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The quickly increasing data traffic and the user demand for a full coverage of mobile services anywhere and anytime are leading
mobile networking into a future of small cell networks. However, due to the high-density and randomness of small cell networks,
there are several technical challenges. In this paper, we investigate two critical issues: best signal quality and mobility management.
Under the assumptions that base stations are uniformly distributed in a ring-shaped region and that shadowings are lognormal,
independent, and identically distributed, we prove that when the number of sites in the ring tends to infinity, then (i) the maximum
signal strength received at the center of the ring tends in distribution to a Gumbel distribution when properly renormalized, and
(ii) it is asymptotically independent of the interference. Using these properties, we derive the distribution of the best signal quality.
Furthermore, an optimized random cell scanning scheme is proposed, based on the evaluation of the optimal number of sites to
be scanned for maximizing the user data throughput.

1. Introduction

Mobile cellular networks were initially designed for voice
service. Nowadays, broadband multimedia services (e.g.,
video streaming) and data communications have been intro-
duced into mobile wireless networks. These new applications
have led to increasing traffic demand. To enhance network
capacity and satisfy user demand of broadband services, it
is known that reducing the cell size is one of the most
effective approaches [1–4] to improve the spatial reuse of
radio resources.

Besides, from the viewpoint of end users, full coverage is
particularly desirable. Although today’s macro- and micro-
cellular systems have provided high service coverage, 100%-
coverage is not yet reached because operators often have
many constraints when installing large base stations and
antennas. This generally results in potential coverage holes
and dead zones. A promising architecture to cope with this
problem is that of small cell networks [4, 5]. A small cell only
needs lightweight antennas. It helps to replace bulky roof top
base stations by small boxes set on building facade, on public
furniture or indoor. Small cells can even be installed by end

users (e.g., femtocells). All these greatly enhance network
capacity and facilitate network deployment. Pervasive small
cell networks have a great potential. For example, Willcom
has deployed small cell systems in Japan [6], and Vodafone
has recently launched home 3G femtocell networks in the UK
[7].

In principle, high-density and randomness are the two
basic characteristics of small cell networks. First, reducing
cell size to increase the spatial reuse for supporting dense
traffic will induce a large number of cells in the same
geographical area. Secondly, end users can set up small cells
by their own means [2]. This makes small cell locations and
coverage areas more random and unpredictable than tra-
ditional mobile cellular networks. The above characteristics
have introduced technical challenges that require new studies
beyond those for macro- and micro-cellular networks. The
main issues concern spectrum sharing and interference
mitigation, mobility management, capacity analysis, and
network self-organization [3, 4]. Among these, the signal
quality, for example, in terms of signal-to-interference-plus-
noise ratio (SINR), and mobility management are two critical
issues.
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In this paper, we first conduct a detailed study on the
properties of best signal quality in mobile cellular networks.
Here, the best signal quality refers to the maximum SINR
received from a number of sites. Connecting the mobile to
the best base station is one of the key problems. The best base
station here means the base station from which the mobile
receives the maximum SINR. As the radio propagation expe-
riences random phenomena such as fading and shadowing,
the best signal quality is a random quantity. Investigating
its stochastic properties is of primary importance for many
studies such as capacity analysis, outage analysis, neighbor
cell scanning, and base station association. However, to the
best of our knowledge, there is no prior art in this area.

In exploring the properties of best signal quality, we focus
on cellular networks in which the propagation attenuation
of the radio signal is due to the combination of a distance-
dependent path-loss and of lognormal shadowing. Consider
a ring B of radii Rmin and RB such that 0 < Rmin < RB < ∞.
The randomness of site locations is modeled by a uniform
distribution of homogeneous density in B. Using extreme
value theory (c.f., [8, 9]), we prove that the maximum
signal strength received at the center of B from n sites in
B converges in distribution to a Gumbel distribution when
properly renormalized and it is asymptotically independent
of the total interference, as n → ∞. The distribution of the
best signal quality can thus be derived.

The second part of this paper focuses on applying
the above results to mobility support in dense small cell
networks. Mobility support allows one to maintain service
continuity even when users are moving around while keeping
efficient use of radio resources. Today’s cellular network
standards highlight mobile-assisted handover in which the
mobile measures the pilot signal quality of neighbor cells
and reports the measurement result to the network. If the
signal quality from a neighbor cell is better than that of the
serving cell by a handover margin, the network will initiate a
handover to that cell. The neighbor measurement by mobiles
is called neighbor cell scanning. Following mobile cellular
technologies, it is known that small cell networking will also
use mobile-assisted handover for mobility management.

To conduct cell scanning [10–12], today’s cellular net-
works use a neighbor cell list. This list contains information
about the pilot signal of selected handover candidates and
is sent to mobiles. The mobiles then only need to measure
the pilot signal quality of sites included in the neighbor cell
list of its serving cell. It is known that the neighbor cell
list has a significant impact on the performance of mobility
management, and this has been a concern for many years in
practical operations [13, 14] as well as in scientific research
[15–18]. Using neighbor cell list is not effective for the
scanning in small cell networks due to the aforementioned
characteristics of high density and randomness.

The present paper proposes an optimized random cell
scanning for small cell networks. This random cell scanning
will simplify the network configuration and operation by
avoiding maintaining the conventional neighbor cell list
while improving user’s quality-of-service (QoS). It is also
implementable in wideband technologies such as WiMAX
and LTE.

In the following, Section 2 describes the system model.
Section 3 derives the asymptotic properties and the dis-
tribution of the best signal quality. Section 4 presents the
optimized random cell scanning and numerical results.
Finally, Section 5 contains some concluding remarks.

2. System Model

The underlying network is composed of cells covered by base
stations with omnidirectional antennas. Each base station
is also called a site. The set of sites is denoted by Ω ⊂
N. We now construct a model for studying the maximum
signal strength, interference, and the best signal quality, after
specifying essential parameters of the radio propagation and
the spatial distribution of sites in the network.

As mentioned in the introduction, the location of a small
cell site is often not exactly known even to the operator. The
spatial distribution of sites seen by a mobile station will hence
be treated as completely random [19] and will be modeled by
an homogeneous Poisson point process [20] with intensity λ.

