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The use of Sonic Crystals as environmental noise barriers has certain advantages from both the acoustical and the constructive points of view with regard to conventional ones. However the interaction between the Sonic Crystals and the ground has not been studied yet. In this work we are reporting a semi-analytical model, based on the multiple scattering theory and on the method of images, to study this interaction considering the ground as a finite impedance surface. The results obtained here show that this model could be used to design more effective noise barriers based on Sonic Crystals because the excess attenuation of the ground could be modelled in order to improve the attenuation properties of the array of scatterers. The results are compared with experimental data and numerical predictions thus finding a good agreement between them.

Introduction

Periodic arrangements of scatterers embedded in a medium with different physical properties show ranges of frequencies, known as band gaps (BG), where the transmission of waves is forbidden. If these periodic systems are formed by a combination of solids and fluids then they are usually called Sonic Crystals (SC) [START_REF] Martínez-Sala | Sound Attenuation by sculpture[END_REF]. In the last years, an increasing interest has appeared in the potential exploitation of SC as environmental noise barriers [START_REF] Sánchez-Pérez | Acoustic barriers based on periodic arrays of scatterers[END_REF][START_REF] Sánchez-Dehesa | Noise control by sonic crystal barriers made of recycled materials[END_REF][START_REF] Krynkin | Predictions and measurements of sound transmission through a periodic array of elastic shells in air[END_REF].

Some examples of the advantages of using SC instead of conventional screens are the reduction in the size of the foundation or the possibility of designing specific screens for predetermined conditions. However, the acoustical properties of SC depend on several factors showing some particularities in their attenuation properties. For example, the size and position of the band gaps depend on several factors such as the direction of incidence of the wave on the SC and the type of arrangement of the scatterers [5]. As a consequence, the development of the screens based on SC is not a trivial process.

In order to avoid these handicaps several works have been intensively developed in last years. The use of both materials with acoustical properties added or more efficiently distribution of scatterers are two examples. The use of resonators [START_REF] Liu | Locally Resonant Sonic Materials[END_REF] or absorbent materials [START_REF] Tournat | Multiple scattering of acoustic waves and porous absorbing media[END_REF][START_REF] Umnova | Effects of porous covering on sound attenuation by periodic arrays of cylinders[END_REF] in the first case, and the use of Quasi Ordered [START_REF] Romero-García | Band gap creation using quasiordered structures based on sonic crystals[END_REF][START_REF] Romero-García | Hole distribution in phononic crystals: Design and optimization[END_REF] or Quasi Fractal [START_REF] Castiñeira-Ibáñez | Overlapping of acoustic bandgaps using fractal geometries[END_REF] structures in the second case have been studied.

The existence of the ground is one of the factors to be considered in the use of SC as noise barriers. Up to now one of the most appropriate analytical approach to predict the transmission properties of finite SC has been based on the well known Multiple Scattering Theory (MST) [START_REF] Zaviska | The deflection of electro magnetic waves on parallel, infinite long orbital cylinder[END_REF][START_REF] Linton | The interaction of waves with arrays of vertical circular cylinders[END_REF][START_REF] Martin | Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles[END_REF][START_REF] Yu | Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays[END_REF], which is a self-consistent method to calculate the acoustic pressure including all orders of scattering considering the superpositions of the solution for a simple scatterer. MST has been used to predict the acoustical performance of SC in the absence of a ground plane [START_REF] Yu | Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays[END_REF]. On the other hand, some works use MST to study the possibility of modulating the scattering using a ground made of random [START_REF] Boulanger | Reflection of sound from random distributions of semi-cylinders on a hard plane: models and data[END_REF] or periodic inclusions [START_REF] Sainidou | Guided and quasiguided elastic waves in phononic crystal slabs[END_REF]. However the interaction between the Sonic Crystals and the ground has not been studied yet, and in this case the MST is an unrealistic approximation as the presence of the ground should be considered.

In this work, we present a semi-analytical method based on both the MST and the method of images [START_REF] Boulanger | Reflection of sound from random distributions of semi-cylinders on a hard plane: models and data[END_REF][START_REF] Jont | Image method for efficiently simulating small-room acoustics[END_REF] to study the effect of ground planes on the propagation properties of a SC made of rigid scatterers embedded in air. Two types of grounds, acoustically-rigid and with finite impedance, have been considered. In the method of images the system formed by the source, the array of cylinders and the ground is equivalent to a doubled system source-array of cylinders completely symmetric with respect to the axis defined by the ground.

The self-consistent method presented here is completely general, i.e. independent of the impedance model chosen to characterize the ground, so that different ways to determine the ground impedance can be combined with our semi-analytical model. Here we have used a two-parameter impedance method [START_REF] Taherzadeh | Deduction of ground impedance from measurements of excess attenuation spectra[END_REF] due to both the simplicity of the model and the good agreement of the results with the experimental data obtained, although this method is constrained for the low grazing angles.

The paper is organized as follows: in Section 2, we explain the preliminary conditions of our work, including a brief explanation of both the method of images and the impedance model chosen to characterize the ground. In Section 3, we develop the semi-analytical method to model the SC-ground interaction, comparing the results of canonical situations with those obtained with numerical predictions (Finite Elements Method). In Section 4, we present the results of the SC-ground interaction as well as the comparison with the experimental data. Finally, in Section 5, the concluding remarks of our work are shown.

