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The large time dynamics of a two species coagulation-annihilation system with constant coagulation and annihilation rates is studied analytically when annihilation is complete. A scaling behaviour is observed which varies with the parameter coupling the annihilation of the two species, and, which is nonuniversal in the sense that it varies, in some cases, with the initial conditions as well. The latter actually occurs when either the coupling parameter is equal to one or the initial number of particles is the same for the two species.

Introduction

The irreversible growth of particles by the successive merger of clusters of particles occurs in many fields of science, such as polymer chemistry, colloid science, cloud dynamics and star formation, and the kinetics of coagulation/aggregation models has been the subject of extensive research over the past decades. The aggregation process can be represented schematically as follows:

A λ + A µ K(λ,µ) -→ A λ+µ ,
where A λ denotes a cluster of size λ ∈ [0, ∞) and K(λ, µ) = K(µ, λ) ≥ 0 is the coagulation kernel giving the rate at which clusters of size λ and µ coalesce. The most popular mean-field model describing such phenomena is Smoluchowski's coagulation equation [START_REF] Smoluchowski | Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen[END_REF] ∂a ∂t (t, λ) = 1 2 λ 0 K(λµ, µ)a(t, λµ) a(t, µ) dµa(t, λ)

∞ 0 K(λ, µ)a(t, µ) dµ, (1) 
where a(t, λ) represents the number density of particles of size λ at time t.

The dynamical properties of Smoluchowski's coagulation equation with homogeneous kernels have been thoroughly investigated in recent years (see [START_REF] Aldous | Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists[END_REF][START_REF] Bertoin | Random Fragmentation and Coagulation Processes[END_REF][START_REF] Drake | A general mathematical survey of the coagulation equation[END_REF][START_REF] Friedlander | The self-preserving particle size-distribution for coagulation by brownian motion[END_REF][START_REF] Leyvraz | Scaling theory and exactly solved models in the kinetics of irreversible aggregation[END_REF][START_REF] Van Dongen | Scaling solutions of Smoluchowski's coagulation equation[END_REF][START_REF] Wattis | An introduction to mathematical models of coagulation-fragmentation processes: A discrete deterministic mean-field approach[END_REF], and the references therein) and strongly depend on the homogeneity exponent of the kernel. Recall that a kernel is said to be homogeneous of degree (or exponent) σ ∈ R if K(ξλ, ξµ) = ξ σ K(λ, µ) for all ξ, λ, µ > 0. In particular, if K does not increase faster than (λµ) 1/2 , that is if the kernel is homogeneous of degree not exceeding one, a universal scaling behaviour (depending only on the homogeneity of the coagulation kernel) has been predicted in the physical literature [START_REF] Leyvraz | Scaling theory and exactly solved models in the kinetics of irreversible aggregation[END_REF][START_REF] Van Dongen | Scaling solutions of Smoluchowski's coagulation equation[END_REF] for large times and initial conditions decaying sufficiently rapidly as λ → ∞ with mathematical proofs having been supplied in a few particular cases [START_REF] Escobedo | On self-similarity and stationary problems for fragmentation and coagulation models[END_REF][START_REF] Fournier | Existence of self-similar solutions to Smoluchowski's coagulation equation[END_REF][START_REF] Menon | Approach to self-similarity in Smoluchowski's coagulation equations[END_REF][START_REF] Menon | Dynamical scaling in Smoluchowski's coagulation equations: uniform convergence[END_REF].

It is of interest to see whether taking into account additional effects will lead to a deviation from this universal scaling behaviour. For example, consider two species, A and B, which coagulate amongst themselves

A λ + A µ K a (λ,µ) -→ A λ+µ , B λ + B µ K b (λ,µ) -→ B λ+µ with K a (λ, µ) = K a (µ, λ) ≥ 0 and K b (λ, µ) = K b (µ, λ
) ≥ 0 being their respective coagulation kernels and, when they come together, completely annihilate each other according to

A λ + B µ L(λ,µ) -→ (inert substance),
with L(λ, µ) ≥ 0 being the annihilation kernel. For the discrete model with the computation of particular solutions for the specific choice K a = K b = 2 and L = J (= const), and with monodisperse initial conditions, it has been found in [START_REF] Ben-Naim | Kinetics of aggregation-annihilation processes[END_REF][START_REF] Krapivsky | Nonuniversality and breakdown of scaling in two-species aggregation with annihilation[END_REF] that this coupling of coagulation and annihilation in a two-species population of particles shows evidence of a nonuniversal scaling behaviour. The purpose of this paper is to extend the formal analysis that Ben-Naim and Krapivsky [START_REF] Ben-Naim | Kinetics of aggregation-annihilation processes[END_REF] gave for the discrete case of coagulation-annihilation with monodisperse initial conditions. We give a complete and rigorous classification of the scaling behaviour for the continuous case of coagulation-annihilation with arbitrary nonnegative initial conditions.

