(P s)± ξ0.975

√
vB(P s)/B] (n = 200,

B = 105).

(a) full-SL (b) light-SL

Figure 3: Empirical distribution of {ψkn,b : b ≤ B′} based on n = 200 independent observed

data structures for k = 0 (initial estimator) and k iterations of the updating procedure

(k = 1, 2, 3), as obtained from B′ = 103 independent replications of the simulation study

(using a Gaussian kernel density estimator). (a). The super-learning procedure involves

all algorithms described in Section 6.5. (b). The super-learning procedure only involves

algorithms based on generalized linear models. In both graphics, gray rectangles represent

95%-accuracy intervals [ψB(P s) ± ξ0.975
√
vB(P s)/n] and [ψB(P s) ± ξ0.975

√
vB(P s)/B] for

the true parameter Ψ(P s) based on 200 observed data structures (light gray) and B = 105

observed data structures (dark gray). The length of [ψB(P s)±ξ0.975
√
vB(P s)/n] is the optimal

length of a 95%-confidence interval based on an efficient (regular) estimator of Ψ(P s) relying

on n observations (assuming that the asymptotic regime is reached).
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are not (visually) markedly different, an empirical indication that the TMLE procedure

converges quickly.

Asymptotic normality. In order to check the asymptotic normality of the TMLE esti-

mator (e.g. under the conditions of Corollary 1), we first perform Lilliefors tests of

normality based on the empirical distributions of {ψkn,b : b ≤ B′} for k = 0, 1, 2, 3 (i.e.,

we perform Kolmogorov-Smirnov tests of normality without specification of the means

and variances under the null). We report the values of the test statistics and corre-

sponding p-values in the third and fourth rows of Tables 3(a) and 3(b). If we take into

account the multiplicity of tests, there is no clear indication that the limit distributions

are not Gaussian.

Second, we test the fit of the empirical distributions of {ψkn,b : b ≤ B′} to a Gaussian

distribution with mean and variance given by the estimates ψB(P s) and vB(P s) (which

are independent of {ψkn,b : b ≤ B′}). We report in the fifth rows of Tables 3(a) and

3(b) the obtained values of the KS test statistics. If all p-values are smaller than 10−4,

one notices that the test statistics are strikingly smaller for k ≥ 1 than for k = 0.

Performing Anderson-Darling tests of normality with only the null mean or the null

variance specified (i.e., KS tests of normality with specified null mean, equal to ψB(P s),

and unspecified null variance or specified null variance, equal to vB(P s), and unspecified

null mean) teaches us that it is mainly the little remaining bias and not the choice of

the variance under the null that makes the KS tests have so small p-values [values not

shown].

Coverage. The theoretical convergence in distribution of the TMLE estimator to a Gaus-

sian limit (e.g. under the conditions of Corollary 1) promotes the use of intervals

[ψkn,b ± ξ1−α/2s
k
n,b/

√
n] as (1 − α)-confidence intervals for Ψ(P s) (k = 1, 2, 3), with

(skn,b)
2 = VarPn,b

D⋆(P kn,b)(O). Interestingly, the theoretical result of Corollary 1 do

not guarantee that it is safe to estimate the limit variance by (skn,b)
2 (additional as-

sumptions on the construction and convergence of θ(P kn
n ), µ(P kn

n ) and g(P kn
n ) would

be required to get such a result). We nonetheless check whether the latter inter-

vals provide the wished coverage or not. For this purpose, we compute and report

in the sixth and seventh rows of Tables 3(a) and 3(b) the empirical coverages ckn =
1
B′

∑B′

b=1 1{ψB(P s) ∈ [ψkn,b ± ξ1−α/2s
k
n,b/

√
n]} and their optimistic counterpart ck+n =

1
B′

∑B′

b=1 1{[ψB(P s) ± ξ0.975
√
vB(P s)/B] ∩ [ψkn,b ± ξ1−α/2s

k
n,b/

√
n] 6= ∅} (the latter in-

corporates the remaining uncertainty of the true value of Ψ(P s)). We conclude that

the provided coverage is good for the light-SL procedure (with excellent optimistic cov-

erage), but disappointing for the full-SL procedure (even for the optimistic coverage).

The results may have been better if one had relied on the bootstrap in order to estimate

the asymptotic variance of the TMLE. We will investigate this issue in future work.
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6.7 Real data application

For the real data application, we focus on all 130 genes g ∈ G of chromosome 18 in the

OvCa dataset. This choice is notably motivated by the associated sample size, approximately

equal to 500 (thus much larger than the sample size associated to the GBM dataset). We

estimate the non-parametric variable importance measure of X on Y accounting for W for

each gene separately (i.e., Ψ(P g0 ) where P g0 ∈ M is the true distribution of O = (W,X, Y )

for gene g), following exactly one of the statistical methodologies developed in the simulation

study. Specifically, the targeted update step relies on the Gaussian fluctuations presented

in Section 5.2, and the super-learning involves the library of algorithms that we report in

Section 6.5. In particular, we estimate for each gene g the asymptotic variance of the TMLE

ψg,∗n of Ψ(P g0 ) with the empirical variance (sg,∗n )2 of the efficient influence curve at P g,∗n . In a

future work solely devoted to this real data application, we will use the bootstrap in order to

derive a more robust estimator of the asymptotic variance (again, Corollary 1 requires some

conditions on P g0 and P g,∗n in order to guarantee that (sg,∗n )2 is a consistent estimator). We

will also “extend” W , by adding to the DNA methylation of the gene of interest the DNA

methylations, DNA copy numbers and gene expressions of its neighboring genes.