Preliminary conditions: Method of images and ground impedance

The most interesting situation in the SC-ground interaction is likely to involve periodic vertical finite cylinder arrays, but this would require the solution of a 3D problem considering the interaction between finite vertical cylinders and the finite impedance ground. Due to the complexity of the geometry of this general problem, the analytical study could be very complicated and the numerical simulations could require long computational time. Here we have considered the more tractable 2D problem involving a periodic array of cylinders with their axes parallel to the ground (horizontal cylinders). This geometry has recently been used to observe band gaps for water waves propagating over an infinite periodic array of submerged horizontal circular cylinders in deep water [START_REF] Linton | Water waves over arrays of horizontal cylinders: band gaps and Bragg resonance[END_REF].

Defining the problem. Method of images

Consider a line source placed at point O and an array of M circular scatterers placed in the positive half-space which is air, characterized by the sound velocity, c = 344 m/s, and density ρ = 1.23 kg/m 3 . The position of each scatterer C m , m = 1, . . . , M is given by the vector R m . Figure 1A shows the scheme of the problem in the particular case of scatterers arranged in a square lattice which is defined by the lattice constant a. The nearest base of the array of scatterers is placed at a distance H x from the ground, while the nearest vertical base of the array from the source is placed at a distance H y (see Figure 1A)

The geometry used to perform the method of images in our approach is shown in Figure 1B. In this approach one should consider the image of the source as well as of the scatterers. Note that all the waves reflected on the ground can be described as waves coming either from the image source or from the image scatterers, then the images are also interacting with the real space. The image source is placed at point O (from now on, the image vectors will be characterized by a prime), and the image of scatterers C m are placed on the negative half-space. All the vectors measured from the image source are characterized by a prime ( ). In the scattering problem, the image of the source and the scatterers should be modulated by the presence of the ground. Next, an amplitude and a phase should be added to correct the contribution of images to the scattered field. Then, as we will see in the next Section, the complex reflection coefficient should be considered to perform this correction.

Ground effect

In some cases the surface of the ground can be considered perfectly rigid (or totally reflective). However, some cases exist, as for example concrete or soil surfaces with or without vegetation, in which there is absorption of energy of the incident acoustic waves. An accurate prediction of the influence of the ground in the scattering produced in the structure requires the knowledge of the absorptive and reflective properties (the acoustic impedance) of the surface. Motivated by previous works [START_REF] Jont | Image method for efficiently simulating small-room acoustics[END_REF], we characterize in this work the effect of the ground on the scattering problem using the reflection coefficient R( r O , r R ; ν). In general, R( r O , r R ; ν) is a function that mainly depends on the impedance contrast between the two half-spaces separated by the ground surface, on the frequency (ν) and on the positions of both the source ( r O ) and the receiver ( r C ) by means of the angle of incidence on the ground.

The ground surface itself also provides a significant path for transmission of acoustic energy, particularly at low grazing angles and low frequencies. Incident acoustic energy is transformed into vibrational energy and is transmitted along the surface layer. This vibration disturbance can propagate through long distances, before it is dissipated or re-radiated as sound. At these long distances, the transmission of low frequency sound can be dominated by this surface wave mechanism. In this work, we are interested in the interaction between the SC and the ground effect. Therefore, we have studied regions near the source and in the regime of the dispersion frequencies of the array (high frequencies). Thus, this transmission mechanism is neglected in this work.

When airborne sound impinges on the ground, part of the wave is transmitted while another is refracted at right angles onto the surface. For our purposes, we have focused our attention on the reflected waves leaving the surface at the angle of incidence, with its amplitude and phase modified by the impedance of the surface. This reflected wave propagates towards the receiver in addition to the direct wave from the source and, depending on their relative phases and amplitudes, they may constructively add or destructively interfere [START_REF] Piercy | Review of noise propagation in the atmosphere[END_REF][START_REF] Attenborough | Ground parameter information for propagation modeling[END_REF][START_REF] Attenborough | Propagation from a point source over a rough finite impedance boundary[END_REF]. The effect of the ground on the propagating wave is usually called excess attenuation and it can be explained in terms of the existence of two sources: the real one and the image source that models the reflected wave. In this case, the governing equation for pressure p at the receiver, assuming a uniform medium and a line source, in the positive half-space is

p = H 0 (kr) + R( r O , r R ; ν)H 0 (kr ) = H 0 (kr) + R p ( r O , r R , ν)H 0 (kr ) + (1 -R p ( r O , r R , ν))F H 0 (kr ) (1) 
where R p is the plane wave coefficient, H 0 is the Hankel function of 0-th order and first kind; parameter F is the boundary-loss factor which is a mathematical function of a variable w called the numerical distance. These functions are [START_REF] Taherzadeh | Deduction of ground impedance from measurements of excess attenuation spectra[END_REF][START_REF] Piercy | Review of noise propagation in the atmosphere[END_REF] 

R p ( r O , r R , ν) = cos θ -Z air Z ground cos θ + Z air Z ground
(2)

F = 1 + ı √ πwe -w 2 erfc(-ıw), (3) 
where

w = 1 2 ıkr 2 cos θ + Z air Z ground , (4) 
Z air and Z ground are the air and ground impedances respectively, r 2 is the distance between the reflection point and the receiver and θ is the reflection angle measured from the normal of the surface. erfc is the complex complementary error function. Usually, fraction β = Z air /Z ground is called the admittance of the homogeneous impedance plane.

