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BRUHAT-TITS BUILDINGS AND ANALYTIC GEOMETRY

by

Bertrand Rémy, Amaury Thuillier & Annette Werner

Abstract. — This paper provides an overview of the theory of Bruhat-Tits buildings. Besides, we
explain how Bruhat-Tits buildings can be realized inside Berkovich spaces. In this way, Berkovich
analytic geometry can be used to compactify buildings. We discuss in detail the example of the
special linear group.

Résumé (Immeubles de Bruhat-Tits et géométrie analytique). — Ce texte introduit les im-
meubles de Bruhat-Tits associés aux groupes réductifs sur les corps valués et explique comment
les réaliser et les compactifier au moyen de la géomérie analytique de Berkovich. Il contient une
discussion détaillée du cas du groupe spécial linéaire.
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Introduction

This paper is mainly meant to be a survey on two papers written by the same authors,
namely [RTW10] and [RTW12]. The general theme is to explain what the theory of ana-
lytic spaces in the sense of Berkovich brings to the problem of compactifying Bruhat-Tits
buildings.

1. Bruhat-Tits buildings.— The general notion of a building was introduced by J. Tits in
the 60ies [Tits74], [Bou07, Exercises for IV.2]. These spaces are cell complexes, required
to have some nice symmetry properties so that important classes of groups may act on them.
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More precisely, it turned out in practice that for various classes of algebraic groups and gener-
alizations, a class of buildings is adapted in the sense that any group from such a class admits
a very transitive action on a suitable building. The algebraic counterpart to the transitivity
properties of the action is the possibility to derive some important structure properties for the
group.

This approach is particularly fruitful when the class of groups is that of simple Lie groups
over non-Archimedean fields, or more generally reductive groups over non-Archimedean
valued fields – see Sect. 3. In this case the relevant class of buildings is that of Euclidean
buildings (1.1). This is essentially the only situation in building theory we consider in this

paper. Its particularly nice features are, among others, the facts that in this case the buildings
are (contractible, hence simply connected) gluings of Euclidean tilings and that deep (non-
positive curvature) metric arguments are therefore available; moreover, on the group side,
structures are shown to be even richer than expected. For instance, topologically the action
on the buildings enables one to classify and understand maximal compact subgroups (which
is useful to representation theory and harmonic analysis) and, algebraically, it enables one to
define important integral models for the group (which is again useful to representation theory,
and which is also a crucial step towards analytic geometry).

One delicate point in this theory is merely to prove that for a suitable non-Archimedean re-
ductive group, there does exist a nice action on a suitable Euclidean building: this is the main
achievement of the work by F. Bruhat and J. Tits in the 70ies [BrT72], [BrT84]. Eventually,
Bruhat-Tits theory suggests to see the Euclidean buildings attached to reductive groups over
valued fields (henceforth called Bruhat-Tits buildings) as non-Archimedean analogues of the
symmetric spaces arising from real reductive Lie groups, from many viewpoints at least.

2. Some compactification procedures.— Compactifications of symmetric spaces were de-
fined and used in the 60ies; they are related to the more difficult problem of compactify-
ing locally symmetric spaces [Sat60b], to probability theory [Fur63], to harmonic analy-
sis... One group-theoretic outcome is the geometric parametrization of classes of remarkable
closed subgroups [Moo64]. For all the above reasons and according to the analogy between
Bruhat-Tits buildings and symmetric spaces, it makes therefore sense to try to construct com-
pactifications of Euclidean buildings.

When the building is a tree, its compactification is quite easy to describe [Ser77]. In gen-
eral, and for the kind of compactifications we consider here, the first construction is due to E.
Landvogt [Lan96]: he uses there the fact that the construction of the Bruhat-Tits buildings
themselves, at least at the beginning of Bruhat-Tits theory for the simplest cases, consists in
defining a suitable gluing equivalence relation for infinitely many copies of a well-chosen
Euclidean tiling. In Landvogt’s approach, the equivalence relation is extended so that it glues
together infinitely many compactified copies of the Euclidean tiling used to construct the
building. Another approach is more group-theoretic and relies on the analogy with symmet-
ric spaces: since the symmetric space of a simple real Lie group can be seen as the space of
maximal compact subgroups of the group, one can compatify this space by taking its closure
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in the (compact) Chabauty space of all closed subgroups. This approach is carried out by
Y. Guivarc’h and the first author [GR06]; it leads to statements in group theory which are
analogues of [Moo64] (e.g., the virtual geometric classification of maximal amenable sub-
groups) but the method contains an intrinsic limitation due to which one cannot compactify
more than the set of vertices of the Bruhat-Tits buildings.

The last author of the present paper also constructed compactifications of Bruhat-Tits
buildings, in at least two different ways. The first way is specific to the case of the general
linear group: going back to Bruhat-Tits’ interpretation of Goldman-Iwahori’s work [GI63],
it starts by seeing the Bruhat-Tits building of GL(V) – where V is a vector space over
a discretely valued non-Archimedean field – as the space of (homothety classes of) non-
Archimedean norms on V. The compactification consists then in adding at infinity the (ho-
mothety classes of) non-zero non-Archimedean seminorms on V. Note that the symmetric
space of SLn(R) is the set of normalized scalar products on Rn and a natural compactifica-
tion consists in projectivizing the cone of positive nonzero semidefinite bilinear forms: what
is done in [Wer04] is the non-Archimedean analogue of this; it has some connection with
Drinfeld spaces and is useful to our subsequent compactification in the vein of Satake’s work
for symmetric spaces. The second way is related to representation theory [Wer07]: it pro-
vides, for a given group, a finite family of compactifications of the Bruhat-Tits building. The
compactifications, as in E. Landvogt’s monograph, are defined by gluing compactified Eu-
clidean tilings but the variety of possibilities comes from exploiting various possibilities of
compactifying equivariantly these tilings in connection with highest weight theory.

3. Use of Berkovich analytic geometry.— The compactifications we would like to intro-
duce here make a crucial use of Berkovich analytic geometry. There are actually two different
ways to use the latter theory for compactifications.

The first way is already investigated by V. Berkovich himself when the algebraic group
under consideration is split [Ber90, Chap. 5]. One intermediate step for it consists in defining
a map from the building to the analytic space attached to the algebraic group: this map
attaches to each point x of the building an affinoid subgroup Gx, which is characterized by
a unique maximal point ϑ(x) in the ambient analytic space of the group. The map ϑ is
a closed embedding when the ground field is local; a compactification is obtained when ϑ

is composed with the (analytic map) associated to a fibration from the group to one of its
flag varieties. One obtains in this way the finite family of compactifications described in
[Wer07]. One nice feature is the possibility to obtain easily maps between compactifications
of a given group but attached to distinct flag varieties. This enables one to understand in
combinatorial Lie-theoretic terms which boundary components are shrunk when going from
a “big" compactification to a smaller one.

The second way mimics I. Satake’s work in the real case. More precisely, it uses a highest
weight representation of the group in order to obtain a map from the building of the group to
the building of the general linear group of the representation space which, as we said before,
is nothing else than a space of non-Archimedean norms. Then it remains to use the seminorm
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compactification mentioned above by taking the closure of the image of the composed map
from the building to the compact space of (homothety classes of) seminorms on the non-
Archimedean representation space.

For a given group, these two methods lead to the same family of compactifications, in-
dexed by the conjugacy classes of parabolic subgroups. One interesting point in these two
approaches is the fact that the compactifications are obtained by taking the closure of images
of equivariant maps. The construction of the latter maps is also one of the main difficulties;
it is overcome thanks to the fact that Berkovich geometry has a rich formalism which com-
bines techniques from algebraic and analytic geometry (the possibility to use field extensions,
or the concept of Shilov boundary, are for instance crucial to define the desired equivariant
maps).

Structure of the paper. In Sect. 1, we define (simplicial and non-simplicial) Euclidean
buildings and illustrate the notions in the case of the groups SLn; we also show in these cases
how the natural group actions on the building encode information on the group structure of
rational points. In Sect. 2, we illustrate general notions thanks to the examples of spaces
naturally associated to special linear groups (such as projective spaces); this time the notions
are relevant to Berkovich analytic geometry and to Drinfeld upper half-spaces. We also pro-
vide specific examples of compactifications which we generalize later. In Sect. 3, we sum
up quickly what we need from Bruhat-Tits theory, including the existence of integral models
for suitable bounded open subgroups; following the classical strategy, we first show how to
construct a Euclidean building in the split case by gluing together Euclidean tilings, and then
how to rely on Galois descent arguments for non-necessarily split groups. In Sect. 4, we
finally introduce the maps that enable us to obtain compactifications of Bruhat-Tits buildings
(these maps from buildings to analytifications of flag varieties have been previously defined
by V. Berkovich in the split case); a variant of this embedding approach, close to Satake’s
ideas using representation theory to compactify symmetric spaces, is also quickly presented.
In the last section, we correct a mistake in the proof of an auxiliary lemma in [RTW10] which
requires us to introduce an additional hypothesis for two results of [RTW12].

Acknowledgements. — We warmly thank the organizers of the summer school “Berkovich
spaces" held in Paris in July 2010. We are grateful to the referee for many comments, cor-
rections and some relevant questions, one of which led to Proposition 5.11. Finally, we thank
Tobias Schmidt for pointing out that Lemma A.10 of [RTW10] needed to be corrected.

Conventions. — In this paper, as in [Ber90], valued fields are assumed to be non-
Archimedean and complete, the valuation ring of such a field k is denoted by k◦, its maximal
ideal is by k◦◦ and its residue field by k̃ = k◦/k◦◦. Moreover a local field is a non-trivially
valued non-Archimedean field which is locally compact for the topology given by the
valuation (i.e., it is complete, the valuation is discrete and the residue field is finite).
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1. Buildings and special linear groups

We first provide a (very quick) general treatment of Euclidean buildings; general refer-
ences for this notion are [Rou09] and [Wei09]. It is important for us to deal with the sim-
plicial as well as the non-simplicial version of the notion of a Euclidean building because
compactifying Bruhat-Tits buildings via Berkovich techniques uses huge valued fields. The
second part illustrates these definitions for special linear groups; in particular, we show how
to interpret suitable spaces of norms to obtain concrete examples of buildings in the case when
the algebraic group under consideration is the special linear group of a vector space. These
spaces of norms will naturally be extended to spaces of (homothety classes of) seminorms
when buildings are considered in the context of analytic projective spaces.

1.1. Euclidean buildings. — Euclidean buildings are non-Archimedean analogues of Rie-
mannian symmetric spaces of the non-compact type, at least in the following sense: if G is
a simple algebraic group over a valued field k, Bruhat-Tits theory (often) associates to G and
k a metric space, called a Euclidean building, on which G(k) acts by isometries in a “very
transitive" way. This is a situation which is very close to the one where a (non-compact)
simple real Lie group acts on its associated (non-positively curved) Riemannian symmetric
space. In this more classical case, the transitivity of the action, the explicit description of
fundamental domains for specific (e.g., maximal compact) subgroups and some non-positive
curvature arguments lead to deep conjugacy and structure results – see [Mau09] and [Par09]
for a modern account. Euclidean buildings are singular spaces but, by and large, play a similar
role for non-Archimedean Lie groups G(k) as above.

1.1.1. Simplicial definition. — The general reference for building theory from the various
“discrete" viewpoints is [AB08]. Let us start with an affine reflection group, more precisely a
Coxeter group of affine type [Bou07]. The starting point to introduce this notion is a locally
finite family of hyperplanes – called walls – in a Euclidean space [loc. cit., V §1 introduc-
tion]. An affine Coxeter group can be seen as a group generated by the reflections in the
walls, acting properly on the space and stabilizing the collection of walls [loc. cit., V §3
introduction]; it is further required that the action on each irreducible factor of the ambient
space be via an infinite essential group (no non-zero vector is fixed by the group).

Example 1.1. — 1. The simplest (one-dimensional) example of a Euclidean tiling is pro-

vided by the real line tesselated by the integers. The corresponding affine Coxeter

group, generated by the reflections in two consecutive vertices (i.e., integers), is the

infinite dihedral group D∞.

2. The next simplest (irreducible) example is provided by the tesselation of the Euclidean

plane by regular triangles. The corresponding tiling group is the Coxeter group of

affine type Ã2; it is generated by the reflections in the three lines supporting the edges

of any fundamental triangle.
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Note that Poincaré’s theorem is a concrete source of Euclidean tilings: start with a Eu-
clidean polyhedron in which each dihedral angle between codimension 1 faces is of the form
π
m

for some integer m > 1 (depending on the pair of faces), then the group generated by the
reflections in these faces is an affine Coxeter group [Mas88, IV.H.11].

In what follows, Σ is a Euclidean tiling giving rise to a Euclidean reflection group by
Poincaré’s theorem (in Bourbaki’s terminology, it can also be seen as the natural geometric
realization of the Coxeter complex of an affine Coxeter group, that is the affinization of the
Tits’ cone of the latter group [Bou07]).

Definition 1.2. — Let (Σ,W ) be a Euclidean tiling and its associated Euclidean reflection

group. A (discrete) Euclidean builiding of type (Σ,W ) is a polysimplicial complex, say B,

which is covered by subcomplexes all isomorphic to Σ – called the apartments – such that the

following incidence properties hold.

SEB 1 Any two cells of B lie in some apartment.

SEB 2 Given any two apartments, there is an isomorphism between them fixing their intersec-

tion in B.

The cells in this context are called facets and the group W is called the Weyl group of the

building B. The facets of maximal dimension are called alcoves.

The axioms of a Euclidean building can be motivated by metric reasons. Indeed, once
the choice of a W -invariant Euclidean metric on Σ has been made, there is a natural way the
define a distance on the whole building: given any two points x and x′ in B, by (SEB 1) pick
an apartment A containing them and consider the distance between x and x′ taken in A; then
(SEB 2) implies that the so–obtained non-negative number doesn’t depend on the choice of
A. It requires further work to check that one defines in this way a distance on the building
(i.e., to check that the triangle inequality holds [Par00, Prop. II.1.3]).

Remark 1.3. — The terminology “polysimplicial" refers to the fact that a building can be a

direct product of simplicial complexes rather than merely a simplicial complex; this is why

we provisionally used the terminology “cells" instead of “polysimplices" to state the axioms

(as already mentioned, cells will henceforth be called facets – alcoves when they are top-

dimensional).

Let us provide now some examples of discrete buildings corresponding to the already
mentioned examples of Euclidean tilings.

Example 1.4. — 1. The class of buildings of type (R,D∞) coincides with the class of

trees without terminal vertex (recall that a tree is a 1-dimensional simplicial complex

– i.e., the geometric realization of a graph – without non-trivial loop [Ser77]).
2. A 2-dimensional Ã2-building is already impossible to draw, but roughly speaking it can

be constructed by gluing half-tilings to an initial one along walls (i.e., fixed point sets of

reflections) and by iterating these gluings infinitely many times provided a prescribed
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“shape" of neighborhoods of vertices is respected – see Example 1.7 for further details

on the local description of a building in this case.

It is important to note that axiom (ii) does not require that the isomorphism between apart-
ments extends to a global automorphism of the ambient building. In fact, it may very well
happen that for a given Euclidean building B we have Aut(B) = {1} (take for example a tree
in which any two distinct vertices have distinct valencies). However, J. Tits’ classification of
Euclidean buildings [Tit86] implies that in dimension > 3 any irreducible building comes –
via Bruhat-Tits theory, see next remark – from a simple algebraic group over a local field, and
therefore admits a large automorphism group. At last, note that there do exist 2-dimensional
exotic Euclidean buildings, with interesting but unexpectedly small automorphism groups
[Bar00].

Remark 1.5. — In Sect. 3, we will briefly introduce Bruhat-Tits theory. The main outcome

of this important part of algebraic group theory is that, given a semisimple algebraic group

G over a local field k, there exists a discrete Euclidean building B = B(G,k) on which the

group of rational points G(k) acts by isometries and strongly transitively (i.e., transitively on

the inclusions of an alcove in an apartment).

Example 1.6. — Let G as above be the group SL3. Then the Euclidean building associated

to SL3 is a Euclidean building in which every apartment is a Coxeter complex of type Ã2,

that is the previously described 2-dimensional tiling of the Euclidean space R2 by regular tri-

angles. Strong transitivity of the SL3(k)-action means here that given any alcoves (triangles)

c,c′ and any apartments A,A′ such that c ⊂ A and c′ ⊂ A′ there exists g ∈ SL3(k) such that

c′ = g.c and A′ = g.A.

The description of the apartments doesn’t depend on the local field k (only on the Dynkin
diagram of the semisimple group in general), but the field k plays a role when one describes
the combinatorial neighborhoods of facets, or small metric balls around vertices. Such sub-
sets, which intersect finitely many facets when k is a local field, are known to be realizations
of some (spherical) buildings: these buildings are naturally associated to semisimple groups
(characterized by some subdiagram of the Dynkin diagram of G) over the residue field k̃ of k.

Example 1.7. — For G = SL3 and k = Qp, each sufficiently small ball around a vertex is

the flag complex of a 2-dimensional vector space over Z/pZ and any edge in the associated

Bruhat-Tits building is contained in the closure of exactly p+ 1 triangles. A suitably small

metric ball around any point in the relative interior of an edge can be seen as a projective

line over Z/pZ, that is the flag variety of SL2 over Z/pZ.

1.1.2. Non-simplicial generalization. — We will see, e.g. in 4.1, that it is often necessary to
understand and use reductive algebraic groups over valued fields for non-discrete valuations
even if in the initial situation the ground field is discretely valued. The geometric counterpart
to this is the necessary use of non-discrete Euclidean buildings. The investigation of such
a situation is already covered by the fundamental work by F. Bruhat and J. Tits as written
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in [BrT72] and [BrT84], but the intrinsic definition of a non-discrete Euclidean building is
not given there – see [Tit86] though, for a reference roughly appearing at the same time as
Bruhat-Tits’ latest papers.

The definition of a building in this generalized context is quite similar to the discrete one
(1.1.1) in the sense that it replaces an atlas by a collection of “slices" which are still called
apartments and turn out to be maximal flat (i.e., Euclidean) subspaces once the building is
endowed with a natural distance. What follows can be found for instance in A. Parreau’s
thesis [Par00].

Let us go back to the initial question.

Question 1.8. — Which geometry can be associated to a group G(k) when G is a reductive

group over k, a (not necessarily discretely) valued field?

The answer to this question is a long definition to swallow, so we will provide some
explanations immediately after stating it.

