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Valencia

Abstract.
The use of Sonic Crystals as environmental noise barriers has certain advantages

from both the acoustical and the constructive points of view with regard to conventional
ones. However the interaction between the Sonic Crystals and the ground has not
been studied yet. In this work we are reporting a semi-analytical model, based on the
multiple scattering theory and on the method of images, to study this interaction
considering the ground as a finite impedance surface. The results obtained here
show that this model could be used to design more effective noise barriers based on
Sonic Crystals because the excess attenuation of the ground could be modelled in
order to improve the attenuation properties of the array of scatterers. The results
are compared with experimental data and numerical predictions thus finding a good
agreement between them.
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1. Introduction

Periodic arrangements of scatterers embedded in a medium with different physical

properties show ranges of frequencies, known as band gaps (BG), where the transmission

of waves is forbidden. If these periodic systems are formed by a combination of solids

and fluids then they are usually called Sonic Crystals (SC) [1]. In the last years, an

increasing interest has appeared in the potential exploitation of SC as environmental

noise barriers [2, 3, 4].

Some examples of the advantages of using SC instead of conventional screens are the

reduction in the size of the foundation or the possibility of designing specific screens for

predetermined conditions. However, the acoustical properties of SC depend on several

factors showing some particularities in their attenuation properties. For example, the

size and position of the band gaps depend on several factors such as the direction of

incidence of the wave on the SC and the type of arrangement of the scatterers [5]. As

a consequence, the development of the screens based on SC is not a trivial process.

In order to avoid these handicaps several works have been intensively developed in

last years. The use of both materials with acoustical properties added or more efficiently

distribution of scatterers are two examples. The use of resonators [6] or absorbent

materials [7, 8] in the first case, and the use of Quasi Ordered [9, 10] or Quasi Fractal

[11] structures in the second case have been studied.

The existence of the ground is one of the factors to be considered in the use of SC

as noise barriers. Up to now one of the most appropriate analytical approach to predict

the transmission properties of finite SC has been based on the well known Multiple

Scattering Theory (MST) [12, 13, 14, 15], which is a self-consistent method to calculate

the acoustic pressure including all orders of scattering considering the superpositions

of the solution for a simple scatterer. MST has been used to predict the acoustical

performance of SC in the absence of a ground plane [15]. On the other hand, some

works use MST to study the possibility of modulating the scattering using a ground

made of random [16] or periodic inclusions [17]. However the interaction between the

Sonic Crystals and the ground has not been studied yet, and in this case the MST is an

unrealistic approximation as the presence of the ground should be considered.

In this work, we present a semi-analytical method based on both the MST and

the method of images [16, 18] to study the effect of ground planes on the propagation

properties of a SC made of rigid scatterers embedded in air. Two types of grounds,

acoustically-rigid and with finite impedance, have been considered. In the method

of images the system formed by the source, the array of cylinders and the ground is

equivalent to a doubled system source-array of cylinders completely symmetric with

respect to the axis defined by the ground.

The self-consistent method presented here is completely general, i.e. independent

of the impedance model chosen to characterize the ground, so that different ways to

determine the ground impedance can be combined with our semi-analytical model. Here

we have used a two-parameter impedance method [19] due to both the simplicity of the
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model and the good agreement of the results with the experimental data obtained,

although this method is constrained for the low grazing angles.

The paper is organized as follows: in Section 2, we explain the preliminary

conditions of our work, including a brief explanation of both the method of images

and the impedance model chosen to characterize the ground. In Section 3, we develop

the semi-analytical method to model the SC-ground interaction, comparing the results

of canonical situations with those obtained with numerical predictions (Finite Elements

Method). In Section 4, we present the results of the SC-ground interaction as well as the

comparison with the experimental data. Finally, in Section 5, the concluding remarks

of our work are shown.

2. Preliminary conditions: Method of images and ground impedance

The most interesting situation in the SC-ground interaction is likely to involve periodic

vertical finite cylinder arrays, but this would require the solution of a 3D problem

considering the interaction between finite vertical cylinders and the finite impedance

ground. Due to the complexity of the geometry of this general problem, the analytical

study could be very complicated and the numerical simulations could require long

computational time. Here we have considered the more tractable 2D problem involving

a periodic array of cylinders with their axes parallel to the ground (horizontal cylinders).

This geometry has recently been used to observe band gaps for water waves propagating

over an infinite periodic array of submerged horizontal circular cylinders in deep water

[20].

2.1. Defining the problem. Method of images

Consider a line source placed at point O and an array of M circular scatterers placed

in the positive half-space which is air, characterized by the sound velocity, c = 344 m/s,

and density ρ = 1.23 kg/m3. The position of each scatterer Cm, m = 1, . . . , M is given

by the vector ~Rm. Figure 1A shows the scheme of the problem in the particular case of

scatterers arranged in a square lattice which is defined by the lattice constant a. The

nearest base of the array of scatterers is placed at a distance Hx from the ground, while

the nearest vertical base of the array from the source is placed at a distance Hy (see

Figure 1A)

The geometry used to perform the method of images in our approach is shown in

Figure 1B. In this approach one should consider the image of the source as well as of the

scatterers. Note that all the waves reflected on the ground can be described as waves

coming either from the image source or from the image scatterers, then the images are

also interacting with the real space. The image source is placed at point O′ (from now

on, the image vectors will be characterized by a prime), and the image of scatterers C ′
m

are placed on the negative half-space. All the vectors measured from the image source

are characterized by a prime (′).
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Figure 1. (A) Square lattice array above a perfectly reflecting plane. (B) Schematic
of the real and the image sources and the real and the image scatterers.