With constant coagulation and annihilation kernels K a (λ, µ) = K b (λ, µ) = k > 0 and L(λ, µ) = l > 0, the mean-field model describing the time evolution of the particle size distributions a(t, λ) and b(t, λ) of particles of species A and B with size λ ∈ [0, ∞) at time t ≥ 0 is:

∂a ∂t (t, λ) = 1 2 λ 0 k a(t, λ -µ) a(t, µ) dµ -a(t, λ) ∞ 0 k a(t, µ) dµ + ∞ 0 l b(t, µ) dµ , ∂b ∂t (t, λ) = 1 2 λ 0 k b(t, λ -µ) b(t, µ) dµ -b(t, λ) ∞ 0 k b(t, µ) dµ + ∞ 0 l a(t, µ) dµ .
If we rescale the time t → 2t/k and introduce a parameter J := 2l/k, which measures the relative strength of the annihilation kernel to the coagulation kernel, we may write this system more conveniently with a single free parameter as:

∂a ∂t (t, λ) = λ 0 a(t, λ -µ) a(t, µ) dµ -a(t, λ)(2A(t) + JB(t)), (2) 
∂b ∂t (t, λ) = λ 0 b(t, λ -µ) b(t, µ) dµ -b(t, λ)(2B(t) + JA(t)), (3) 
where

A(t) := ∞ 0 a(t, λ) dλ, B(t) := ∞ 0 b(t, λ) dλ, t ≥ 0,
represent the total particle number of species A and B present at time t respectively. Now we study the system of equations ( 2) and (3) with initial conditions:

a(0, λ) = a 0 (λ) ≥ 0, b(0, λ) = b 0 (λ) ≥ 0, λ ∈ (0, ∞).
Let us denote the total initial particle numbers and masses of species A and B respectively by:

A 0 := A(0) = ∞ 0 a 0 (λ) dλ, B 0 := B(0) = ∞ 0 b 0 (λ) dλ, M a 0 : = ∞ 0 λa 0 (λ) dλ, M b 0 := ∞ 0 λb 0 (λ) dλ,
with the ratio of initial particle concentrations given by ϑ := B 0 /A 0 . Then without loss of generality, we may assume A 0 ≥ B 0 (i.e. ϑ ∈ [0, 1]) and we have the following: 2) and ( 3) exhibits the following self-similar scaling behaviour:

Main Result. For nonnegative initial conditions a 0 , b 0 ∈ L 1 (0, ∞; (1 + x) dx), the solution (a, b) to Eqs. (
(1)

If J > 1 then lim t→∞ t 2 a(t, λt) = αe -αλ , with α := 1 (1 -ϑ) J/(J-1) M a 0 , (4) 
while b seems not to have a self-similar scaling behaviour.

(2) If J = 1 then setting κ a := A 0 A 0 + B 0 , and 
κ b := B 0 A 0 + B 0 we have lim t→∞ t 1+κa a(t, λt κa ) = κ a αe -αλ , with α := A 0 (A 0 + B 0 ) κa M a 0 , (5) 
lim t→∞ t 1+κ b b(t, λt κ b ) = κ b βe -βλ , with β := B 0 (A 0 + B 0 ) κ b M b 0 . (6) 
(3) If J ∈ (0, 1) then

lim t→∞ ((J + 1)t) (J+2)/(J+1) a(t, λ ((J + 1)t) 1/(J+1) ) = αe -αλ , (7) lim t→∞ 
((J + 1)t) (J+2)/(J+1) b(t, λ ((J + 1)t) 1/(J+1) ) = βe -βλ , (8) 
with

α := A J/(J+1) 0 ϑ J/(1-J 2 ) , β := A J/(J+1) 0 ϑ -J 2 /(1-J 2 ) .
As in the case of Smoluchowski's coagulation equation ( 1) with constant coagulation kernel, the specific structure of ( 2)-( 3) allows us to make use of the Laplace transform to cast the problem as a dynamical system which can be solved explicitly in terms of A, B, and the initial conditions. A thorough study of the large time behaviour of A and B then leads to the identification of the scaling exponents and the pointwise convergence of re-scaled Laplace transforms. According to Feller [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] this turns out to guarantee the pointwise convergence of a re-scaled version of the cumulative distribution function of a and/or b defined by

(t, λ) -→ λ 0 a(t, µ) dµ, (t, λ) -→ λ 0 b(t, µ) dµ.
This in turn implies the stated convergence on a and b, but in a weak sense.