Figure 4: Real data application to the 130 genes of chromosome 18 in the OvCa dataset

(ovarian cancers). We represent the tests statistics
√
n(ψg,3n − ψgref)/s

g,3
n for ψgref = 0 (left

graphic) and ψgref = F(P gn) (right graphic) along the position of gene g on the genome. We

report the names of the genes such that
√
n|ψg,3n |/sg,3n > 45 (left graphic) and

√
n|ψg,3n −

F(P gn)|/sg,3n > 6 (right graphic), the cut-offs being arbitrarily chosen.

We only briefly summarize the results of the real data application. For this purpose,

we report in Figure 4 the values of the test statistics
√
n(ψg,3n − ψgref)/s

g,3
n (g ∈ G) derived

from the TMLE after three updates, using two different reference values ψgref ∈ {0,F(P gn)}.
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Here, F(P gn) =
∑n

i=1X
(i)Y (i)/

∑n
i=1(X

(i))2 is the least square (substitution, asymptotically

efficient) estimator of parameter F(P g0 ), see (4), a parameter which overlooks the role poten-

tially played by W while quantifying the influence of X on Y . We are aware that F(P gn) is

not independent of ψg,3n and sg,3n , and will make sure in a future work solely devoted to this

real data application that our estimator of F(P g0 ) is derived from an independent dataset

(or we will undertake a cross-validated procedure). The reference value ψgref = 0 is a natural

null value to rely on from a testing perspective. Using ψgref = F(P gn) as another null value is

relevant because that allows us to identify those genes for which the (possibly intricate) role

played by W in quantifying the influence of X on Y is especially important and results in a

stark deviation of Ψ(P g0 ) from F(P g0 ).

Looking at the left graphic in Figure 4 teaches us that a majority of the Ψ(P g0 ) (g ∈ G)

are likely positive. Eight genes stand up (by having a test statistic
√
nψg,3n /sg,3n > 45): two

genes at 18p11.32 (USP14 and THOC1), a cluster of five genes at 18q11.2 (SNRPD1, RBBP8,

RIOK3, NPC1, SS18), and gene MBP at 18q23. This suggests that the region 18q11.2 (especially

19-24 Mb) is of particular relevance in this set of ovarian cancers. Seven out of the latter eight

genes (specifically: all of them but gene NPC1) also stand up in the right graphic of Figure 4:

six out of the latter seven genes standing up in both graphics (specifically: all of them but gene

MBP) exhibit a significantly small test statistic (by having
√
n(ψg,3n − F(P gn))/sg,3n < −6), as

does the additional gene SERPINB2, while gene MBP exhibits a significantly large test statistic

(by having
√
n(ψg,3n − F(P gn))/sg,3n > 6), as do eight additional genes (MBD1, TXNL1, LMAN1,

WDR7, NARS, ZNF236, ATP9B, TXNL4A). All genes standing up in the right graphic of Figure 4

are located at 18q2 (41-76 Mb).
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A Appendix

A.1 Miscellanea

Recall that P s denotes the data-generating distribution of the synthetic observed data struc-

ture O = (W,X, Y ) described in Section 6.6. We easily derive the following closed-form

expressions for the features of interest θ(P s), µ(P s), g(P s), and σ2(P s).

Lemma 7. Let ϕ denote the density of the standard normal distribution. The following
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equalities hold:

θ(P s)(X,W ) = (OY2 + λ0(W ))P s(U = 2|X,W )

+
∑

u=1,3

(
OYu +

Σu(1, 2)

Σu(1, 1)
(X − (OXu −OX2 ))

)
P s(U = u|X,W ),

µ(P s)(W ) =
3∑

u=1

(OXu −OX2 )P s(U = u|W ),

g(P s)(0|W ) = P s(U = 2|W ),

σ2(P s) =
∑

u=1,3

pu
(
Σu(1, 1) + (OXu −OX2 )2

)
,

where, for each u = 1, 2, 3,

P s(U = 2|X,W ) ∝ p2

ω2
ϕ

(
logit(W ) − logit(OW2 )

ω2

)
1{X = 0},

P s(U = u|X,W ) ∝ pu
ωu
ϕ

(
logit(W ) − logit(OWu )

ωu

)
× ϕ

(
X − (OXu −OX2 )√

Σu(1, 1)

)
,

P s(U = u|W ) ∝ pu
ωu
ϕ

(
logit(W ) − logit(OWu )

ωu

)
.

A.2 Proofs of Lemmas 1, 6 and Proposition 1

Proof of Lemma 1. Let us consider (10). For any non-negative measurable function f of

(X,W ), it holds that

EPε
{Y f(X,W )} = EP {Y f(X,W )(1 + εs(O))}

= EP {θ(P )(X,W )f(X,W )} + εEP {Y f(X,W )s(O)}
= EP {(θ(P )(X,W ) + εEP (Y s(O)|X,W ))f(X,W )}
= EPε

{h(X,W )f(X,W )}

for h(X,W ) equal to the right-hand side expression of (10), since (9) implies

dPε
dP

(X,W ) = (1 + εEP (s(O)|X,W )).