In the following, it is assumed that the downlink pilot
signal is sent at constant power at all sites. Let Rmin be
some strictly positive real number. For any mobile user, it is
assumed that the distance to his closest site is at least Rmin and
hence the path loss is in the far field. So, the signal strength
of a site i received by a mobile at a position y ∈ R2 is given
by

Pi
(

y
) = A

(∣∣y − xi
∣∣)−βXi, for

∣∣y − xi
∣∣ ≥ Rmin, (1)

where xi ∈ R2 is the location of site i, A represents the
base station’s transmission power and the characteristics of
propagation, β is the path loss exponent (here, we consider
2 < β ≤ 4), and the random variables Xi = 10X

dB
i /10,

which represent the lognormal shadowing, are defined
from {XdB

i , i = 1, 2, . . .}, an independent and identically
distributed (i.i.d.) sequence of Gaussian random variables
with zero mean and standard deviation σdB. Typically, σdB

is approximately 8 dB [21, 22]. Here, we consider that fast
fading is averaged out as it varies much faster than the
handover decision process.

Cells sharing a common frequency band interfere one
another. Each cell is assumed allocated no more than one
frequency band. Denote the set of all the cells sharing
frequency band kth byΩk, where k = 1, . . . ,K . SoΩk∩Ωk′ =
∅ for k /= k′, and

⋃K
k=1 Ωk = Ω. The SINR received at y ∈ R2

from site i ∈ Ωk is expressible as

ζi
(

y
) = Pi

(
y
)

N0 +
∑

j /= i, j∈Ωk
Pj
(

y
) , for i ∈ Ωk, (2)

where N0 is the thermal noise average power which is
assumed constant. For notational simplicity, let A := A/N0.
Then ζi(y) is given by

ζi
(

y
) = Pi

(
y
)

1 +
∑

j /= i, j∈Ωk
Pj
(

y
) , for i ∈ Ωk. (3)

In the following, we will use (3) instead of (2).
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3. Best Signal Quality

In this section, we derive the distribution of the best signal
quality. Given a set of sites S ⊂ Ω, the best signal quality
received from S at a position y ∈ R2, denoted by YS(y), is
defined as

YS
(

y
) = max

i∈S
ζi
(

y
)
. (4)

Let us first consider a single-frequency network (i.e., K =
1).

Lemma 1. In the cell set S of single-frequency network, the site
which provides a mobile the maximum signal strength will also
provide this mobile the best signal quality, namely,

YS
(

y
) = MS

(
y
)

1 + I
(

y
)−MS

(
y
) , ∀y ∈ R2, (5)

where

MS
(

y
) = max

i∈S
Pi
(

y
)

(6)

is the maximum signal strength received at y from the cell set S,
and

I
(

y
) =

∑

i∈Ω
Pi
(

y
)

(7)

is the total interference received at y.

Proof. Since ζi(y) = Pi(y)/{1+I(y)−Pi(y)} and Pi(y) < I(y),
(5) follows from the fact that no matter which cell i ∈ Ω is
considered, I(y) is the same and from the fact that x/(c − x)
with c constant is an increasing function of x < c.

Let us now consider the case of multiple-frequency net-
works. Under the assumption that adjacent-channel interfer-
ence is negligible compared to cochannel interference, cells
of different frequency bands do not interfere one another.
Thus, for a given network topology T , the SINRs received
from cells of different frequency bands are independent. In
the context of a random distribution of sites, the SINRs
received from cells of different frequency bands are therefore
conditionally independent given T . Write cell set S as

S =
K⋃

k=1

{Sk : Sk ⊂ Ωk}, (8)

with Sk the subset of S allocated to frequency k. Let

YSk
(

y
) = max

i∈Sk
ζi
(

y
)

(9)

be the best signal quality received at y from sites which
belong to Sk. The random variables {YSk (y), k = 1, . . . ,K}
are conditionally independent given T . As a result,

P
{
YS
(

y
) ≤ γ | T } =

K∏

k=1

P
{
YSk
(

y
) ≤ γ | T }. (10)

Remark 1. For the coming discussions, we define

IS
(

y
) =

∑

i∈S
Pi
(

y
)
, (11)

which is the interference from cells in set S. In the following,
for notational simplicity, the location variable y appearing in
YS(y), MS(y), IS(y), and I(y) will be omitted in case of no
ambiguity. We will simply write YS, MS, IS, and I . Note that
IS ≤ I since S ⊂ Ω.

Following Lemma 1, the distribution of YS can be
determined by the joint distribution of MS and I , which is
given below.

Corollary 1. The tail distribution of the best signal quality
received from cell set S is given by

FYS
(
γ
) =

∫∞

u=0

∫ ((1+γ)/γ)u−1

v=u
f(I ,MS)(v,u)dv du, (12)

where f(I ,MS) is the joint probability density of I and MS.

Proof. By Lemma 1, we have

P
{
YS ≥ γ

} = P
{

MS

(1 + I −MS)
≥ γ

}

= P

{

I ≤ 1 + γ

γ
MS − 1

}

=
∫∞

u=0

∫ ((1+γ)/γ)u−1

v=u
f(I ,MS)(v,u)dv du.

(13)

In view of Corollary 1, we need to study the properties
of the maximum signal strength MS as well as the joint
distribution of MS and I . As described in the introduction,
in dense small cell networks, there could be a large number
of neighbor cells and a mobile may thus receive from many
sites with strong enough signal strength. This justifies the use
of extreme value theory within this context.

For some Rmin and RB such that 0 < Rmin < RB < ∞, let
B ⊂ R2 be a ring with inner and outer radii Rmin and RB,
respectively. In this section, we will establish the following
results.

(1) The signal strength Pi received at the center of
B belongs to the maximum domain of attraction
(MDA) of the Gumbel distribution (c.f., Theorem 1
in Section 3.1).

(2) The maximum signal strength and the interference
received at the center of B from n sites therein
are asymptotically independent as n → ∞ (c.f.,
Corollary 3 in Section 3.1).