In the scattering problem, the image of the source and the scatterers should be

modulated by the presence of the ground. Next, an amplitude and a phase should be

added to correct the contribution of images to the scattered field. Then, as we will see

in the next Section, the complex reflection coefficient should be considered to perform

this correction.

2.2. Ground effect

In some cases the surface of the ground can be considered perfectly rigid (or totally

reflective). However, some cases exist, as for example concrete or soil surfaces with

or without vegetation, in which there is absorption of energy of the incident acoustic

waves. An accurate prediction of the influence of the ground in the scattering produced

in the structure requires the knowledge of the absorptive and reflective properties (the

acoustic impedance) of the surface. Motivated by previous works [18], we characterize

in this work the effect of the ground on the scattering problem using the reflection

coefficient R(~rO, ~rR; ν). In general, R(~rO, ~rR; ν) is a function that mainly depends on

the impedance contrast between the two half-spaces separated by the ground surface,

on the frequency (ν) and on the positions of both the source (~rO) and the receiver (~rC)

by means of the angle of incidence on the ground.

The ground surface itself also provides a significant path for transmission of acoustic

energy, particularly at low grazing angles and low frequencies. Incident acoustic energy

is transformed into vibrational energy and is transmitted along the surface layer. This

vibration disturbance can propagate through long distances, before it is dissipated or
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re-radiated as sound. At these long distances, the transmission of low frequency sound

can be dominated by this surface wave mechanism. In this work, we are interested

in the interaction between the SC and the ground effect. Therefore, we have studied

regions near the source and in the regime of the dispersion frequencies of the array (high

frequencies). Thus, this transmission mechanism is neglected in this work.

When airborne sound impinges on the ground, part of the wave is transmitted

while another is refracted at right angles onto the surface. For our purposes, we have

focused our attention on the reflected waves leaving the surface at the angle of incidence,

with its amplitude and phase modified by the impedance of the surface. This reflected

wave propagates towards the receiver in addition to the direct wave from the source

and, depending on their relative phases and amplitudes, they may constructively add

or destructively interfere [21, 22, 23]. The effect of the ground on the propagating wave

is usually called excess attenuation and it can be explained in terms of the existence of

two sources: the real one and the image source that models the reflected wave. In this

case, the governing equation for pressure p at the receiver, assuming a uniform medium

and a line source, in the positive half-space is

p = H0(kr) + R(~rO, ~rR; ν)H0(kr′) =

H0(kr) + Rp(~rO, ~rR, ν)H0(kr′) + (1 − Rp(~rO, ~rR, ν))FH0(kr′) (1)

where Rp is the plane wave coefficient, H0 is the Hankel function of 0-th order and first

kind; parameter F is the boundary-loss factor which is a mathematical function of a

variable w called the numerical distance. These functions are [19, 21]

Rp(~rO, ~rR, ν) =
cos θ − Zair

Zground

cos θ + Zair

Zground

(2)

F = 1 + ı
√

πwe−w2

erfc(−ıw), (3)

where

w =

√
1

2
ıkr2

(
cos θ +

Zair

Zground

)
, (4)

Zair and Zground are the air and ground impedances respectively, r2 is the distance

between the reflection point and the receiver and θ is the reflection angle measured from

the normal of the surface. erfc is the complex complementary error function. Usually,

fraction β = Zair/Zground is called the admittance of the homogeneous impedance plane.

The reflected angle can be obtained as

θ = arctan

(
x − xO

y + yO

)
(5)

where ~rO = (xO, yO) is the position of the source and ~rR = (x, y) is the position of the

receiver point with respect to the origin of coordinates (see Figure 1).

The knowledge of the expression of the impedance is necessary in order to account

the reflection properties of the surface. In this work we have characterized these type

of surfaces (open cell foam layer) using a two parameter impedance model [19] with
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flow resistivity σe = 4 kPa s/m2 and porosity at the surface αe = 105 m−1, being the

impedance of the ground

Zground = ρc0

(
0.434

√
σe

ν
(1 + ı) + 9.75ı

αe

ν

)
, (6)

where ρ and c0 are the density and the sound velocity of air respectively.

3. Multiple scattering theory for SC over a finite impedance ground

(MSTFIG)

The solution of the appropriate scattering problem satisfies the Helmholtz equation in

the half-space that is written in polar coordinates (r, θ) as

∆p(~r) + k2p(~r) = 0, (7)

where ∆ =
1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂θ2
, ~r = r(cos θ, sin θ) is the radius vector, p is acoustic

displacement potential, k = ω/c and ω is angular frequency. Equation (7) is solved in

conjunction with radiation conditions

∂p

∂r
− ikp = o

(
r−1/2

)
, as r → ∞. (8)

Given that M disjoint cylindrical scatterers located at the positions ~Rm =
~R1, ..., ~RM all placed above a surface on the symmetry axis (see Figure 1) and a sound

source located at point O, one can consider the incident field over the n-th scatterer in

the presence of both the other M − 1 scatterers and the ground by taking into account

the conditions explained in Section 2 about the multiple scattering technique and the

method of images.

pn(~r) = p0(~r) +

M∑

j=1,j 6=n

(
pj

s(~r) + R(~ROj, ~rR; ν)pj′

s (~r)
)

, (9)

where p0 is the pressure produced by both the real and the image sources and pj
s and pj′

s

are the scattered pressure by the j-th cylinder and its image j ′-th cylinder respectively.