The reflected angle can be obtained as

θ = arctan x -x O y + y O (5) 
where r O = (x O , y O ) is the position of the source and r R = (x, y) is the position of the receiver point with respect to the origin of coordinates (see Figure 1). The knowledge of the expression of the impedance is necessary in order to account the reflection properties of the surface. In this work we have characterized these type of surfaces (open cell foam layer) using a two parameter impedance model [START_REF] Taherzadeh | Deduction of ground impedance from measurements of excess attenuation spectra[END_REF] with flow resistivity σ e = 4 kPa s/m 2 and porosity at the surface α e = 105 m -1 , being the impedance of the ground

Z ground = ρc 0 0.434 σ e ν (1 + ı) + 9.75ı α e ν , (6) 
where ρ and c 0 are the density and the sound velocity of air respectively.

Multiple scattering theory for SC over a finite impedance ground (MSTFIG)

The solution of the appropriate scattering problem satisfies the Helmholtz equation in the half-space that is written in polar coordinates (r, θ) as

∆p( r) + k 2 p( r) = 0, (7) 
where

∆ = 1 r ∂ ∂r r ∂ ∂r + 1 r 2
∂ 2 ∂θ 2 , r = r(cos θ, sin θ) is the radius vector, p is acoustic displacement potential, k = ω/c and ω is angular frequency. Equation ( 7) is solved in conjunction with radiation conditions ∂p ∂r

-ikp = o r -1/2 , as r → ∞. (8) 
Given that M disjoint cylindrical scatterers located at the positions R m = R 1 , ..., R M all placed above a surface on the symmetry axis (see Figure 1) and a sound source located at point O, one can consider the incident field over the n-th scatterer in the presence of both the other M -1 scatterers and the ground by taking into account the conditions explained in Section 2 about the multiple scattering technique and the method of images.

p n ( r) = p 0 ( r) + M j=1,j =n p j s ( r) + R( R Oj , r R ; ν)p j s ( r) , (9) 
where p 0 is the pressure produced by both the real and the image sources and p j s and p j s are the scattered pressure by the j-th cylinder and its image j -th cylinder respectively. Equation ( 9) defines the interaction between the scattering of the array and the ground, therefore the semi-analytical method shown in this work is called multiple scattering theory for finite impedance ground (MSTFIG). The pressure of the sources can be expressed as

p 0 ( r) = H 0 (kr) + R( r O , r R ; ν)H 0 (kr ), (10) 
where r = r(cos θ, sin θ) is the vector connecting the real line source and the receiver point and r = r (cos θ , sin θ ) connects the position of the receiver and the image point source. On the other hand, the scattered pressures produced by the cylinders m and m can be represented as

p m s ( r) = ∞ l=-∞ A m l H (1) l (kr m )e ılθm , (11) 
p m s ( r) = ∞ l=-∞ A m l R( R Om , r R ; ν)H (1) l (kr m )e ılθ m , (12) 
where r m = r m (cos θ m , sin θ m ) is a vector connecting the centre of scatterer C m and the receiver and r m = r m (cos θ m , sin θ m ) connects the receiver with the scatterer image C m . Note that the reflected wave on the cylinder image is produced by the presence of the ground, thus the reflected pressure on the cylinder should be modulated by the reflection coefficient as in the case of the incident wave on the ground.

In order to introduce Equations ( 10), ( 11) and ( 12) in Equation ( 9) all the terms must be expressed in the same origin of coordinates. To do so, the Graf's addition theorems for the Bessel and Hankel functions are necessary [START_REF] Martin | Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles[END_REF][START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]. Thus, pressures p 0 and p s in the reference system centred at n-th scatterer are,

p 0 ( r) = ∞ l=-∞ (H (1) -l (kR n )e -ılθ Rn + R( r O , r R ; ν)H (1) -l (kR n )e -ılθ R n )J l (kr n )e ılθn , (13) 
p j s ( r) = ∞ l=-∞ G jn m + R( R Oj , r R ; ν)G j n m J l (kr n )e ılθn , (14) 
G jn m = ∞ s=-∞ A j s H (1) m-s (kR jn )e ı(m-s)θ jn = ∞ s=-∞ A j s G jn ms , (15) 
G j n m = ∞ s=-∞ A j s H (1) m-s (kR j n )e ı(m-s)θ j n = ∞ s=-∞ A j s G j n ms , (16) 
where vector

R n = R n (cos θ Rn , sin θ Rn ) ( R n = R n (cos θ R n , sin θ R n ))
defines the position of scatterer C n with respect to real (image) line source and vector R jn = R jn (cos θ jn , sin θ jn ) ( R j n = R j n (cos θ j n , sin θ j n )) defines the position of scatterer C j (C j ) with respect to scatterer C n . Finally, due to the geometry of the problem, we can express the total incident wave over the n-th scatterer as

p n ( r) = ∞ s=-∞ B n s J s (kr n )e ısθn . ( 17 
)
Introducing Equations ( 13), ( 14) and [START_REF] Sainidou | Guided and quasiguided elastic waves in phononic crystal slabs[END_REF] in Equation ( 9), one can obtain the following system of equations,

B n s = S n s + M j=1 (1 -δ jn )G jn s + R( R Oj , r R ; ν)G j n m , (18) 
where

S n s = H (1) -l (kR n )e -ılθ Rn + R( r O , r R ; ν)H (1) -l (kR n )e -ılθ R n . ( 19 
)
At this stage B n s , A j s and A j s are unknown coefficients but they can be related using the boundary conditions on the scatterers and the symmetry of the problem. The boundary conditions at the surface of a rigid cylinder relates B j s with A j s and the symmetric condition relates A j s with A j s . In our approach we will consider the general boundary condition, i.e., the continuity of both the pressure and the normal velocity across the interface between the scatterers and the surrounding medium. Note that the asymptotical situation, ρ n → ∞ and c n → ∞, reproduces the case of rigid scatterers (Neumann boundary conditions).