(3) The distribution of the best signal quality is derived
(c.f., Theorem 2 in Section 3.3).
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3.1. Asymptotic Properties. To begin with, some technical
details need to be specified. Given a ring B as previously
defined, we will study metrics (such as e.g., signal strength,
interference, etc.) as seen at the center of B for a set S ⊂ Ω of
n sites located in B. We will use the notation Mn, Yn, and In
instead of MS, YS, and IS, respectively, with

Mn = n
max
i=1,i∈S

Pi, In =
n∑

i=1,i∈S
Pi, Yn = n

max
i=1,i∈S

ζi. (14)

Lemma 2. Assume that 0 < Rmin < RB < ∞, that sites are
uniformly distributed in B, and that the shadowing Xi follows
a lognormal distribution of parameters (0, σX). Then the cdf
of the signal strength Pi received at the center of B from a site
located in B is given by

FP(x) = c
{
a−2/βG1(x)− b−2/βG2(x)

−eνx−2/βG3(x) + eνx−2/βG4(x)
}

,
(15)

where a = AR
−β
B , b = AR

−β
min, c = A2/β(R2

B − R2
min)−1, ν =

2σ2
X/β

2, and Gj , j = 1, . . . , 4, refers to the cdf of a lognormal
distribution of parameters (μj , σX), in which

μ1 = log a, μ3 = μ1 +
2σ2

X

β
,

μ2 = log b, μ4 = μ2 +
2σ2

X

β
.

(16)

Proof. See Appendix A.

Under the studied system model, {Pi, i = 1, 2, . . .} are
independent and identically distributed (i.i.d.), and so the
cdf FMn and probability density function (pdf) fMn of Mn are
directly obtained as follows.

Corollary 2. Under the conditions of Lemma 2, the cdf and the
pdf of Mn are given, respectively, by

FMn(x) = FnP(x), (17)

fMn(x) = n fP(x)Fn−1
P (x), (18)

where FP(x) is given by (15), and fP is the pdf of Pi, fP(x) =
dFP(x)/dx.

Since Mn is the maximum of i.i.d. random variables,
we can also study its asymptotic properties by extreme
value theory. Fisher and Tippett [9, Theorem 3.2.3] proved
that under appropriate normalization, if the normalized
maximum of i.i.d. random variables tends in distribution
to a nondegenerate distribution H , then H must have one
of the three known forms: Fréchet, Weibull, or Gumbel
distribution. In the following, we prove that Pi belongs to
the MDA of a Gumbel distribution. First of all, we establish
the following result that is required to identify the limiting
distribution of Mn.

Lemma 3. Under the conditions of Lemma 2, the signal
strength received at the center of B from a site located in B has
the following tail equivalent distribution:

FP(x) ∼ κ
exp

(
−(log x − μ2

)2
/
(
2σ2

X

))

(
log x − μ2

)2
/
(
2σ2

X

) (19a)

∼ κ
2
√

2πσXG2(x)
log x − μ2

, as x −→ ∞, (19b)

where G2(x) = 1 − G2(x), and κ = (σX/
√

2πβ)(R2
min/(R

2
B −

R2
min)).

Proof. See Appendix B.

Equation (19b) shows that the tail distribution of the
signal strength Pi is close to that of G2, although it decreases
more rapidly. The fact that G2 determines the tail behavior
of FP is in fact reasonable, since G2 is the distribution of the
signal strength received from the closest possible neighboring

site (with b = AR
−β
min and σX). The main result is given below.

Theorem 1. Assume that 0 < Rmin < RB < ∞, that sites are
uniformly distributed in B, and that shadowings are i.i.d. and
follow a lognormal distribution of parameters (0, σX) with 0 <
σX < ∞. Then there exists constants cn > 0 and dn ∈ R such
that

c−1
n (Mn − dn)

d−→ Λ as n −→ ∞, (20)

where Λ is the standard Gumbel distribution:

Λ(x) = exp
{−e−x}, x ∈ R, (21)

and
d→ represents the convergence in distribution. A possible

choice of cn and dn is

cn = σX
(
2 logn

)−1/2
dn,

dn = exp

⎧
⎪⎨

⎪⎩
μ2 + σX

⎛

⎝
√

2 logn +
− log logn + log κ

√
2 logn

⎞

⎠

⎫
⎪⎬

⎪⎭
,

(22)

with κ given by Lemma 3.

Proof. See Appendix C.

By Theorem 1, the signal strength belongs to the MDA
of the Gumbel distribution, denoted by MDA(Λ). From [23,
24], we have the following corollary of Theorem 1.

Corollary 3. Let σ2
P be the variance and μP be the mean of

signal strength Pi. Let Ĩn = (In − nμP)/(
√
nσP). Let M̃n =

(Mn − dn)/cn, where cn and dn are given by (22). Under the
conditions of Theorem 1,

(
M̃n, Ĩn

)
d−→ (Λ,Φ) as n −→ ∞, (23)

where Λ is the Gumbel distribution and Φ the standard Gaus-
sian distribution, and where the coordinates are independent.
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Figure 1: CDF of M̃n under different n: σdB = 8, β = 3.
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Figure 2: Jensen-Shannon divergence between M̃n and Λ.

Proof. Conditions 0 < Rmin and σX < ∞ provide σ2
P ≤

var{AR−βminXi} < ∞. Then the result follows by Theorem 1
and [23, 24].

Note that the total interference I can be written as I =
In + Icn where Icn denotes the complement of In in I . Under
the assumptions that the locations of sites are independent
and that shadowings are also independent, In and Icn are
independent. The asymptotic independence betweenMn and

In thus induces the asymptotic independence between Mn

and I . This observation is stated in the following corollary.

Corollary 4. Under the conditions of Theorem 1,Mn and I are
asymptotically independent as n → ∞.

This asymptotic independence facilitates a wide range of
studies involving the total interference and the maximum
signal strength. This result will be used in the coming



6 EURASIP Journal on Wireless Communications and Networking

sub-section to derive the distribution of the best signal
quality.

Remark 2. The asymptotic properties given by Theorem 1
and Corollaries 3 and 4 hold when the number of sites in a
bounded area tends to infinity. This corresponds to a network
densification process in which more sites are deployed in
a given geographical area in order to satisfy the need for
capacity, which is precisely the small cell setting.

3.2. Convergence Speed of Asymptotic Limits. Theorem 1 and
Corollaries 3 and 4 provide asymptotic properties when n →
∞. In practice, n is the number of cells to be scanned, and
so it can only take moderate values. Thus, it is important
to evaluate the convergence speed of (20) and (23). We
will do this based on simulations and will measure the
discrepancy using a symmetrized version of the Kullback-
Leibler divergence (the so-called Jensen-Shannon divergence
(JSdiv)).