Formulation as a dynamical system

Define Laplace transforms:

F (t, x) := ∞ 0 e -λx a(t, λ) dλ, G(t, x) := ∞ 0 e -λx b(t, λ) dλ.
Then we get ∂F ∂t

(t, x) = F 2 (t, x) -(2A(t) + JB(t)) F (t, x), ∂G ∂t (t, x) = G 2 (t, x) -(2B(t) + JA(t)) G(t, x),
with initial conditions

F (0, x) = F 0 (x) := ∞ 0 e -λx a 0 (λ) dλ, G(0, x) = G 0 (x) := ∞ 0 e -λx b 0 (λ) dλ.
These equations are easily solved yielding:

F (t, x) = F 0 (x)e -P (t) 1 -F 0 (x) t 0 e -P (τ ) dτ , G(t, x) = G 0 (x)e -Q(t) 1 -G 0 (x) t 0 e -Q(τ ) dτ , (9) 
where

P (t) := t 0 [2A(τ ) + JB(τ )] dτ, Q(t) := t 0 [2B(τ ) + JA(τ )] dτ. (10) 
It also follows from ( 2) and ( 3) that A and B satisfy the following dynamical system:

dA dt = -A 2 -JAB, A(0) = A 0 , (11) 
dB dt = -B 2 -JAB, B(0) = B 0 . ( 12 
)
It is clear that the origin (A = B = 0) is the only physically relevant critical point and, as the solution below indicates, it is globally stable. Indeed, make a change of variable:

u = A -B, v = AB, to get du dt = -u u 2 + 4v, u(0) = u 0 := A 0 -B 0 , (13) 
dv dt = -(J + 1)v u 2 + 4v, v(0) = v 0 := A 0 B 0 . (14) 
Clearly, if u 0 = 0, then u(t) = 0 for all t. Otherwise, for u 0 > 0, we may divide one equation by the other, to get

dv du = (J + 1) v u , which leads to v v 0 = u u 0 J+1 . ( 15 
)
Thus we have

du dt = -u u 2 + κu J+1 , where κ = 4v 0 u J+1 0 , which gives u0 u(t) dξ ξ ξ 2 + κξ J+1 = t for all t ≥ 0. ( 16 
)
Clearly u is a positive and decreasing function of time and we have

lim t→∞ u(t) = 0 . ( 17 
)
3. The asymmetric case: A 0 > B 0

3.1. The case J > 1. In this case, we have ξ 2 + κξ J+1 ∼ ξ as ξ → 0. Consequently, by ( 16) and ( 17), we have [START_REF] Wattis | An introduction to mathematical models of coagulation-fragmentation processes: A discrete deterministic mean-field approach[END_REF]. In particular, v(t)/u(t) 2 -→ 0 as t → ∞ and, since

t ∼ u0 u(t) dξ ξ 2 ∼ 1 u(t) as t → ∞ , whence u(t) ∼ 1 t and v(t) ∼ κ 4t J+1 as t → ∞ by
A = u + √ u 2 + 4v 2 and B = -u + √ u 2 + 4v 2 , (18) 
we end up with

A(t) ∼ 1 t and B(t) ∼ κ 4t J as t → ∞ . (19) 
We next introduce for t ≥ 0

A(t) := exp t 0 A(τ ) dτ , B(t) := exp t 0 B(τ ) dτ , (20) 
and note that e P (t) = A(t) 2 B(t) J , e Q(t) = A(t) J B(t) 2 , (21) the functions P and Q being defined in [START_REF] Leyvraz | Scaling theory and exactly solved models in the kinetics of irreversible aggregation[END_REF]. Since e P and e Q are involved in the formulae giving the Laplace transforms F and G of a and b, we study their behaviour for large times or equivalently that of A and B. To this end, we observe that [START_REF] Menon | Approach to self-similarity in Smoluchowski's coagulation equations[END_REF] and ( 12) also read d ln A/dt = -(A + JB) and d ln B/dt = -(JA + B), whence, after integration,