The function f being arbitrarily chosen, the latter equalities yield (10). The remaining

relationships are easily proven in the same spirit.

Proof of Lemma 6. Note that

P0La,b(P ) = EP0
{KL(Fa,b ◦ θ(P0)(X,W ), Fa,b ◦ θ(P )(X,W ))} + c(P0),

where KL(p, q) is the Kullback-Leibler divergence between the Bernoulli distributions of pa-

rameters p, q ∈]0, 1[ and c(P0) is a constant depending on P0 only. Since KL(p, q) ≥ 0 with
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equality iff p = q, we obtain that θ(P0) minimizes P 7→ P0La,b(P ) and also that another

minimizer must satisfy θ(P )(X,W ) = θ(P0)(X,W ) P0-almost surely. The second equality is

easily obtained by differentiating.

Proof of Proposition 1. By expanding the squared sum in (1), we obtain that

Ψ(P ) = arg min
β∈R

{
−2βEP {X(θ(P )(X,W ) − θ(P )(0,W ))} + β2EP {X2}

}
,

which straightforwardly yields (2). It is easily seen that PD⋆
1(P )D⋆

2(P ) = 0, or in other words

that the two components are orthogonal in L2
0(P ).

Regarding the pathwise differentiability, it is sufficient to consider paths of the form (9)

for arbitrarily chosen s ∈ L2
0(P ) with ‖s‖∞ <∞. Set such a s and |ε| < ‖s‖−1

∞ , ε 6= 0. Using

the telescopic equality a1/b1 − a0/b0 = (a1 − a0)/b1 − (a0/b0)(b1 − b0)/b1 yields

ε−1(Ψ(Pε) − Ψ(P )) =
T 1
ε

σ2(Pε)
− Ψ(P )

T 2
ε

σ2(Pε)
, (19)

with

T 1
ε = ε−1

(
EPε

{X(θ(Pε)(X,W ) − θ(Pε)(0,W ))} − EP {X(θ(P )(X,W ) − θ(P )(0,W ))}
)
,

T 2
ε = ε−1(σ2(Pε) − σ2(P )) = EP {s(O)X2} (20)

by (13). Now, the same telescopic equality also yields that

T 1
ε = EP {X(θ(Pε)(X,W ) − θ(Pε)(0,W ))s(O)}

+ EP
{
X
(
ε−1(θ(Pε)(X,W ) − θ(P )(X,W )) − ε−1(θ(Pε)(0,W ) − θ(P )(0,W ))

)}
.

By (10) and the dominated convergence theorem (indeed, {‖θ(Pε)‖∞ : |ε| < ‖s‖−1
∞ } is

bounded),

T 1
ε = EP {X(θ(P )(X,W ) − θ(P )(0,W ))s(O)} + o(ε)

+ EP
{
X
(
ε−1(θ(Pε)(X,W ) − θ(P )(X,W )) − ε−1(θ(Pε)(0,W ) − θ(P )(0,W ))

)}
.

Furthermore, (10) also yields that

ε−1(θ(Pε)(X,W ) − θ(P )(X,W )) = EP ((Y − θ(P )(X,W ))s(O)|X,W ) + o(ε).

Consequently, applying the dominated convergence theorem finally yields (by using the above

telescopic equality and (10), one easily checks that {supO∈O ε
−1|θ(Pε)(X,W )−θ(P )(X,W )| :

|ε| < ‖s‖−1
∞ } is bounded)

T 1
ε = EP {X(θ(P )(X,W ) − θ(P )(0,W ))s(O)}

+ EP {EP (X(Y − θ(P )(X,W ))s(O)|X,W )
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−XEP ((Y − θ(P )(X,W ))s(O)|X = 0,W )} + o(ε), (21)

where we emphasize that

EP ((Y − θ(P )(X,W ))s(O)|X = 0,W ) = EP

(
1{X = 0}
g(P )(0|W )

(Y − θ(P )(X,W ))s(O)
∣∣∣W
)
.

Combining (19), (20), (21) and (13) teaches us that, for all s ∈ L2
0(P ) with ‖s‖∞ <∞,

ε−1(Ψ(Pε) − Ψ(P )) = EP {D⋆(P )(O)s(O)} + o(ε),

where D⋆(P ) is defined in the statement of the proposition. In particular, Ψ is pathwise

differentiable at P wrt the described collection of paths, and D⋆(P ) is a gradient of Ψ at P .

Since the related tangent space is L2
0(P ) itself, it is necessarily the efficient influence curve.