Let us start with some numerical evaluations of the con-
vergence of M̃n to its limiting distribution. Figure 1(a) shows
FM̃n

for different n and compares to empirical simulation
results. As expected the analytical distributions obtained by
(17) of Corollary 2 match with the empirical distributions
for all n. Figure 1(b) plots the analytical distribution and
its limiting distribution, that is, the Gumbel distribution
Λ. There is a discrepancy in the negative regime (see the
circled region in Figure 1(b)). It is worth pointing out that
as a maximum of signal strengths, Mn ≥ 0 and thus M̃n ≥
−dn/cn = −

√
2 logn/σX since M̃n = (Mn−dn)/cn. This means

that FM̃n
(x) = 0, ∀x ≤ −

√
2 logn/σX , whereas Λ(x) > 0,

∀x > −∞. This explains the gap observed for small n. This
dissimilarity should have limited impact as long as we only

deal with positive values of Mn (resp., M̃n ≥ −
√

2 logn/σX).

We now study the symmetrized divergence between
the analytical and limiting distributions of M̃n for some
moderate values of n and under different σdB and β. The
convergence is best for σdB around 10 dB and β around
two to four. For practical systems, σdB is approx. 8 dB and
2 < β ≤ 4. We compute the Jensen-Shannon divergence
for β = 3 and σdB = 8 and plot the results in Figures 2(a)
and 2(b), respectively. For these (and other) values (within
the range given above) of σdB and β, M̃n, and Λ have low
divergence.

Let us now measure the (dis)similarity between the
empirical joint distribution, P{M̃n ≤ u, Ĩn ≤ v}, and the
product of the empirical marginal distributions, P{M̃n ≤
u}×P{Ĩn ≤ v}. Figure 3 shows an example with n = 50, β =
3, and σdB = 8. We see that these two density functions are
very similar. Figure 4 compares these two density functions
for different values of σdB and β. Within the range defined
above, the divergence between the two distributions is again
small. Comparing Figure 2 and Figure 4, one can conclude

that even if the convergence of M̃n
d→ Λ remains slow, M̃n

and Ĩn quickly become uncorrelated. Thus, the independence

between Mn and In holds for moderate values of n, that is,

f(Mn,In)(u, v) ≈ fMn(u)× fIn(v), (24)

and so the same conclusion holds for the independence
between Mn and I .

3.3. Distribution of the Best Signal Quality. From the above
results, we have the distribution of Mn and the asymptotic
independence between Mn and I . In order to derive the
distribution of the best signal quality, we also need the
distribution of the total interference.

Lemma 4. Assume that shadowings are i.i.d. and follow a
lognormal distribution of parameters (0, σX), β > 2, and
that sites are distributed according to a Poisson point process
with intensity λ outside the disk of radius Rmin > 0. Let I
be the interference received at the disk center, and φI be the
characteristic function of I . Then:

(1)

φI(w) = exp

⎧
⎨

⎩−πλα(A|w|)α
∫ A|w|/Rβmin

0

1− φX
(
sign(w)t

)

tα+1
dt

⎫
⎬

⎭,

(25)

where α = 2/β, and φX is the characteristic function of
Xi;

(2) |φI(w)|p ∈ L for all p = 1, 2, . . ., where L is the space
of absolutely integrable functions;

(3) If AR
−β
min is large, then φI admits the following approxi-

mation:

φI(w) ≈ exp
(
−δ|w|α

[
1− j sign(w) tan

(
πα

2

)])
, (26)

where δ = πλAα exp((1/2)α2σ2
X)Γ(1 − α) cos(πα/2),

with Γ(·) denoting the gamma function.

Proof. See Appendix D.

Theorem 2. Under the assumptions of Lemma 4, let B be the
ring of inner and outer radii Rmin and RB, respectively. Denote
the best signal quality received at the center of B from n sites
in B by Yn. Assume that 0 < σX < ∞, 0 < Rmin < RB < ∞,

that AR
−β
min is large, and that πλ(R2

B − R2
min) > n, with high

probability, where n is some positive integer. Then the tail
distribution of Yn can be approximated by

FYn
(
γ
) ≈

∫∞

γ

{

fMn(u)
∫∞

0

2
πw

e−δw
α

sin

(

w
u− γ

2γ

)

× cos

(

wu +w
u− γ

2γ
− δwα tan

πα

2

)

dw

}

du.

(27)

Proof. See Appendix E.

The approximation proposed in Theorem 2 will be used
in Section 4 below. It will be validated by simulation in the
context considered there.
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Figure 3: Example of joint densities of M̃n and Ĩn: n = 50, σdB = 8, β = 3. Here, norm. Mn refers to M̃n, while norm. In refers to Ĩn.
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4. Random Cell Scanning for Data Services

In this section, the theoretical results developed in Section 3
are applied to random cell scanning.

4.1. Random Cell Scanning. Wideband technologies such as
WiMAX, WCDMA, and LTE use a predefined set of codes
for the identification of cells at the air interface. For example,
114 pseudonoise sequences are used in WiMAX [25], while
504 physical cell identifiers are used in LTE [26]. When

the mobile knows the identification code of a cell, it can
synchronize over the air interface and then measure the pilot
signal quality of the cell. Therefore, by using a predefined
set of codes, these wideband technologies can have more
autonomous cell measurement conducted by the mobile.
In this paper, this identification code is referred to as cell
synchronization identifier (CSID).

In a dense small cell network where a large number of
cells are deployed in the same geographical area, the mobile
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can scan any cell as long as the set of CSIDs used in the
network is provided. This capability motivates us to propose
random cell scanning which is easy to implement and has
only very few operation requirements. The scheme is detailed
below.

(1) When a mobile gets admitted to the network, its
(first) serving cell provides him/her the whole set of
CSIDs used in the network. The mobile then keeps
this information in its memory.

(2) To find a handover target, the mobile randomly
selects a set of n CSIDs from its memory and
conducts the standardized scanning procedure of
the underlying cellular technology, for example,
scanning specified in IEEE 802.16 [25], or neighbor
measurement procedure specified in 3G [27] and LTE
[12].

(3) The mobile finally selects the cell with the best
received signal quality as the handover target.

In the following, we determine the number of cells to be
scanned which maximizes the data throughput.

4.2. Problem Formulation. The optimization problem has to
take into account the two contrary effects due to the number
of cells to be scanned. On one hand, the larger the set of
scanned cells, the better the signal quality of the chosen site,
and hence the larger the data throughput obtained by the
mobile. On the other hand, scanning can have a linear cost
in the number of scanned cells, which is detrimental to the
throughput obtained by the mobile.