The starting point is again a d-dimensional Euclidean space, say Σvect, together with a
finite group W in the group of isometries Isom(Σvect) ≃ Od(R). By definition, a vectorial

wall in Σvect is the fixed-point set in Σvect of a reflection in W and a vectorial Weyl chamber

is a connected component of the complement of the union of the walls in Σvect, so that Weyl
chambers are simplicial cones.

Now assume that we are given an affine Euclidean space Σ with underlying Euclidean
vector space Σvect. We have thus Isom(Σ) ≃ Isom(Σvect)⋉Σvect ≃ Od(R)⋉Rd . We also
assume that we are given a group W of (affine) isometries in Σ such that the vectorial part of
W is W and such that there exists a point x ∈ Σ and a subgroup T ⊂ Isom(Σ) of translations
satisfying W = Wx ·T; we use here the notation Wx = StabW (x). A point x satisfying this
condition is called special.

Definition 1.9. — Let B be a set and let A = { f : Σ→B} be a collection of injective maps,

whose images are called apartments. We say that B is a Euclidean building of type (Σ,W ) if

the apartments satisfy the following axioms.

EB 1 The family A is stable by precomposition with any element of W (i.e., for any f ∈ A

and any w ∈W, we have f ◦w ∈ A ).

EB 2 For any f , f ′ ∈ A the subset C f , f ′ = f ′−1
(

f (Σ)
)

is convex in Σ and there exists w ∈W

such that we have the equality of restrictions ( f−1 ◦ f ′) |C f , f ′
= w |C f , f ′

.

EB 3 Any two points of B are contained in a suitable apartment.

At this stage, there is a well-defined map d : B×B → R>0 and we further require:

EB 4 Given any (images of) Weyl chambers, there is an apartment of X containing sub-Weyl

chambers of each.

EB 5 Given any apartment A and any point x ∈ A, there is a 1-lipschitz retraction map

r = rx,A : B → A such that r |A= idA and r−1(x) = {x}.
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The above definition is taken from [Par00, II.1.2]; in these axioms a Weyl chamber is
the affine counterpart to the previously defined notion of a Weyl chamber and a “sub-Weyl
chamber" is a translate of the initial Weyl chamber which is completely contained in the latter.

Remark 1.10. — A different set of axioms is given in G. Rousseau’s paper [Rou09, §6]. It is

interesting because it provides a unified approach to simplicial and non-simplicial buildings

via incidence requirements on apartments. The possibility to obtain a non-discrete building

with Rousseau’s axioms is contained in the model for an apartment and the definition of a

facet as a filter. The latter axioms are adapted to some algebraic situations which cover the

case of Bruhat-Tits theory over non-complete valued fields – see [Rou09, Remark 9.4] for

more details and comparisons.

Remark 1.11. — In this paper we do not use the plain word “chamber" though it is standard

terminology in abstract building theory. This choice is made to avoid confusion: alcoves

here are chambers (in the abstract sense) in Euclidean buildings and parallelism classes of

Weyl chambers here are chambers (in the abstract sense) in spherical buildings at infinity of

Euclidean buildings [Wei09, Chap. 8], [AB08, 11.8].

It is easy to see that, in order to prove that the map d defined thanks to axioms (EB 1)-(EB
3) is a distance, it remains to check that the triangle inequality holds; this is mainly done
by using the retraction given by axiom (EB 5). The previously quoted metric motivation
(Remark 1.3) so to speak became a definition. Note that the existence of suitable retractions
is useful to other purposes.

The following examples of possibly non-simplicial Euclidean buildings correspond to the
examples of simplicial ones given in Example 1.4.

Example 1.12. — 1. Consider the real line Σ = R and its isometry group Z/2Z⋉R.

Then a Euclidean building of type (R,Z/2Z⋉R) is a real tree – see below.

2. For a 2-dimensional case extending simplicial Ã2-buildings, a model for an apartment

can be taken to be a maximal flat in the symmetric space of SL3(R)/SO(3) acted upon

by its stabilizer in SL3(R) (using the notion of singular geodesics to distinguish the

walls). There is a geometric way to define the Weyl group and Weyl chambers (six

directions of simplicial cones) in this differential geometric context – see [Mau09] for

the general case of arbitrary symmetric spaces.

Here is a (purely metric) definition of real trees. It is a metric space (X,d) with the
following two properties:

(i) it is geodesic: given any two points x,x′ ∈ X there is a (continuous) map γ : [0;d]→ X,
where d = d(x,x′), such that γ(0) = x, γ(d) = x′ and d

(
γ(s),γ(t)

)
= | s− t | for any

s, t ∈ [0;d];
(ii) any geodesic triangle is a tripod (i.e., the union of three geodesic segments with a

common end-point).
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Remark 1.13. — Non-simplicial Euclidean buildings became more popular since recent

work of geometric (rather than algebraic) nature, where non-discrete buildings appear as

asymptotic cones of symmetric spaces and Bruhat-Tits buildings [KL97].

The remark implies in particular that there exist non-discrete Euclidean buildings in any
dimension, which will also be seen more concretely by studying spaces of non-Archimedean
norms on a given vector space – see 1.2.

Remark 1.14. — Note that given a reductive group G over a valued field k, Bruhat-Tits the-

ory “often" provides a Euclidean building on which the group G(k) acts strongly transitively

in a suitable sense (see Sect. 3 for an introduction to this subject).

1.1.3. More geometric properties. — We motivated the definitions of buildings by metric
considerations, therefore we must mention the metric features of Euclidean buildings once
these spaces have been defined. First, a Euclidean building always admits a metric whose
restriction to any apartment is a (suitably normalized) Euclidean distance [Rou09, Prop. 6.2].
Endowed with such a distance, a Euclidean building is always a geodesic metric space as
introduced in the above metric definition of real trees (1.1.2).

Recall that we use the axioms (EB) from Definition 1.9 to define a building; moreover

we assume that the above metric is complete. This is sufficient for our purposes since we
will eventually deal with Bruhat-Tits buildings associated to algebraic groups over complete
non-Archimedean fields.

Let (B,d) be a Euclidean building endowed with such a metric. Then (B,d) satisfies
moreover a remarkable non-positive curvature property, called the CAT(0)-property (where
“CAT" seems to stand for Cartan-Alexandrov-Toponogov). Roughly speaking, this property
says that geodesic triangles are at least as thin as in Euclidean planes. More precisely, the
point is to compare a geodesic triangle drawn in B with “the" Euclidean triangle having the
same edge lengths. A geodesic space is said to have the CAT(0)-property, or to be CAT(0),
if a median segment in each geodesic triangle is at most as long as the corresponding median
segment in the comparison triangle drawn in the Euclidean plane R2 (this inequality has to
be satisfied for all geodesic triangles). Though this property is stated in elementary terms, it
has very deep consequences [Rou09, §7].

One first consequence is the uniqueness of a geodesic segment between any two points
[BH99, Chap. II.1, Prop. 1.4].

The main consequence is a famous and very useful fixed-point property. The latter state-
ment is itself the consequence of a purely geometric one: any bounded subset in a complete,
CAT(0)-space has a unique, metrically characterized, circumcenter [AB08, 11.3]. This im-
plies that if a group acting by isometries on such a space (e.g., a Euclidean building) has a
bounded orbit, then it has a fixed point. This is the Bruhat-Tits fixed point lemma; it applies
for instance to any compact group of isometries.
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Let us simply mention two very important applications of the Bruhat-Tits fixed point
lemma (for simplicity, we assume that the building under consideration is discrete and lo-
cally finite – which covers the case of Bruhat-Tits buildings for reductive groups over local
fields).

1. The Bruhat-Tits fixed point lemma is used to classify maximal bounded subgroups in
the isometry group of a building. Indeed, it follows from the definition of the compact
open topology on the isometry group Aut(B) of a building B, that a facet stabilizer
is a compact subgroup in Aut(B). Conversely, a compact subgroup has to fix a point
and this point can be sent to a point in a given fundamental domain for the action of
Aut(B) on B (the isometry used for this conjugates the initial compact subgroup into
the stabilizer of a point in the fundamental domain).

2. Another consequence is that any Galois action on a Bruhat-Tits building has “suffi-
ciently many" fixed points, since a Galois group is profinite hence compact. These
Galois actions are of fundamental use in Bruhat-Tits theory, following the general idea
– widely used in algebraic group theory – that an algebraic group G over k is nothing
else than a split algebraic group over the separable closure ks, namely G⊗k ks, together
with a semilinear action of Gal(ks/k) on G⊗k ks [Bor91, AG § §11-14].

Arguments similar to the ones mentioned in 1. imply that, when k is a local field, there
are exactly d + 1 conjugacy classes of maximal compact subgroups in SLd+1(k). They are
parametrized by the vertices contained in the closure of a given alcove (in fact, they are all
isomorphic to SLd+1(k

◦) and are all conjugate under the action of GLd+1(k) by conjugation).

Remark 1.15. — One can make 2. a bit more precise. The starting point of Bruhat-Tits

theory is indeed that a reductive group G over any field, say k, splits – hence in particular is

very well understood – after extension to the separable closure ks of the ground field. Then,

in principle, one can go down to the group G over k by means of suitable Galois action – this

is one leitmotiv in [BT65]. In particular, Borel-Tits theory provides a lot of information about

the group G(k) by seeing it as the fixed-point set G(ks)Gal(ks/k). When the ground field k is a

valued field, then one can associate a Bruhat-Tits building B =B(G,ks) to G⊗k ks together

with an action by isometries of Gal(ks/k). The Bruhat-Tits building of G over k is contained

in the Galois fixed-point set BGal(ks/k), but this is inclusion is strict in general: the Galois

fixed-point set is bigger than the desired building [Rou77, III]. Still, this may be a good first

approximation of Bruhat-Tits theory to have in mind. We refer to 3.2.2 for further details.

1.2. The SLn case. — We now illustrate many of the previous notions in a very explicit
situation, of arbitrary dimension. Our examples are spaces of norms on a non-Archimedean
vector space. They provide the easiest examples of Bruhat-Tits buildings, and are also very
close to spaces occurring in Berkovich analytic geometry. In this section, we denote by V a
k-vector space and by d + 1 its (finite) dimension over k.

Note that until Remark 1.23 we assume that k is a local field.
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1.2.1. Goldman-Iwahori spaces. — The materiel of this subsection is classical and could be
find, for example, in [Wei74].

We are interested in the following space.

Definition 1.16. — The Goldman-Iwahori space of the k-vector space V is the space of non-

Archimedean norms on V; we denote it by N (V,k). We denote by X (V,k) the quotient

space N (V,k)
/
∼, where ∼ is the equivalence relation which identifies two homothetic

norms.

To be more precise, let ‖ · ‖ and ‖ · ‖′ be norms in N (V,k). We have ‖ · ‖∼‖ · ‖′ if and
only if there exists c > 0 such that ‖ x ‖= c ‖ x ‖′ for all x ∈ V. In the sequel, we use the
notation [·]∼ to denote the class with respect to the homothety equivalence relation.

Example 1.17. — Here is a simple way to construct non-Archimedean norms on V. Pick

a basis e = (e0,e1, . . . ,ed) in V. Then for each choice of parameters c = (c0,c1, . . . ,cd) ∈

Rd+1, we can define the non-Archimedean norm which sends each vector x = ∑i λiei to

maxi{exp(ci) | λi |}, where | · | denotes the absolute value of k. We denote this norm by

‖ · ‖e,c.

We also introduce the following notation and terminology.

Definition 1.18. — (i) Let ‖ · ‖ be a norm and let e be a basis in V. We say that ‖ · ‖ is

diagonalized by e if there exists c ∈ Rd+1 such that ‖ · ‖=‖ · ‖e,c; in this case, we also

say that the basis e is adapted to the norm ‖ · ‖.

(ii) Given a basis e, we denote by Ãe the set of norms diagonalized by e:

Ãe = {‖ · ‖e,c : c ∈ Rd+1}.

(iii) We denote by Ae the quotient of Ãe by the homothety equivalence relation: Ae = Ãe/∼.

Note that the space Ãe is naturally an affine space with underlying vector space Rd+1:
the free transitive Rd+1-action is by shifting the coefficients ci which are the logarithms of
the “weights" exp(ci) for the norms ‖ · ‖e,c: ∑i λiei 7→ max06i6d{exp(ci) |λi |}. Under this
identification of affine spaces, we have: Ae ≃ Rd+1/R(1,1, . . . ,1)≃ Rd .

Remark 1.19. — The space X (V,k) will be endowed with a Euclidean building structure

(Th.1.25) in which the spaces Ae – with e varying over the bases of V – will be the apartments.

The following fact can be generalized to more general valued fields than local fields but is
not true in general (Remark 1.24).

Proposition 1.20. — Every norm of N (V,k) admits an adapted basis in V.

Proof. — Let ‖ · ‖ be a norm of N (V,k). We prove the result by induction on the dimension
of the ambient k-vector space. Let µ be any non-zero linear form on V. The map V\ {0}→

R+ sending y to |µ(y)|
‖y‖ naturally provides, by homogeneity, a continuous map φ : P(V)(k)→
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R+. Since k is locally compact, the projective space P(V)(k) is compact, therefore there
exists an element x ∈ V\ {0} at which φ achieves its supremum, so that

(*)
|µ(z) |

|µ(x) |
‖x‖6‖z‖

for any z ∈ V.

Let z be an arbitrary vector of V. We write z = y+
µ(z)

µ(x)
x according to the direct sum

decomposition V = Ker(µ)⊕ kx. By the ultrametric inequality satisfied by ‖ · ‖, we have

(**) ‖z‖6 max{‖y‖;
|µ(z) |

|µ(x) |
‖x‖}

and

(***) ‖y‖6 max{‖z‖;
|µ(z) |

|µ(x) |
‖x‖} .

Inequality (*) says that max{‖ z‖;
|µ(z) |

|µ(x) |
‖ x‖} =‖ z‖, so (***) implies ‖ z‖>‖ y‖. The

latter inequality together with (*) implies that ‖ z ‖> max{‖ y ‖;
|µ(z) |

|µ(x) |
‖ x ‖}. Combining

this with (**) we obtain the equality ‖ z‖= max{‖y‖;
|µ(z) |

|µ(x) |
‖x‖}. Applying the induction

hypothesis to Ker(µ), we obtain a basis adapted to the restriction of ‖ · ‖ to Ker(µ). Adding x

we obtain a basis adapted to ‖ · ‖, as required (note that µ(z)
µ(x)

is the coordinate corresponding
to the vector x in any such basis).

Actually, we can push a bit further this existence result about adapted norms.

Proposition 1.21. — For any two norms of N (V,k) there is a basis of V simultaneously

adapted to them.

Proof. — We are now given two norms, say ‖ · ‖ and ‖ · ‖′, in N (V,k). In the proof of
Proposition 1.20, the choice of a non-zero linear form µ had no importance. In the present
situation, we will take advantage of this freedom of choice. We again argue by induction on
the dimension of the ambient k-vector space.

By homogeneity, the map V\{0}→R+ sending y to
‖y‖

‖y‖′
naturally provides a continuous

map ψ : P(V)(k)→ R+. Again because the projective space P(V)(k) is compact, there exists
x ∈ V\ {0} at which ψ achieves its supremum, so that

‖y‖

‖x‖
6

‖y‖′

‖x‖′
for any y ∈ V.

Now we endow the dual space V∗ with the operator norm ‖ · ‖∗ associated to ‖ · ‖ on V.
Since V is finite-dimensional, by biduality (i.e. the normed vector space version of V∗∗ ≃ V),
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we have the equality ‖x‖= sup
µ∈V∗\{0}

|µ(x) |

‖µ ‖∗
. By homogeneity and compactness, there exists

λ ∈ V∗ \ {0} such that ‖x‖=
|λ (x) |

‖λ ‖∗
. For arbitrary y ∈ V we have |λ (y) |6‖y‖ · ‖λ ‖∗, so

the definition of x implies that
|λ (y) |

|λ (x) |
6

‖y‖

‖x‖
for any y ∈ V.

In other words, we have found x ∈ V and λ ∈ V∗ such that
|λ (y) |

|λ (x) |
6

‖y‖

‖x‖
6

‖y‖′

‖x‖′
for any y ∈ V.

Now we are in position to apply the arguments of the proof of Proposition 1.20 to both ‖ · ‖

and ‖ · ‖′ to obtain that ‖ z‖= max{‖y‖;
|λ (z) |

|λ (x) |
‖x‖} and ‖ z‖′= max{‖y‖′;

|λ (z) |

|λ (x) |
‖x‖′}

for any z∈ V decomposed as z = x+y with y∈ Ker(λ ). It remains then to apply the induction
hypothesis (i.e., that the desired statement holds in the ambient dimension minus 1).

1.2.2. Connection with building theory. — It is now time to describe the connection between
Goldman-Iwahori spaces and Euclidean buildings. As already mentioned, the subspaces Ae

will be the apartments in X (V,k) (Remark 1.19).
Let us fix a basis e in V and consider first the bigger affine space Ãe = {‖ · ‖e,c : c ∈

Rd+1} ≃ Rd+1. The symmetric group Sd+1 acts on this affine space by permuting the co-
efficients ci. This is obviously a faithful action and we have another one given by the affine
structure. We obtain in this way an action of the group Sd+1⋉Rd+1 on Ãe and, after passing
to the quotient space, we can see Ae as the ambient space of the Euclidean tiling attached
to the affine Coxeter group of type Ãd (the latter group is isomorphic to Sd+1 ⋉Zd). The
following result is due to Bruhat-Tits, elaborating on Goldman-Iwahori’s investigation of the
space of norms N (V,k) [GI63].

Theorem 1.22. — The space X (V,k) = N (V,k)/ ∼ is a simplicial Euclidean building of

type Ãd , where d + 1 = dim(V); in particular, the apartments are isometric to Rd and the

Weyl group is isomorphic to Sd+1 ⋉Zd .

Reference for the proof. — In [BrT72, 10.2] this is stated in group-theoretic terms, so one
has to combine the quoted statement with [loc. cit., 7.4] in order to obtain the above theorem.
This will be explained in Sect. 3.

The 0-skeleton (i.e., the vertices) for the simplicial structure corresponds to the k◦-

lattices in the k-vector space V, that is the free k◦-submodules in V of rank d+1. To a lattice
L is attached a norm ‖ · ‖L by setting ‖ x ‖L= inf{|λ | : λ ∈ k× and λ−1x ∈ L }. One
recovers the k◦-lattice L as the unit ball of the norm ‖ · ‖L .