The boundary conditions in the n-th scatterer can be expressed as

p ext | ∂Ωn = p int | ∂Ωn , ( 20 
) 1 ρ ∂p ext ∂n | ∂Ωn = 1 ρ n ∂p int ∂n | ∂Ωn , (21) 
where ∂Ω n is the boundary of the n-th scatterer, ρ is the density of the surrounding medium and ρ n is the density of the n-th scatterer.

In order to apply the previous boundary conditions, we have considered that the pressure field inside the n-th cylinder can be represented by

P n int = ∞ j=-∞ D n j J j (k 1n r n )e ıjθn , (22) 
where k 1n is the wave number inside the n-th cylinder.

Using the boundary conditions and the expressions of both the exterior and interior fields in the n-th scatterer, we can obtain the following relation,

B n j = Γ n j A n j , (23) 
where

Γ n j = H j (kb n )J n (kb n /h n ) -g n h n H j (kb n )J j (kb n /h n ) g n h n J j (kb n )J j (kb n /h n ) -J j (kb n )J j (kb n /h n ) . ( 24 
)
Here b n is the radius of the n-th cylinder (in this work the radius of the scatterers take the same value for all the cylinders, b n = b), g n = ρ n 1 /ρ is the density ratio, and

h n = k/k n 1 = c n 1 /c
is the sound speed ratio for the i-th cylinder. Note that if the scatterers are acoustically hard, i.e., ρ 1 >> ρ and c 1 >> c, then the coefficients Γ n j coincides with those obtained with the Neumann boundary conditions,

Γ n j = - ∂ r H j (kb n ) ∂ r J j (kb n ) , ( 25 
)
where ∂ r is the derivative with respect to polar coordinate r.

The image symmetry can be used to relate A j s with A j s . One has to take into account that r j = r j and that θ j = -θ j , then

p j s ( r) = R( R Oj , r R ; ν) ∞ l=-∞ A j l H (1) l (kr j )e ılθ j = R( R Oj , r R ; ν) ∞ l=-∞ A j l H (1) l (kr j )e -ılθ j = R( R Oj , r R ; ν) ∞ l=-∞ A j -l H (1) -l (kr j )e ılθ j = R( R Oj , r R ; ν) ∞ l=-∞ A j -l (-1) l H (1) l (kr j )e ılθ j , (26) 
and

A j l = (-1) l A j -l . (27) 
Introducing Equation ( 24) or ( 25) in [START_REF] Attenborough | Propagation from a point source over a rough finite impedance boundary[END_REF] and in [START_REF] Jont | Image method for efficiently simulating small-room acoustics[END_REF], the following infinite system of equations is obtained,

Γ n s A n s = S n s + M j=1 ∞ l=-∞ (1 -δ jn )G jn sl + (-1) l R( R Oj , r R ; ν)G j n s-l A n l . ( 28 
)
The methodology previously shown is completely analytical, however the coefficients A n s should be obtained by properly truncating the previous system, i.e., one should use numerical methods to find the solution of the problem. Thus, strictly speaking the methodology is semi-analytical. The subindexes l and s take values from -L to L, therefore the infinite system is truncated to one with 2L + 1 equations. In this work, we have truncated the system using L = 3 which produces an error less than 1% with respect to the values obtained with L = 4.The total acoustic field obtained using the MSTFIG is

P ( r) = H 0 (kr) + R( r O , r R ; ν)H 0 (kr ) + M m=1 ∞ l=-∞ A m l H (1) l (kr m )e ılθm + R( R Oj , r R ; ν)H (1) l (kr m )e -ılθ m . ( 29 
)
Note that the methodology shown here is self-consistent and can be applied to any distribution, periodic or random, of scatters. On the other hand, the effect of the finite impedance of the ground only depends on the model to calculate this impedance, i.e., on the calculation of the reflection coefficient, not on the MST procedure. Through this work, we will study the variation of the attenuation properties of a SC with different types of grounds. This variation will be represented using the Insertion Loss (IL) parameter, calculated as

IL = 20 log 10 p 0 P , ( 30 
)
where P is calculated using Equation (29).

Acoustically-hard and completely absorbent grounds

For this study we have considered a 5 × 3 square array with lattice constant a =0.3 m and diameter of cylinders D = 0.25 m. The distance from the ground to the centres of the lowest cylinders in the array is half of the lattice constant, H x =0.15 m, so that they are separated from the centre of the cylinders of the image array nearest to the ground by the lattice constant. The distance between the source and the array of scatterers is H y =1 m, and the site of the receiver is (2.5, 0) m. We analyse in this Section, two different types of ground: hard ground (R( r O , r R ; ν) = 1) and completely absorbent ground (R( r O , r R ; ν) = 0). When the real source is placed on the origin of coordinates (O = (0, 0)), then the image source coincides with the real one and depending on the properties of the ground several interesting possibilities can be analysed. With the source on an acoustically hard ground, the predicted IL spectrum of the array should be equivalent to that predicted for an array of double the size (10 × 3) in the free field (without ground), whereas in the presence of an completely absorbent ground, the IL should be the same as the initial array, 5 × 3, in free field. In this Section, we use these canonical situations in order to check our semi-analytical method, specifically using the MSTFIG in the case of a SC on a surface (Section 3) and the MST in the case of a SC in free field. Additional numerical results based on finite element methods (FEM) have also been used to validate the MSTFIG.