Let us quantify this using the tools of the previous
sections.

Let W be the average cell bandwidth available per mobile
and assume that it is a constant. Under the assumption of
additive white Gaussian noise, the maximum capacity ξn that
the mobile can have by selecting the best among n randomly
scanned cells is

ξn =W log(1 + Yn). (28)

Hence

E
{
ξn
} =WE

{
log(1 + Yn)

}

=W
∫∞

γ=0
log
(
1 + γ

)
fYn
(
γ
)
dγ,

(29)

where fYn is the pdf of Yn. By an integration by parts of
log(1 + γ) and fYn(γ)dγ = −dFYn(γ), this becomes

E
{
ξn
} =W

∫∞

γ=0

FYn
(
γ
)

1 + γ
dγ. (30)

Note that E{ξn} is the expected throughput from the
best cell. Since Yn is the maximum signal quality of the
n cells, Yn increases with n and so does ξn. Hence, the
mobile should scan as many cells as possible. However, on the
other hand, if scanning many cells, the mobile will consume
much time in scanning and thus have less time for data

transmission with the serving cell. A typical situation is that
where the scanning time increases proportionally with the
number of cells scanned and where the data transmission
is suspended. This for instance happens if the underlying
cellular technology uses a compressed mode scanning, like
for example, in IEEE 802.16 [25] and also inter-frequency
cell measurements defined by 3GPP [12, 27]. In this mode,
scanning intervals, where the mobile temporarily suspends
data transmission for scanning neighbor cells, are interleaved
with intervals where data transmission with the serving cell
is resumed.

Another scenario is that of parallel scanning-transmission:
here scanning can be performed in parallel to data transmis-
sion so that no transmission gap occurs; this is the case in,
for example, intrafrequency cell measurements in WCDMA
[27] and LTE [12].

Let T be the average time during which the mobile stays
in the tagged cell and receives data from it. Let s be the time
needed to scan one cell (e.g., in WCDMA, the mobile needs
s = 25 ms if the cell is in the neighbor cell list and s = 800 ms
if not [28], whereas in WiMAX, s = 10 ms, i.e., two 5-ms
frames). Let L(n) be the duration of the suspension of data
transmission due to the scanning of the n cells:

L(n) =
⎧
⎨

⎩

s× n if compressed mode is used,

0 if parallel scan.-trans. is enabled.
(31)

Finally, let E{ξ0} be the average throughput received from the
serving cell when no scanning at all is performed (this would
be the case if the mobile would pick as serving site one of the
sites of set S at random).

The gain of scanning n cells can be quantified by the
following metric, that we will call the acceleration

ρn � T · E
{
ξn
}

T · E
{
ξ0
}

+ L(n) · E
{
ξ0
}

= T

T + L(n)
× E

{
ξn
}

E
{
ξ0
} .

(32)

In this definition, T · E{ξn} (resp., T · E{ξ0} + L(n) · E{ξ0})
is the expected amount of data transmitted when scanning n
cells (resp., doing no scanning at all). We aim at finding the
value of n that maximizes the acceleration ρn.

It is clear that T/(T + L(n)) = 1 when (i) T → ∞,
that is, the mobile stays in and receives data from the tagged
cell forever, or (ii) L(n) = 0, that is, parallel scanning-
transmission is enabled. In these cases, ρn increases with
n and the mobile “should” scan as many cells as possible.
However, ρn is often concave and the reward of scanning then
decreases. To characterize this, we introduce a growth factor
g defined as follows:

gn � ρn
ρn−1

= T + L(n− 1)
T + L(n)

× E
{
ξn
}

E
{
ξn−1

} . (33)

Special cases as those considered above can be cast within
a general framework which consists in finding the value of n
that maximizes ρn under the constraint that gn ≥ 1 + Δg ,
where Δg > 0 is a threshold.
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Figure 5: Numerical results in the random cell scanning optimization.

4.3. Numerical Result. In the following, we show how to
apply the above results to find the optimal n. We adopt
WCDMA as the underlying cellular network technology. 100
omnidirectional small cell base stations are deployed in a
square domain of 1 km × 1 km. The network density is thus
equal to

λ = 10−4 small base stations/m2. (34)

It is assumed that any cell synchronization identifier can
be found in a radius RB = 1 km. We take Rmin equal to 2

meters. The propagation path loss is modeled by the picocell
path loss model [29]:

PL[dB](d) = 37 + 30log10(d) + 18.3 f (( f +2)/( f +1)−0.46), (35)

where d is the distance from the base station in meters, f
the number of penetrated floors in the propagation path.
For indoor office environments, f = 4 is the default value
[22]; however, here, the small cell network is assumed to be
deployed in a general domain including outdoor urban areas
where there are less penetrated walls and floors. So, we use
f = 3 in our numerical study.
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It is assumed that the total transmission power including
the antenna gain of each small cell base station is PTx,[dBm] =
32 dBm. Shadowing is modeled as a random variable with
lognormal distribution with an underlying Gaussian distri-
bution of zero mean and 8 dB standard deviation. The signal
strength received at any distance d from a base station i is
expressible as

Pi,[dBm](d) = PTx,[dBm] − PL[dB](d) + XdB
i . (36)

By (35), we have

Pi,[dBm](d) = PTx,[dBm] − 37− 18.3 f (( f +2)/( f +1)−0.46)

− 30log10(d) + XdB
i .

(37)

The parameters A and β appearing in Pi = Ad−βXi can
be identified from (37) after converting the received signal
strength from the dBm scale to the linear scale:

β = 3, A[mW] = 10(PTx,[dBm]−37−18.3 f (( f +2)/( f +1)−0.46))/10. (38)

The received noise power N0 is given by

N0,[mW] = kBTKelvin ×NF[W] ×W[Hz] × 103, (39)

where the effective bandwidth W[Hz] = 3.84 × 106 Hz, kB

is the Boltzmann constant, and TKelvin is the temperature in
Kelvin, kBTKelvin = 1.3804× 10−23 × 290 W/Hz and NF[dB] is
equal to 7 dB.

It is assumed that the mobile is capable of scanning
eight identified cells within 200 ms [28]. So, the average time
needed to scan one cell is given by s = 25 ms.