Remark 1.23. — Note that the space N (V,k) is an extended building in the sense of

[Tit79]; this is, roughly speaking, a building to which is added a Euclidean factor in order

to account geometrically for the presence of a center of positive dimension.
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Instead of trying to prove this result, let us mention that Proposition 1.21 says, in our
building-theoretic context, that any two points are contained in an apartment. In other words,
this proposition implies axiom (SEB 1) of Definition 1.2: it is the non-Archimedean analogue
of the fact that any two real scalar products are diagonalized in a suitable common basis
(Gram-Schmidt).

Now let us skip the hypothesis that k is a local field. If k is a not discretely valued, then it
is not true in general that every norm in N (V,k) can be diagonalized in some suitable basis.
Therefore we introduce the following subspace:

N (V,k)diag = {norms in N (V,k) admitting an adapted basis}.

Remark 1.24. — We will see (Remark 2.2) that the connection between Berkovich projective

spaces and Bruhat-Tits buildings helps to understand why N (V,k)−N (V,k)diag 6=∅ if and

only if the valued field k is not maximally complete (one also says spherically complete).

Thanks to the subspace N (V,k)diag, we can state the result in full generality.

Theorem 1.25. — The space X (V,k) =N (V,k)diag/∼ is a Euclidean building of type Ãd

in which the apartments are isometric to Rd and the Weyl group is isomorphic to Sd+1 ⋉Λ

where Λ is a translation group, which is discrete if and only if so is the valuation of k.

Reference for the proof. — This is proved for instance in [Par00, III.1.2]; see also [BrT84]
for a very general treatment.

Example 1.26. — For d = 1, i.e. when V ≃ k2, the Bruhat-Tits building

X (V,k) = N (V,k)diag/∼

given by Theorem 1.25 is a tree, which is a (non-simplicial) real tree whenever k is not
discretely valued.

1.2.3. Group actions. — After illustrating the notion of a building thanks to Goldman-
Iwahori spaces, we now describe the natural action of a general linear group over the valued
field k on its Bruhat-Tits building. We said that buildings are usually used to better under-
stand groups which act sufficiently transitively on them. We therefore have to describe the
GL(V,k)-action on X (V,k) given by precomposition on norms (that is, g. ‖ · ‖=‖ · ‖ ◦g−1

for any g ∈ GL(V,k) and any ‖ · ‖∈ N (V,k)). Note that we have the formula

g. ‖ · ‖e,c=‖ · ‖g.e,c.

We will also explain how this action can be used to find interesting decompositions of
GL(V,k). Note that the GL(V,k)-action on X (V,k) factors through an action by the group
PGL(V,k).

For the sake of simplicity, we assume that k is discretely valued until the rest of this section.

We describe successively: the action of monomial matrices on the corresponding apart-
ment, stabilizers, fundamental domains and the action of elementary unipotent matrices on
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the buildings (which can be thought of as “foldings" of half-apartments fixing complementary
apartments).

First, it is very useful to restrict our attention to apartments. Pick a basis e of V and con-
sider the associated apartment Ae. The stabilizer of Ae in GL(V,k) consists of the subgroup
of linear automorphisms g which are monomial with respect to e, that is whose matrix expres-
sion with respect to e has only one non-zero entry in each row and in each column; we denote
Ne = StabGL(V,k)(Ae). Any automorphism in Ne lifts a permutation of the indices of the vec-
tors ei (0 6 i 6 d) in e. This defines a surjective homomorphism Ne ։Sd+1 whose kernel is
the group, say De, of the linear automorphisms diagonalized by e. The group De ∩SL(V,k)

lifts the translation subgroup of the (affine) Weyl group Sd+1 ⋉Zd of X (V,k). Note that
the latter translation group consists of the translations contained in the group generated by
the reflections in the codimension 1 faces of a given alcove, therefore this group is (of finite
index but) smaller than the “obvious" group given by translations with integral coefficients
with respect to the basis e. For any λ ∈ (k×)n, we have the following “translation formula":

λ . ‖ · ‖e,c=‖ · ‖e,(ci−log|λi|)i
,

Example 1.27. — When d = 1 and when k is local, the translations of smallest displacement

length in the (affine) Weyl group of the corresponding tree are translations whose displace-

ment length along their axis is equal to twice the length of an edge.

The fact stated in the example corresponds to the general fact that the SL(V,k)-action on
X (V,k) is type (or color)-preserving: choosing d + 1 colors, one can attach a color to each
panel (= codimension 1 facet) so that each color appears exactly once in the closure of any
alcove; a panel of a given color is sent by any element of SL(V,k) to a panel of the same color.
Note that the action of GL(V,k), hence also of PGL(V,k), on X (V,k) is not type-preserving
since PGL(V,k) acts transitively on the set of vertices.

It is natural to first describe the isotropy groups for the action we are interested in.

Proposition 1.28. — We have the following description of stabilizers:

StabGL(V,k)(‖ · ‖e,c) = {g ∈ GL(V,k) : |det(g)|= 1 and log(|gi j |)6 c j − ci},

where [gi j] is the matrix expression of GL(V,k) with respect to the basis e.

Reference for the proof. — This is for instance [Par00, Cor. III.1.4].

There is also a description of the stabilizer group in SL(V,k) as the set of matrices stabi-
lizing a point with respect to a tropical matrix operation [Wer11, Prop. 2.4].

We now turn our attention to fundamental domains. Let x be a vertex in X (V,k). Fix
a basis e such that x = [‖ · ‖e,0]∼. Then we have an apartment Ae containing x and the
inequalities

c0 6 c1 6 · · ·6 cd

define a Weyl chamber with tip x (after passing to the homothety classes). The other Weyl
chambers with tip x contained in Ae are obtained by using the action of the spherical Weyl
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group Sd+1, which amounts to permuting the indices of the ci’s (this action is lifted by the
action of monomial matrices with coefficients ±1 and determinant 1).

Accordingly, if we denote by ϖ a uniformizer of k, then the inequalities

c0 6 c1 6 · · ·6 cd and cd − c0 6− log |ϖ |

define an alcove (whose boundary contains x) and any other alcove in Ae is obtained by using
the action of the affine Weyl group Sd+1 ⋉Zd .

Proposition 1.29. — Assume k is local. We have the following description of fundamental

domains.

(i) Given a vertex x, any Weyl chamber with tip x is a fundamental domain for the action

of the maximal compact subgroup StabSL(V,k)(x) on X (V,k).

(ii) Any alcove is a fundamental domain for the natural action of SL(V,k) on the building

X (V,k).

If we abandon the hypothesis that k is a local field and assume the absolute value of k is
surjective (onto R>0), then the SL(V,k)-action on X (V,k) is transitive.

Sketch of proof. — . Property (ii) follows from (i) and from the previous description of the
action of the monomial matrices of Ne on Ae (note that SL(V,k) is type-preserving, so a
fundamental domain cannot be strictly smaller than an alcove).

(i). A fundamental domain for the action of the symmetric group Sd+1 as above on the
apartment Ae is given by a Weyl chamber with tip x, and the latter symmetric group is lifted
by elements in StabSL(V,k)(x). Therefore it is enough to show that any point of the building
can be mapped into Ae by an element of StabSL(V,k)(x). Pick a point z in the building and
consider a basis e′ such that Ae′ contains both x and z (Proposition 1.21). We can write
x=‖ · ‖e,0=‖ · ‖e′,c, with weights c in log |k× | since x is a vertex. After dilation, if necessary,
of each vector of the basis e′, we may – and shall – assume that c = 0. Pick g ∈ SL(V,k) such
that g.e = e′. Since e and e′ span the same lattice L over k◦, which is the unit ball for x (see
comment after Th. 1.22), we have g.L = L and therefore g stabilizes x. We have therefore
found g ∈ StabSL(V,k)(x) with g.Ae = Ae′ , in particular g−1.z belongs to Ae.

Remark 1.30. — Point (i) above is the geometric way to state the so-called Cartan decom-

position: SL(V,k) = StabSL(V,k)(x) ·T+ ·StabSL(V,k)(x), where T+ is the semigroup of linear

automorphisms t diagonalized by e and such that t.x belongs to a fixed Weyl chamber in

Ae with tip x. The Weyl chamber can be chosen so that T+ consists of the diagonal matrices

whose diagonal coefficients are powers of some given uniformizer with the exponents increas-

ing along the diagonal. Let us recall how to prove this by means of elementary arguments

[PR94, §3.4 p. 152]. Let g∈ SL(V,k); we pick λ ∈ k◦ so that λ g is a matrix of GL(V,k) with

coefficients in k◦. By interpreting left and right multiplication by elementary unipotent matri-

ces as matrix operations on rows and columns, and since k◦ is a principal ideal domain, we

can find p, p′ ∈ SLd+1(k
◦) such that p−1λ gp′−1 is a diagonal matrix (still with coefficients

in k◦), which we denote by d. Therefore, we can write g = pλ−1d p′; and since g, p and p′
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have determinant 1, so does t = λ−1d. It remains to conjugate λ−1d by a suitable monomial

matrix with coefficients ±1 and determinant 1 in order to obtain the desired decomposition.

At the beginning of this subsection, we described the action of linear automorphisms on
an apartment when the automorphisms are diagonalized by a basis defining the apartment.
One last interesting point is the description of the action of elementary unipotent matrices
(for a given basis). The action looks like a “folding" in the building, fixing a suitable closed
half-apartment.

More precisely, let us introduce the elementary unipotent matrices ui j(ν) = id + νEi j

where ν ∈ k and Ei j is the matrix whose only non-zero entry is the (i, j)-th one, equal to
1.

Proposition 1.31. — The intersection Ãe ∩ ui j(λ ).Ãe is the half-space of Ãe consisting of

the norms ‖ · ‖e,c satisfying c j − ci > log |λ |. The isometry given by the matrix ui j(λ ) fixes

pointwise this intersection and the image of the open half-apartment Ãe−{‖ ·‖e,c: c j − ci >

log |λ |} is (another half-apartment) disjoint from Ãe.

Proof. — In the above notation, we have ui j(ν)(∑i λiei) = ∑k 6=i λkek +(λi +νλ j)ei for any
ν ∈ k.

First, we assume that we have ui j(λ ). ‖ · ‖e,c=‖ · ‖e,c. Then, applying this equality of
norms to the vector e j provides ec j =max{ec j ;eci |λ |}, hence the inequality c j−ci > log |λ |.

Conversely, pick a norm ‖ · ‖e,c such that c j − ci > log | λ | and let x = ∑i λiei. By the
ultrametric inequality, we have eci | λi − λ λ j |6 max{eci | λi |;eci | λ || λ j |}, and the as-
sumption c j − ci > log | λ | implies that eci | λi − λ λ j |6 max{eci | λi |;ec j | λ j |}, so that
eci |λi −λ λ j |6 max16ℓ6d ecℓ |λℓ |. Therefore we obtain that ui j(λ ). ‖ x ‖e,c6‖ x ‖e,c for any
vector x. Replacing λ by −λ and x by ui j(−λ ).x, we finally see that the norms ui j(λ ). ‖ · ‖e,c

and ‖ · ‖e,c are the same when c j − ci > log |λ |. We have thus proved that the fixed-point set

of ui j(λ ) in Ãe is the closed half-space Dλ = {‖·‖e,c: c j − ci > log |λ |}.

It follows from this that Ãe ∩ui j(λ ).Ãe contains Dλ . Assume that Ãe ∩ui j(λ ).Ãe ) Dλ in

order to obtain a contradiction. This would provide norms ‖ · ‖ and ‖ · ‖′ in Ãe −Dλ with the
property that ui j(λ ). ‖ · ‖=‖ · ‖′. But we note that a norm in Ãe −Dλ is characterized by its
orthogonal projection onto the boundary hyperplane ∂Dλ and by its distance to ∂Dλ . Since
ui j(λ ) is an isometry which fixes Dλ we conclude that ‖ · ‖=‖ · ‖′, which is in contradiction

with the fact that the fixed-point set of ui j(λ ) in Ãe is exactly Dλ .

2. Special linear groups, Berkovich and Drinfeld spaces

We ended the previous section by an elementary construction of the building of special lin-
ear groups over discretely valued non-Archimedean field. The generalization to an arbitrary
reductive group over such a field is significantly harder and requires the full development of
Bruhat-Tits, which will be the topic of Section 3. Before diving into the subtelties of buildings
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construction, we keep for a moment the particular case of special linear groups and describe
a realization of their buildings in the framework of Berkovich’s analytic geometry, which
leads very naturally to a compactification of those buildings. The general picture, namely
Berkovich realizations and compactifications of general Bruhat-Tits buildings will be dealt
with in Sect. 4).

Roughly speaking understanding the realization (resp. compactification) described below
of the building of a special linear group amounts to understanding (homothety classes of)
norms on a non-Archimedean vector space (resp. their degenerations), using the viewpoint
of multiplicative seminorms on the corresponding symmetric algebra.

A useful reference for Berkovich theory is [Tem11]. Unless otherwise indicated, we as-

sume in this section that k is a local field.

2.1. Drinfeld upper half spaces and Berkovich affine and projective spaces. — Let V
be a finite-dimensional vector space over k, and let S•V be the symmetric algebra of V.
It is a graded k-algebra of finite type. Every choice of a basis v0, . . . ,vd of V induces an
isomorphism of S•V with the polynomial ring over k in d + 1 indeterminates. The affine
space A(V) is defined as the spectrum Spec(S•V), and the projective space P(V) is defined
as the projective spectrum Proj(S•V). These algebraic varieties give rise to analytic spaces in
the sense of Berkovich, which we briefly describe below.

2.1.1. Drinfeld upper half-spaces in analytic projective spaces. — As a topological space,
the Berkovich affine space A(V)an is the set of all multiplicative seminorms on S•V extending
the absolute value on k together with the topology of pointwise convergence. The Berkovich
projective space P(V)an is the quotient of A(V)an −{0} modulo the equivalence relation ∼

defined as follows: α ∼ β , if and only if there exists a constant c> 0 such that for all f in SnV
we have α( f ) = cnβ ( f ). There is a natural PGL(V)-action on P(V)an given by gα = α ◦g−1.
From the viewpoint of Berkovich geometry, Drinfeld upper half-spaces can be introduced as
follows [Ber95].

Definition 2.1. — We denote by Ω the complement of the union of all k-rational hyperplanes

in P(V)an. The analytic space Ω is called Drinfeld upper half space.

Our next goal is now to mention some connections between the above analytic spaces and
the Euclidean buildings defined in the previous section.

2.1.2. Retraction onto the Bruhat-Tits building. — Let α be a point in A(V)an, i.e. α is a
multiplicative seminorm on S•V. If α is not contained in any k-rational hyperplane of A(V),
then by definition α does not vanish on any element of S1V = V. Hence the restriction of
the seminorm α to the degree one part S1V = V is a norm. Recall that the Goldman-Iwahori
space N (V,k) is defined as the set of all non-Archimedean norms on V, and that X (V,k)

denotes the quotient space after the homothety relation (1.2.1). Passing to the quotients we
see that restriction of seminorms induces a map

τ : Ω −→ X (V,k).



BRUHAT-TITS BUILDINGS AND ANALYTIC GEOMETRY 21

If we endow the Goldman-Iwahori space N (V,k) with the coarsest topology, so that all
evaluation maps on a fixed v ∈ V are continuous, and X (V,k) with the quotient topology,
then τ is continuous. Besides, it is equivariant with respect to the action of PGL(V,k). We
refer to [RTW12, §3] for further details.

2.1.3. Embedding of the building (case of the special linear group). — Let now γ be a non-
trivial norm on V. By Proposition 1.20, there exists a basis e0, . . . ,ed of V which is adapted
to γ , i.e. we have

γ
(
∑i λiei

)
= maxi{exp(ci)|λi|}

for some real numbers c0, . . . ,cd . We can associate to γ a multiplicative seminorm j(γ) on
S•V by mapping the polynomial ∑I=(i0,...,id)

aIe
i0
0 . . .e

id
d to maxI{|aI|exp(i0c0 + . . .+ idcd)}.

Passing to the quotients, we get a continuous map

j : X (V,k) −→ Ω

satisfying τ
(

j(α)
)
= α .

Hence j is injective and a homeomorphism onto its image. Therefore the map j can be
used to realize the Euclidean building X (V,k) as a subset of a Berkovich analytic space.
This observation is due to Berkovich, who used it to determine the automorphism group of Ω

[Ber95].

Remark 2.2. — In this remark, we remove the assumption that k is local and we recall that

the building X (V,k) consists of homothety classes of diagonalizable norms on V (Theorem

1.25). Assuming dim(V) = 2 for simplicity, we want to rely on analytic geometry to prove the

existence of non-diagonalizable norms on V for some k.

The map j : X (V,k) → P1(V)an can be defined without any assumption on k. Given

any point x ∈ X (V,k), we pick a basis e = (e0,e1) diagonalizing x and define j(x) to be

the multiplicative norm on S•(V) mapping an homogeneous polynomial f = ∑ν aνe
ν0
0 e

ν1
1 to

maxν{|aν | · |e0|(x)
ν0 · |e1|(x)

ν1}. We do not distinguish between X (V,k) and its image by j

in P(V)an, which consists only of points of types 2 and 3 (this follows from [Tem11, 3.2.11]).

Let us now consider the subset Ω′ of Ω = P(V)an −P(V)(k) consisting of multiplicative

norms on S•(V) whose restriction to V is diagonalizable. The map τ introduced above is

well-defined on Ω′ by τ(z) = z|V. This gives a continuous retraction of Ω′ onto X (V,k). The

inclusion Ω′ ⊂ Ω is strict in general, i.e. if k is not local. For example, assume that k = Cp

is the completion of an algebraic closure of Qp; this non-Archimedean field is algebraically

closed but not spherically complete. In this situation, Ω contains a point z of type 4 [Tem11,
2.3.13], which we can approximate by a sequence (xn) of points in X (V,k) (this is the

translation of the fact that z corresponds to a decreasing sequence of closed balls in k with

empty intersection [Tem11, 2.3.11.(iii)]). Now, if z∈Ω′, then τ(z) = τ (limxn) = lim τ(xn) =

lim xn and therefore z belongs to X (V,k). Since the latter set contains only points of type 2
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or 3, this cannot happen and z /∈ Ω′; in particular, the restriction of z to V produces a norm

which is not diagonalizable.

2.2. A first compactification. — Let us now turn to compactification of the building
X (V,k). We give an outline of the construction and refer to [RTW12, §3] for additional
details. The generalization to arbitrary reductive groups is the subject of 4.2. Recall that we
assume that k is a local field.