A 0 A(t) = A(t)B(t) J and B 0 B(t) = A(t) J B(t) , t ≥ 0 . (22) 
Therefore,

A(t) J 2 -1 = A(t) A 0 B J 0 B(t) J , B(t) J 2 -1 = A J 0 A(t) J B(t) B 0 , (23) 
and we deduce from (19) that

   A(t) ∼ A 0 (1 -ϑ) J/(J-1) t B(t) ∼ (1 -ϑ) -1/(J-1) as t → ∞ . ( 24 
)
Coming back to e P and e Q , it follows from (21) and (24) that

   e P (t) ∼ A 2 0 (1 -ϑ) J/(J-1) t 2 e Q(t) ∼ A J 0 (1 -ϑ) (J 2 -2)/(J-1) t J as t → ∞ . (25) 
In particular, both e -P and e -Q belong to L 1 (0, ∞) and we infer from (9) (with x = 0), ( 21), (22), and (24) that

1 -A 0 t 0 e -P (τ ) dτ = A 0 A(t)e P (t) = 1 A(t) -→ 0 as t → ∞ , (26) 1 
-B 0 t 0 e -Q(τ ) dτ = B 0 B(t)e Q(t) = 1 B(t) -→ (1 -ϑ) 1/(J-1) as t → ∞ . (27)
Consequently,

∞ 0 e -P (τ ) dτ = 1 A 0 and ∞ 0 e -Q(τ ) dτ = 1 -(1 -ϑ) 1/(J-1) B 0 . ( 28 
)
We are now in a position to identify the large time behaviour of F . To this end, we observe that, according to (26) and (28), we have

1 -F 0 (x) t 0 e -P (τ ) dτ = F 0 (0) -F 0 (x) A 0 + F 0 (x) ∞ t e -P (τ ) dτ = F 0 (0) -F 0 (x) A 0 + F 0 (x) A 0 1 A(t) for (t, x) ∈ [0, ∞) 2 . Since a 0 ∈ L 1 (0, ∞; (1 + x)dx)
, it follows from (24) that the two terms of the right-hand side of the above identity are of the same order 1/t if we scale x by t, that is,

1 -F 0 x t t 0 e -P (τ ) dτ = 1 A 0 F 0 (0) -F 0 x t + F 0 x t 1 A(t) ∼ 1 A 0 - x t F ′ 0 (0) + 1 (1 -ϑ) J/(J-1) t as t → ∞ .
Recalling (9), we infer from (25) and the above equivalence that, for all x ≥ 0,

lim t→∞ tF t, x t = 1 1 + (1 -ϑ) J/(J-1) M a 0 x as t → ∞ . (29) 
Next, because of the non-zero limit in (27), it does not seem possible to find a scaling behaviour for G, an observation already made in Ben-Naim and Krapivsky [START_REF] Ben-Naim | Kinetics of aggregation-annihilation processes[END_REF]. Still, it is clear from (19) that species B is disappearing at a faster rate than species A.

3.2.

The case J = 1. In this case Eq. ( 16) yields

u(t) = u 0 ϕ(t) , v(t) = v 0 ϕ(t) 2 , where ϕ(t) := 1 + (A 0 + B 0 )t. This leads to A(t) = A 0 ϕ(t) , B(t) = B 0 ϕ(t) .
Finally, we have

F (t, x) = A 0 F 0 (x)ϕ(t) -1-κa A 0 -F 0 (x)[1 -ϕ(t) -κa ] , G(t, x) = B 0 G 0 (x)ϕ(t) -1-κ b B 0 -G 0 (x)[1 -ϕ(t) -κ b ]
,

where

κ a := A 0 A 0 + B 0 , κ b := B 0 A 0 + B 0 .
Thus we have

lim t→∞ t F t, x t κa = lim t→∞    t ϕ(t) • A 0 F 0 x t κa F 0 x t κa + A 0 -F 0 x t κa ϕ(t) κa    = A 2 0 (A 0 + B 0 )[A 0 + (A 0 + B 0 ) κa M a 0 x] . Similarly, lim t→∞ t G t, x t κ b = B 2 0 (A 0 + B 0 )[B 0 + (A 0 + B 0 ) κ b M b 0 x] .
Example. For initial conditions given by

a 0 (λ) = A 0 e -λ , b 0 (λ) = B 0 e -λ ,
the exact solution is easily computed

a(t, λ) = A 0 ϕ(t) 1+κa e -λ/ϕ(t) κa , b(t, λ) = B 0 ϕ(t) 1+κ b e -λ/ϕ(t) κ b .
This is clearly a self-similar solution to ( 2)-(3).