Equation (9) defines the interaction between the scattering of the array and the ground,

therefore the semi-analytical method shown in this work is called multiple scattering

theory for finite impedance ground (MSTFIG). The pressure of the sources can be

expressed as

p0(~r) = H0(kr) + R(~rO, ~rR; ν)H0(kr′), (10)

where ~r = r(cos θ, sin θ) is the vector connecting the real line source and the receiver

point and ~r′ = r′(cos θ′, sin θ′) connects the position of the receiver and the image point

source. On the other hand, the scattered pressures produced by the cylinders m and m′
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can be represented as

pm
s (~r) =

∞∑

l=−∞

Am
l H

(1)
l (krm)eılθm , (11)

pm′

s (~r) =
∞∑

l=−∞

Am′

l R(~ROm, ~rR; ν)H
(1)
l (krm′)eılθm′ , (12)

where ~rm = rm(cos θm, sin θm) is a vector connecting the centre of scatterer Cm and the

receiver and ~rm′ = rm′(cos θm′ , sin θm′) connects the receiver with the scatterer image

Cm′ . Note that the reflected wave on the cylinder image is produced by the presence

of the ground, thus the reflected pressure on the cylinder should be modulated by the

reflection coefficient as in the case of the incident wave on the ground.

In order to introduce Equations (10), (11) and (12) in Equation (9) all the terms

must be expressed in the same origin of coordinates. To do so, the Graf’s addition

theorems for the Bessel and Hankel functions are necessary [14, 25]. Thus, pressures p0

and ps in the reference system centred at n−th scatterer are,

p0(~r) =

∞∑

l=−∞

(H
(1)
−l (kRn)e−ılθRn +

R(~rO, ~rR; ν)H
(1)
−l (kR′

n)e−ılθR′
n )Jl(krn)eılθn, (13)

pj
s(~r) =

∞∑

l=−∞

(
Gjn

m + R(~ROj, ~rR; ν)Gj′n
m

)
Jl(krn)eılθn, (14)

Gjn
m =

∞∑

s=−∞

Aj
sH

(1)
m−s(kRjn)eı(m−s)θjn =

∞∑

s=−∞

Aj
sG

jn
ms, (15)

Gj′n
m =

∞∑

s=−∞

Aj′

s H
(1)
m−s(kRj′n)eı(m−s)θj′n =

∞∑

s=−∞

Aj′

s Gj′n
ms, (16)

where vector ~Rn = Rn(cos θRn , sin θRn) (~R′
n = Rn(cos θR′

n
, sin θR′

n
)) defines the

position of scatterer Cn with respect to real (image) line source and vector ~Rjn =

Rjn(cos θjn, sin θjn) (~Rj′n = Rj′n(cos θj′n, sin θj′n)) defines the position of scatterer Cj

(Cj′) with respect to scatterer Cn.

Finally, due to the geometry of the problem, we can express the total incident wave

over the n-th scatterer as

pn(~r) =

∞∑

s=−∞

Bn
s Js(krn)eısθn. (17)

Introducing Equations (13), (14) and (17) in Equation (9), one can obtain the following

system of equations,

Bn
s = Sn

s +

M∑

j=1

(
(1 − δjn)Gjn

s + R(~ROj, ~rR; ν)Gj′n
m

)
, (18)

where

Sn
s = H

(1)
−l (kRn)e−ılθRn + R(~rO, ~rR; ν)H

(1)
−l (kR′

n)e−ılθR′
n . (19)



Band gap-ground interaction in 2D SCs 8

At this stage Bn
s , Aj

s and Aj′
s are unknown coefficients but they can be related using

the boundary conditions on the scatterers and the symmetry of the problem. The

boundary conditions at the surface of a rigid cylinder relates Bj
s with Aj

s and the

symmetric condition relates Aj
s with Aj′

s . In our approach we will consider the general

boundary condition, i.e., the continuity of both the pressure and the normal velocity

across the interface between the scatterers and the surrounding medium. Note that the

asymptotical situation, ρn → ∞ and cn → ∞, reproduces the case of rigid scatterers

(Neumann boundary conditions).

The boundary conditions in the n-th scatterer can be expressed as

pext|∂Ωn = pint|∂Ωn, (20)

1

ρ

∂pext

∂n
|∂Ωn =

1

ρn

∂pint

∂n
|∂Ωn, (21)

where ∂Ωn is the boundary of the n-th scatterer, ρ is the density of the surrounding

medium and ρn is the density of the n-th scatterer.

In order to apply the previous boundary conditions, we have considered that the

pressure field inside the n-th cylinder can be represented by

P n
int =

∞∑

j=−∞

Dn
j Jj(k1nrn)eıjθn, (22)

where k1n is the wave number inside the n-th cylinder.