2.2.1. The space of seminorms. — Let us consider the set S (V,k) of non-Archimedean
seminorms on V. Every non-Archimedean seminorm γ on V induces a norm on the quotient
space V/ker(γ). Hence using Proposition 1.20, we find that there exists a basis e0, . . . ,ed of
V such that α

(
∑i λiei

)
= maxi{ri |λi |} for some non-negative real numbers r0, . . . ,rd . In this

case we say that α is diagonalized by e. Note that in contrast to Definition 1.18 we do no
longer assume that the ri are non-zero and hence exponentials.

We can extend γ to a seminorm j(γ) on the symmetric algebra S•V ≃ k[e0, . . . ,ed ] as
follows:

j(γ)
(

∑I=(i0,...,id)
aIe

i0
0 . . .e

id
d

)
= max{|aI|r

i0
0 . . .r

id
d }.

We denote by X (V,k) the quotient of S (V,k) \ {0} after the equivalence relation ∼

defined as follows: α ∼ β if and only if there exists a real constant c with α = cβ . We equip
S (V,k) with the topology of pointwise convergence and X (V,k) with the quotient topology.
Then the association γ 7→ j(γ) induces a continuous and PGL(V,k)-equivariant map

j : X (V,k)→ P(V)an

which extends the map j : X (V,k)→ Ω defined in the previous section.

2.2.2. Extension of the retraction onto the building. — Moreover, by restriction to the de-
gree one part S1V = V, a non-zero multiplicative seminorm on S•V yields an element in
S (V,k)−{0}. Passing to the quotients, this induces a map

τ : P(V)an −→ X (V,k)

extending the map τ : Ω → X (V,k) defined in section 2.1.
As in section 2.1, we see that τ ◦ j is the identity on X (V,k), which implies that j is

injective: it is a homeomorphism onto its (closed) image in P(V)an. Since P(V)an is compact,
we deduce that the image of j, and hence X (V,k), is compact. As X (V,k) is an open subset
of X (V,k), the latter space is a compactification of the Euclidean building X (V,k); it was
studied in [Wer04].

2.2.3. The strata of the compactification. — For every proper subspace W of V we can ex-
tend norms on V/W to non-trivial seminorms on V by composing the norm with the quotient
map V → V/W. This defines a continuous embedding

X (V/W,k)→ X (V,k).
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Since every seminorm on V is induced in this way from a norm on the quotient space after
its kernel, we find that X (V,k) is the disjoint union of all Euclidean buildings X (V/W,k),
where W runs over all proper subspaces of V. Hence our compactification of the Euclidean
building X (V,k) is a union of Euclidean buildings of smaller rank.

2.3. Topology and group action. — We will now investigate the convergence of sequences
in X (V,k) and deduce that it is compact. We also analyze the action of the group SL(V,k)

on this space.

2.3.1. Degeneracy of norms to seminorms and compactness. — Let us first investigate con-
vergence to the boundary of X (V,k) in X (V,k) = (S (V,k)\{0})/ ∼. We fix a basis
e = (e0, . . . ,ed) of V and denote by Ae the corresponding apartment associated to the norms
diagonalized by e as in Definition 1.18. We denote by Ae ⊂X (V,k) all classes of seminorms

which are diagonalized by e.
We say that a sequence (zn)n of points in Ae is distinguished, if there exists a non-empty

subset I of {0, . . . ,d} such that:

(a) For all i ∈ I and all n we have zn(ei) 6= 0.

(b) for any i, j ∈ I, the sequence
(

zn(e j)

zn(ei)

)
n

converges to a positive real number;

(c) for any i ∈ I and j ∈ {0, . . . ,d}− I, the sequence
(

zn(e j)

zn(ei)

)
n

converges to 0.

Here we define
(

zn(ei)
zn(e j)

)
n

as
(

xn(ei)
xn(e j)

)
n

for an arbitrary representative xn ∈S (V,k) of the class

zn. Note that this expression does not depend on the choice of the representative xn.

Lemma 2.3. — Let (zn)n be a distinguished sequence of points in Ae. Choose some element

i ∈ I. We define a point z∞ in S (V,k) as the homothety class of the seminorm x∞ defined as

follows:

x∞(e j) =

{
limn

(
zn(e j)

zn(ei)

)
if j ∈ I

0 if j /∈ I

and x∞(∑ j a je j) = max |a j|x∞(e j). Then z∞ does not depend on the choice of i, and the

sequence (zn)n converges to z∞ in X (V,k).

Proof. — Let xn be a representative of zn in S (V,k). For i, j and ℓ contained in I we have

lim
n

(
xn(e j)

xn(eℓ)

)
= lim

n

(
xn(e j)

xn(ei)

)
lim

n

(
xn(ei)

xn(eℓ)

)
,

which implies that the definition of the seminorm class z∞ does not depend on the choice of
i ∈ I.

The convergence statement is obvious, since the seminorm xn is equivalent to (xn(ei))
−1xn.

Hence the distinguished sequence of norm classes (zn)n considered in the Lemma con-
verges to a seminorm class whose kernel WI is spanned by all e j with j /∈ I. Therefore the
limit point z∞ lies in the Euclidean building X (V/WI) at the boundary.
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Note that the preceding Lemma implies that Ae is the closure of Ae in X (V,k). Namely,
consider z ∈ Ae, i.e. z is the class of a seminorm x on V which is diagonalizable by e. For
every n we define a norm xn on V by

xn(ei) =

{
x(ei), if x(ei) 6= 0
1
n
, if x(ei) = 0

and

xn(∑
i

aiei) = max
i

|ai|xn(ei).

Then the sequence of norm classes xn = [zn]∼ in Ae is distinguished with respect to the set
I = {i : x(ei) 6= 0} and it converges towards z.

We will now deduce from these convergence results that the space of seminorms is com-
pact. We begin by showing that Ae is compact.

Proposition 2.4. — Let (zn)n be a sequence of points in Ae. Then (zn)n has a converging

subsequence.

Proof. — Let xn be seminorms representing the points zn. By the box principle, there exists
an index i ∈ {0, . . . ,d} such that after passing to a subsequence we have

xn(ei)> xn(e j) for all j = 0, . . . ,d,n > 0.

In particular we have xn(ei)> 0. For each j = 0, . . . ,d we look at the sequence

β ( j)n =
xn(e j)

xn(ei)

which lies between zero and one. In particular, β (i)n = 1 is constant.
After passing to a subsequence of (zn)n we may – and shall – assume that all sequences

β ( j)n converge to some β ( j) between zero and one. Let I be the set of all j = 0, . . . ,n
such that β ( j) > 0. Then a subsequence of (zn)n is distinguished with respect to I, hence it
converges by Lemma 2.3.

Since Ae is metrizable, the preceding proposition shows that Ae is compact.
We can now describe the SL(V,k)-action on the seminorm compactification of the

Goldman-Iwahori space of V. As before, we fix a basis e = (e0, . . . ,en).
Let o be the homothety class of the norm on V defined by

∣∣∣∣∣
d

∑
i=0

aiei

∣∣∣∣∣(o) = max
06i6d

|ai|

and let

Po = {g ∈ SL(V,k) ; g ·o ∼ o}

be the stabilizer of o. It follows from Proposition 1.28 that Po = SLd+1(k
0) with respect to

the basis e.

Lemma 2.5. — The map Po ×Ae → X (V,k) given by the SL(V,k)-action is surjective.
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Proof. — Let [x]∼ be an arbitrary point in X (V,k). The seminorm x is diagonalizable with
respect to some basis e′ of V. A similar argument as in the proof of Proposition 1.29 shows
that there exists an element h∈ Po such that hx lies in Ae (actually hx lies in the closure, taken
in the seminorm compactification, of a Weyl chamber with tip o).

The group Po is closed and bounded in SL(V,k), hence compact. Since Ae is compact by
Proposition 2.4, the previous Lemma proves that X (V,k) is compact.

2.3.2. Isotropy groups. — Let z be a point in X (V,k) represented by a seminorm x with
kernel W ⊂ V. By x we denote the norm induced by x on the quotient space V/W. By defini-
tion, an element g ∈ PGL(V,k) stabilizes z if and only if one (and hence any) representative
h of g in GL(V,k) satisfies hx ∼ x, i.e. if and only if there exists some γ > 0 such that

(∗) x(h−1(v)) = γx(v) for all v ∈ V.

This is equivalent to saying that h preserves the subspace W and that the induced element h

in GL(V/W,k) stabilizes the equivalence class of the norm x on V/W. Hence we find

StabPGL(V,k)(z) = {h ∈ GL(V,k) : h fixes the subspace W and hx ∼ x}/k×.

Let us now assume that z is contained in the compactified apartment Ae given by the basis
e of V. Then there are non-negative real numbers r0,r1, . . . ,rd such that

x(∑
i

aiei) = max
i
{ri|ai|}.

The space W is generated by all vectors ei such that ri = 0. We assume that if ri and r j are
both non-zero, the element r j/ri is contained in the value group |k∗| of k. In this case, if h

stabilizes z, we find that γ = x(h−1ei)/ri is contained in the value group |k∗| of k, i.e. we
have γ = |λ | for some λ ∈ k∗. Hence (λ h)x = x. Therefore in this case the stabilizer of z in
PGL(V,k) is equal to the image of

{h ∈ GL(V,k) : h fixes the subspace W and hx = x}

under the natural map from GL(V,k) to PGL(V,k).

Lemma 2.6. — Assume that z is contained in the closed Weyl chamber C = {[x]∼ ∈ Ae :
x(e0)6 x(e1)6 . . .6 x(ed)}, i.e. using the previous notation we have r0 6 r1 6 . . .6 rd . Let

d − µ be the index such that rd−µ = 0 and rd−µ+1 > 0. (If z is contained in Ae, then we put

µ = d + 1. ) Then the space W is generated by the vectors ei with i 6 d − µ . We assume as

above that r j/ri is contained in |k∗| if i > d − µ and j > d − µ . Writing elements in GL(V)

as matrices with respect to the basis e, we find that StabPGL(V,k)(z) is the image of

{(
A B
0 D

)
∈ GLd+1(k) : D = (δi j) ∈ GLµ(k),

with |det(D) |= 1 and |δi j |6 r j/ri for all i, j 6 µ .
}

in PGL(V,k).
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Proof. — This follows directly from the previous considerations combined with Proposition
1.28 which describes the stabilizer groups of norms.

The isotropy groups of the boundary points can also be described in terms of tropical linear
algebra, see [Wer11, Proposition 3.8].

3. Bruhat-Tits theory

We provide now a very short survey of Bruhat-Tits theory. The main achievement of the
latter theory is the existence, for many reductive groups over valued fields, of a combinatorial
structure on the rational points; the geometric viewpoint on this is the existence of a strongly
transitive action of the group of rational points on a Euclidean building. Roughly speaking,
one half of this theory (the one written in [BrT72]) is of geometric and combinatorial nature
and involves group actions on Euclidean buildings: the existence of a strongly transitive
action on such a building is abstractly shown to come from the fact that the involved group
can be endowed with the structure of a valued root group datum. The other half of the theory
(the one written in [BrT84]) shows that in many situations, in particular when the valued
ground field is local, the group of rational points can be endowed with the structure of a
valued root group datum. This is proved by subtle arguments of descent of the ground field
and the main tool for this is provided by group schemes over the ring of integers of the valued
ground field. Though it concentrates on the case when the ground field is local, the survey
article [Tit79] written some decades ago by J. Tits himself is still very useful. For a very
readable introduction covering also the case of a non-discrete valuation, we recommend the
recent text of Rousseau [Rou09].

3.1. Reductive groups. — We introduce a well-known family of algebraic groups which
contains most classical groups (i.e., groups which are automorphism groups of suitable bi-
linear or sesquilinear forms, possibly taking into account an involution, see [Wei60] and
[KMRT98]). The ground field here is not assumed to be endowed with any absolute value.
The structure theory for rational points is basically due to C. Chevalley over algebraically
closed fields [Che05], and to A. Borel and J. Tits over arbitrary fields [BT65] (assuming a
natural isotropy hypothesis).

3.1.1. Basic structure results. — We first need to recall some facts about general linear
algebraic groups, up to quoting classical conjugacy theorems and showing how to exhibit
a root system in a reductive group. Useful references are A. Borel’s [Bor91], Demazure-
Gabriel’s [DG70] and W.C. Waterhouse’s [Wat79] books.

Linear algebraic groups.— By convention, unless otherwise stated, an “algebraic group"
in what follows means a “linear algebraic group over some ground field"; being a linear
algebraic group amounts to being a smooth affine algebraic group scheme (over a field). Any
algebraic group can be embedded as a closed subgroup of some group GL(V) for a suitable
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vector space over the same ground field (see [Wat79, 3.4] for a scheme-theoretic statement
and [Bor91, Prop. 1.12 and Th. 5.1] for stronger statements but in a more classical context).

Let G be such a group over a field k; we will often consider the group Gka = G⊗k ka

obtained by extension of scalars from k to an algebraic closure ka.

Unipotent and diagonalizable groups.— We say that g ∈ G(ka) is unipotent if it is sent to
a unipotent matrix in some (a posteriori any) linear embedding ϕ : G →֒ GL(V): this means
that ϕ(g)− idV is nilpotent. The group Gka is called unipotent if so are all its elements;
this is equivalent to requiring that the group fixes a vector in any finite-dimensional linear
representation as above [Wat79, 8.3].

The group G is said to be a torus if it is connected and if Gka is diagonalizable, which
is to say that the algebra of regular functions O(Gka) is generated by the characters of Gka ,
i.e., O(Gka) ≃ ka[X(Gka)] [Bor91, §8]. Here, X(Gka) denotes the finitely generated abelian
group of characters Gka → Gm,ka and ka[X(Gka)] is the corresponding group algebra over ka.
A torus G defined over k (also called a k-torus) is said to be split over k if the above condi-
tion holds over k, i.e., if its coordinate ring O(G) is the group algebra of the abelian group
X∗(G) = Homk,Gr(G,Gm,k). In other words, a torus is a connected group of simultaneously
diagonalizable matrices in any linear embedding over ka as above, and it is k-split if it is
diagonalized in any linear embedding defined over k [Wat79, §7].

Lie algebra and adjoint representation.— One basic tool in studying connected real Lie
groups is the Lie algebra of such a group, that is its tangent space at the identity element
[Bor91, 3.5]. In the context of algebraic groups, the definition is the same but it is conve-
niently introduced in a functorial way [Wat79, §12].

Definition 3.1. — Let G be a linear algebraic group over a field k. The Lie algebra of G,

denoted by L (G), is the kernel of the natural map G(k[ε]) → G(k), where k[ε] is the k-

algebra k[X ]/(X) and ε is the class of X; in particular, we have ε2 = 0.

We have k[ε] = k ⊕ kε and the natural map above is obtained by applying the functor
of points G to the map k[ε] → k sending ε to 0. The bracket for L (G) is given by the
commutator (group-theoretic) operation [Wat79, 12.2-12.3].

Example 3.2. — For G = GL(V), we have L (G) ≃ End(V) where End(V) denotes the k-

vector space of all linear endomorphisms of V. More precisely, any element of L
(
GL(V)

)
is

of the form idV+uε where u∈End(V) is arbitrary. The previous isomorphism is simply given

by u 7→ idV + uε and the usual Lie bracket for End(V) is recovered thanks to the following

computation in GL(V,k[ε]): [idV+uε, idV +u′ε] = idV+(uu′−u′u)ε – note that the symbol

[., .] on the left hand-side stands for a commutator and that (idV + uε)−1 = idV − uε for any

u ∈ End(V).

An important tool to classify algebraic groups is the adjoint representation [Bor91, 3.13].

Definition 3.3. — Let G be a linear algebraic group over a field k. The adjoint representa-
tion of G is the linear representation Ad : G → GL

(
L (G)

)
defined by Ad(g) = int(g) |L (G)
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for any g ∈ G, where int(g) denotes the conjugacy h 7→ ghg−1 – the restriction makes sense

since, for any k-algebra R, both G(R) and L (G)⊗k R can be seen as subgroups of G(R[ε])
and the latter one is normal.

In other words, the adjoint representation is the linear representation provided by differ-
entiating conjugacies at the identity element.

Example 3.4. — For G= SL(V), we have L (G)≃{u∈End(V) : tr(u) = 0} and Ad(g).u=
gug−1 for any g∈ SL(V) and any u∈L (G). In this case, we write sometimes L (G) = sl(V).

Reductive and semisimple groups.— The starting point for the definition of reductive and
semisimple groups consists of the following existence statement [Bor91, 11.21].

Proposition/Definition 3.5. — Let G be a linear algebraic group over a field k.

(i) There is a unique connected, unipotent, normal subgroup in Gka , which is maximal for

these properties. It is called the unipotent radical of G and is denoted by Ru(G).

(ii) There is a unique connected, solvable, normal subgroup in Gka , which is maximal for

these properties. It is called the radical of G and is denoted by R(G).

The statement for the radical is implied by a finite dimension argument and the fact that
the Zariski closure of the product of two connected, normal, solvable subgroups is again
connected, normal and solvable. The unipotent radical is also the unipotent part of the radical:
indeed, in a connected solvable group (such as R(G)), the unipotent elements form a closed,
connected, normal subgroup [Wat79, 10.3]. Note that by their very definitions, the radical
and the unipotent radical depend only on the ka-group Gka and not on the k-group G.

Definition 3.6. — Let G be a linear algebraic group over a field k.

(i) We say that G is reductive if we have Ru(G) = {1}.

(ii) We say that G is semisimple if we have R(G) = {1}.

Example 3.7. — For any finite-dimensional k-vector space V, the group GL(V) is reductive

and SL(V) is semisimple. The groups Sp2n and SO(q) (for most quadratic forms q) are

semisimple.

If, taking into account the ground field k, we had used a rational version of the unipotent
radical, then we would have obtained a weaker notion of reductivity. More precisely, it
makes sense to introduce the rational unipotent radical, denoted by Ru,k(G) and contained
in Ru(G), defined to be the unique maximal connected, unipotent subgroup in G defined over

k. Then G is called k-pseudo-reductive if we have Ru,k(G) = {1}. This class of groups is
considered in the note [BT78], it is first investigated in some of J. Tits’ lectures ([Tit92] and
[Tit93]). A thorough study of pseudo-reductive groups and their classification are written
in B. Conrad, O. Gabber and G. Prasad’s book [CGP10] (an available survey is for instance
[Rém11]).

In the present paper, we are henceforth interested in reductive groups.
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Parabolic subgroups.— The notion of a parabolic subgroup can be defined for any alge-
braic group [Bor91, 11.2] but it is mostly useful to understand the structure of rational points
of reductive groups.