The application of FEM to unbounded domains, as for example the case of the scattering problems, involves a domain decomposition by introducing an artificial boundary around the obstacle. This artificial boundary consists of a region in which the discretization can be coupled in various ways to some discrete representation of the analytical solution. In this work, we use a region of perfectly matched layers (PML) [START_REF] Berenguer | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] to numerically approximate the Sommerfeld conditions (see Eq. ( 8)). In this Section the commercial software COMSOL Multiphysics 3.5a is used for the numerical simulations. The PML, originating from electromagnetic computations, is based on simulating an absorbing layer of damping material surrounding the domain of interest, like a thin sponge which absorbs the scattered field radiated on the exterior of this domain. The method was immediately applied to different problems based on the scalar Helmholtz equation as for example acoustics, elasticity, poroelastic media, shallow water waves, etc. Note that MSTFIG gives the pressure field as function of the position, thus one should not solve the entire solution domain to obtain the value at this point. However, FEM should solve the entire solution domain to obtain the value of the field in one point. Thus, FEM takes more computational time than the MSTFIG method to obtain similar convergences.

Figure 2 shows the predicted IL spectra in these two particular cases, acoustically hard and completely absorbent ground. In Figure 2A, the acoustically-rigid ground is analysed. The blue continuous line shows the IL produced by the array placed on an acoustically-hard plane at y = 0 calculated using the MSTFIG. The red open circles show the IL produced by a doubled (i.e. a 10 × 3) lattice in the free field calculated using the MST. The analogous numerical predictions are also shown in Figure 2A with green dots (5 × 3 square array) and black pentagrams (doubled (i.e. a 10 × 3) lattice) respectively. Note the complete agreement between both cases, the red open circles completely coincide with the blue line, and the green dots completely coincide with the black pentagram. The possible small differences could be produced by the precision of the mesh in the numerical discretization. The differences in the predictions at higher frequencies can be reduced by considering more elements on the solution domain. However, the computational time is increased. Figure 2C represents the band structures for a periodic SC with the same periodicity as the finite structure analysed in this Section. These bands have been calculated using the plane wave expansion (PWE) [START_REF] Kushwaha | Theory of acoustic band structure of periodic elastic composites[END_REF]. Grey areas show the pseudogap in ΓX direction (0 • of incidence). The pseudogap covers the range of frequencies (329, 748) Hz. This range is in complete agreement with that obtained using the MSTFIG in the spectra shown in Figure 2A. The differences could be produced by the finite size and the near field effects.

In Figure 2B, the case of the completely absorbent ground (R=0) with the source at (0,0) is analysed. The blue continuous line shows the IL produced by a 5 × 3 square array placed on the absorbing ground using the MSTFIG. The red open circles show the IL produced by a 5 × 3 array in the free field calculated using the MST. The black pentagrams show the FEM predictions. Note the complete agreement between all the cases. Even though the FEM can be used for analysing the situations studied in this paper, its use has been limited to the purpose of validating the MSTFIG methodology. In the rest of this work we will only use the MSTFIG and we will validate our results with experimental data.

Finite impedance surface

When the source is not located on the ground, the semi-analytical solution of the problem has to be obtained using the MSTFIG. In the finite impedance surface case we will use experimental data to check the methodology in Section 4.3. We analyse here the same array as before but varying the impedance of the ground. As we have previously mentioned , the finite impedances considered here are characterized by a two parameter impedance model [START_REF] Taherzadeh | Deduction of ground impedance from measurements of excess attenuation spectra[END_REF] with different values of σ e and α e . We have specifically analysed the cases of a rigid ground, a completely absorbent ground, a covered ground characterized in reference [START_REF] Attenborough | Ground parameter information for propagation modeling[END_REF], the finite impedance ground analysed in reference [START_REF] Taherzadeh | Deduction of ground impedance from measurements of excess attenuation spectra[END_REF] and the sheet of porous material used in this work with σ e = 4000 Pa s/m 2 and α e = 105 m -1 .

Figure 3A shows the IL predictions obtained using the MSTFIG for the five values of the ground impedance. In these cases the source and the receiver are out of the ground, placed at points (0,0.25) m and (2.5, 0.75) m respectively. Figures 3B,3C The orange line with open circles in Figure 3A shows the IL of the array over a rigid ground. At around 1200 Hz, the values of the IL are negative because the excess attenuation shows a clear interaction between the BG of the array and the ground effect. Note that this deep in the attenuation spectrum, due to the excess attenuation, depends on the impedance of the ground, thus it could be modelled depending on the considered impedance. The black horizontally dashed line, the red dots, the green vertically dashed and the blue continuous lines show the reduction or shift of the excess attenuation peaks due to the reduction on the reflection coefficient because of the finite ground impedance. Note that the IL is calculated here considering the pressure level of the system with the ground as a reference. Taking this into account, the negativity of the IL means that, although the sound is attenuated behind the SC, the presence of the SC reduces the effect of the excess attenuation peak. This will be discussed in detail in the following Sections.