It remains to prove that D⋆(P ) is double-robust. For this purpose, note that

σ2(P ′)PD⋆(P ′) − σ2(P )(Ψ(P ) − Ψ(P ′))

= EP {X(θ(P ′)(X,W ) − θ(P ′)(0,W )) −X(θ(P )(X,W ) − θ(P )(0,W ))}

+ EP

{(
X − µ(P ′)(W )1{X = 0}

g(P ′)(0|W )

)
EP (Y − θ(P ′)(X,W )|X,W )

}

= EP {X(θ(P ′)(X,W ) − θ(P ′)(0,W )) −X(θ(P )(X,W ) − θ(P )(0,W ))}

+ EP

{(
X − µ(P ′)(W )1{X = 0}

g(P ′)(0|W )

}
(θ(P )(X,W ) − θ(P ′)(X,W ))

}

= EP

{
X(θ(P )(0,W ) − θ(P ′)(0,W )) − µ(P ′)(W )

g(P )(0|W )

g(P ′)(0|W )
(θ(P )(0,W ) − θ(P ′)(0,W ))

}

= EP

{
(θ(P )(0,W ) − θ(P ′)(0,W ))

(
µ(P )(W ) − µ(P ′)(W )

g(P )(0|W )

g(P ′)(0|W )

)}
.

Now, the right-hand side expression vanishes as soon as either θ(P ′)(0, ·) = θ(P )(0, ) or

(µ(P ′) = µ(P ) and g(P ′) = g(P )). The conclusion readily follows.

A.3 Proof of Lemma 5

Proof of Lemma 5. Assume for the time being that, for all W ∈ W, there exists λn such

that (17) holds with λn substituted for λ. Then, for all W ∈ W, the point with coordi-

nates (EP 0
n
(X|X 6= 0,W ), ϕn,λn

(EP 0
n
(X|X 6= 0,W ))) lies in the convex envelope of the set

{(X(i), X(i)2) : i ≤ n} \ {(0, 0)}. Equivalently, there exist for all W ∈ W three non-negative

weights p1, p2, p3 summing up to 1 and three different values x(1), x(2), x(3) ∈ {X(i) : i ≤
n} \ {0} such that

EP 0
n
(X|X 6= 0,W ) =

3∑

k=1

pkx
(k), EP 0

n
(X2|X 6= 0,W ) =

3∑

k=1

pkx
(k)2,

the right-hand side expressions being, respectively, the mean and second order moment of the

distribution
∑3

k=1 pkDirac(x(k)). Thus, there exists P 00
n ∈ M such that (i) and (ii) hold.
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Set W ∈ W. Combining (6), (7) and (17) yields that if there exists λn such that (17) holds

with λn substituted for λ, then it must be equal to ℓn = (T 1
n−σ2(P 0

n))/(T 1
n−T 2

n), where T 1
n =

(mn +Mn)EP 0
n
{µ(P 0

n)(W )} −mnMnEP 0
n
{1 − g(P 0

n)(0|W )} and T 2
n = EP 0

n
{µ(P 0

n)(W )2/(1 −
g(P 0

n)(0|W ))}. In order to conclude, it is therefore sufficient to check that ℓn ∈ [0, 1].

By the Jensen inequality, it holds that EP 0
n
(X2|X 6= 0,W ) ≥ EP 0

n
(X|X 6= 0,W )2, which

yields in turn with (6) and (7) that σ2(P 0
n) ≥ T 2

n . Finally, using again (6) and (7), σ2(P 0
n)−T 1

n

equals

EP 0
n

{
(1 − g(P 0

n)(0|W ))
(
EP 0

n
(X2|X 6= 0,W ) − (mn +Mn)EP 0

n
(X|X 6= 0,W ) +mnMn

)}

= EP 0
n

{
(1 − g(P 0

n)(0|W ))EP 0
n

((X −mn)(X −Mn)|X 6= 0,W )
}
≤ −c2P 0

n(X 6= 0),

hence T 2
n ≤ σ2(P 0

n) < T 1
n . Thus, ℓn ∈ [0, 1], which completes the proof.

A.4 Proofs of Lemmas 2, 3 and 4

Proof of Lemma 2. It is sufficient to verify that, under the stated assumptions,

lim sup
(ε,k)→(0,∞)

∣∣∣∣Pn
D⋆(P kn )

1 + εD⋆(P kn )
− PnD

⋆(P kn )

∣∣∣∣ = 0.

Now, the absolute value above is straightforwardly upper-bounded by

εM2Pn

∣∣∣1 + εD⋆(P kn )
∣∣∣
−1

= εM2Pn

(
1 + εD⋆(P kn )

)−1
≤ εM2/(1 − ρM) = 2εM2.

This trivially entails the wished convergence, hence the result.

Let us introduce, for all k ≥ 0 and |ε| ≤ ρ, ℓkn(ε) = n−1
∑n

i=1 logP kn (ε)(O(i)) and

Akn(ε) = −Pn
D⋆(P kn )2

(1 + εD⋆(P kn ))
2 .

Obviously, the normalized log-likelihood ℓkn(ε) under P kn (ε) is twice differentiable wrt ε, with

first derivative at ε = 0 equal to PnD
⋆(P kn ) and second derivative at ε equal to Akn(ε).

Proof of Lemma 3, first part. Let us first show, by contradiction, that limk→∞ PnD
⋆(P kn ) = 0

under the stated assumptions. Suppose that PnD
⋆(P kn ) does not converge to 0 as k → ∞:

there exist η > 0 and an increasing function ϕ : N → N such that, for all k ≥ 0,

|PnD⋆(Pϕ(k)
n )| ≥ η > 0. (22)

We show that necessarily limk→∞ εϕ(k) = 0, hence by Lemma 2 that limk→∞ PnD
⋆(P

ϕ(k)
n ) = 0,

contradicting (22).