3.3. The case J ∈ (0, 1). In that case, we have ξ 2 + κξ J+1 ∼ √ κ ξ (J+1)/2 as ξ → 0. Consequently, by ( 16) and ( 17), we have

t ∼ 1 √ κ u0 u(t) dξ ξ (J+3)/2 ∼ 2 √ κ(J + 1) 1 u(t) (J+1)/2 as t → ∞ , whence u(t) ∼ 2 √ κ(J + 1)t 2/(J+1)
and v(t) ∼ 1 (J + 1)t 2 as t → ∞ by [START_REF] Wattis | An introduction to mathematical models of coagulation-fragmentation processes: A discrete deterministic mean-field approach[END_REF]. Since u(t) 2 /v(t) -→ 0 as t → ∞, we deduce from (18) that

A(t) ∼ 1 (J + 1)t and B(t) ∼ 1 (J + 1)t as t → ∞ . ( 30 
)
Recalling that the functions A and B are defined in (20), we infer from ( 23) and (30) that

   A(t) ∼ ϑ J/(J 2 -1) (A 0 (J + 1)t) 1/(J+1) B(t) ∼ ϑ -1/(J 2 -1) (A 0 (J + 1)t) 1/(J+1) as t → ∞ . (31) 
Coming back to e P and e Q , it follows from ( 21) and (31) that

   e P (t) ∼ ϑ J/(J 2 -1) (A 0 (J + 1)t) (J+2)/(J+1) e Q(t) ∼ ϑ (J 2 -2)/(J 2 -1) (A 0 (J + 1)t) (J+2)/(J+1) as t → ∞ . (32) 
Once again, both e -P and e -Q belong to L 1 (0, ∞) and we infer from (9) (with x = 0), ( 21), (22), and (31) that

1 -A 0 t 0 e -P (τ ) dτ = A 0 A(t)e P (t) = 1 A(t) -→ 0 as t → ∞ , (33) 1 
-B 0 t 0 e -Q(τ ) dτ = B 0 B(t)e Q(t) = 1 B(t) -→ 0 as t → ∞ . (34) 
Consequently,

∞ 0 e -P (τ ) dτ = 1 A 0 and ∞ 0 e -Q(τ ) dτ = 1 B 0 . (35) 
We are now in a position to identify the large time behaviour of F and G. To this end, we observe that, according to (33) and (35), we have

1 -F 0 (x) t 0 e -P (τ ) dτ = F 0 (0) -F 0 (x) A 0 + F 0 (x) ∞ t e -P (τ ) dτ = F 0 (0) -F 0 (x) A 0 + F 0 (x) A 0 1 A(t) for (t, x) ∈ [0, ∞) 2 . Since a 0 ∈ L 1 (0, ∞; (1 + x)dx)
, it follows from (31) that the two terms of the right-hand side of the above identity are of the same order 1/t 1/(J+1) if we scale x by t J+1 , that is, setting s(t) := ((J + 1)t) 1/(J+1) ,

1 -F 0 x s(t) t 0 e -P (τ ) dτ = 1 A 0 F 0 (0) -F 0 x s(t) + F 0 x s(t) 1 A(t) ∼ 1 A 0 - x s(t) F ′ 0 (0) + A J/(J+1) 0 ϑ J/(J 2 -1) s(t) as t → ∞ .
Recalling (9), we infer from (32) and the above equivalence that, for all x ≥ 0,

lim t→∞ s(t) J+1 F t, x s(t) = 1 1 + ϑ J/(J 2 -1) A -J/(J+1) 0 M a 0 x (36) 
Similarly, by (34) and (35), we have

1 -G 0 (x) t 0 e -Q(τ ) dτ = G 0 (0) -G 0 (x) B 0 + G 0 (x) ∞ t e -Q(τ ) dτ = G 0 (0) -G 0 (x) B 0 + G 0 (x) B 0 1 B(t) for (t, x) ∈ [0, ∞) 2 . Since b 0 ∈ L 1 (0, ∞; (1 + x)dx)
, it follows from (31) that the two terms of the right-hand side of the above identity are of the same order 1/t 1/(J+1) if we scale x by t J+1 , that is, keeping the notation s(t) = ((J + 1)t) 1/(J+1) ,

1 -G 0 x s(t) t 0 e -Q(τ ) dτ = 1 B 0 G 0 (0) -G 0 x s(t) + G 0 x s(t) 1 B(t) ∼ 1 ϑA 0 - x s(t) G ′ 0 (0) + A J/(J+1) 0 ϑ J 2 /(J 2 -1) s(t)
as t → ∞ .