Results

In this Section, we analyse the effect of the finite ground impedance on the attenuation properties of a periodic array of scatterers from both semi-analytical and experimental points of view. In both cases we have used an array of 7 × 3 scatterers in square periodicity with lattice constant a = 0.069 m over a ground with a line source placed at point O = (0, 0.235) m. The circular scatterers present a radius r = 0.0275 m. For these simulations, we have considered H y = 0.755 m and H x = 0.0275 m.

Here, we have considered two different grounds: an acoustically-rigid ground (R=1) and a finite impedance ground characterized by a two parameter model (σ e = 4000 Pa s/m 2 and α e = 105 m -1 ).

Symmetry of the acoustic field. Rigid and finite impedance surfaces

In Figure 4, we have analysed the symmetry of the acoustic pressure field with respect to the ground plane depending on the value of the impedance. If the impedance is infinite, i.e., acoustically-hard ground, the acoustic field should be symmetric, which means that the acoustic field in the image space should be symmetrically equivalent to the acoustic field in the real space. However, in the case of a finite impedance ground, the symmetry is broken and the field in the real space and the image space are not identical.

Figure 4A shows the band structure for the considered array calculated using the PWE method. Note that, in this case, the lattice constant is lower than in the previous array, and this produces a shift to higher frequencies of the band gap. Moreover, the filling fraction also affects the width of both the pseudogap and the gap. The range of frequencies between 2478 Hz and 3171 Hz defines the full band gap for this array. Using the MSTFIG, we have predicted the acoustic field at 2000 Hz considering both an acoustically-hard ground and a finite impedance ground. Figures 4B and4C show the pressure maps (Re(P )) at 2000 Hz. One can clearly observe the symmetry of the acoustic pressure field in the hard ground case and how this symmetry is broken in the case of finite impedance. 

Band gap-ground plane interaction

For a predetermined source position and the impedance of the ground, the IL defined by Eq. 30 represents the difference between the pressure level measured with and without the array in the presence of the ground. To interpret the IL, one should take into account the effects produced by both the ground and the SC. The ground produces zones with excess attenuation which depends on both the position of the receiver and on the frequency. On the other hand, SC present ranges of attenuated frequencies which depend on both the relative position of the source and the receiver and on the filling fraction. We have calculated the IL spectra using the MSTFIG for the receiver positioned at the interval height y = [0, 0.469] m and for a distance of x = 1.203 m from the source. In all of these cases the IL has been analysed for the two different kinds of grounds defined at the beginning of this Section.

Hard ground

The excess attenuation caused by the ground with the receiver at several heights, due to a rigid ground and without SC, can be observed in Figure 5A. Each horizontal cut, y = y r , of the map in Figure 5 represents the spectrum at point (1.203, y r ) m. The pressure level (P L) in the receiver sites is characterized with the following expression,

P L = 20 log 10 (|H 0 (kr) + H 0 (kr )|) . (31) 
The excess attenuation appears in Figure 5A as regions of frequencies with negative values of the P L produced by the destructive interference between the incident wave (from the source) and the reflected wave on the ground. Then, the positive values of the P L mean a positive interference and consequently a reinforcement. Figure 5A shows the dependence of the excess attenuation on the height of the receiver and on the frequency. The higher the height, the lower the frequency of the excess attenuation peak is. Excess attenuation peaks of second order can also be observed for high values of both height and frequencies.

In Figure 5B, the IL map produced by the interaction of the rigid ground and the array of scatterers is shown. The vertical dotted line shows the beginning of the pseudogap in ΓX direction whereas the vertical continuous lines show the range of frequencies of the full band gap of the array. This IL is calculated using Equation (30). One can observe that, for all the considered heights, the maximum value of IL is obtained for the frequencies inside the pseudogap in ΓX direction. However, there are heights at which the IL is negative, which represents a reinforcement with respect to the case in which we used a reflecting surface alone. The low values of the pressure at these points and frequencies for the reference taken to calculate the IL (i.e., the pressure only calculated with the presence of the ground) produce that, although the SC attenuates sound because of the BG, the IL was negative. Then, in comparison with the case of only the ground, the negativity of the IL means that, although at these heights a low pressure level exists, the presence of the SC reduces the excess attenuation of the ground. 

Soft ground

The excess attenuation caused by a soft ground (σ e = 4000 Pa s/m 2 and α e = 105 m -1 ) at different heights of the receiver and without the array of scatterers can be observed in Figure 6A. In this case, the pressure level (P L) in the receiver sites is characterized using the following expression,

P L = 20 log 10 (|H 0 (kr) + R( r O , r R ; ν)H 0 (kr )|) , (32) 
where R( r O , r R ; ν) is calculated using the approach shown in Section 2.2 and is obtained by combining Equations ( 2) and ( 6) in Equation [START_REF] Martínez-Sala | Sound Attenuation by sculpture[END_REF] In Figure 6A, one can observe the pressure level in the case of a sound source with this finite impedance ground. Once again, the excess attenuation also depends on both the frequency and the height of the receiver. However, this dependence changes due to the properties of the ground. The first excess attenuation peak appears at lower frequencies and lower heights than in the case of the acoustically-rigid ground. Excess attenuation peaks of second order can also be observed for lower values of both heights and frequencies than in the case of the rigid ground.