Definition 3.8. — Let G be a linear algebraic group over a field k and let H be a Zariski

closed subgroup of G. The subgroup H is called parabolic if the quotient space G/H is a

complete variety.

It turns out a posteriori that for a parabolic subgroup H, the variety G/H is actually a
projective one; in fact, it can be shown that H is a parabolic subgroup if and only if it contains
a Borel subgroup, that is a maximal connected solvable subgroup [Bor91, 11.2].

Example 3.9. — For G = GL(V), the parabolic subgroups are, up to conjugacy, the various

groups of upper triangular block matrices (there is one conjugacy class for each “shape" of

such matrices, and these conjugacy classes exhaust all possibilities).

The completeness of the quotient space G/H is used to have fixed-points for some sub-
group action, which eventually provides conjugacy results as stated below [DG70, IV, §4, Th.
3.2].

Conjugacy theorems.— We finally mention a few results which, among other things,
allow one to formulate classification results independent from the choices made to construct
the classification data (e.g., the root system – see 3.1.2 below) [Bor91, Th. 20.9].

Theorem 3.10. — Let G be a linear algebraic group over a field k. We assume that G is

reductive.

(i) Minimal parabolic k-subgroups are conjugate over k, that is any two minimal parabolic

k-subgroups are conjugate by an element of G(k).

(ii) Accordingly, maximal k-split tori are conjugate over k.

For the rational conjugacy of tori, the reductivity assumption can be dropped and simply
replaced by a connectedness assumption; this more general result is stated in [CGP10, C.2].
In the general context of connected groups (instead of reductive ones), one has to replace
parabolic subgroups by pseudo-parabolic ones in order to obtain similar conjugacy results
[CGP10, Th. C.2.5].

3.1.2. Root system, root datum and root group datum. — The notion of a root system is
studied in detail in [Bou07, IV]. It is a combinatorial notion which encodes part of the struc-
ture of rational points of semisimple groups. It also provides a nice uniform way to classify
semisimple groups over algebraically closed fields up to isogeny, a striking fact being that the
outcome does not depend on the characteristic of the field [Che05].

In order to state the more precise classification of reductive groups up to isomorphism
(over algebraically closed fields, or more generally of split reductive groups), it is necessary
to introduce a more subtle notion, namely that of a root datum:
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Definition 3.11. — Let X be a finitely generated free abelian group; we denote by Xˇ its

Z-dual and by 〈·, ·〉 the duality bracket. Let R and Rˇ be two finite subsets in X and X ,̌

respectively. We assume we are given a bijection ˇ: α 7→ α ˇfrom R onto R .̌ We have thus, for

each α ∈ R, endomorphisms

sα : x 7→ x−〈x,α ˇ〉α and sαˇ: xˇ 7→ xˇ−〈α,xˇ〉α ˇ

of the groups X and X ,̌ respectively. The quadruple Ψ = (X,R,X ,̌Rˇ) is said to be a root
datum if it satisfies the following axioms:

RD 1 For each α ∈ R, we have 〈α,α ˇ〉= 2.

RD 2 For each α ∈ R, we have sα (R) = R and sαˇ(Rˇ) = R .̌

This formulation is taken from [Spr98]. The elements of R are called roots and the reflec-
tions sα generate a finite group W of automorphisms of X, called the Weyl group of Ψ.

Let Q denote the subgroup of X generated by R. Up to introducing V = Q⊗Z R and
choosing a suitable W-invariant scalar product on V, we can see that R is a root system in the
following classical sense:

Definition 3.12. — Let V be a finite-dimensional real vector space endowed with a scalar

product which we denote by 〈·, ·〉. We say that a finite subset R of V−{0} is a root system if

it spans V and if it satisfies the following two conditions.

RS 1 To each α ∈ R is associated a reflection sα which stabilizes R and switches α and −α .

RS 2 For any α,β ∈ R, we have sα(β )−β ∈ Zα .

The Weyl group of Ψ is identified with the group of automorphisms of V generated by the
euclidean reflections sα .

Let R be a root system. For any subset ∆ in R, we denote by R+(∆) the set of roots
which can be written as a linear combination of elements of ∆ with non-negative integral
coefficients. We say that ∆ is a basis for the root system R if it is a basis of V and if we have
R = R+(∆)⊔R−(∆), where R−(∆) = −R+(∆). Any root system admits a basis and any two
bases of a given root system are conjugate under the Weyl group action [Bou07, VI.1.5, Th.
2]. When ∆ is a basis of the root system R, we say that R+(∆) is a system of positive roots in
R; the elements in ∆ are then called simple roots (with respect to the choice of ∆). The coroot

associated to α is the linear form α∨ on V defined by β − sα(β ) = α∨(β )α; in particular,
we have α∨(α) = 2.

Example 3.13. — Here is a well-known concrete construction of the root system of type An.

Let Rn+1 =
⊕n

i=0 Rεi be equipped with the standard scalar product, making the basis (εi)

orthonormal. Let us introduce the hyperplane V = {∑i λiεi : ∑i λi = 0}; we also set αi, j =

εi−ε j for i 6= j. Then R= {αi, j : i 6= j} is a root system in V and ∆= {αi,i+1 : 06 i6 n−1} is

a basis of it for which R+(∆) = {αi, j : i < j}. The Weyl group is isomorphic to the symmetric

group Sn+1; canonical generators leading to a Coxeter presentation are for instance given

by transpositions i ↔ i+ 1.
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Root systems in reductive groups appear as follows. The restriction of the adjoint repre-
sentation (Definition 3.3) to a maximal k-split torus T is simultaneously diagonalizable over
k, so that we can write:

L (G) =
⊕

ϕ∈X∗(T)

L (G)ϕ

where

L (G)ϕ = {v ∈ L (G) : Ad(t).v = ϕ(t)v for all t ∈ T(k)}.

The normalizer N = NG(T) acts on X∗(T) via its action by (algebraic) conjugation on T,
hence it permutes algebraic characters. The action of the centralizer Z = ZG(T) is trivial, so
the group actually acting is the finite quotient N(k)/Z(k) (finiteness follows from rigidity of
tori [Wat79, 7.7], which implies that the identity component N◦ centralizes T; in fact, we
have N◦ = Z since centralizers of tori in connected groups are connected).

R = R(T,G) = {ϕ ∈ X∗(T) : L (G)ϕ 6= {0}}.

It turns out that [Bor91, Th. 21.6]:

1. the R-linear span of R is V = Q⊗Z R, where Q ⊂ X∗(T) is generated by R;
2. there exists an N(k)/Z(k)-invariant scalar product V;
3. the set R is a root system in V for this scalar product;
4. the Weyl group W of this root system is isomorphic to N(k)/Z(k).

Moreover one can go further and introduce a root datum by setting X = X∗(T) and by taking
Xˇ to be the group of all 1-parameter multiplicative subgroups of T. The roots α have just
been introduced before, but distinguishing the coroots among the cocharacters in Xˇ is less
immediate (over algebraically closed fields or more generally in the split case, they can be
defined by means of computation in copies of SL2 attached to roots as in Example 3.15
below). We won’t need this but, as already mentioned, in the split case the resulting quadruple
Ψ = (X,R,X ,̌R )̌ characterizes, up to isomorphism, the reductive group we started with (see
[SGA3] or [Spr98, Chap. 9 and 10]).

One of the main results of Borel-Tits theory [BT65] about reductive groups over arbitrary
fields is the existence of a very precise combinatorics on the groups of rational points. The
definition of this combinatorial structure – called a root group datum – is given in a purely
group-theoretic context. It is so to speak a collection of subgroups and classes modulo an
abstract subgroup T, all indexed by an abstract root system and subject to relations which
generalize and formalize the presentation of SLn (or of any split simply connected simple
group) over a field by means of elementary unipotent matrices [Ste68]. This combinatorics
for the rational points G(k) of an isotropic reductive group G is indexed by the root system
R(T,G) with respect to a maximal split torus which we have just introduced; in that case, the
abstract group T of the root group datum can be chosen to be the group of rational points of
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the maximal split torus (previously denoted by the same letter!). More precisely, the axioms
of a root group datum are given in the following definition, taken from [BrT72, 6.1](1).

Definition 3.14. — Let R be a root system and let G be a group. Assume that we are given a

system
(
T,(Uα ,Mα)α∈R

)
where T and each Uα is a subgroup in G, and each Mα is a right

congruence class modulo T. We say that this system is a root group datum of type R for G if

it satisfies the following axioms:

RGD 1 For each α ∈ R, we have Uα 6= {1}.

RGD 2 For any α,β ∈ R, the commutator group [Uα ,Uβ ] is contained in the group generated

by the groups Uγ indexed by roots γ in R∩ (Z>0α +Z>0β ).

RGD 3 If both α and 2α belong to R, we have U2α ( Uα .

RGD 4 For each α ∈ R, the class Mα satisfies U−α−{1} ⊂ Uα Mα Uα .

RGD 5 For any α,β ∈ R and each n ∈ Mα , we have nUβ n−1 = Usα (β ).

RGD 6 We have TU+ ∩U− = {1}, where U± is the subgroup generated by the groups Uα

indexed by the roots α of sign ±.

The groups Uα are called the root groups of the root group datum.

This list of axioms is probably a bit hard to swallow in one stroke, but the example of GLn

can help a lot to have clearer ideas. We use the notation of Example 3.13 (root system of type
An).

Example 3.15. — Let G = GLn+1 and let T be the group of invertible diagonal matrices. To

each root αi, j of the root system R of type An, we attach the subgroup of elementary unipotent

matrices Ui, j = Uαi, j = {In + λ Ei, j : λ ∈ k}. We can see easily that NG(T) = {monomial

matrices}, that ZG(T) = T and finally that NG(T)/ZG(T) ≃ Sn+1. Acting by conjugation,

the group NG(T) permutes the subgroups Uαi, j and the corresponding action on the indexing

roots is nothing else than the action of the Weyl group Sn+1 on R. The axioms of a root group

datum follow from matrix computation, in particular checking axiom (RGD4) can be reduced

to the following equality in SL2:(
1 0
1 1

)
=

(
1 1
0 1

)(
0 −1
1 0

)(
1 1
0 1

)
.

We can now conclude this subsection by quoting a general result due to A. Borel and J. Tits
(see [BrT72, 6.1.3 c)] and [BT65]).

Theorem 3.16. — Let G be a connected reductive group over a field k, which we assume

to be k-isotropic. Let T be a maximal k-split torus in G, which provides a root system R =

R(T,G).

(1)Though the notion is taken from [BrT72], the terminology we use here is not the exact translation of the French
“donnée radicielle" as used in [loc. cit.]: this is because we have already used the terminology “root datum" in the

combinatorial sense of [SGA3]. Accordingly, we use the notation of [SGA3] instead of that of [BrT72], e.g. a root
system is denoted by the letter R instead of Φ.
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(i) For every root α ∈ R the connected subgroup Uα with Lie algebra L (G)α is unipotent;

moreover it is abelian or two-step nilpotent.

(ii) The subgroups T(k) and Uα(k), for α ∈ R, are part of a root group datum of type R in

the group of rational points G(k).

Recall that we say that a reductive group is isotropic over k if it contains a non-central k-
split torus of positive dimension (the terminology is inspired by the case of orthogonal groups
and is compatible with the notion of isotropy for quadratic forms [Bor91, 23.4]). Note finally
that the structure of a root group datum implies that (coarser) of a Tits system (also called
BN-pair) [Bou07, IV.2], which was used by J. Tits to prove, in a uniform way, the simplicity
(modulo center) of the groups of rational points of isotropic simple groups (over sufficiently
large fields) [Tit64].

3.1.3. Valuations on root group data. — Bruhat-Tits theory deals with isotropic reductive
groups over valued fields. As for Borel-Tits theory (arbitrary ground field), a substantial part
of this theory can also be summed up in combinatorial terms. This can be done by using the
notion of a valuation of a root group datum, which formalizes among other things the fact
that the valuation of the ground field induces a filtration on each root group. The definition is
taken from [BrT72, 6.2].

Definition 3.17. — Let G be an abstract group and let
(
T,(Uα ,Mα)α∈R

)
be a root group

datum of type R for it. A valuation of this root group datum is a collection ϕ = (ϕα)α∈R of

maps ϕα : Uα → R∪{∞} satisfying the following axioms.

V0 For each α ∈ R, the image of ϕα contains at least three elements.

V1 For each α ∈ R and each ℓ ∈ R∪{∞}, the preimage ϕ−1
α ([ℓ;∞]) is a subgroup of Uα ,

which we denote by Uα ,ℓ; moreover we require Uα ,∞ = {1}.

V2 For each α ∈ R and each n ∈ Mα , the map u 7→ ϕ−α(u)−ϕα (nun−1) is constant on

the set U∗
−α = U−α −{1}.

V3 For any α,β ∈R and ℓ,ℓ′ ∈R such that β 6∈ −R+α , the commutator group [Uα ,ℓ,Uβ ,ℓ′ ]

lies in the group generated by the groups Upα+qβ ,pℓ+qℓ′ where p,q ∈ Z>0 and pα +

qβ ∈ R.

V4 If both α and 2α belong to R, the restriction of 2ϕα to U2α is equal to ϕ2α .

V5 For α ∈R, u∈Uα and u′,u′′ ∈U−α such that u′uu′′ ∈Mα , we have ϕ−α(u
′)=−ϕα(u).

The geometric counterpart to this list of technical axioms is the existence, for a group
endowed with a valued root group datum, of a Euclidean building (called the Bruhat-Tits

building of the group) on which it acts by isometries with remarkable transitivity proper-
ties [BrT72, §7]. For instance, if the ground field is discretely valued, the corresponding
building is simplicial and a fundamental domain for the group action is given by a maximal
(poly)simplex, also called an alcove (in fact, if the ground field is discretely valued, the ex-
istence of a valuation on a root group datum can be conveniently replaced by the existence
of an affine Tits system [BrT72, §2]). As already mentioned, the action turns out to be
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strongly transitive, meaning that the group acts transitively on the inclusions of an alcove in
an apartment (Remark 1.5 in 1.1.1).

3.2. Bruhat-Tits buildings. — The purpose of this subsection is to roughly explain how
Bruhat-Tits theory attaches a Euclidean building to a suitable reductive group defined over a
valued field. This Bruhat-Tits building comes equipped with a strongly transitive action by the
group of rational points, which in turn implies many interesting decompositions of the group.
The latter decompositions are useful for instance to doing harmonic analysis or studying
various classes of linear representations of the group. We roughly explain the descent method
used to perform the construction of the Euclidean buildings, and finally mention how some
integral models are both one of the main tools and an important outcome of the theory.

3.2.1. Foldings and gluing. — We keep the (connected) semisimple group G, defined over
the (now, complete valued non-Archimedean) field k but from now on, we assume for simplic-

ity that k is a local field (i.e., is locally compact) and we denote by ω its discrete valuation,
normalized so that ω(k×) = Z. Hence ω(·) = −logq| · |, where q > 1 is a generator of the
discrete group |k×|.

We also assume that G contains a k-split torus of positive dimension: this is an isotropy
assumption over k already introduced at the end of 3.1.2 (in this situation, this algebraic
condition is equivalent to the topological condition that the group of rational points G(k) is
non-compact [Pra82]). In order to associate to G a Euclidean building on which G(k) acts
strongly transitively, according to [Tit79] we need two things:

1. a model, say Σ, for the apartments;
2. a way to glue many copies of Σ altogether in such a way that they will satisfy the

incidence axioms of a building (1.1.1).

Model for the apartment.— References for what follows are [Tit79, §1] or [Lan96, Chap-
ter I]. Let T be a maximal k-split torus in G and let X∗(T) denote its group of 1-parameter
subgroups (or cocharacters). As a first step, we set Σvect = X∗(T)⊗Z R.

Proposition 3.18. — There exists an affine space Σ with underlying vector space Σvect,

equipped with an action by affine transformations ν : N(k) = NG(T)(k) → Aff(Σ) and

having the following properties.

(i) There is a scalar product on Σ such that ν
(
N(k)

)
is an affine reflection group.

(ii) The vectorial part of this group is the Weyl group of the root system R = R(T,G).

(iii) The translation (normal) subgroup acts cocompactly on Σ, it is equal to ν
(
Z(k)

)
and

the vector ν(z) attached to an element z ∈ Z(k) is defined by χ
(
ν(z)

)
=−ω

(
χ(z)

)
for

any χ ∈ X∗(T).

If we go back to the example of GL(V) acting by precomposition on the space of classes
of norms X (V,k) as described in 1.2, we can see the previous statement as a generalization
of the fact, mentioned in 1.2.3, that for any basis e of V, the group Ne of monomial matrices
with respect to e acts on the apartment Ae as Sd ⋉Zd where d = dim(V).
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Filtrations and gluing.— Still for this special case, we saw (Proposition refprop - fold-
ing) that any elementary unipotent matrix ui j(λ ) = Id +λ Ei j fixes pointwise a closed half-
apartment in Ae bounded by a hyperplane of the form {ci − c j = constant} (the constant
depends on the valuation ω(λ ) of the additive parameter λ ), the rest of the apartment Ae

associated to e being “folded" away from Ae.
In order to construct the Bruhat-Tits building in the general case, the gluing equivalence

will impose this folding action for unipotent elements in root groups; this will be done by
taking into account the “valuation" of the unipotent element under consideration. What for-
malizes this is the previous notion of a valuation for a root group datum (Definition 3.17),
which provides a filtration on each root group. For further details, we refer to the motivations
given in [Tit79, 1.1-1.4]. It is not straightforward to perform this in general, but it can be
done quite explicitly when the group G is split over k (i.e., when it contains a maximal torus
which is k-split). For the general case, one has to go to a (finite, separable) extension of the
ground field splitting G and then to use subtle descent arguments. The main difficulty for the
descent step is to handle at the same time Galois actions on the split group and on its “split"
building in order to descend the ground field both for the valuation of the root group datum
and at the geometric level (see 3.2.2 for slightly more details).

Let us provisionally assume that G is split over k. Then each root group Uα(k) is isomor-
phic to the additive group of k and for any such group Uα(k) we can use the valuation of k to
define a decreasing filtration {Uα(k)ℓ}ℓ∈Z satisfying:

⋃
ℓ∈Z Uα(k)ℓ = Uα(k) and

⋂
ℓ∈Z Uα(k)ℓ = {1},

and further compatibilities, namely the axioms of a valuation (Definition 3.17) for the root
group datum structure on G(k) given by Borel-Tits theory (Theorem 3.16) – the latter root
group datum structure in the split case is easy to obtain by means of Chevalley bases [Ste68]
(see remark below). For instance, in the case of the general linear group, this can be merely
done by using the parameterizations

(k,+)≃ Uαi, j(k) = {id+λ Ei, j : λ ∈ k}.