Using the boundary conditions and the expressions of both the exterior and interior

fields in the n−th scatterer, we can obtain the following relation,

Bn
j = Γn

j An
j , (23)

where

Γn
j =

Hj(kbn)J ′
n(kbn/hn) − gnhnH ′

j(kbn)Jj(kbn/hn)

gnhnJ ′
j(kbn)Jj(kbn/hn) − Jj(kbn)J ′

j(kbn/hn)
. (24)

Here bn is the radius of the n-th cylinder (in this work the radius of the scatterers

take the same value for all the cylinders, bn = b), gn = ρn
1/ρ is the density ratio, and

hn = k/kn
1 = cn

1/c is the sound speed ratio for the i-th cylinder. Note that if the

scatterers are acoustically hard, i.e., ρ1 >> ρ and c1 >> c, then the coefficients Γn
j

coincides with those obtained with the Neumann boundary conditions,

Γn
j = −∂rHj(kbn)

∂rJj(kbn)
, (25)

where ∂r is the derivative with respect to polar coordinate r.

The image symmetry can be used to relate Aj
s with Aj′

s . One has to take into

account that rj′ = rj and that θj′ = −θj , then

pj′

s (~r) = R(~ROj, ~rR; ν)

∞∑

l=−∞

Aj′

l H
(1)
l (krj′)e

ılθj′

= R(~ROj, ~rR; ν)
∞∑

l=−∞

Aj
l H

(1)
l (krj)e

−ılθj′
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= R(~ROj, ~rR; ν)

∞∑

l=−∞

Aj
−lH

(1)
−l (krj)e

ılθj′

= R(~ROj, ~rR; ν)

∞∑

l=−∞

Aj
−l(−1)lH

(1)
l (krj′)e

ılθj′ , (26)

and

Aj′

l = (−1)lAj
−l. (27)

Introducing Equation (24) or (25) in (23) and in (18), the following infinite system

of equations is obtained,

Γn
s An

s = Sn
s +

M∑

j=1

∞∑

l=−∞

(
(1 − δjn)Gjn

sl + (−1)lR(~ROj, ~rR; ν)Gj′n
s−l

)
An

l . (28)

The methodology previously shown is completely analytical, however the coefficients

An
s should be obtained by properly truncating the previous system, i.e., one should use

numerical methods to find the solution of the problem. Thus, strictly speaking the

methodology is semi-analytical. The subindexes l and s take values from −L to L,

therefore the infinite system is truncated to one with 2L + 1 equations. In this work,

we have truncated the system using L = 3 which produces an error less than 1% with

respect to the values obtained with L = 4.The total acoustic field obtained using the

MSTFIG is

P (~r) = H0(kr) + R(~rO, ~rR; ν)H0(kr′)

+

M∑

m=1

∞∑

l=−∞

Am
l

(
H

(1)
l (krm)eılθm + R(~ROj, ~rR; ν)H

(1)
l (krm′)e−ılθm′

)
.(29)

Note that the methodology shown here is self-consistent and can be applied to any

distribution, periodic or random, of scatters. On the other hand, the effect of the finite

impedance of the ground only depends on the model to calculate this impedance, i.e.,

on the calculation of the reflection coefficient, not on the MST procedure.

Through this work, we will study the variation of the attenuation properties of a SC

with different types of grounds. This variation will be represented using the Insertion

Loss (IL) parameter, calculated as

IL = 20 log10

∣∣∣p0

P

∣∣∣ , (30)

where P is calculated using Equation (29).

3.1. Acoustically-hard and completely absorbent grounds

For this study we have considered a 5 × 3 square array with lattice constant a =0.3 m

and diameter of cylinders D = 0.25 m. The distance from the ground to the centres of

the lowest cylinders in the array is half of the lattice constant, Hx=0.15 m, so that they

are separated from the centre of the cylinders of the image array nearest to the ground

by the lattice constant. The distance between the source and the array of scatterers is
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Hy =1 m, and the site of the receiver is (2.5, 0) m. We analyse in this Section, two

different types of ground: hard ground (R(~rO, ~rR; ν) = 1) and completely absorbent

ground (R(~rO, ~rR; ν) = 0).

When the real source is placed on the origin of coordinates (O = (0, 0)), then the

image source coincides with the real one and depending on the properties of the ground

several interesting possibilities can be analysed. With the source on an acoustically hard

ground, the predicted IL spectrum of the array should be equivalent to that predicted

for an array of double the size (10×3) in the free field (without ground), whereas in the

presence of an completely absorbent ground, the IL should be the same as the initial

array, 5 × 3, in free field. In this Section, we use these canonical situations in order

to check our semi-analytical method, specifically using the MSTFIG in the case of a

SC on a surface (Section 3) and the MST in the case of a SC in free field. Additional

numerical results based on finite element methods (FEM) have also been used to validate

the MSTFIG.

The application of FEM to unbounded domains, as for example the case of the

scattering problems, involves a domain decomposition by introducing an artificial

boundary around the obstacle. This artificial boundary consists of a region in which

the discretization can be coupled in various ways to some discrete representation of the

analytical solution. In this work, we use a region of perfectly matched layers (PML) [24]

to numerically approximate the Sommerfeld conditions (see Eq. (8)). In this Section the

commercial software COMSOL Multiphysics 3.5a is used for the numerical simulations.