Figure 6B shows the IL maps produced as a result of the interplay between the soft ground and the array of scatterers. The vertical dotted line shows the beginning of the pseudogap in ΓX direction whereas the continuous lines show the range of frequencies of the full band gap of the array. As in the case of the hard ground, the attenuation peaks are once again present due to the influence of the ground. One can also observe that the array of scatterers changes the attenuation properties at the receiver site for frequencies above and below the first peak of excess attenuation adding this effect to that related with the band gap. A 0.03 m thick wooden board, large enough to avoid the diffraction at the edges, was used as a hard surface. The loudspeaker point source was positioned at 0.755 m from the array at the height of the horizontal mid-plane of the array (0.23 m above the ground). The height of the receiver microphone was 0.117 m, 0.235 m or 0.352 m and it was placed in a vertical plane at 0.257 m from the back of the array. The receiver heights were chosen to be below, at, and above, the horizontal mid-plane of the array. In all cases, a constant distance between the microphone and the periodic array has been considered, in such a way that the distance between the source and the receiver was x = 1.203 m. In this study, we have analysed the properties in ΓX direction (0 • ). The attenuation spectra have been obtained from the difference between the sound level recorded at the same point in two different configurations: i) the ground alone and ii) the ground and the periodic array. 4.3.2. Hard ground Figure 7 compares measured and predicted IL spectra for the considered array placed on a hard ground plane with the receiver in three positions with different heights and using the source location described in Section 4.3.1. An R = 1 value has been used for the calculation due to the rigidity of the ground. The agreement between predictions and measurements is fairly good. The discrepancies observed are probably produced by the fact that the experimental ground is not completely rigid. The semi-analytical spectra corresponding to these three heights are also marked in Figure 5B with dotted horizontal lines. One can observe in Figure 7 that the ground effect in the IL due to the excess attenuation peaks for the three heights analysed in this work corresponds with deeps at 4000 Hz, 2000 Hz and 1400 Hz respectively. These frequencies correspond to horizontal dotted lines in Figure 5B In Figure 5C, one can observe that the experimental measurements do not reproduce the second order peak of the excess attenuation at high frequencies (4000 Hz). Once again this discrepancy could be due to the fact that the impedance of the ground used in the laboratory is not infinite, i.e., the reflection coefficient is not R = 1. However, the agreement between the semi-analytical predictions and the laboratory measurements is good. 4.3.3. Soft ground Figure 8 compares the corresponding measured and predicted insertion loss spectra for the considered array on a finite impedance ground for the three receiver heights previously described. For the simulations with the MSTFIG we have used the reflection coefficient obtained from equation 2 with the two parameter impedance model with the values σ e = 4000 Pa s/m 2 and α e = 105 m -1 . Once again, the agreement between the predictions and measurements is fairly good. The horizontal dotted lines in Figure 6B show the corresponding cuts of the IL maps for the three heights analysed in this Section. The semi-analytical predictions of the IL spectra in Figures 8A and8B predict excess attenuation peaks around 1000 Hz in complete disagreement with the experimental results. However, in the case of Figure 8C, the attenuation peak is well defined both semi-analytically and experimentally. This discrepancy could be explained in terms of the interference between the microphone and the finite impedance ground at low grazing angles. The adverse and the additional attenuation influences of the ground effect in the IL spectra are shifted towards lower frequencies due to the finite impedance of the ground. Note that the dependence of the excess attenuation peak on the height of the receiver produces a lower shift in frequency than in the case of the rigid ground, in complete agreement with the results shown in Figure 6B.

Concluding remarks

The effect of both rigid and finite impedance grounds on the attenuation properties of an array of rigid cylindrical scatterers has been booth analytically and experimentally analysed. The Multiple Scattering Theory for a SC over a Finite Impedance Ground (MSTFIG) has been developed as a semi-analytical methodology to study the effect of the ground with different values of the impedance on the propagation properties of an array of rigid scatterers in air. We have also analysed the interaction between the SC and the ground with the receiver at different heights. In order to both compare and validate the model, the MSTFIG has been checked with both numerical predictions (FEM) and experimental results obtaining good agreement between them. The excess attenuation produced by the interplay between the sound source and the ground can be used to tune the attenuation properties of the array of scatterers. Then, the excess attenuation should be taken into account in the design of arrays of scatterers acting as sonic crystal noise barriers.
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 1 Figure 1. (A) Square lattice array above a perfectly reflecting plane. (B) Schematic of the real and the image sources and the real and the image scatterers.

Figure 2 .

 2 Figure 2. (Colour online) Predicted IL spectra of a square array of rigid cylinders with diameter 0.25 m, lattice constant 0.3 m above ground plane at y = 0 and 'lowest' cylinder centres at H x = 0.15 m. The source and receiver coordinates are (0,0) m and (2.5,0) m respectively. The nearest part of the array is at H y = 1 m from the source. (A) Acoustically-hard ground R( r O , r R , ν) = 1: Blue continuous line (respectively, green dots) shows the IL produced by a 5 × 3 square array of rigid cylinders calculated using the MSTFIG (respectively, finite element method). The open red circles (respectively, black pentagrams) show the IL produced by a doubled (i.e. a 10 × 3) lattice in the free field calculated using the MST (respectively, finite element method). (B) Completely absorbent ground R( r O , r R , ν) = 0: Blue continuous line (respectively, open red circles and black pentagrams) shows the IL produced by a 5 × 3 square array of rigid cylinders calculated using the MSTFIG (respectively, MST and FEM). (C) Band structure in the considered case calculated using plane wave expansion (PWE). The grey area represents the pseudogap in ΓX direction.