Recalling (9), we infer from (32) and the above equivalence that, for all x ≥ 0,

lim t→∞ s(t) J+1 G t, x s(t) = 1 1 + ϑ J 2 /(1-J 2 ) A -J/(J+1) 0 M b 0 x . ( 37 
)
4. The symmetric case:

A 0 = B 0
Clearly, in this case we have u(t) = 0 by [START_REF] Smoluchowski | Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen[END_REF] and it follows from ( 14) and (18) that

v(t) = A 2 0 ϕ(t) 2 , A(t) = B(t) = A 0 ϕ(t)
, where ϕ(t) := 1 + (J + 1)A 0 t.

This leads to

F (t, x) = A 0 F 0 (x) ϕ(t) -1 (A 0 -F 0 (x)) ϕ(t) 1/(J+1) + F 0 (x)
.

Thus we have

lim t→∞ t F t, x t 1/(J+1) = A 0 (J + 1)[A 0 + [(J + 1)A 0 ] 1/(J+1) M a 0 x] . (38) 
Similarly

lim t→∞ t G t, x t 1/(J+1) = A 0 (J + 1)[A 0 + [(J + 1)A 0 ] 1/(J+1) M b 0 x] .
Comparing ( 29) and (38) reveals another dependence of the scaling exponents on the initial conditions for J > 1, since the value of the scaling exponents for species A vary according to whether ϑ = 1 or ϑ < 1. This again demonstrates the sensitivity of the scaling behaviour of this coagulation-annihilation model with respect to the initial conditions already observed for J = 1 and ϑ ∈ (0, 1).

Conclusion

In this paper we examined the dynamics of a two species coagulation-annihilation system with constant coagulation and annihilation rates and complete annihilation. It was found that the long time self-similar behaviour, or lack thereof, of the system is primarily governed by a parameter J which represents the relative strength of the coupling between the annihilation and the coagulation kernels.

It is clear from the main result that J = 1 is a threshold value for the coupling parameter J at which a crossover from one scaling regime to another takes place, with a nonuniversal scaling behaviour dividing the two. More precisely, for J > 1, the scaling behaviour of a, the species initially being more abundant, is that of Smoluchowski's coagulation equation Eq. ( 1) with constant coagulation kernel K = 2 [START_REF] Leyvraz | Scaling theory and exactly solved models in the kinetics of irreversible aggregation[END_REF], and the influence of the species B being only reflected by the dependence of the constant α upon ϑ. In fact, an asymptotic simplification occurs in that case and the dynamics of (2)-( 3) is governed by the binary coagulation of species A alone. The fact that b appears not to have a scaling behaviour has already been noted in Ben-Naim and Krapivsky [START_REF] Ben-Naim | Kinetics of aggregation-annihilation processes[END_REF] for monodisperse initial conditions and is shown here to be true in general. Next, the nonuniversality of the scaling behaviour for J = 1 is obvious as the scaling exponents κ a and κ b vary with the initial conditions and the scaling exponents are solely determined by the initial particle numbers A 0 and B 0 . This shows in particular that, during the time evolution, the details of the initial distributions of particles of the two species fade away, only retaining the two "macroscopic" parameters A 0 and B 0 . Still, in contrast with the case J > 1, both a and b have a self-similar behaviour. Finally, when J ∈ (0, 1), there is a balance between coagulation and annihilation and both a and b have the same scaling behaviour.

Let us finally emphasize that, as already pointed out in [START_REF] Ben-Naim | Kinetics of aggregation-annihilation processes[END_REF], the scaling behaviour is also not truly universal for J > 1 as a different scaling behaviour appears for symmetric initial data A 0 = B 0 , see Section 4. This can be expected from the convergence (4) as the right hand side converges to zero as ϑ approaches 1.

A related model which seems to exhibit nonuniversal scaling behaviors is the coagulation-annihilation model with constant kernels and incomplete annihilation which corresponds to the elementary reactions

A λ + B µ -→    A λ-µ if λ > µ, inert substance if λ = µ, B µ-λ if λ < µ.
Some explicit solutions have been constructed in [START_REF] Krapivsky | Nonuniversality and breakdown of scaling in two-species aggregation with annihilation[END_REF] which show evidence of nonuniversal scaling but a thorough analysis is still lacking and will be investigated in a forthcoming work. It is indeed yet unclear whether the approach developed in this paper or a modification thereof could apply to that case as well.
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