The PML, originating from electromagnetic computations, is based on simulating an

absorbing layer of damping material surrounding the domain of interest, like a thin

sponge which absorbs the scattered field radiated on the exterior of this domain. The

method was immediately applied to different problems based on the scalar Helmholtz

equation as for example acoustics, elasticity, poroelastic media, shallow water waves,

etc. Note that MSTFIG gives the pressure field as function of the position, thus one

should not solve the entire solution domain to obtain the value at this point. However,

FEM should solve the entire solution domain to obtain the value of the field in one

point. Thus, FEM takes more computational time than the MSTFIG method to obtain

similar convergences.

Figure 2 shows the predicted IL spectra in these two particular cases, acoustically

hard and completely absorbent ground. In Figure 2A, the acoustically-rigid ground is

analysed. The blue continuous line shows the IL produced by the array placed on an

acoustically-hard plane at y = 0 calculated using the MSTFIG. The red open circles

show the IL produced by a doubled (i.e. a 10 × 3) lattice in the free field calculated

using the MST. The analogous numerical predictions are also shown in Figure 2A with

green dots (5 × 3 square array) and black pentagrams (doubled (i.e. a 10 × 3) lattice)

respectively. Note the complete agreement between both cases, the red open circles

completely coincide with the blue line, and the green dots completely coincide with the

black pentagram. The possible small differences could be produced by the precision

of the mesh in the numerical discretization. The differences in the predictions at
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Figure 2. (Colour online) Predicted IL spectra of a square array of rigid cylinders
with diameter 0.25 m, lattice constant 0.3 m above ground plane at y = 0 and ’lowest’
cylinder centres at Hx = 0.15 m. The source and receiver coordinates are (0,0) m
and (2.5,0) m respectively. The nearest part of the array is at Hy = 1 m from
the source. (A) Acoustically-hard ground R(~rO , ~rR, ν) = 1: Blue continuous line
(respectively, green dots) shows the IL produced by a 5 × 3 square array of rigid
cylinders calculated using the MSTFIG (respectively, finite element method). The
open red circles (respectively, black pentagrams) show the IL produced by a doubled
(i.e. a 10 × 3) lattice in the free field calculated using the MST (respectively, finite
element method). (B) Completely absorbent ground R(~rO , ~rR, ν) = 0: Blue continuous
line (respectively, open red circles and black pentagrams) shows the IL produced by a
5× 3 square array of rigid cylinders calculated using the MSTFIG (respectively, MST
and FEM). (C) Band structure in the considered case calculated using plane wave
expansion (PWE). The grey area represents the pseudogap in ΓX

direction.

higher frequencies can be reduced by considering more elements on the solution domain.

However, the computational time is increased.

Figure 2C represents the band structures for a periodic SC with the same periodicity

as the finite structure analysed in this Section. These bands have been calculated using

the plane wave expansion (PWE) [26]. Grey areas show the pseudogap in ΓX direction

(0◦ of incidence). The pseudogap covers the range of frequencies (329, 748) Hz. This

range is in complete agreement with that obtained using the MSTFIG in the spectra

shown in Figure 2A. The differences could be produced by the finite size and the near

field effects.

In Figure 2B, the case of the completely absorbent ground (R=0) with the source

at (0,0) is analysed. The blue continuous line shows the IL produced by a 5 × 3 square
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Figure 3. (Colour online) IL and reflection coefficient predictions obtained using
the MSTFIG for five values of ground impedance. (A) IL of the same array as in
Figure 2A with the source and the receiver placed at points (0,0.25) m and (2.5, 0.75)
m respectively, and Hx = 0.15 m and Hy = 1 m. The orange continuous dotted line
shows the IL predicted in the case of a rigid ground. The green crossed dash line shows
the IL predicted in the case of a completely absorbent ground. The black dashed line
shows the IL predictions in the case of a covered ground characterized by σe = 630
kPa s/m2 and αe = 188 m−1. Red dots show the IL predicted for the case of a ground
characterized by σe = 272500 Pa s/m2 and αe = 158 m−1. The blue continuous line
shows the IL predictions in the case of a sheet of porous material characterized by
σe = 4000 Pa s/m2 and αe = 105 m−1. The real, imaginary and absolute values of the
reflection coefficients of these three grounds are shown in (B), (C) and (D) respectively.
The grey area represents the pseudogap in ΓX direction.

array placed on the absorbing ground using the MSTFIG. The red open circles show

the IL produced by a 5 × 3 array in the free field calculated using the MST. The black

pentagrams show the FEM predictions. Note the complete agreement between all the

cases.

Even though the FEM can be used for analysing the situations studied in this

paper, its use has been limited to the purpose of validating the MSTFIG methodology.

In the rest of this work we will only use the MSTFIG and we will validate our results

with experimental data.

3.2. Finite impedance surface

When the source is not located on the ground, the semi-analytical solution of the

problem has to be obtained using the MSTFIG. In the finite impedance surface case

we will use experimental data to check the methodology in Section 4.3. We analyse

here the same array as before but varying the impedance of the ground. As we have

previously mentioned , the finite impedances considered here are characterized by a two
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parameter impedance model [19] with different values of σe and αe. We have specifically

analysed the cases of a rigid ground, a completely absorbent ground, a covered ground

characterized in reference [22], the finite impedance ground analysed in reference [19]

and the sheet of porous material used in this work with σe = 4000 Pa s/m2 and αe = 105

m−1.