Set k ≥ 0. For any ε
′ϕ(k)
n ∈ [0, ε

ϕ(k)
n ], a Taylor expansion of ℓ

ϕ(k)
n (ε) yields the existence of

ε′ ∈ [0, ε
′ϕ(k)
n ] such that

ℓϕ(k)
n (εϕ(k)

n ) − ℓϕ(k)
n (0) ≥ ℓϕ(k)

n (ε′ϕ(k)
n ) − ℓϕ(k)

n (0)
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= ε′ϕ(k)
n PnD

⋆(Pϕ(k)
n ) +

(ε
′ϕ(k)
n )2

2
Aϕ(k)
n (ε′). (23)

By assumption (iii) and since

−4M2 ≤ inf
k′≥0

inf
|ε|≤ρ

Ak
′

n (ε) ≤ sup
k′≥0

sup
|ε|≤ρ

Ak
′

n (ε) ≤ −4

9
inf
k′≥0

PnD
⋆(P k

′

n )2, (24)

there exists a constant κ > 0 (depending on Pn) such that the right-hand side term of (24) is

upper-bounded by −κ, hence Ak
′

n (ε) ≤ −κ simultaneously for all k′ ≥ 0 and |ε| ≤ ρ.

The function ε 7→ ∂
∂εℓ

ϕ(k)
n (ε) being decreasing and equal to PnD

⋆(P
ϕ(k)
n ) 6= 0 at ε = 0,

it necessarily holds that ε
ϕ(k)
n PnD

⋆(P
ϕ(k)
n ) > 0 (i.e., ε

ϕ(k)
n and PnD

⋆(P
ϕ(k)
n ) share the same

sign), hence ε
′ϕ(k)
n PnD

⋆(P
ϕ(k)
n ) > 0 too. Furthermore, combining (23) and the left-hand side

of (24) yields

ℓϕ(k)
n (εϕ(k)

n ) − ℓϕ(k)
n (0) ≥ ε′ϕ(k)

n PnD
⋆(Pϕ(k)

n ) − 2M2(ε′ϕ(k)
n )2

≥ |ε′ϕ(k)
n |η − 2M2(ε′ϕ(k)

n )2. (25)

The conclusion is now at hand. Assume that the sequence {εϕ(k)
n }k≥0 does not converge

to 0: there exist c > 0 and another increasing function ψ : N → N such that, for all k ≥ 0,

|εψ◦ϕ(k)
n | ≥ c > 0. Note that c can be chosen small enough to guarantee in addition that

cη − 2M2c2 > 0. Let us impose now |ε′ψ◦ϕ(k)
n | = c for all k ≥ 0 (this uniquely defines

ε
′ψ◦ϕ(k)
n ∈ [0, ε

ψ◦ϕ(k)
n ]). According to (25), for all k ≥ 0,

ℓψ◦ϕ(k)
n (εψ◦ϕ(k)

n ) − ℓψ◦ϕ(k)
n (0) ≥ cη − 2M2c2 > 0.

Using (a) ℓk
′

n (εk
′

n )− ℓk
′

n (0) ≥ 0 for all k′ ≥ 0 and (b) ℓk
′

n (0) = ℓk
′−1
n (εk

′−1
n ) for every k′ ≥ 1, one

obtains that for all k ≥ 0,

ℓψ◦ϕ(k)
n (εψ◦ϕ(k)

n ) − ℓ0n(0) ≥ k(cη − 2M2c2).

This contradicts assumption (iv). So the sequence {εϕ(k)
n }k≥0 must converge to 0, Lemma 2

applies, and (22) is contradicted.

Proof of Lemma 3, second part. For all k ≥ 0, another Taylor expansion of ℓkn(ε) yields the

existence of ε′kn ∈ [0, εkn] such that

0 ≤ ℓkn(ε
k
n) − ℓkn(0) = εknPnD

⋆(P kn ) +
(εkn)

2

2
Akn(ε

′k
n ).

We derive from these inequalities that

0 ≤ (εkn)
2κ ≤ (εkn)

2|Akn(ε′kn )| ≤ 2εknPnD
⋆(P kn ) ≤ ρ|PnD⋆(P kn )|,

where the right-hand side converges to 0 as k → ∞ by virtue of the first part of the lemma.

This completes the proof.
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Proof of Lemma 4. We first show that the sequence {P kn}k≥0 converges in total variation.

For this purpose, note that P kn is dominated by P 0
n , with a density fkn characterized by

fkn(O) =
∏k−1
k′=0(1 + εk

′

nD
⋆(P k

′

n )(O)). Since (a) the functions D⋆(P k
′

n ) are uniformly bounded

by a common constant M , and (b) the series
∑

k≥0 |εkn| converges, the sequence of densities

(wrt P 0
n) {fkn}k≥0 converges wrt the ‖·‖∞-norm to a limit density (wrt P 0

n) that we denote f∗n.

Density f∗n gives rise to a data-generating distribution P ∗
n , the limit of P kn in total variation

(hence its weak limit too).