In order to check the accuracy of the approximations
used in the analysis, a simulation was built with the above
parameter setting. The interference field was generated
according to a Poisson point process of intensity λ in a
region between Rmin and R∞ = 100 km. For a number n,
the maximum of SINR received from n base stations which
are randomly selected from the disk B between radii Rmin

and RB was computed. After that the expectation of the
maximal capacity E{ξn} received from the n selected BSs was
evaluated.

In Figure 5(a), the expectation of the maximal through-
put E{ξn} for different n is plotted, as obtained through the
analytical model and simulation. The agreement between
model and simulation is quite evident. As shown in
Figure 5(a), E{ξn} increases with n, though the increasing
rate slows down as n increases. Note that in Figure 5(a),
E{ξn} is plotted after normalization by E{ξ250}.

Figure 5(b) gives an example of acceleration ρn for T =
0.5 second and L(n) = n×25 ms. In the plot, ρn is normalized
by its maximum. Here, an agreement between model and
simulation is also obtained. We see that ρn first increases
rapidly with n, attains its maximum at n = 42 by simulation
and n = 43 by model, and then decays.

Next, using the model we compute the optimal number
of cells to be scanned and the growth factor gn for different

T . Note that in (32), the factor T/(T +L(n)) can be rewritten
as

T

T + L(n)
= 1

1 + n× s/T for

⎧
⎨

⎩

T <∞,

L(n) = n× s.
(40)

It is clear that this factor also depends on the ratio T/s.
Figure 5(c) plots the optimal n for different values of T/s.
Larger T/s will drive the optimal n towards larger values.
Since T can be roughly estimated as the mobile residence
time in a cell, which is proportional to the cell diameter
divided by the user speed, this can be rephrased by stating
that the faster the mobile, the smaller T and thus the fewer
cells the mobile should scan.

Finally, Figure 5(d) plots the growth factor gn with
different T . In Figure 5(d), the “limiting case” corresponds
to the case when T → ∞ or L(n) = 0. We see that gn is
quite stable w.r.t. the variation of T . Besides, gn flattens out
at about 30 cells for a wide range of T . Therefore, in practice
this value can be taken as a recommended number of cells to
be scanned in the system.

5. Concluding Remarks

In this paper, we firstly develop asymptotic properties of the
signal strength in cellular networks. We have shown that the
signal strength received at the center of a ring shaped domain
B from a base station located in B belongs to the maximum
domain of attraction of a Gumbel distribution. Moreover,
the maximum signal strength and the interference received
from n cells in B are asymptotically independent as n →
∞. The above properties are proved under the assumption
that sites are uniformly distributed in B and that shadowing
is lognormal. Secondly, the distribution of the best signal
quality is derived. These results are then used to optimize
scanning in small cell networks. We determine the number of
cells to be scanned for maximizing the mean user throughput
within this setting.

Appendices

A. Proof of Lemma 2

Let di = |y − xi| be the distance from a site located at
xi ∈ R2 to a position y ∈ R2. Under the assumption that
site locations are uniformly distributed in B, the distance di
from a site located in B, that is, xi ∈ B, to the center of B has
the following distribution:

FD(d) = P[di ≤ d] = πd2 − πR2
min

πR2
B − πR2

min
= d2 − R2

min

R2
B − R2

min
. (A.1)

Let Ui = Ad
−β
i , for β > 0, its distribution is equal to

FU(u) = −c
(
u−2/β − a−2/β

)
, for u ∈ [a, b], (A.2)

where c = A2/β(R2
B −R2

min)−1, a = AR
−β
B , and b = AR

−β
min. The

density of Ui is given by fU(u) = (2c/β)u−1−2/β.
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Thus, the distribution FP of the power Pi is equal to

FP(x) =
∫ b

u=a
FX

(
x

u

)
fU(u)du. (A.3)

Substituting FX with lognormal distribution of parame-
ters (0, σX) and fU given above into (A.3), after changing the
variable such that t = log(x/u), we have

FP(x) = c

β
x−2/β

(∫ log(x/a)

log(x/b)
e2t/βdt

+
∫ log(x/a)

log(x/b)
e2t/β erf

(
t√
2σX

)
dt

)

,

(A.4)

where the first integral is straightforward. By doing an
integration by parts of erf(t/

√
2σX) and e2t/βdt for the second

integral, we get

FP(x) = c

β
x−2/β β

2

[

e2t/β + e2t/β erf
(

t√
2σX

)

−e2σ2
X /β

2
erf

(
t√
2σX

−
√

2σX
β

)]∣∣∣
∣
∣

log(x/a)

t=log(x/b)

.

(A.5)

After some elementary simplifications, we can obtain

FP(x) = c
{
a−2/β

(
1
2

+
1
2

erf
(

log x − μ1√
2σX

))

− b−2/β
(

1
2

+
1
2

erf
(

log x − μ2√
2σX

))

+ eνx−2/β
[
−1

2
− 1

2
erf
(

log x − μ3√
2σX

)

+
1
2

+
1
2

erf
(

log x − μ4√
2σX

)]}
,

(A.6)

where ν = 2σ2
X/β

2, μ1 = log a, μ3 = μ1 + 2σ2
X/β, μ2 = log b,

and μ4 = μ2 + 2σ2
X/β. Let Gj , j = 1, . . . , 4, be the lognormal

distribution of parameters (μj , σX), j = 1, . . . , 4, FP can be
rewritten as (15).

B. Proof of Lemma 3

Let Gj(x) = 1−Gj(x) and note that c(a−2/β − b−2/β) = 1, we
have from (15)

FP(x) = 1− c
{
a−2/βG1(x)− b−2/βG2(x)

−eνx−2/βG3(x) + eνx−2/βG4(x)
}
.

(B.1)

This yields the tail distribution Fp = 1− FP :

Fp(x) = c
{
a−2/βG1(x)− b−2/βG2(x)

−eνx−2/βG3(x) + eνx−2/βG4(x)
}
.