Remark 3.19. — Let us be slightly more precise here. For a split group G, each root group

Uα is k-isomorphic to the additive group Ga, and the choice of a Chevalley basis of Lie(G)

determines a set of isomorphisms {pα : Uα →Ga}α∈R. It is easily checked that the collection

of maps

ϕα : Uα(k)
pα // Ga(k)

ω // R

defines a valuation on the root group datum (T(k),(Uα (k),Mα )).

For each ℓ ∈ R, the condition |pα | 6 q−s defines an affinoid subgroup Uα ,s in Uan
α such

that Uα(k)ℓ = Uα ,s(k) for any s ∈ (ℓ− 1, ℓ]. The latter identity holds after replacement of

k by any finite extension k′, as long as we normalize the valuation of k′ in such a way that
is extends the valuation on k. This shows that Bruhat-Tits filtrations on root groups, in the

split case at this stage, comes from a decreasing, exhaustive and separated filtration of Uan
α

by affinoid subgroups {Uα ,s}s∈R.
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Let us consider again the apartment Σ with underlying vector space Σvect = X∗(T)⊗Z R.
We are interested in the affine linear forms α + ℓ (α ∈ R, ℓ ∈ Z). We fix an origin, say o,
such that (α + 0)(o) = 0 for any root α ∈ R. We have “level sets" {α + ℓ= 0} and “positive
half-spaces" {α + ℓ> 0} bounded by them.

For each x ∈ Σ, we set Nx = StabG(k)(x) (using the action ν of Proposition 3.18) and for
each root α we denote by Uα(k)x the biggest subgroup Uα(k)ℓ such that x ∈ {α + ℓ > 0}
(i.e. ℓ is minimal for the latter property). At last, we define Px to be the subgroup of G(k)

generated by Nx and by {Uα(k)x}α∈R. We are now in position to define a binary relation, say
∼, on G(k)×Σ by:

(g,x)∼ (h,y) ⇐⇒ there exists n ∈ NG(T )(k) such that y = ν(n).x and g−1hn ∈ Px.

Construction of the Bruhat-Tits buildings.— This relation is exactly what is needed in
order to glue together copies of Σ and to finally obtain the desired Euclidean building.

Theorem 3.20. — The relation ∼ is an equivalence relation on the set G(k)× Σ and the

quotient space B =B(G,k) = (G(k)×Σ)/∼ is a Euclidean building whose apartments are

isomorphic to Σ and whose Weyl group is the affine reflection group W = ν
(
N(k)

)
. Moreover

the G(k)-action by left multiplication on the first factor of G(k)×Σ induces an action of G(k)

by isometries on B(G,k).

Notation.— According to Definition 1.9, copies of Σ in B(G,k) are called apartments;
they are the maximal flat (i.e., euclidean) subspaces. Thanks to G(k)-conjugacy of maximal
split tori 3.10, apartments of B(G,k) are in bijection with maximal split tori of G. There-
fore, we will speak of the apartment of a maximal split torus S of G and write A(S,k). By
construction, this is an affine space under the R-vector space HomAb(X∗(S),R).

Reference for the proof. — As already explained, the difficulty is to check the axioms of a
valuation (Def 3.17) for a suitable choice of filtrations on the root groups of a Borel-Tits
root group datum (Th. 3.16). Indeed, the definition of the equivalence relation ∼, hence
the construction of a suitable Euclidean building, for a valued root group datum can be done
in this purely abstract context [BrT72, §7]. The existence of a valued root group datum
for reductive groups over suitable valued (not necessarily complete) fields was announced in
[BrT72, 6.2.3 c)] and was finally settled in the second IHÉS paper (1984) by F. Bruhat and
J. Tits [BrT84, Introduction and Th. 5.1.20].

One way to understand the gluing equivalence relation ∼ is to see that it prescribes stabi-
lizers. Actually, it can eventually be proved that a posteriori we have:

ΣUα,ℓ(k) = {α + ℓ> 0} and StabG(k)(x) = Px for any x ∈ B.

A more formal way to state the result is to say that to each valued root group datum on
a group is associated a Euclidean building, which can be obtained by a gluing equivalence
relation defined as above [BrT72, §7].
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Example 3.21. — In the case when G = SL(V), it can be checked that the building obtained

by the above method is equivariantly isomorphic to the Goldman-Iwahori space X (V,k)

[BrT72, 10.2].

3.2.2. Descent and functoriality. — Suitable filtrations on root groups so that an equivalence
relation ∼ as above can be defined do not always exist. Moreover, even when things go well,
the way to construct the Bruhat-Tits building is not by first exhibiting a valuation on the root
group datum given by Borel-Tits theory and then by using the gluing relation ∼. As usual in
algebraic group theory, one has first to deal with the split case, and then to apply various and
difficult arguments of descent of the ground field. Bruhat and Tits used a two-step descent,
allowing a fine description of smooth integral models of the group associated with facets. A
one-step descent was introduced by Rousseau in his thesis [Rou77], whose validity in full
generality now follows from recent work connected to Tits’ Center Conjecture ([Str11]).

Galois actions.— More precisely, one has to find a suitable (finite) Galois extension k′/k

such that G splits over k′ (or, at least, quasi-splits over k′, i.e. admits a Borel subgroup defined
over k′) and, which is much more delicate, which enables one:

1. to define a Gal(k′/k)-action by isometries on the “(quasi)-split" building B(G,k′);
2. to check that a building for G(k) lies in the Galois fixed point set B(G,k′)Gal(k′/k).

Similarly, the group G(k′) of course admits a Gal(k′/k)-action.

Remark 3.22. — Recall that, by completeness and non-positive curvature, once step 1 is

settled we know that we have sufficiently many Galois-fixed points in B(G,k′) (see the dis-

cussion of the Bruhat-Tits fixed point theorem in 1.1.3).

F. Bruhat and J. Tits found a uniform procedure to deal with various situations of that
kind. The procedure described in [BrT72, 9.2] formalizes, in abstract terms of buildings and
group combinatorics, how to exhibit a valued root group datum structure (resp. a Euclidean
building structure) on a subgroup of a bigger group with a valued root group datum (resp.
on a subspace of the associated Bruhat-Tits building). The main result [BrT72, Th. 9.2.10]
says that under some sufficient conditions, the restriction of the valuation to a given sub-
root group datum “descends" to a valuation and its associated Bruhat-Tits building is the
given subspace. These sufficient conditions are designed to apply to subgroups and convex
subspaces obtained as fixed-points of “twists" by Galois actions (and they can also be applied
to non-Galois twists “à la Ree-Suzuki").

Two descent steps.— As already mentioned, this needn’t work over an arbitrary valued
field k (even when k is complete). Moreover F. Bruhat and J. Tits do not perform the descent
in one stroke, they have to argue by a two step descent.

The first step is the so-called quasi-split descent [BrT84, §4]. It consists in dealing with
field extensions splitting an initially quasi-split reductive group. The Galois twists here (of
the ambient group and building) are shown, by quite concrete arguments, to fit in the con-
text of [BrT72, 9.2] mentioned above. This is possible thanks to a deep understanding of
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quasi-split groups: they can even be handled via a presentation (see [Ste68] and [BrT84,
Appendice]). In fact, the largest part of the chapter about the quasi-split descent [BrT84,
§4] is dedicated to another topic which will be presented below (3.2.3), namely the construc-
tion of suitable integral models (i.e. group schemes over k◦ with generic fiber G) defined
by geometric conditions involving bounded subsets in the building. The method chosen by
F. Bruhat and J. Tits to obtain these integral models is by using a linear representation of
G whose underlying vector space contains a suitable k◦-lattice, but they mention themselves
that this could be done by Weil’s techniques of group chunks. Since then, thanks to the de-
velopments of Néron model techniques [BLR90], this alternative method has been written
down [Lan96].

The second step is the so-called étale descent [BrT84, §5]. By definition, an étale ex-
tension, in the discretely valued case (to which we stick here), is unramified with separable
residual extension; let us denote by ksh the maximal étale extension of k. This descent step
consists in considering situations where the semisimple k-group G is such that G⊗k ksh is
quasi-split (so that, by the first step, we already have a valued root group datum and a Bruhat-
Tits building for G(ksh), together with integral structures). Checking that this fits in the
geometric and combinatorial formalism of [BrT72, 9.2] is more difficult in that case. In fact,
this is the place where the integral models over the valuation ring k◦ are used, in order to find
a suitable torus in G which become maximal split in G⊗k k′ for some étale extension k′ of k

[BrT84, Cor. 5.1.12].

Remark 3.23. — In the split case, we have noticed that the Bruhat-Tits filtrations on rational

points of root groups come from filtrations by affinoid subgroups (3.19). This fact holds in

general and can be checked as follows: let k′/k be a finite Galois extension splitting G and

consider a maximal torus T of G which splits over k′ and contains a maximal split torus S.

The canonical projection X∗(T⊗k k′)→ X∗(S⊗k k′)=̃X∗(S) induces a surjective map

p : R(T⊗k k′,G⊗k k′)−→ R(S,G)∪{0}

and there is a natural k′-isomorphism

∏
β∈p−1(α)

Uβ × ∏
β∈p−1(2α)

Uβ ≃ Uα ⊗k k′

for any ordering of the factor.

A posteriori, Bruhat-Tits two-step descent proves that any maximal split torus S of G is

contained in a maximal torus T which splits over a finite Galois extension k′/k such that

Gal(k′/k) fixes a point in the apartment of T⊗k k′ in B(G,k′). If the valuation on k′ is
normalized in such a way that it extends the valuation on k, then, for any ℓ ∈ R, the affinoid

subgroup

∏
β∈p−1(α)

Uβ ,ℓ× ∏
β∈p−1(2α)

Uβ ,2ℓ

of the left hand side corresponds to an affinoid subgroup of the right hand side which does

not depend on the ordering of the factors and is preserved by the natural action of Gal(k′|k);
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this can be checked by using calculations in [BrT72, 6.1] at the level of k′′ points, for any

finite extension k′′/k′. By Galois descent, we obtain an affinoid subgroup Uα ,ℓ of Uan
α such

that

Uα ,ℓ(k) = Uα(k)∩


 ∏

β∈p−1(α)

Uβ ,ℓ(k
′)× ∏

β∈p−1(2α)

Uβ ,2ℓ(k
′)


 .

By [BrT84, 5.1.16 and 5.1.20], the filtrations {Uα ,ℓ(k)}ℓ∈R are induced by a valuation on the

root group datum (S(k),{Uα (k)}).

Let us finish by mentioning why this two-step strategy is well-adapted to the case we are
interested in, namely that of a semisimple group G defined over a complete, discretely valued
field k with perfect residue field k̃: thanks to a result of R. Steinberg’s [Ser94, III, 2.3],
such a group is known to quasi-split over ksh. Compactifications of Bruhat-Tits buildings
fit in this more specific context for G and k. Indeed, the Bruhat-Tits building B(G,k) is
locally compact if and only if so is k, see the discussion of the local structure of buildings
below (3.2.3). Note finally that the terminology “henselian" used in [BrT84] is a well-known
algebraic generalization of “complete" (the latter “analytic" condition is the only one we
consider seriously here, since we will use Berkovich geometry).

Existence of Bruhat-Tits buildings.— Here is at last a general statement on existence of
Bruhat-Tits buildings which will be enough for our purposes; this result was announced in
[BrT72, 6.2.3 c)] and is implied by [BrT84, Th. 5.1.20].

Theorem 3.24. — Assume that k is complete, discretely valued, with perfect residue field.

The root group datum of G(k) associated with a split maximal torus admits a valuation sat-

isfying the conditions of Definition 3.17.

Let us also give now an example illustrating both the statement of the theorem and the
general geometric approach characterizing Bruhat-Tits theory.

Example 3.25. — Let h be a Hermitian form of index 1 in three variables, say on the vector

space V≃ k3. We assume that h splits over a quadratic extension, say E/k, so that SU(V,h) is

isomorphic to SL3 over E, and we denote Gal(E/k) = {1;σ}. Then the building of SU(V,h)

can be seen as the set of fixed points for a suitable action of the Galois involution σ on the

2-dimensional Bruhat-Tits building of type Ã2 associated to V⊗k E as in 1.2. If k is local and

if q denotes the cardinality of the residue field, then the Euclidean building B(SU(V,h),k) is

a locally finite tree: indeed, it is a Euclidean building of dimension 1 because the k-rank of

SU(V,h), i.e. the dimension of maximal k-split tori, is 1. The tree is homogeneous of valency

1+q when E/k is ramified, in which case the type of the group is C-BC1 in Tits’ classification

[Tit79, p. 60, last line]. The tree is semi-homogeneous of valencies 1+ q and 1+ q3 when

E/k is unramified, and then the type is 2A′
2 [Tit79, p. 63, line 2]. For the computation of the

valencies, we refer to 3.2.3 below.
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Functoriality.— For our purpose (i.e. embedding of Bruhat-Tits buildings in analytic
spaces and subsequent compactifications), the existence statement is not sufficient. We need
a stronger result than the mere existence; in fact, we also need a good behavior of the building
with respect to field extensions.

Theorem 3.26. — Whenever k is complete, discretely valued, with perfect residue field, the

Bruhat-Tits building B(G,K) depends functorially on the non-Archimedean extension K of

k.

More precisely, let us denote by G− Sets the category whose objets are pairs (K/k,X),
where K/k is a non-Archimedean extension and X is a topological space endowed with a
continuous action of G(K), and arrows (K/k,X)→ (K′/k,X′) are pairs (ι, f ), where ι is an
isometric embedding of K into K′ and f is a G(K)-equivariant and continous map from X to
X′. We see the building of G as a section B(G,−) of the forgetful functor

G−Sets −→

(
non−Archimedean

extensions K/k

)
.

Remark (Reference). — It is explained in [RTW10, 1.3.4] how to deduce this from the
general theory.

One word of caution is in order here. If k′/k is a Galois extension, then there is a natural
action of Gal(k′/k) on B(G,k′) by functoriality and the smaller building B(G,k) is contained
in the Galois-fixed point set in B(G,k′). In general, this inclusion is strict, even when the
group is split [Rou77, III] (see also 5.2). However, one can show that there is equality if the
extension k′/k is tamely ramified [loc. cit.] and [Pra01].

We will need to have more precise information about the behavior of apartments. As
above, we assume that k is complete, discretely valued and with perfect residue field.

Definition 3.27. — Let T be a maximal torus of G and let kT be the minimal Galois extension

of k (in some fixed algebraic closure) which splits T. We denote by kur
T the maximal unramified

extension of k in kT.

The torus T is well-adjusted if the maximal split subtori of T and T⊗k kur
T are maximal

split tori of G and G⊗k kur
T .

Lemma 3.28. — 1. Every maximal split torus S of G is contained in a well-adjusted maximal

torus T.

2. Assume that S and T are as above, and let K/k be any non-Archimedean field extension

which splits T. The embedding B(G,k) →֒ B(G,K) maps A(S,k) into A(T,K).

Proof. — 1. For each unramified finite Galois extension k′/k, we can find a torus S′ ⊂ G
which contains S and such that S′⊗k k′ is a maximal split torus of G⊗k k′ [BrT84, Corollaire
5.1.12]. We choose a pair (k′,S′) such that the rank of S′ is maximal, equal to the relative rank
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of G⊗k kur; this means that S′⊗k k′′ is a maximal split torus of G⊗k k′′ for any unramified
extension k′′/k containing k′.

The centralizer of S′⊗k k′ in G⊗k k′ is a maximal torus of G⊗k k′, hence T = Z(S′) is a
maximal torus of G. By construction, S′ splits over kur

T and S′⊗k kur
T is a maximal split torus

of G⊗k kur
T . Since S ⊂ S′, this proves that T is well-adjusted.

2. We keep the same notation as above. The extension K/k contains kT, hence it is
enough by functoriality to check that the embedding B(G,k) →֒ B(G,kT) maps A(S,k) into
A(T,kT).

Let us consider the embeddings

B(G,k) →֒ B(G,kur
T ) →֒ B(G,kT).

The first one maps A(S,k) into A(S′,kur
T ) by By [BrT84, Proposition 5.1.14] and the second

one maps A(S′,kur
T ) into A(T,kT) by [Rou77, Théorème 2.5.6], hence their composite has

the required property.

3.2.3. Compact open subgroups and integral structures. — In what follows, we maintain the
previous assumptions, in particular the group G is semisimple and k-isotropic. The building
B(G,k) admits a strongly transitive G(k)-action by isometries. Moreover it is a labelled

simplicial complex in the sense that, if d denotes the number of codimension 1 facets (called
panels) in the closure of a given alcove, we can choose d colors and assign one of them to
each panel in B(G,k) so that each color appears exactly once in the closure of each alcove.
For some questions, it is convenient to restrict oneself to the finite index subgroup G(k)•

consisting of the color-preserving (or type-preserving) isometries in G(k).

Compact open subgroups.— For any facet F ⊂ B(G,k) we denote by PF the stabilizer
StabG(k)(F): it is a bounded subgroup of G(k) and when k is local, it is a compact, open sub-
group. It follows from the Bruhat-Tits fixed point theorem (1.1.3) that the conjugacy classes
of maximal compact subgroups in G(k)• are in one-to-one correspondence with the vertices
in the closure of a given alcove. The fact that there are usually several conjugacy classes
of maximal compact subgroups in G(k) makes harmonic analysis more delicate than in the
classical case of real Lie groups. Still, for instance thanks to the notion of a special vertex,
many achievements can also be obtained in the non-Archimedean case [Mac71]. Recall that
a point x ∈B(G,k) is called special if for any apartment A containing x, the stabilizer of x in
the affine Weyl group is the full vectorial part of this affine reflection group, i.e. is isomorphic
to the (spherical) Weyl group of the root system R of G over k.

Integral models for some stabilizers.— In what follows, we are more interested in al-
gebraic properties of compact open subgroups obtained as facet stabilizers. The following
statement is explained in [BrT84, 5.1.9].