Now, it holds that ψkn = Ψ(P kn ) = (EPk
n
{XY } − EPk

n
{Xθ(P kn )(0,W )})/EPk

n
{X2}. The

observed data structure O being bounded, the functions O = (W,X, Y ) 7→ XY and O =

(W,X, Y ) 7→ X2 are continuous and bounded, hence EPk
n
{XY } and EPk

n
{X2} respectively

converge to EP ∗

n
{XY } and EP ∗

n
{X2} ≥ c as k → ∞ by weak convergence. Furthermore, the

convergence of fkn to f∗n wrt the ‖ · ‖∞-norm trivially entails the pointwise convergence of

θ(P kn ) to θ(P ∗
n), then the wished convergence of EPk

n
{Xθ(P kn )(0,W )} to EP ∗

n
{Xθ(P ∗

n)(0,W )}
by the dominated convergence theorem. This completes the proof.

A.5 Proof of Propositions 2 and 3 and of Corollary 1

Denote D⋆(σ2, θ, µ, g, ψ) = D⋆
1(σ

2, θ, ψ) + D⋆
2(σ

2, θ, µ, g), let D1(σ
2, θ) be characterized by

D1(σ
2, θ)(O) = (X(θ(X,W ) − θ(0,W )))/σ2, and define D1(P ) = D1(σ

2(P ), θ(P )). We use

the notation a . b for “a smaller than b up to a multiplicative constant”. Let us start with

a useful lemma.

Lemma 8. Suppose that the assumptions of Proposition 2 are met. There exists ψ0 ∈ R such

that ψ̃∗
n = ψ0 + oP (1) (i.e., the TMLE converges in probability). Moreover, it holds that

P0(D
⋆
1(σ

2(P kn
n ), θ(P kn

n ), ψ̃∗
n) −D⋆

1(σ
2
0, θ0, ψ0))

2 = oP (1), (26)

P0(D
⋆
2(P

kn
n ) −D⋆

2(σ
2
0, θ0, µ0, g0))

2 = oP (1), hence (27)

P0(D
⋆(P kn

n ) −D⋆(σ2
0, θ0, µ0, g0, ψ0))

2 = oP (1) (28)

Proof. Recall that ‖O‖ is bounded under P0 and that σ2(P kn
n ), σ2

0 ≥ c. Using repeatedly

the telescopic equality a1/b1 − a0/b0 = (a1 − a0)/b1 − (a0/b0)(b1 − b0)/b1 and inequality

(a+b)2 ≤ 2(a2 +b2) yields that, under P0, (D1(P
kn
n )−D1(σ

2
0, θ0))(O)2 . (θ(P kn

n )−θ0)(O)2 +

(θ(P kn
n )(0, ·) − θ0(0, ·))(O)2, and therefore that

P0(D1(P
kn
n ) −D1(σ

2
0, θ0))

2 = oP (1). (29)

Similarly, the same tricks as above and the facts that (a) both |(Y −θ(P kn
n )(X,W ))/σ2(P kn

n )|
and |(Y − θ(P0)(X,W ))/σ2

0| are upper-bounded under P0, and (b) g(P kn
n )(0|W ), g0(0|W ) ≥ c

imply that, under P0, (D⋆
2(P

kn
n )−D⋆

2(σ
2
0, θ0, µ0, g0))(O)2 . (µ(P kn

n )−µ0)(O)2+(g(P kn
n )(0|·)−

g0(0|·))(O)2, hence (27).

Now, let us rewrite PnD
⋆(P kn

n ) = oP (1) as
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ψ̃∗
n

EPn
{X2}

σ2(P kn
n )

= (Pn − P0)(D1(P
kn
n ) +D⋆

2(P
kn
n ))

+ P0(D1(P
kn
n ) +D⋆

2(P
kn
n ) −D1(σ

2
0, θ0) −D⋆

2(σ
2
0, θ0, µ0, g0))

+ P0(D1(σ
2
0, θ0) +D⋆

2(σ
2
0, θ0, µ0, g0)) + oP (1) (30)

and consider the two first right-hand side terms. Because D1(σ
2, θ)(O) = D⋆

1(σ
2, θ, ψ)(O) +

X2ψ/σ2 and the class {O 7→ X2ψ/σ2 : (ψ, σ2) ∈ R× [c,∞]} is P0-Donsker, it holds that both

D1(P
kn
n ) and D⋆

2(P
kn
n ) belong to a P0-Donsker class with P0-probability tending to 1, hence

so does D1(P
kn
n )+D⋆

2(P
kn
n ). Therefore, by (29), (27) and Lemma 19.24 in [25], the first term

is OP (1/
√
n) = oP (1). Combining (29) and (27) with the Cauchy-Schwarz inequality yields

in turn that the second term is oP (1). Finally, the law of large numbers and the fact that

σ2
0 ≥ c entail that EPn

{X2}/σ2(P kn
n ) = σ2(P0)/σ

2
0 × (1 + oP (1)). Consequently, we deduce

from (30) that there exists ψ0 ∈ R such that ψ̃n = ψ0 + oP (1).

Because D⋆
1(σ

2, θ, ψ)(O) = D1(σ
2, θ)(O) −X2ψ/σ2, (26) easily follows from (29) and the

convergence in probability of ψ̃n and σ2(P kn
n ) to ψ0 and σ2

0. Finally (26) and (27) imply (28),

thus concluding the proof.