Figure 3A shows the IL predictions obtained using the MSTFIG for the five values

of the ground impedance. In these cases the source and the receiver are out of the

ground, placed at points (0,0.25) m and (2.5, 0.75) m respectively. Figures 3B, 3C and

3D show the absolute, real and imaginary values of the reflection coefficients calculated

at the receiver site for the three considered ground impedances. The calculations of

these impedances are based on a two-parameter model, being σe = 630 kPa s/m2 and

αe = 188 m−1, σe = 272500 Pa s/m2 and αe = 158 m−1, σe = 4000 Pa s/m2 and

αe = 105 m−1 respectively.

The orange line with open circles in Figure 3A shows the IL of the array over a

rigid ground. At around 1200 Hz, the values of the IL are negative because the excess

attenuation shows a clear interaction between the BG of the array and the ground effect.

Note that this deep in the attenuation spectrum, due to the excess attenuation, depends

on the impedance of the ground, thus it could be modelled depending on the considered

impedance. The black horizontally dashed line, the red dots, the green vertically dashed

and the blue continuous lines show the reduction or shift of the excess attenuation peaks

due to the reduction on the reflection coefficient because of the finite ground impedance.

Note that the IL is calculated here considering the pressure level of the system with the

ground as a reference. Taking this into account, the negativity of the IL means that,

although the sound is attenuated behind the SC, the presence of the SC reduces the

effect of the excess attenuation peak. This will be discussed in detail in the following

Sections.

4. Results

In this Section, we analyse the effect of the finite ground impedance on the attenuation

properties of a periodic array of scatterers from both semi-analytical and experimental

points of view. In both cases we have used an array of 7 × 3 scatterers in square

periodicity with lattice constant a = 0.069 m over a ground with a line source placed

at point O = (0, 0.235) m. The circular scatterers present a radius r = 0.0275 m. For

these simulations, we have considered Hy = 0.755 m and Hx = 0.0275 m.

Here, we have considered two different grounds: an acoustically-rigid ground (R=1)

and a finite impedance ground characterized by a two parameter model (σe = 4000

Pa s/m2 and αe = 105 m−1).



Band gap-ground interaction in 2D SCs 14

4.1. Symmetry of the acoustic field. Rigid and finite impedance surfaces

In Figure 4, we have analysed the symmetry of the acoustic pressure field with respect to

the ground plane depending on the value of the impedance. If the impedance is infinite,

i.e., acoustically-hard ground, the acoustic field should be symmetric, which means that

the acoustic field in the image space should be symmetrically equivalent to the acoustic

field in the real space. However, in the case of a finite impedance ground, the symmetry

is broken and the field in the real space and the image space are not identical.

Figure 4A shows the band structure for the considered array calculated using the

PWE method. Note that, in this case, the lattice constant is lower than in the previous

array, and this produces a shift to higher frequencies of the band gap. Moreover, the

filling fraction also affects the width of both the pseudogap and the gap. The range

of frequencies between 2478 Hz and 3171 Hz defines the full band gap for this array.

Using the MSTFIG, we have predicted the acoustic field at 2000 Hz considering both

an acoustically-hard ground and a finite impedance ground. Figures 4B and 4C show

the pressure maps (Re(P )) at 2000 Hz. One can clearly observe the symmetry of the

acoustic pressure field in the hard ground case and how this symmetry is broken in the

case of finite impedance.

Figure 4. (Colour online) Pressure maps for an array of 7 × 3 scatterers in square
array with lattice constant a = 0.069 m considering a line source placed at point
O = (0, 0.235) m. The circular scatterers present a radius r = 0.0275 m. For these
simulations we have considered Hy = 0.755 m and Hx = 0.0275 m. (A) Band structure
calculated using the PWE method. (B) and (C) pressure maps (Re(P )) (Pa) at 2000
Hz for an acoustically-hard ground and an finite impedance ground (σe = 4000 Pa s/m2

and αe = 105 m−1) respectively.
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4.2. Band gap-ground plane interaction

For a predetermined source position and the impedance of the ground, the IL defined by

Eq. 30 represents the difference between the pressure level measured with and without

the array in the presence of the ground. To interpret the IL, one should take into

account the effects produced by both the ground and the SC. The ground produces

zones with excess attenuation which depends on both the position of the receiver and

on the frequency. On the other hand, SC present ranges of attenuated frequencies

which depend on both the relative position of the source and the receiver and on the

filling fraction. We have calculated the IL spectra using the MSTFIG for the receiver

positioned at the interval height y = [0, 0.469] m and for a distance of x = 1.203 m from

the source. In all of these cases the IL has been analysed for the two different kinds of

grounds defined at the beginning of this Section.

4.2.1. Hard ground The excess attenuation caused by the ground with the receiver at

several heights, due to a rigid ground and without SC, can be observed in Figure 5A.