(B.2)

For (B.2), we have Gj(x) = (1/2) erfc{(log x −
μj)/(

√
2σX)}. An asymptotic expansion of erfc(x) for large

x [30, 7.1.23] gives us:

G3(x) ∼∞
σX√

2π
(
log x − μ3

) exp

{

−
(
log x − μ3

)2

2σ2
X

}

= σX√
2π
(
log x − μ1 − 2σ2

X/β
)

× exp

⎧
⎨

⎩−
(
log x − μ1 − 2σ2

X/β
)2

2σ2
X

⎫
⎬

⎭

= σXa−2/βe−νx2/β
√

2π
(
log x − μ1

) exp

{

−
(
log x − μ1

)2

2σ2
X

}

× 1
1− 2σ2

X/β
(
log x − μ1

) ,

(B.3)

in which after a Taylor expansion of the last term on the
right-hand side, we can have

eνx−2/βG3(x)

∼∞ a−2/β

⎡

⎣G1(x) +

√
2
π

σ3
X

β

exp
(
−(log x − μ1

)2
/2σ2

X

)

(
log x − μ1

)2

⎤

⎦.

(B.4)

This implies that

a−2/βG1(x)− eνx−2/βG3(x)

∼∞ −
√

2
π

a−2/βσ3
X

β

exp
(
−(log x − μ1

)2
/2σ2

X

)

(
log x − μ1

)2 .
(B.5)

In the same manner, we have

b−2/βG2(x)− eνx−2/βG4(x)

∼∞ −
√

2
π

b−2/βσ3
X

β

exp
(
−(log x − μ2

)2
/2σ2

X

)

(
log x − μ2

)2 .
(B.6)

A substitution of (B.5) and (B.6) into (B.2) results in

Fp(x) ∼∞

√
2
π

cσ3
X

β

⎧
⎨

⎩b
−2/β

exp
(
−(log x − μ2

)2
/
(
2σ2

X

))

(
log x − μ2

)2

−a−2/β
exp

(
−(log x − μ1

)2
/
(
2σ2

X

))

(
log x − μ1

)2

⎫
⎬

⎭.

(B.7)

Moreover, b > a yields μ2 − μ1 = log(b/a) > 0. Then, we
have the following result for large x:

exp
(
−(log x − μ1

)2
/2σ2

X

)
/
(
log x − μ1

)2

exp
(
−(log x − μ2

)2
/2σ2

X

)
/
(
log x − μ2

)2

=
(

log x − μ2

log x − μ1

)2

exp

(
μ2

2 − μ2
1

2σ2
X

)

x−(μ2−μ1)/σ2
X −→
x→∞ 0.

(B.8)
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Taking this into account in (B.7), finally we have

Fp(x) ∼∞ κ
exp

(
−(log x − μ2

)2
/
(
2σ2

X

))

(
(log x − μ2)/(

√
2σX)

)2

∼∞ 2
√

2πσXκ
G2(x)

log x − μ2
, κ = σX√

2πβ
R2

min

R2
B − R2

min
.

(B.9)

C. Proof of Theorem 1

We will use Lemma 3 and the following two lemmas to prove
Theorem 1.

Lemma 5 (Embrechts et al. [9]). Let Zi be i.i.d. random
variables having distribution F, and Ψn = maxni=1Zi. Let g
be an increasing real function, denote Z̃i = g(Zi), and Ψ̃n =
maxni=1Z̃i. If F ∈ MDA(Λ) with normalizing constant cn and
dn, then

lim
n→∞P

(
Ψ̃n ≤ g(cnz + dn)

)
= Λ(z), z ∈ R. (C.1)

Lemma 6 (Takahashi [31]). Let F be a distribution function.
Suppose that there exists constants ω > 0, l > 0, η > 0, and
r ∈ R such that

lim
x→∞

(1− F(x))
(lxre−ηxω)

= 1. (C.2)

For μ ∈ R and σ > 0, let F∗ = F((x − μ)/σ). Then,
F∗ ∈ MDA(Λ) with normalizing constants c∗n = σcn and
d∗n = σdn + μ, where

cn =
(
logn/η

)1/ω−1

ωη
,

dn =
(

logn
η

)1/ω

+
η1/ω

ω2

r
(
log logn− logη

)
+ ω log l

(
logn

)1−1/ω .

(C.3)

Let g(t) = e
√

2σX t+μ2 be a real function defined on R, g
is increasing with t. Let Qi be the random variable such that
Pi = g(Qi). By (19a) of Lemma 3, the tail distribution FQ is
given by

FQ(x) = FP
(
e
√

2σXx+μ2

)
∼ κx−2e−x

2
, as x −→ ∞. (C.4)

By (C.4), FQ satisfies Lemma 6 with constants l = κ, r =
−2, η = 1, and ω = 2. So, FQ ∈ MDA(Λ) with the following
normalizing constants:

c∗n =
(
logn/η

)1/ω−1

ωη
= 1

2

(
logn

)−1/2,

d∗n =
(

logn
η

)1/ω

+
η1/ω

ω2

r
(
log logn− logη

)
+ ω log l

(
logn

)1−1/ω

= (logn
)1/2 +

1
2

(− log logn + log κ
)

(
logn

)1/2 .

(C.5)

Then, by Lemma 5, we have

lim
n→∞P

(
Mn ≤ g

(
c∗n x + d∗n

)) = Λ(x), x ∈ R. (C.6)

By a Taylor expansion of exp(
√

2σXc∗n x), we have

lim
n→∞P

{
e−(

√
2σXd∗n +μ2)Mn ≤ 1 +

√
2σXc∗n x + o

(
c∗n
)} = Λ(x).

(C.7)

Since c∗n → 0 when n → ∞, we have

Mn − e
√

2σXd∗n +μ2

√
2σXc∗n e

√
2σXd∗n +μ2

d−→ Λ, as n −→ ∞. (C.8)

Substituting c∗n and d∗n from (C.5) into (C.8), we obtain
cn and dn for (22). The conditions Rmax < ∞, Rmin > 0 and
σX > 0 provide κ > 0. This leads to dn > 0, and consequently,
cn > 0.

D. Proof of Lemma 4

Under the assumptions of the lemma, the interference field
can be modeled as a shot noise defined on R2 excluding the
inner disk of radius Rmin. Hence, using Proposition 2.2.4 in
[20], the Laplace transform of I is given by

LI(s) = exp

{

−2πλ
∫∞

Rmin

(
1− E

{
e−sAXi/r

β
})
r dr

}

. (D.1)

Noting that

φI(w) = LI
(− jw), w ∈ R, (D.2)

we have from (D.1) that

φI(w) = exp

{

−2πλ
∫∞

Rmin

(
1− E

{
e jwAXi/r

β
})
r dr

}

. (D.3)

Using the change of variable t = |w|Ar−β, we obtain
∫ +∞

Rmin

(
1− E

{
e jwAXi/r

β
})
r dr

= (A|w|)2/β

β

∫ A|w|/Rβmin

0

1− E
{
e j sign(w)tXi

}

t2/β+1 dt,

(D.4)

where E{e j sign(w)tXi} = φX(sign(w)t). So, substituting this
into (D.3), we get the first part of the Lemma 4.