Proof of Proposition 2. Let us first rewrite PnD
⋆(P kn

n ) = oP (1/
√
n) as

P0D
⋆(σ2

0, θ0, µ0, g0, ψ0) = −(Pn − P0)D
⋆(P kn

n )

− P0(D
⋆(P kn

n ) −D⋆(σ2
0, θ0, µ0, g0, ψ0)) + oP (1/

√
n). (31)

Since D⋆
1(P

kn
n ) and D⋆

2(P
kn
n ) belong to a P0-Donsker class with P0-probability tending to 1,

so does D⋆(P kn
n ). Therefore, (28) of Lemma 8 and Lemma 19.24 in [25] yield that the first

right-hand term in (31) is OP (1/
√
n) = oP (1). Moreover, (28) of Lemma 8 and the Cauchy-

Schwarz inequality imply that the second right-hand side term is oP (1). Consequently, the

deterministic quantity P0D
⋆(σ2

0, θ0, µ0, g0, ψ0) is equal to 0, and the conditions on (θ0, µ0, g0)

ensure that necessarily ψ0 = Ψ(P0) i.e., that the TMLE ψ̃∗
n is consistent.

Proof of Proposition 3. Let us resume the previous proof where we left it. The fundamental

relationship of this proof, derived from equalities P0D
⋆(σ2

0, θ0, µ0, g0, ψ0) = 0 and PnD
⋆(P kn

n ) =

oP (1/
√
n), is

− P0(D
⋆(σ2

0, θ0, µ0, g0, ψ̃
∗
n) −D⋆(σ2

0, θ0, µ0, g0, ψ0)) = (Pn − P0)D
⋆(σ2

0, θ0, µ0, g0, ψ̃
∗
n)

+ (Pn − P0)(D
⋆(P kn

n ) −D⋆(σ2
0, θ0, µ0, g0, ψ̃

∗
n))

+ P0(D
⋆(P kn

n ) −D⋆(σ2
0, θ0, µ0, g0, ψ̃

∗
n)) + oP (1/

√
n), (32)

where the left-hand side term obviously equals (ψ̃∗
n − ψ0)σ

2(P0)/σ
2
0. Let us consider now the

first right-hand term in (32). Since (a) {D⋆(σ2
0, θ0, µ0, g0, ψ) : ψ ∈ R} is a P0-Donsker class

and (b) P0(D
⋆(σ2

0, θ0, µ0, g0, ψ̃
∗
n) −D⋆(σ2

0, θ0, µ0, g0, ψ0))
2 = (ψ̃∗

n − ψ0)
2EP0

{X4}/σ4
0 = oP (1),

it holds that (Pn − P0)D
⋆(σ2

0, θ0, µ0, g0, ψ̃
∗
n) = (Pn − P0)D

⋆(σ2
0, θ0, µ0, g0, ψ0) + oP (1/

√
n)
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by Lemma 19.24 in [25]. Regarding the second right-hand side term in (32), note (a) that

(D⋆(P kn
n )−D⋆(σ2

0, θ0, µ0, g0, ψ̃
∗
n))(O) = (D1(P

kn
n )+D⋆

2(P
kn
n ))(O)+((1/σ2

0−1/σ2(P kn
n ))X2ψ̃∗

n)−
(D1(σ

2
0, θ0) + D⋆

2(σ
2
0, θ0, µ0, g0))(O), (b) that we have already shown that the first random

function between parentheses belongs to a P0-Donsker class with P0-probability tending

to 1, (c) that second random function between parentheses belongs to the P0-Donsker class

{O 7→ (1/σ2
0 − 1/σ2)X2ψ : (ψ, σ2) ∈ R × [c,∞]}, and (d) that the last function of the

decomposition is deterministic. Therefore, D⋆(P kn
n ) −D⋆(σ2

0, θ0, µ0, g0, ψ̃
∗
n) belongs to a P0-

Donsker class with P0-probability tending to 1. Now, by applying repeatedly inequality

(a + b)2 ≤ 2(a2 + b2) we deduce that P0(D
⋆(P kn

n ) −D⋆(σ2
0, θ0, µ0, g0, ψ̃

∗
n))

2 . P0(D1(P
kn
n ) −

D1(σ
2
0, θ0))

2 + P0(D
⋆
2(P

kn
n ) −D⋆

2(σ
2
0, θ0, µ0, g0))

2 + (ψ̃∗
n)

2EP0
{((1/σ2

0 − 1/σ2(P kn
n ))2X4}. But

‖O‖ is bounded under P0 and σ2(P kn
n ), σ2

0 ≥ c, so that EP0
{((1/σ2

0 − 1/σ2(P kn
n ))2X4} .