Each horizontal cut, y = yr, of the map in Figure 5 represents the spectrum at point

(1.203, yr) m. The pressure level (PL) in the receiver sites is characterized with the

following expression,

PL = 20 log10 (|H0(kr) + H0(kr′)|) . (31)

The excess attenuation appears in Figure 5A as regions of frequencies with negative

values of the PL produced by the destructive interference between the incident wave

(from the source) and the reflected wave on the ground. Then, the positive values of the

PL mean a positive interference and consequently a reinforcement. Figure 5A shows the

dependence of the excess attenuation on the height of the receiver and on the frequency.

The higher the height, the lower the frequency of the excess attenuation peak is. Excess

attenuation peaks of second order can also be observed for high values of both height

and frequencies.

In Figure 5B, the IL map produced by the interaction of the rigid ground and

the array of scatterers is shown. The vertical dotted line shows the beginning of the

pseudogap in ΓX direction whereas the vertical continuous lines show the range of

frequencies of the full band gap of the array. This IL is calculated using Equation

(30). One can observe that, for all the considered heights, the maximum value of IL is

obtained for the frequencies inside the pseudogap in ΓX direction. However, there are

heights at which the IL is negative, which represents a reinforcement with respect to the

case in which we used a reflecting surface alone. The low values of the pressure at these

points and frequencies for the reference taken to calculate the IL (i.e., the pressure only

calculated with the presence of the ground) produce that, although the SC attenuates

sound because of the BG, the IL was negative. Then, in comparison with the case

of only the ground, the negativity of the IL means that, although at these heights a

low pressure level exists, the presence of the SC reduces the excess attenuation of the

ground.



Band gap-ground interaction in 2D SCs 16

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

Frequency (Hz)

(A) Pressure level of line source in rigid ground
y

(m
)

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

Frequency (Hz)

(B) Insertion Loss of SC and rigid ground

y
(m

)

−40

−30

−20

−10

0

10

−20

−10

0

10

20

30

40

50

Figure 5. (Colour online) (A) Pressure level spectra surface produced by the
line source in the presence of a rigid ground. The line source is placed at point
O = (0, 0.235) m. We ahve calculated the pressure level using Equation 31 at interval
height y = [0, 0.469] m for a distance x = 1.203 m from the source. (B) IL map
produced by a 7 × 3 array with square periodicity with a = 0.069 m. The circular
scatterers present a radius r = 0.0275. For these simulations we have considered
Hy = 0.755 m and Hx = 0.0275 m. We have calculated the IL spectra using the
MSTFIG at interval height y = [0, 0.469] m and for a distance of x = 1.203 m from
the source. The vertical dashed line marks the beginning of the pseudogap in ΓX

direction (0◦) and the vertical continuous line marks the ranges of frequencies of the
full band gap. The horizontal dotted lines show the semi-analytical and experimental
cuts shown in Figure 7.

4.2.2. Soft ground The excess attenuation caused by a soft ground (σe = 4000 Pa s/m2

and αe = 105 m−1) at different heights of the receiver and without the array of scatterers

can be observed in Figure 6A. In this case, the pressure level (PL) in the receiver sites

is characterized using the following expression,

PL = 20 log10 (|H0(kr) + R(~rO, ~rR; ν)H0(kr′)|) , (32)

where R(~rO, ~rR; ν) is calculated using the approach shown in Section 2.2 and is obtained

by combining Equations (2) and (6) in Equation (1)

In Figure 6A, one can observe the pressure level in the case of a sound source with

this finite impedance ground. Once again, the excess attenuation also depends on both

the frequency and the height of the receiver. However, this dependence changes due

to the properties of the ground. The first excess attenuation peak appears at lower

frequencies and lower heights than in the case of the acoustically-rigid ground. Excess

attenuation peaks of second order can also be observed for lower values of both heights

and frequencies than in the case of the rigid ground.

Figure 6B shows the IL maps produced as a result of the interplay between the soft

ground and the array of scatterers. The vertical dotted line shows the beginning of the

pseudogap in ΓX direction whereas the continuous lines show the range of frequencies
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Figure 6. (Colour online) (A) Pressure level spectra surface produced by the line
source in the presence of a finite impedance ground (σe = 4000 Pa s/m2 and αe = 105
m−1). The line source is placed at point O = (0, 0.235) m. We have calculated the
pressure level using Equation 32 at interval height y = [0, 0.469] m and for a distance
of x = 1.203 m from the source. (B) IL map produced by a 7 × 3 array with square
periodicity with a = 0.069 m above a finite impedance ground. The circular scatterers
present a radius r = 0.0275. For these simulations we have considered Hy = 0.755 m
and Hx = 0.0275 m. We have calculated the IL spectra using the MSTFIG at interval
height y = [0, 0.469] m and for a distance of x = 1.203 m from the source. The vertical
dashed line marks the beginning of the pseudogap in ΓX direction (0◦) and the vertical
continuous line marks the ranges of frequencies of the full band gap. The horizontal
dotted lines show the semi-analytical and experimental cuts shown in Figure 8.

of the full band gap of the array. As in the case of the hard ground, the attenuation

peaks are once again present due to the influence of the ground. One can also observe

that the array of scatterers changes the attenuation properties at the receiver site for

frequencies above and below the first peak of excess attenuation adding this effect to

that related with the band gap.