Figure 3 .

 3 Figure 3. (Colour online) IL and reflection coefficient predictions obtained using the MSTFIG for five values of ground impedance. (A) IL of the same array as in Figure 2A with the source and the receiver placed at points (0,0.25) m and (2.5, 0.75) m respectively, and H x = 0.15 m and H y = 1 m. The orange continuous dotted line shows the IL predicted in the case of a rigid ground. The green crossed dash line shows the IL predicted in the case of a completely absorbent ground. The black dashed line shows the IL predictions in the case of a covered ground characterized by σ e = 630 kPa s/m 2 and α e = 188 m -1 . Red dots show the IL predicted for the case of a ground characterized by σ e = 272500 Pa s/m 2 and α e = 158 m -1 . The blue continuous line shows the IL predictions in the case of a sheet of porous material characterized by σ e = 4000 Pa s/m 2 and α e = 105 m -1 . The real, imaginary and absolute values of the reflection coefficients of these three grounds are shown in (B), (C) and (D) respectively. The grey area represents the pseudogap in ΓX direction.

  and 3D show the absolute, real and imaginary values of the reflection coefficients calculated at the receiver site for the three considered ground impedances. The calculations of these impedances are based on a two-parameter model, being σ e = 630 kPa s/m 2 and α e = 188 m -1 , σ e = 272500 Pa s/m 2 and α e = 158 m -1 , σ e = 4000 Pa s/m 2 and α e = 105 m -1 respectively.

Figure 4 .

 4 Figure 4. (Colour online) Pressure maps for an array of 7 × 3 scatterers in square array with lattice constant a = 0.069 m considering a line source placed at point O = (0, 0.235) m. The circular scatterers present a radius r = 0.0275 m. For these simulations we have considered H y = 0.755 m and H x = 0.0275 m. (A) Band structure calculated using the PWE method. (B) and (C) pressure maps (Re(P )) (Pa) at 2000 Hz for an acoustically-hard ground and an finite impedance ground (σ e = 4000 Pa s/m 2 and α e = 105 m -1 ) respectively.

Figure 5 .

 5 Figure 5. (Colour online) (A) Pressure level spectra surface produced by the line source in the presence of a rigid ground. The line source is placed at point O = (0, 0.235) m. We ahve calculated the pressure level using Equation 31 at interval height y = [0, 0.469] m for a distance x = 1.203 m from the source. (B) IL map produced by a 7 × 3 array with square periodicity with a = 0.069 m. The circular scatterers present a radius r = 0.0275. For these simulations we have considered H y = 0.755 m and H x = 0.0275 m. We have calculated the IL spectra using the MSTFIG at interval height y = [0, 0.469] m and for a distance of x = 1.203 m from the source. The vertical dashed line marks the beginning of the pseudogap in ΓX direction (0 • ) and the vertical continuous line marks the ranges of frequencies of the full band gap. The horizontal dotted lines show the semi-analytical and experimental cuts shown in Figure 7.

Figure 6 .

 6 Figure 6. (Colour online) (A) Pressure level spectra surface produced by the line source in the presence of a finite impedance ground (σ e = 4000 P a s/m 2 and α e = 105 m -1 ). The line source is placed at point O = (0, 0.235) m. We have calculated the pressure level using Equation 32 at interval height y = [0, 0.469] m and for a distance of x = 1.203 m from the source. (B) IL map produced by a 7 × 3 array with square periodicity with a = 0.069 m above a finite impedance ground. The circular scatterers present a radius r = 0.0275. For these simulations we have considered H y = 0.755 m and H x = 0.0275 m. We have calculated the IL spectra using the MSTFIG at interval height y = [0, 0.469] m and for a distance of x = 1.203 m from the source. The vertical dashed line marks the beginning of the pseudogap in ΓX direction (0 • ) and the vertical continuous line marks the ranges of frequencies of the full band gap. The horizontal dotted lines show the semi-analytical and experimental cuts shown in Figure 8.

4. 3 .

 3 Comparisons between data and predictions 4.3.1. Laboratory experiment 2 m long PVC cylinders with outer diameters of 55 mm have been used to construct the 7 × 3 square periodic array with lattice constant a = 0.069 m. The sound source was a Bruel & Kjaer point source loudspeaker controlled by a Maximum-Length Sequence System Analyzer (MLSSA) enabling the determination of impulse responses. Measurements of the insertion loss (IL) spectra for arrays of cylinders placed near a ground surface in an anechoic chamber have been obtained.

Figure 7 .

 7 Figure 7. Measured (open circle with dotted line) and predicted (continuous line) insertion loss spectra for a source at coordinates (0,0.235) m and 0.755 m from a 7 × 3 array of rigid cylinders of a 0.055 m diameter over acoustically-hard ground with receiver coordinates (A) (1.203,0.117) m, (B) (1.203,0.235) m and (C) (1.203,0.352) m. Arrays of cylinders placed near the ground surface.

Figure 8 .

 8 Figure 8. Measured (solid line) and predicted (broken line) insertion loss spectra for a source at coordinates (0,0.235) m and 0.755 m from a 7 × 3 array of rigid cylinders of a 0.055 m diameter over a finite impedance ground with receiver coordinates (A) (1.203,0.117) m, (B) (1.203,0.235) m and (C) (1.203,0.352) m. Arrays of cylinders placed near the ground surface.
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