(σ2(P kn
n ) − σ2

0)
2 = oP (1). This fact combined with (29), (27) and ψ̃∗

n = OP (1) yield that

P0(D
⋆(P kn

n ) − D⋆(σ2
0, θ0, µ0, g0, ψ̃

∗
n))

2 = oP (1). Consequently, Lemma 19.24 in [25] implies

that the second right-hand side term in (32) is oP (1/
√
n). Let us turn now to the last

right-hand side term in (32). It is easily seen that

D⋆(P kn
n )(O) −D⋆(σ2

0, θ0, µ0, g0, ψ̃
∗
n)(O)

= D⋆(σ2(P kn
n ), θ(P kn

n ), µ(P kn
n ), g(P kn

n ),Ψ(P0))(O) −D⋆(σ2
0, θ0, µ0, g0,Ψ(P0))(O)

−
(
1/σ2(P kn

n ) − 1/σ2(P0)
)
X2(ψ̃∗

n − Ψ(P0)),

where (1/σ2(P kn
n ) − 1/σ2(P0))(ψ̃

∗
n − Ψ(P0)) = OP (1/

√
n) × oP (1) = oP (1/

√
n). Using that

P0D
⋆(σ2

0, θ0, µ0, g0,Ψ(P0)) = 0, the previous display yields that the third right-hand side term

in (32) equals

P0D
⋆(σ2(P kn

n ), θ(P kn
n ), µ(P kn

n ), g(P kn
n ),Ψ(P0)) + oP (1/

√
n)

= P0D
⋆(σ2

0, θ(P
kn
n ), µ(P kn

n ), g(P kn
n ),Ψ(P0))(1 + oP (1)) + oP (1/

√
n).

In summary, we just showed that

(ψ̃∗
n − Ψ(P0))σ

2(P0)/σ
2
0 = (Pn − P0)D

⋆(σ2
0, θ0, µ0, g0,Ψ(P0))

+ P0D
⋆(σ2

0, θ(P
kn
n ), µ(P kn

n ), g(P kn
n ),Ψ(P0))(1 + oP (1)) + oP (1/

√
n),

hence the stated relationship.

Proof of Corollary 1. This result relies on the decomposition:

P0D
⋆(σ2(P0), θ(P

kn
n ), µ(P kn

n ), g(P kn
n ),Ψ(P0))

= P0

(
D⋆(σ2(P0), θ(P

kn
n ), µ(P kn

n ), g(P kn
n ),Ψ(P0)) −D⋆(σ2(P0), θ(P

kn
n ), µ0, g0,Ψ(P0))

)

+ P0

(
D⋆(σ2(P0), θ(P

kn
n ), µ0, g0,Ψ(P0)) −D⋆(σ2(P0), θ0, µ0, g0,Ψ(P0))

)
,
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where we use that P0D
⋆(σ2(P0), θ0, µ0, g0,Ψ(P0)) = 0. Following the lines of the proof of

Lemma 8 and using the Cauchy-Schwarz inequality yield that the first term of the left-hand

side decomposition is upper-bounded (up to a multiplicative constant) by square-root of

P0(θ(P
kn
n )(0, ·)−θ(P0)(0, ·))2×(P0(µ(P kn

n )−µ0)
2+P0(g(P

kn
n )(0|·)−g0(0|·))2), while the second

term equals zero. Thus the latter left-hand side expression is oP (1/
√
n) by assumption, (32)

yields the asymptotic linear expansion, and the central limit theorem completes the proof.
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(a) full-SL

iteration of the TMLE procedure k = 0 k = 1 k = 2 k = 3

gain in relative error 0 0.0469 0.0625 0.0335

gain in relative mean square error 0 0.0365 0.0369 0.0035

Lilliefors test statistic 0.0183 0.0269 0.0298 0.0282

Lilliefors test p-value 0.5718 0.0861 0.0365 0.0582

KS test statistic 0.1566 0.0782 0.0743 0.0786

empirical coverage – 0.896 0.905 0.898

empirical coverage (optimistic) – 0.914 0.920 0.916

(b) light-SL

iteration of the TMLE procedure k = 0 k = 1 k = 2 k = 3

gain in relative error 0 0.2871 0.2837 0.2866

gain in mean square error 0 0.2352 0.2293 0.2305

Lilliefors test statistic 0.0253 0.0224 0.0218 0.0295

Lilliefors test p-value 0.1251 0.2620 0.2999 0.0400

KS test statistic 0.4227 0.1327 0.1451 0.1377

empirical coverage – 0.936 0.938 0.929

empirical coverage (optimistic) – 0.945 0.948 0.941

Table 3: Testing the asymptotic normality of ψkn and the validity of the coverage provided

by [ψkn ± ξ1−α/2s
k
n/

√
n], with (skn)

2 = VarPn
D⋆(P kn )(O) for k = 0, 1, 2, 3, (a) for the full-SL

procedure and (b) for the light-SL procedure. We report the gains in relative error and mean

square error (first and second rows), the test statistics and corresponding p-values of Lilliefors

tests of normality (third and fourth rows), the test statistics of the KS test of normality with

null mean and variance equal to ψB(P s) and vB(P s) (fifth rows; the corresponding p-values

are all smaller than 10−4), and finally the empirical coverages ckn = 1
B′

∑B′

b=1 1{ψB(P s) ∈
[ψkn,b ± ξ1−α/2s

k
n,b/

√
n]} as well as their optimistic counterparts ck+n = 1

B′

∑B′

b=1 1{[ψB(P s) ±
ξ0.975

√
vB(P s)/B] ∩ [ψkn,b ± ξ1−α/2s

k
n,b/

√
n] 6= ∅} (sixth and seventh rows).
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