From (25), for all p = 1, 2, . . ., we have
∣
∣φI(w)

∣
∣p

= exp

⎛

⎝−pπλα(A|w|)αE

⎧
⎨

⎩

∫ A|w|/Rβmin

0

1− cos(tXi)
tα+1

dt

⎫
⎬

⎭

⎞

⎠.

(D.5)

Since 1− cos(tXi) ≥ 0, ∀t ∈ R, we have

E

⎧
⎨

⎩

∫ A|w|/Rβmin

0

1− cos(tXi)
tα+1

dt

⎫
⎬

⎭ ≥ 0. (D.6)
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Therefore
∣
∣φI(w)

∣
∣p ≤ exp(−c|w|α), (D.7)

where c is some positive constant, and hence the right hand-
side of this is an absolutely integrable function. This proves
the second assertion of Lemma 4.

Under the assumption that AR
−β
min ≈ ∞, φI can be

approximated by

φI(w) ≈ exp

(

−πλα(A|w|)α
∫∞

0

1− φX
(
sign(w)t

)

tα+1
dt

)

.

(D.8)

For 0 < α < 1, we have
∫∞

0

1− e j sign(w)tXi

tα+1
dt

= −Γ(−α)
∣∣sign(w)Xi

∣∣αe− j sign(w)(πα/2).

(D.9)

Since Xi ≥ 0, we can write | sign(w)Xi|α = Xα
i . Taking

expectations on both sides, we get

∫ +∞

0

1− E
{
e j sign(w)tXi

}

tα+1
dt

= −E
{
Xα
i

}
Γ(−α)e− j sign(w)(πα/2)

= E
{
Xα
i

}Γ(1− α)
α

cos
(
πα

2

)[
1− j sign(w) tan

(
πα

2

)]
.

(D.10)

Substituting this into (D.8) and noting that

E
{
Xα
i

} = exp
(

1
2
α2σ2

X

)
, (D.11)

for Xi lognormally distributed, we obtain (26).

E. Proof of Theorem 2

Under the assumption that sites are distributed as a homoge-
neous Poisson point process of intensity λ in B, the expected
number of cells in B is πλ(R2

B − R2
min). We assume that

πλ(R2
B − R2

min) is much larger than n, which ensures that
there are n cells in B with high probability, so that Yn is well
defined.

Under the conditions of Theorem 2, Mn and I are
asymptotically independent according to Corollary 4. So, by
substituting (24) into (12), we have

P
{
Yn ≥ γ

} ≈
∫∞

0
fMn(u)

∫∞

0
h(v,u) fI(v)dv du, (E.1)

where

h(v,u) = 1(v≤(1+γ)u/γ−1)1(v≥u)

=

⎧
⎪⎪⎨

⎪⎪⎩

1 if v ∈
[

u,
1 + γ

γ
u− 1

]

, u > γ

0 otherwise.

(E.2)

It is easily seen that h(v,u) is square-integrable with
respect to v, and its Fourier transform w.r.t. v is given by

ĥ
(
w

2π
,u
)
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if u ≤ γ,
∫ ((1+γ)/γ)u−1

u
e− jwvdv if u > γ,

(E.3)

which yields:

ĥ
(
w

2π
,u
)
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if u ≤ γ,

1
jw

(
e− jwu − e jw(1−((1+γ)/γ)u)

)
if u > γ.

(E.4)

Besides, according to Lemma 4 we have that φI ∈ L and
φI ∈ L2, where L2 is the space of square integrable functions.
And so, by Theorem 3 in [32, page 509], fI is bounded
continuous and square integrable. Hence, by applying the
Plancherel-Parseval theorem to the inner integral of (E.1),
we have

∫∞

0
h(v,u) fI(v)dv =

∫∞

−∞
ĥ(−w,u) f̂I(w)dw, (E.5)

where f̂I(w) is the Fourier transform of fI(v). Take (E.4) into
account for (E.5) and (E.1), we have

FYn
(
γ
) =

∫∞

γ

{
fMn(u)

∫∞

−∞
ĥ(−w,u) f̂I(w)dw

}
du, (E.6)

where we further have
∫∞

−∞
ĥ(−w,u) f̂I(w)dw

= 1
2π

∫ +∞

−∞
ĥ
(
− w

2π
,u
)
f̂I

(
w

2π

)
dw

= 1
2π

∫ +∞

0

(
ĥ
(
w

2π
,u
)
f̂I

(−w
2π

)
+ ĥ
(−w

2π
,u
)
f̂I

(
w

2π

))
dw.

(E.7)

Note that

f̂I

(
w

2π

)
= φI(−w). (E.8)

And under the assumption that AR
−β
min ≈ ∞, φI is approx-

imated by (26). Thus, by (26) and (E.4), we have for w ∈
[0, +∞):

ĥ
(
w

2π
,u
)
f̂I

(
− w

2π

)

≈ e−δw
α

jw

{
e j(−wu+δwα tan(πα/2))

− e− j(−w+w((1+γ)/γ)u−δwα tan(πα/2))
}

,

ĥ
(
− w

2π
,u
)
f̂I

(
w

2π

)

≈ e−δw
α

jw

{
−e− j(−wu+δwα tan(πα/2))

+ e j(−w+w((1+γ)/γ)u−δwα tan(πα/2))
}
.

(E.9)
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By (E.9), we get

1
2π

[
ĥ
(
w

2π
,u
)
f̂I

(−w
2π

)
+ ĥ
(−w

2π
,u
)
f̂I

(
w

2π

)]

≈ e−δw
α

πw

[
sin
(
−wu + δwα tan

πα

2

)

+ sin

(

−w +w
1 + γ

γ
u− δwα tan

πα

2

)]

= 2e−δw
α

πw
sin

(

w
u− γ

2γ

)

× cos

(

wu +w
u− γ

2γ
− δwα tan

πα

2

)

.

(E.10)

Substitute the above into (E.7) and then into (E.6), we have
(27).
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