Theorem 3.29. — For any facet F ⊂ B(G,k) there exists a smooth k◦-group scheme GF

with generic fiber G such that GF(k
◦) = PF .
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As already mentioned, the point of view of group schemes over k◦ in Bruhat-Tits theory
is not only an important tool to perform the descent, but it is also an important outcome of
the theory. Here is an example. The “best" structure a priori available for a facet stabilizer
is only of topological nature (and even for this, we have to assume that k is locally compact).
The above models over k◦ provide an algebraic point of view on these groups, which allows
one to define a filtration on them leading to the computation of some cohomology groups of
great interest for the congruence subgroup problem, see for instance [PR84a] and [PR84b].
Filtrations are also of great importance in the representation theory of non-Archimedean Lie
groups, see for instance [MP94] and [MP96].

Closed fibres and local combinatorial description of the building.— We finish this brief
summary of Bruhat-Tits theory by mentioning quickly two further applications of integral
models for facet stabilizers.

First let us pick a facet F ⊂B(G,k) as above and consider the associated k◦-group scheme
GF . As a scheme over k◦, it has a closed fibre (so to speak obtained by reduction modulo k◦◦)
which we denote by GF . This is a group scheme over the residue field k̃. It turns out that
the rational points GF(k̃) have a nice combinatorial structure (even though the k̃-group GF

needn’t be reductive in general); more precisely, GF(k̃) has a Tits system structure (see the
end of 3.1.2) with finite Weyl group. One consequence of this is that GF(k̃) admits an action
on a spherical building (a spherical building is merely a simplicial complex satisfying the
axioms of Definition 1.2 with the Euclidean tiling Σ replaced by a spherical one). The nice
point is that this spherical building naturally appears in the (Euclidean) Bruhat-Tits building
B(G,k). Namely, the set of closed facets containing F is a geometric realization of the
spherical building of GF(k̃) [BrT84, Prop. 5.1.32]. In particular, for a complete valued field
k, the building B(G,k) is locally finite if and only if the spherical building of GF(k̃) is actually
finite for each facet F , which amounts to requiring that the residue field k̃ be finite. Note that
a metric space admits a compactification if, and only if, it is locally compact. Therefore
from this combinatorial description of neighborhoods of facets, we see that the Bruhat-Tits

building B(G,k) admits a compactification if and only if k is a local field.

Remark 3.30. — Let us assume here that k is discretely valued. This is the context where

the more classical combinatorial structure of an (affine) Tits system is relevant [Bou07, IV.2].
Let us exhibit such a structure. First, a parahoric subgroup in G(k) can be defined to be the

image of (GF)
◦(k◦) for some facet F in B(G,k), where (GF)

◦ denotes the identity component

of GF [BrT84, 5.2.8]. We also say for short that a parahoric subgroup is the connected

stabilizer of a facet in the Bruhat-Tits building B(G,k). If G is simply connected (in the

sense of algebraic groups), then the family of parahoric subgroups is the family of abstract

parabolic subgroups of a Tits system with affine Weyl group [BrT84, Prop. 5.2.10]. An

Iwahori subgroup corresponds to the case when F is a maximal facet. At last, if moreover k

is local with residual characteristic p, then an Iwahori subgroup can be characterized as the

normalizer of a maximal pro-p subgroup and an arbitrary parahoric subgroup as a subgroup

containing an Iwahori subgroup.
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Finally, the above integral models provide an important tool in the realization of Bruhat-
Tits buildings in analytic spaces (and subsequent compactifications). Indeed, the fundamental
step (see Theorem 4.5) for the whole thing consists in attaching injectively to any point x ∈

B(G,K) an affinoid subgroup Gx of the analytic space Gan attached to G, and the definition of
Gx makes use of the integral models attached to vertices. But one word of caution is in order
here since the connexion with integral models avoids all their subtleties! For our construction,
only smooth k◦-group schemes GF which are reductive are of interest; this is not the case in
general, but one can easily prove the following statement: given a vertex x ∈ B(G,k), there

exists a finite extension k′/k such that the k′
◦
-group scheme G ′

x , attached to the point x seen

as a vertex of B(G,k′), is a Chevalley-Demazure group scheme over k′
◦. In this situation,

one can define (G⊗k k′)x as the generic fibre of the formal completion of G ′
x along its special

fibre; this is a k′-affinoid subgroup of (G⊗k k′)an and one invokes descent theory to produce
a k-affinoid subgroup of Gan.

3.2.4. A characterization of apartments. — For later use, we end this section on Bruhat-Tits
theory by a useful characterization of apartments inside buildings.

Given a torus S over k, we denote by S1(k) the maximal bounded subgroup of S(k). It is
the subgroup of S(k) defined by the equations |χ |= 1, where χ runs over the character group
of S.

Proposition 3.31. — Let S be a maximal split torus and let x be a point of B(G,k). If the

residue field of k contains at least four elements, then the following conditions are equivalent:

(i) x belongs to the apartment A(S,k);
(ii) x is fixed under the action of S1(k).

Proof. — Condition (i) always implies condition (ii). With our hypothesis on the cardinality
of the residue field, the converse implication holds by [BrT84, Proposition 5.1.37].

4. Buildings and Berkovich spaces

As above, we consider a semisimple group G over some non-Archimedean field k. In
this section, we explain how to realize the Bruhat-Tits building B(G,k) of G(k) in non-
Archimedean analytic spaces deduced from G, and we present two procedures that can be
used to compactify Bruhat-Tits buildings in full generality; as we pointed out before, the
term “compactification” is abusive if k is not a local field (see the discussion before Remark
3.30).

Assuming that k is locally compact, let us describe very briefly those two ways of com-
pactifying a building. The first is due to V. Berkovich when G is split [Ber90, Chap. V] and
it consists in two steps:

1. to define a closed embedding of the building into the analytification of the group (4.1);
2. to compose this closed embedding with an analytic map from the group to a (compact)

flag variety (4.2).
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By taking the closure of the image of the composed map, we obtain an equivariant com-
pactification which admits a Lie-theoretic description (as expected). For instance, there is
a convenient description of this G(k)-topological space (convergence of sequences, bound-
ary strata etc.) by means of invariant fans in (X∗(S)⊗Z R,W), where X∗(S) denotes the
cocharacter group of a maximal split torus S endowed with the natural action of the Weyl
group W (4.3). The finite family of compactifications obtained in this way is indexed by
G(k)-conjugacy classes of parabolic subgroups.

These spaces can be recovered from a different point of view, using representation theory
and the concrete compactification X (V,k) of the building X (V,k) of SL(V,k) which was
described in Section 2. It mimics the original strategy of I. Satake in the case of symmet-
ric spaces [Sat60a]: we pick a faithful linear representation of G and, relying on analytic
geometry, we embed B(G,k) in X (V,k); by taking the closure in X (V,k), we obtain our
compactification.

Caution — 1. We need some functoriality assumption on the building with respect to the
field: in a sense which was made precise after the statement of Theorem 3.26, this means that
B(G,−) is functor on the category of non-Archimedean extensions of k.

As explained in [RTW10, 1.3.4], these assumptions are fulfilled if k quasi-splits over a
tamely ramified extension of k. This is in particular the case is k is discretely valued with
perfect residue field, or if G is split.

2. There is no other restriction on the non-Archimedean field k considered in 4.1. From
4.2 on, we assume that k is local. In any case, the reader should keep in mind that non-local
extensions of k do always appear in the study of Bruhat-Tits buildings from Berkovich’s point
of view (see Proposition 4.2).

The references for the results quoted in this section are [RTW10] and [RTW12].

4.1. Realizing buildings inside Berkovich spaces. — Let k be a field which is complete
with respect to a non-trivial non-Archimedean absolute value. We fix a semisimple group G
over k. Our first goal is to define a continuous injection of the Bruhat-Tits building B(G,k)

in the Berkovich space Gan associated to the algebraic group G. Since G is affine with affine
coordinate ring O(G), its analytification consists of all multiplicative seminorms on O(G)

extending the absolute value on k [Tem11].

4.1.1. Non-Archimedean extensions and universal points. — We will have to consider infi-
nite non-Archimedean extensions of k as in the following example.

Example 4.1. — Let r = (r1, . . . ,rn) be a tuple of positive real numbers such that r
i1
1 . . .rin

n /∈

|k×| for all choices of (i1, . . . , in) ∈ Zn −{0}. Then the k-algebra

kr =

{

∑
I=(i1...,in)

aIx
i1
1 . . .xin

n ∈ k[[x±1
1 , . . . ,x±1

n ]] ; |aI|r
i1
1 . . .rin

n → 0 when |i1|+ . . .+ |in| → ∞

}

is a non-Archimedean field extension of k with absolute value | f |= maxI{|aI|r
i1
1 . . . rin

n }.
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We also need to recall the notion of a universal point (2). Let z be a point in Gan, seen
as a multiplicative k-seminorm on O(G). For a given non-Archimedean field extension K/k,
there is a natural K-seminorm ||.||= z⊗ 1 on O(G)⊗k K, defined by

||a||= infmax
i

|ai(z)| · |λi|

where the infimum is taken over the set of all expressions ∑i ai ⊗ λi representing a, with
ai ∈ O(G) and λi ∈ K. The point z is said to be universal if, for any non-Archimedean field
extension K/k, the above K-seminorm on O(G)⊗k K is multiplicative. One writes zK for
the corresponding point in Gan⊗̂kK. We observe that this condition depends only on the
completed residue field H (z) of Gan at z.

Remark 4.2. — 1. Obviously, points of Gan coming from k-rational points of G are univer-

sal.

2. Let x ∈ Gan be universal. For any finite Galois extension k′/k, the canonical extension

xk′ of x to Gan ⊗k k′ is invariant under the action of Gal(k′/k): indeed, the k′-norm x⊗ 1 on

O(G)⊗k k′ is Galois invariant.

3. If k is algebraically closed, Poineau proved that every point of Gan is universal [Poi11,
Corollaire 4.10].

4.1.2. Improving transitivity. — Now let Gan be the Berkovich analytic space associated to
the algebraic group G. Our goal is the first step mentioned in the introduction, namely the
definition of a continuous injection

ϑ : B(G,k) −→ Gan.

We proceed as follows. For every point x in the building B(G,k) we construct an affinoid
subgroup Gx of Gan such that, for any non-Archimedean extension K/k, the subgroup Gx(K)

of G(K) is precisely the stabilizer of x in the building over K. Then we define ϑ(x) as the
(multiplicative) seminorm on O(G) defined by taking the maximum over the compact subset
Gx of Gan.

If the Bruhat-Tits building B(G,k) can be seen as non-Archimedean analogue of a Rie-
mannian symmetric space, it is not homogeneous under G(k); for example, if k is discretely
valued, the building carries a polysimplicial structure which is preserved by the action of
G(k). There is a very simple way to remedy at this situation using field extensions, and this
is where our functoriality assumption comes in.

Let us first of all recall that the notion of a special point was defined in Section 1, just
before Definition 1.9. Its importance comes from the fact that, when G is split, the stabilizer
of a special point is particularly nice (see the discussion after Theorem 4.5). As simple
consequences of the definition, one should notice the following two properties: if a point
x ∈ B(G,k) is special, then

(2)This notion was introduced by Berkovich, who used the adjective peaked [Ber90, 5.2]. Its study was carried on
by Poineau, who prefered the adjective universal [Poi11].
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- every point in the G(k)-orbit of x is again special;
- if moreover G is split, then x remains special in B(G,K) for any non-Archimedean

field extension K/k (indeed: the local Weyl group at x over K contains the local Weyl
group at x over k, and the full Weyl group of G is the same over k and over K).

We can now explain how field extensions allow to improve transitivity of the group action
on the building.

Proposition 4.3. — 1. Given any two points x,y ∈ B(G,k), there exists a non-Archimedean

field extension K/k such that x and y, identified with points of B(G,K) via the canonical

injection B(G,k) →֒ B(G,K), belong to the same orbit under G(K).

2. For every point x ∈ B(G,k), there exists a non-Archimedean field extension K/k such

that the following conditions hold:

(i) The group G⊗k K is split; (ii) The canonical injection B(G,k) → B(G,K) maps x to

a special point.

We give a proof of this Proposition since it is the a key result for the investigation of
Bruhat-Tits buildings from Berkovich’s point of view. The second assertion follows easily
from the first: just pick a finite separable field extension k′/k splitting G and a special point y

in B(G,k′), then consider a non-Archimedean field extension K/k′ such that x and y belong
to the same G(K)-orbit. In order to prove the first assertion, we may and do assume that G is
split. Let S denote a maximal split torus of G whose apartment A(S,k) contains both x and
y. As recalled in Proposition 3.17, this apartment is an affine space under X∗(S)⊗Z R, where
X∗(S) denotes the cocharacter space of S, and S(k) acts on A(S,k) by translation via a map
ν : S(k)→ X∗(S)⊗Z R. Using a basis of characters to identify X∗(S) (resp. S) with Zn (resp.
Gn

m), it turns out that ν is simply the map

k× −→ Rn, (t1, . . . , tn) 7→ (− log |t1|, . . . ,− log |tn|).

By combining finite field extensions and transcendental extensions as described in Example
4.1, we can construct a non-Archimedean field extension K/k such that the vector x− y ∈ Rn

belongs to the subgroup log |(K×)n|. This implies that x and y, seen as points of A(S,K),
belong to the same orbit under S(K), hence under G(K).

Remark 4.4. — If |K×|= R>0, then G(K) acts transitively on B(G,K). However, it is more

natural to work functorially than to fix arbitrarily an algebraically closed non-Archimedean

extension Ω/k such that |Ω×|= R>0.

4.1.3. Affinoid subgroups. — Let us now describe the key fact explaining the relationship
between Bruhat-Tits theory and non-Archimedean analytic geometry. This result is crucial
for all subsequent constructions.

Theorem 4.5. — For every point x ∈ B(G,k) there exists a unique k-affinoid subgroup Gx

of Gan satisfying the following condition: for every non-Archimedean field extension K/k,
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the group Gx(K) is the stabilizer in G(K) of the image of x under the injection B(G,k) →

B(G,K).

The idea of the proof is the following (see [RTW10, Th. 2.1] for details). If G is split and
x is a special point in the building, then the integral model Gx of G described in (3.2.3) is a
Chevalley group scheme, and we define Gx as the generic fibre Ĝxη of the formal completion
of Gx along its special fibre. This is a k-affinoid subgroup of Gan, and it is easy to check that
it satisfies the universal property in our claim. Thanks to Proposition 4.3, we can achieve
this situation after a suitable non-Archimedean extension K/k, and we apply faithfully flat
descent to obtain the k-affinoid subgroup Gx [RTW10, App. A]. Let us remark that, in order
to perform this descent step, it is necessary to work with an extension which is not too big
(technically, the field K should be a k-affinoid algebra); since one can obtain K by combining
finite extensions with the transcendental ones described in Example 4.1, this is fine.

4.1.4. Closed embedding in the analytic group. — The k-affinoid subgroup Gx is the
Berkovich spectrum of a k-affinoid algebra Ax, i.e., Gx is the Gelfand spectrum M (Ax)

of bounded multiplicative seminorms on Ax. This is a compact and Hausdorff topological
space over which elements of Ax define non-negative real valued functions. For any non-zero
k-affinoid algebra A, one can show that its Gelfand spectrum M (A) contains a smallest
non-empty subset, called its Shilov boundary and denoted Γ(A), such that each element f of
A reaches its maximum at some point in Γ(A).

Remark 4.6. — (i) If A= k{T} is the Tate algebra of restricted power series in one variable,

then M (A) is Berkovich’s closed unit disc and its Shilov boundary is reduced to the point o

defined by the Gauss norm: for f = ∑n∈N anTn, one has | f (o)|= maxn |an|.

(ii) Let a ∈ k with 0 < |a| < 1. If A = k{T,S}/(ST− a), then M (A) is an annulus of

modulus |a| and Γ(A) contains two points o,o′: for f = ∑n∈Z anTn, where T−1 = a−1S, one

has | f (o)|= maxn |an| and | f (o′)|= maxn |an|.|a|
n.

(iii) For any non-zero k-affinoid algebra A, its Shilov boundary Γ(A) is reduced to a point

if and only if the seminorm

A → R>0, f 7→ sup
x∈M (A)

| f (x)|

is multiplicative.

For every point x of B(G,k), it turns out that the Shilov boundary of Gx = M (Ax) is
reduced to a unique point, denoted ϑ(x). This is easily seen by combining the nice behavior
of Shilov boundaries under non-Archimedean extensions, together with a natural bijection
between the Shilov boundary of Vη and the set of irreducible components of V ⊗k◦ k̃ if V is
a normal k◦-formal scheme; indeed, the smooth k◦-group scheme Gx has a connected special
fibre when it is a Chevalley group scheme. Let us also note that the affinoid subgroup Gx is
completely determined by the single point ϑ(x) via
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Gx = {z ∈ Gan ; ∀ f ∈ O(G), | f (z)| 6 | f (ϑ(x))|}.

In this way we define the desired map

ϑ : B(G,k)→ Gan,

and we show [RTW10, Prop. 2.7] that it is injective, continuous and G(k)-equivariant (where
G(k) acts on Gan by conjugation). If k is a local field, ϑ induces a homeomorphism from
B(G,k) to a closed subspace of Gan [RTW10, Prop. 2.11].

Finally, the map ϑ is also compatible with non-Archimedean extensions K/k, i.e., the
following diagram

B(G,K)
ϑK // (G⊗k K)an

pK/k

��
B(G,k)

ϑ
//

ιK/k

OO

Gan

where ιK/k (resp. pK/k) is the canonical embedding (resp. projection) is commutative. In
particular, we see that this defines a section of pK/k over the image of ϑ . In fact, any point
z belonging to this subset of Gan is universal (4.1.1) and ϑK(ιK/k(x)) coincides with the
canonical lift ϑ(x)K of ϑ(x) to (G⊗k K)an for any x ∈ B(G,k).

Moreover, if K/k is a Galois extension, then the upper arrow in the diagram is Gal(K/k)-
equivariant by [RTW10, Prop. 2.7].

4.2. Compactifying buildings with analytic flag varieties. — Once the building has been
realized in the analytic space Gan, it is easy to obtain compactifications. In order not to misuse
the latter word, we assume from now one that k is locally compact.

4.2.1. Maps to flag varieties. — The embedding ϑ : B(G,k) → Gan defined in 4.1.4 can
be used to compactify the Bruhat-Tits building B(G,k). We choose a parabolic subgroup P
of G. Then the flag variety G/P is complete, and therefore the associated Berkovich space
(G/P)an is compact. Hence we can map the building to a compact space by the composition

ϑP : B(G,k)
ϑ

−→ Gan −→ (G/P)an.