4.3. Comparisons between data and predictions

4.3.1. Laboratory experiment 2 m long PVC cylinders with outer diameters of 55

mm have been used to construct the 7 × 3 square periodic array with lattice constant

a = 0.069 m. The sound source was a Bruel & Kjaer point source loudspeaker controlled

by a Maximum-Length Sequence System Analyzer (MLSSA) enabling the determination

of impulse responses. Measurements of the insertion loss (IL) spectra for arrays of

cylinders placed near a ground surface in an anechoic chamber have been obtained.

A 0.03 m thick wooden board, large enough to avoid the diffraction at the edges,

was used as a hard surface. The loudspeaker point source was positioned at 0.755 m

from the array at the height of the horizontal mid-plane of the array (0.23 m above the

ground). The height of the receiver microphone was 0.117 m, 0.235 m or 0.352 m and
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it was placed in a vertical plane at 0.257 m from the back of the array. The receiver

heights were chosen to be below, at, and above, the horizontal mid-plane of the array.

In all cases, a constant distance between the microphone and the periodic array has

been considered, in such a way that the distance between the source and the receiver

was x = 1.203 m. In this study, we have analysed the properties in ΓX direction (0◦).

The attenuation spectra have been obtained from the difference between the sound level

recorded at the same point in two different configurations: i) the ground alone and ii)

the ground and the periodic array.
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Figure 7. Measured (open circle with dotted line) and predicted (continuous line)
insertion loss spectra for a source at coordinates (0,0.235) m and 0.755 m from a
7× 3 array of rigid cylinders of a 0.055 m diameter over acoustically-hard ground with
receiver coordinates (A) (1.203,0.117) m, (B) (1.203,0.235) m and (C) (1.203,0.352) m.
Arrays of cylinders placed near the ground surface.

4.3.2. Hard ground Figure 7 compares measured and predicted IL spectra for the

considered array placed on a hard ground plane with the receiver in three positions with

different heights and using the source location described in Section 4.3.1. An R = 1

value has been used for the calculation due to the rigidity of the ground. The agreement

between predictions and measurements is fairly good. The discrepancies observed are

probably produced by the fact that the experimental ground is not completely rigid.

The semi-analytical spectra corresponding to these three heights are also marked in

Figure 5B with dotted horizontal lines. One can observe in Figure 7 that the ground

effect in the IL due to the excess attenuation peaks for the three heights analysed in

this work corresponds with deeps at 4000 Hz, 2000 Hz and 1400 Hz respectively. These

frequencies correspond to horizontal dotted lines in Figure 5B

In Figure 5C, one can observe that the experimental measurements do not reproduce

the second order peak of the excess attenuation at high frequencies (4000 Hz). Once
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again this discrepancy could be due to the fact that the impedance of the ground used

in the laboratory is not infinite, i.e., the reflection coefficient is not R = 1. However, the

agreement between the semi-analytical predictions and the laboratory measurements is

good.

4.3.3. Soft ground Figure 8 compares the corresponding measured and predicted

insertion loss spectra for the considered array on a finite impedance ground for the

three receiver heights previously described. For the simulations with the MSTFIG we

have used the reflection coefficient obtained from equation 2 with the two parameter

impedance model with the values σe = 4000 Pa s/m2 and αe = 105 m−1. Once again,

the agreement between the predictions and measurements is fairly good. The horizontal

dotted lines in Figure 6B show the corresponding cuts of the IL maps for the three

heights analysed in this Section.
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Figure 8. Measured (solid line) and predicted (broken line) insertion loss spectra for
a source at coordinates (0,0.235) m and 0.755 m from a 7 × 3 array of rigid cylinders
of a 0.055 m diameter over a finite impedance ground with receiver coordinates (A)
(1.203,0.117) m, (B) (1.203,0.235) m and (C) (1.203,0.352) m. Arrays of cylinders
placed near the ground surface.

The semi-analytical predictions of the IL spectra in Figures 8A and 8B

predict excess attenuation peaks around 1000 Hz in complete disagreement with the

experimental results. However, in the case of Figure 8C, the attenuation peak is well

defined both semi-analytically and experimentally. This discrepancy could be explained

in terms of the interference between the microphone and the finite impedance ground at

low grazing angles. The adverse and the additional attenuation influences of the ground

effect in the IL spectra are shifted towards lower frequencies due to the finite impedance

of the ground. Note that the dependence of the excess attenuation peak on the height
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of the receiver produces a lower shift in frequency than in the case of the rigid ground,

in complete agreement with the results shown in Figure 6B.

5. Concluding remarks

The effect of both rigid and finite impedance grounds on the attenuation properties of

an array of rigid cylindrical scatterers has been booth analytically and experimentally

analysed. The Multiple Scattering Theory for a SC over a Finite Impedance Ground

(MSTFIG) has been developed as a semi-analytical methodology to study the effect

of the ground with different values of the impedance on the propagation properties of

an array of rigid scatterers in air. We have also analysed the interaction between the

SC and the ground with the receiver at different heights. In order to both compare

and validate the model, the MSTFIG has been checked with both numerical predictions

(FEM) and experimental results obtaining good agreement between them. The excess

attenuation produced by the interplay between the sound source and the ground can

be used to tune the attenuation properties of the array of scatterers. Then, the excess

attenuation should be taken into account in the design of arrays of scatterers acting as

sonic crystal noise barriers.
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