The map ϑP is by construction G(k)-equivariant and it depends only on the G(k)-conjugacy
class of P: we have ϑgPg−1 = gϑPg−1 for any g ∈ G(k).

However, ϑP may not be injective. By the structure theory of semisimple groups, there
exists a finite family of normal reductive subgroups Gi of G (each of them quasi-simple),
such that the product morphism

∏
i

Gi −→ G
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is a central isogeny. Then the building B(G,k) can be identified with the product of all
B(Gi,k). If one of the factors Gi is contained in P, then the factor B(Gi,k) is squashed down
to a point in the analytic flag variety (G/P)an.

If we remove from B(G,k) all factors B(Gi,k) such that Gi is contained in P, then we
obtain a building Bt(G,k), where t stands for the type of the parabolic subgroup P, i.e., for
its G(k)-conjugacy class. The factor Bt(G,k) is mapped injectively into (G/P)an via ϑP.

Remark 4.7. — If G is almost simple, then ϑP is injective whenever P is a proper parabolic

subgroup in G; hence in this case the map ϑP provides an embedding of B(G,k) into (G/P)an.

4.2.2. Berkovich compactifications. — Allowing compactifications of the building in which
some factors are squashed down to a point, we introduce the following definition.

Definition 4.8. — Let t be a G(k)-conjugacy class of parabolic subgroups of G. We define

Bt(G,k) to be the closure of the image of B(G,k) in (G/P)an under ϑP, where P belongs to

t, and we endow this space with the induced topology. The compact space Bt(G,k) is called

the Berkovich compactification of type t of the building B(G,k).

Note that we obtain one compactification for each G(k)-conjugacy class of parabolic sub-
groups.

Remark 4.9. — If we drop the assumption that k is locally compact, the map ϑP is contin-

uous but the image of Bt(G,k) is not locally closed. In this case, the right way to proceed

is to compactify each apartment At(S,k) of Bt(G,k) by closing it in Gan/Pan and to define

Bt(G,k) as the union of all compactified apartments. This set is a quotient of G(k)×At(S,k)
and we endow it with the quotient topology [RTW10, 3.4].

4.2.3. The boundary. — Now we want to describe the boundary of the Berkovich compact-
ifications. We fix a type t (i.e., a G(k)-conjugacy class) of parabolic subgroups.

Definition 4.10. — Two parabolic subgroups P and Q of G are called osculatory if their

intersection P∩Q is also a parabolic subgroup.

Hence P and Q are osculatory if and only if they contain a common Borel group after a
suitable field extension. We can generalize this definition to semisimple groups over arbitrary
base schemes. Then for every parabolic subgroup Q there is a variety Osct(Q) over k repre-
senting the functor which associates to any base scheme S the set of all parabolics of type t

over S which are osculatory to Q [RTW10, Prop. 3.2].

Definition 4.11. — Let Q be a parabolic subgroup. We say that Q is t-relevant if there is no

parabolic subgroup Q′ strictly containing Q such that Osct(Q) = Osct(Q′).

Let us illustrate this definition with the following example.
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Example 4.12. — Let G be the group SL(V), where V is a k-vector space of dimension

d+ 1. The non-trivial parabolic subgroups of G are the stabilizers of flags

(0 ( V1 ( . . .( Vr ( V).

Let H be a hyperplane in V, and let P be the parabolic subgroup of SL(V) stabilizing the flag

(0 ⊂ H ⊂ V). We denote its type by δ . Let Q be an arbitrary parabolic subgroup, stabilizing

a flag (0 ( V1 ( . . . ( Vr ( V). Then Q and P are osculatory if and only if H contains the

linear subspace Vr. This shows that all parabolic subgroups Q stabilizing flags contained in

the subspace Vr give rise to the same variety Oscδ (Q). Therefore, a non-trivial parabolic is

δ -relevant if and only if the corresponding flag has the form 0 ( W ( V.

Having understood how to parametrize boundary strata, we can now give the general de-
scription of the Berkovich compactification Bt(G,k). The following result is [RTW10, The-
orem 4.1].

Theorem 4.13. — For every t-relevant parabolic subgroup Q, let Qss be its semisimplifica-

tion (i.e., Qss is the quotient Q/R(Q) where R(Q) denotes the radical of Q). Then Bt(G,k)

is the disjoint union of all the buildings Bt(Qss,k), where Q runs over the t-relevant parabolic

subgroups of G.

The fact that the Berkovich compactifications of a given group are contained in the flag
varieties of this group enables one to have natural maps between compactifications: they
are the restrictions to the compactifications of (the analytic maps associated to) the natural
fibrations between the flag varieties. The above combinatorics of t-relevancy is a useful tool
to formulate which boundary components are shrunk when passing from a compactification
to a smaller one [RTW10, Section 4.2].

Example 4.14. — Let us continue the discussion in Example 4.12 by describing the stratifi-

cation of Bδ (SL(V),k). Any δ -relevant subgroup Q of G = SL(V) is either equal to SL(V)

or equal to the stabilizer of a linear subspace 0 (W ( V. In the latter case Qss is isogeneous

to SL(W)×SL(V/W). Now SL(W) is contained in a parabolic of type δ , hence Bδ (Qss,k)

coincides with B(SL(V/W),k). Therefore

Bδ (SL(V),k) =
⋃

W(V

B
(
SL(V/W,k)

)
,

where W runs over all linear subspaces W ( V.

Recall from 3.21 that the Euclidean building B(SL(V),k) can be identified with the
Goldman-Iwahori space X (V,k) defined in 1.16. Hence Bδ (SL(V),k) is the disjoint union
of all X (V/W,k). Therefore we can identify the seminorm compactification X (V,k) from
2.2 with the Berkovich compactification of type δ .
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4.3. Invariant fans and other compactifications. — Our next goal is to compare our ap-
proach to compactifying building with another one, developed in [Wer07] without making
use of Berkovich geometry. In this work, compactified buildings are defined by a gluing pro-
cedure, similar to the one defining the Bruhat-Tits building in Theorem 3.20. In a first step,
compactifications of apartments are obtained by a cone decomposition. Then these com-
pactified apartments are glued together with the help of subgroups which turn out to be the
stabilizers of points in the compactified building.

Let G be a (connected) semisimple group over k and B(G,k) the associated Bruhat-Tits
building. We fix a maximal split torus T in G, giving rise to the cocharacter space Σvect =

X∗(T)⊗R. The starting point is a faithful, geometrically irreducible representation ρ : G →

GL(V) on some finite-dimensional k-vector space V.
Let R = R(T,G)⊂ X∗(T) be the associated root system. We fix a basis ∆ of R and denote

by λ0(∆) the highest weight of the representation ρ with respect to ∆. Then every other (k-
rational) weight of ρ is of the form λ0(∆)−∑α∈∆ nα α with coefficients nα > 0. We write
[λ0(∆)−λ ] = {α ∈ ∆ : nα > 0}. We call every such subset Y of ∆ of the form Y = [λ0(∆)−λ ]

for some weight λ admissible.

Definition 4.15. — Let Y ⊂ ∆ be an admissible subset. We denote by C∆
Y the following cone

in Σvect:

C∆
Y =

{
x ∈ Σvect ;

α(x) = 0 for all α ∈ Y, and

(λ0(∆)−λ )(x)> 0 for all weights λ such that [λ0(∆)−λ ] 6⊂ Y

}

The collection of all cones C∆
Y, where ∆ runs over all bases of the root system and Y over all

admissible subsets of ∆, is a complete fan Fρ in Σvect. There is a natural compactification of
Σvect associated to Fρ , which is defined as Σvect =

⋃
C∈Fρ

Σvect/〈C〉 endowed with a topology
given by tubular neighborhoods around boundary points. For details see [Wer07, Section 2]
or [RTW10, Appendix B].

We will describe this compactification in two examples.

Example 4.16. — If the highest weight of ρ is regular, then every subset Y of ∆ is admissible.

In this case, the fan Fρ is the full Weyl fan. In the case of a root system of type A2, the

resulting compactification is shown on Figure 1. The shaded area is a compactified Weyl

chamber, whose interior contains the corresponding highest weight of ρ .

Example 4.17. — Let G = SL(V) be the special linear group of a (d + 1)-dimensional k-

vector space V, and let ρ be the identical representation. We look at the torus T of diagonal

matrices in SL(V), which gives rise to the root system R = {αi, j} of type Ad described in

Example 3.13. Then ∆= {α0,1,α1,2, . . . ,αd−1,d} is a basis of R and λ0(∆) = ε0 in the notation

of Example 3.13. The other weights of the identical representation are ε1, . . . ,εd . Hence the

admissible subsets of ∆ are precisely the sets Yr = {α0,1, . . . ,αr−1,r} for r = 1, . . . ,d, and

Y0 = ∅. Let η0, . . . ,ηd be the dual basis of ε0, . . . ,εd . Then Σvect can be identified with
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⊕d
i=0 Rηi/R(∑i ηi), and we find

C∆
Yr

= {x = ∑
i

xiηi ∈ Σvect : x0 = . . .= xr and x0 > xr+1,x0 > xr+2, . . . ,x0 > xd}/R(∑
i

ηi)

The associated compactification is shown in Figure 2. The shaded area is a compactified

Weyl chamber and its codimension one face marked by an arrow contains the highest weight

of ρ (with respect to this Weyl chamber).
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FIGURE 1. Compactification of an apartment: regular highest weight

The compactification Σvect induces a compactification Σ of the apartment Σ = A(T,k),
which is an affine space under Σvect. Note that the fan Fρ and hence the compactification
Σ only depend on the Weyl chamber face containing the highest weight of ρ , see [Wer07,
Theorem 4.5].

Using a generalization of Bruhat-Tits theory one can define a subgroup Px for all x ∈ Σ

such that for x ∈ Σ we retrieve the groups Px defined in section 3.2, see [Wer07, section 3].
Note that by continuity the action of NG(T,k) on Σ extends to an action on Σ.

Definition 4.18. — The compactification B(G,k)ρ associated to the representation ρ is de-

fined as the quotient of the topological space G(k)×Σ by a similar equivalence relation as

in Theorem 3.20:

(g,x)∼ (h,y) ⇐⇒ there exists n ∈ NG(T,k) such that y = ν(n).x and g−1hn ∈ Px.

The compactification of B(G,k) with respect to a representation with regular highest
weight coincides with the polyhedral compactification defined by Erasmus Landvogt in
[Lan96].
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FIGURE 2. Compactification of an apartment: singular highest weight

The connection to the compactifications defined with Berkovich spaces in section 4.2 is
given by the following result, which is proved in [RTW12, Theorem 2.1].

Theorem 4.19. — Let ρ be a faithful, absolutely irreducible representation of G with highest

weight λ0(∆). Define

Z = {α ∈ ∆ : 〈α,λ0(∆)〉= 0},

where 〈 , 〉 is a scalar product associated to the root system as in Definition 3.12. We denote

by τ the type of the standard parabolic subgroup of G associated to Z. Then there is a G(k)-

equivariant homeomorphism

B(G,k)ρ → Bτ(G,k)

restricting to the identity map on the building.

Example 4.20. — In the situation of Example 4.17 we have λ0(∆) = ε0 and Z =

{α1,2, . . . ,αd−1,d}. The associated standard parabolic is the stabilizer of a line. We

denote its type by π . Hence the compactification of the building associated to SL(V)

given by the identity representation is the one associated to type π by Theorem 4.19. This

compactification was studied in [Wer01]. It is isomorphic to the seminorm compactification

X (V∨,k) of the building X (V∨,k).

4.4. Satake’s viewpoint. — If G is a non-compact real Lie group with maximal compact
subgroup K, Satake constructed in [Sat60b] a compactification of the Riemannian symmetric
space S = G/K in the following way:
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– (i) First consider the symmetric space H associated to the group PSL(n,C) which can
be identified with the space of all positive definite hermitian n×n-matrices with deter-
minant 1. Then H has a natural compactification H defined as the set of the homothety
classes of all hermitian n× n-matrices.

– (ii) For an arbitrary symmetric space S = G/K use a faithful representation of G to
embed S into H and consider the closure of S in H.

In the setting of Bruhat-Tits buildings we can imitate this strategy in two different ways.
Functoriality of buildings —- The first strategy is a generalization of functoriality results

for buildings developed by Landvogt [Lan00]. Let ρ : G → SL(V) be a representation of the
semisimple group G. Let S be a maximal split torus in G with normalizer N, and let A(S,k)
denote the corresponding apartment in B(G,k). Choose a special vertex o in A(S,k). By
[Lan00], there exists a maximal split torus T in SL(V) containing ρ(S), and there exists a
point o′ in the apartment A(T,k) of T in B(SL(V ),k) such that the following properties hold:

1. There is a unique affine map between apartments i : A(S,k)→ A(T,k) such that i(o) =

o′. Its linear part is the map on cocharacter spaces X∗(S)⊗Z R → X∗(T)⊗Z Z induced
by ρ : S → T.

2. The map i is such that ρ(Px)⊂ P′
i(x) for all x ∈ A(S,k), where Px denotes the stabilizer

of the point x with respect to the G(k)-action on B(G,k), and P′
i(x) denotes the stabilizer

of the point i(x) with respect to the SL(V,k)-action on B(SL(V),k).
3. The map ρ∗ : A(S,k) → A(T,k) → B(SL(V),k) defined by composing i with the

natural embedding of the apartment A(T,k) in the building B(SL(V),k) is N(k)-
equivariant, i.e., for all x ∈ A(S,k) and n ∈ N(k) we have ρ∗(nx) = ρ(n)ρ∗(x).

These properties imply that ρ∗ : A(S,k) → B(SL(V),k) can be continued to a map ρ∗ :
B(G,k) → B(SL(V),k), which is continuous and G(k)-equivariant. By [Lan00, 2.2.9], ρ∗

is injective.
Let F be the fan in X∗(T)⊗Z R associated to the identity representation, which is de-

scribed in Example 4.17. It turns out that the preimage of F under the map Σvect(S,k) →
Σvect(T,k) induced by ρ : S → T is the fan Fρ , see [RTW12, Lemma 5.1]. This implies that
the map i can be extended to a map of compactified apartments A(S,k)→ A(T,k). An analy-
sis of the stabilizers of boundary points shows moreover that ρ(Px)⊂ P′

i(x) for all x ∈ A(S,k),

where Px denotes the stabilizer of x in G(k), and P′
i(x) denotes the stabilizer of i(x) in SL(V,k)

[RTW12, Lemma 5.2]. Then it follows from the definition of B(G,k)ρ in 4.18 that the em-
bedding of buildings ρ∗ may be extended to a map

B(G,k)ρ −→ B(SL(V),k)id.

It is shown in [RTW12, Theorem 5.3] that this map is a G(k)-equivariant homeomorphism
of B(G,k)ρ onto the closure of the image of B(G,k) in the right hand side.

Complete flag variety —- Satake’s strategy of embedding the building in a fixed compact-
ification of the building associated to SL(V,k) can also be applied in the setting of Berkovich
spaces. Recall from 3.21 that the building B(SL(V),k) can be identified with the space
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X (V,k) of (homothety classes of) non-Archimedean norms on V. In section 2.2, we con-
structed a compactification X (V,k) as the space of (homothety classes of) non-zero non-
Archimedean seminorms on V and a retraction map τ : P(V)an −→ X (V,k).

Now let G be a (connected) semisimple k-group together with an absolutely irreducible
projective representation ρ : G → PGL(V,k). Let Bor(G) be the variety of all Borel groups
of G. We assume for simplicity that G is quasi-split, i.e., that there exists a Borel group
B defined over k; this amounts to saying that Bor(G)(k) is non-empty. Then Bor(G) is
isomorphic to G/B. There is a natural morphism

Bor(G)−→ P(V)

such that any Borel subgroup B in G⊗K for some field extension K of k is mapped to the
unique K-point in P(V) invariant under B⊗k K, see [RTW12, Proposition 4.1]. Recall that
in section 4.2.1 we defined a map

ϑ∅ : B(G,k)→ Bor(G)an

(∅ denotes the type of Borel subgroups). Now we consider the composition

B(G,k)
ϑ∅

−→ Bor(G)an → P(V)an τ
−→ X (V,k).

We can compactify the building B(G,k) by taking the closure of the image. If ρ∨ denotes
the contragredient representation of ρ , then it is shown in [RTW12, 4.8 and 5.3] that in this
way we obtain the compactification B(G,k)ρ∨ .

5. Erratum to [RTW10] and [RTW12]

5.1. Tobias Schmidt pointed out that Lemma A.10 in Appendix A to [RTW10] needed to
be corrected. The problem comes from the fact that, for a finite Galois extension ℓ/k of
non-Archimedean fields, the canonical map

λ : ℓ⊗k ℓ−→ ∏
Gal(ℓ|k)

ℓ, a⊗ b 7−→ (g(a)b)g∈Gal(ℓ|k)

is not always an isometry when the left-hand side is equiped with the tensor product norm;
this is the case if and only the extension is tamely ramified.

A first observation is that the algebraic isomorphism λ is an isometry with respect to spec-
tral norms on both sides since we are working with finite dimensional k-algebras. Therefore,
the question amounts to understanding when the tensor product norm |.|⊗ on A = ℓ⊗k ℓ coin-
cides with the spectral norm, which is the case if and only if |.|⊗ is power-multiplicative. Let
us consider M. Temkin’s graded reduction of (A, |.|⊗) [Tem04], which is to say the graded
ring

Ã• =
⊕

r∈R>0

A6r/A<r

where A6r = {a ∈ A ; |a|⊗ 6 r} and A<r = {a ∈ A ; |a|⊗ < r}. The norm |.|⊗ is power-
multiplicative, hence coincides with the spectral norm, if and only if Ã• is reduced. This
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graded ring is isomorphic to ℓ̃•⊗k̃•
ℓ̃• [Sch13, proof of Lemma 2.12] and therefore is reduced

if and only if the extension of graded fields ℓ̃•/k̃• is separable (since ℓ/k is Galois, separability
of ℓ̃/k̃ can be checked over ℓ̃). This is the case if and only if the field extension ℓ/k is tamely
ramified [Duc13, Proposition 2.10].

5.2. By the arguments in 5.1, both the statement and the proof of Lemma 1.10 are correct if
we restrict to a tamely ramified Galois extension.

5.3. Lemma A.10 was not used in [RTW10]. In the second paper [RTW12], we used it
in Lemma 4.6 of [RTW12], a technical step in the proof of Proposition 4.5; therefore, both
statements are proved only if the group G splits over a tamely ramified extension. Finally, the
same restriction applies to Theorem 4.8 since the proof relies on Proposition 4.5.
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