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Abstract: This paper presents the application of fixed frequency 
(or indirect) Sliding Mode Control (SMC) to the DC-DC 
Single-Ended Primary Inductor Converter (SEPIC) where the 
switching frequency is in the range of hundreds of kHz and 
consequently a FPGA is required. Due to the constraint of 
FPGA, only the output voltage is measured. As the proposed 
SMC requires the knowledge of all the states, an extended 
Kalman observer is introduced to estimate the state vector and 
the load variation. A multi-bit second-order �-Σ modulator is 
used to effectively achieve 11-bit resolution at high-frequency 
through only a 8-bit hardware Core Digital Pulse – Width 
-Modulator (DPWM). Simulation and experimental studies are 
conducted for a laboratory prototype with switching frequency 
of 500 kHz. Results proved the performance of the proposed 
solution.  

Index Terms: Power converters, SEPIC, sliding mode control, 
extended Kalman filter, DPWM, FPGA implementation. 

I. INTRODUCTION 

Digital controller has become recently an attractive 
candidate in monolithic integrated switching-mode power 
supplies (SMPS) for high performance applications due to 
their well-known advantages. Compared to analog control [1], 
digital implementation is less sensitive to environment 
because of elimination of component tolerance and aging. 
Moreover digital control enables to implement more 
sophisticated control strategies to improve system dynamic 
performances. In addition, using the available automated 
design soft tools, digital controller design cycle can be 
accelerated, and offers a degree of programming flexibility. 
The continuous increase of SMPS applications requiring 
DC-DC converters operating in both step-up and step-down 
modes with high efficiency and precision has encouraged the 
study of complex circuit topologies. Simple topologies like 
Buck, Boost and Buck-Boost being insufficient for such 
demands, more complex converters, like the SEPIC 
(Single-Ended Primary Inductor Converter), shown in Fig. 1, 
are of great interest to fulfill these requirements, which could 
lead to the design of a “universal DC-DC converter”. The 
SEPIC provides several advantages of which being a step 
up/down converter and having the control switch connected to 
the ground. The main drawback is that it is a nonlinear fourth 
order system which renders its control more complicated [2].  

 
Fig. 1: Circuit diagram of the SEPIC converter 

 
Sliding Mode Control (SMC) is a nonlinear control one [3] 

used in many applications especially in nonlinear systems with 
variable structures. As most control methods, SMC has been 
widely studied on basic DC-DC converters such as the Buck, 
Boost, and Buck-Boost converters [4], [5], [6]. More complex 
converters were also studied [7], [8], [9], [10], [11], [12]. 
Generally DSP systems are used to implement SMC. DSP or 
DSPIC systems present sufficient resources to accommodate 
the modest switching frequency of the converter in the range 
of kHz. However, in embedded applications, switching 
frequencies in the range of hundreds of kHz or MHz are 
necessary in order to reduce the size of passive components. 
DSP and DSPIC solutions have limited frequency or are 
unrealistic for commercial applications, where faster 
processing devices such as FPGA or ASIC are required. To 
our knowledge, the studies of a SEPIC with a digital Sliding 
Mode (SM) controller operating at high-frequency have not 
been reported yet. 

This paper presents a combination design of indirect SMC 
and a multi-bit second-order �-Σ modulator DPWM for 
FPGA implementation. The paper is organized as following: 
Section 2 illustrates the principle of the indirect SMC and the 
ways of applying this control to SEPIC converter. In section 3, 
two double-integral SM controllers are proposed and 
compared on simulation. In section 4, an Extended Kalman 
Filter (EKF) is developed to estimate the state vector and the 
load variation. The FPGA implementation of whole SMC, 
EKF and DPWM is presented in section 5. 

II.  INDIRECT SM CONTROLLER 

There are two main types of SMC strategies applied to 
power converters: Hysteresis-Modulation-Based SM 
Controllers [13] and indirect SM Controllers [14]. The first 
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type of SMC has generally not constant switching frequency. 
Operating a DC-DC converter at a variable frequency is not 
preferred. It has been shown that HM-based SM-controlled 
converters generally suffer from significant 
switching-frequency variation when the input voltage and the 
output load are varied [13], [15]. This complicates the design 
of the input and output filters. Obviously, designing the filters 
under a worst case (lowest) frequency condition will result in 
oversized filters. Moreover, the variation of the switching 
frequency also deteriorates the regulation properties of the 
converters.  

In the indirect SM Controllers case, the control signal is 
continuous and derived based on the equivalent control as 
follows: 

Let: ( , ) ( , )x A x t B x t u= +�  and ( ) Ts x K x= , then 

( ) 0s x =�  gives 1( )T T
equ K B K A−= −                             (1) 

where ( )s x  is the sliding surface. The vectorx can be the state 

vector itself or a vector whose elements are a combination of 
the states, which in this case is called control vector. For 
power converters, 

equ is the duty cycle ρ, provided that the 

switching frequency is relatively large [13], thus the converter 
is controlled here by varying the duty cycle and keeping the 
switching frequency constant. In our work, we will study the 
equivalent control on the SEPIC.  

III.  DOUBLE-INTEGRAL SLIDING MODE 
CONTROLLER 

DC-DC converter modeling has been widely studied 
through the past decades [16]. The digital control system in 
sliding mode has been successfully applied to simple DC-DC 
Buck converter [17]. For the application of SMC to the 
SEPIC, a nonlinear averaged state space representation is 
suitable.  
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where
1R and

2R are the ESRs of the inductors 

1L and
2L respectively and representing the circuit losses, ev is 

the input voltage and the ρ is the duty cycle of the switch. 
As previously mentioned, the sliding surface is taken as a 

linear combination of the state variables or of the control 
vector elements. Although there are infinite possibilities for 
choosing the surface, nonlinear combinations give complex 
control laws that cannot be often physically realized. The 
highest number of state variables present in s(x) in the case of 
the SEPIC is four since the system is of fourth order; however, 
this induces four control parameters that must be 

systematically chosen. The control objective is to keep the 
output voltage Vs tracking the reference voltage Vref. In [18], 
it has been shown that a PID-surface [19] given by: 

1
1 1 2 3 1= + + ∫

de
s e e dt

dt
λ λ λ  with 1 = −ref se V v           (3) 

would give an unstable control law for the SEPIC. An Integral 
Sliding Mode Controller (ISMC) is proposed in [20] as 
follow:  

1 1 2 2 3 1 2[ ]= + + +∫s e e e e dtα α α  with 
2 1= −ref Le i i       (4) 

where 
refi denote the reference current which can be taken as 

[ ]−ref sK V v  with K  the amplified gain of the voltage error. 

This control gives better dynamics than a classical PI control. 
Unfortunately it can not fully alleviate the steady-state error of 
the output voltage [20].  

In this paper, an additional double-integral term of the 
output voltage is added in the sliding surface (4). The sliding 
surface is defined as: 

1 1 2 2 3 1 2 4 1[ ] ( )= + + + +∫ ∫ ∫s e e e e dt e dt dtβ β β β                (5) 

where 
1β , 

2β , 
3β and 

4β represent the control parameters 

termed as sliding coefficients.  

The duty cycle expression (equivalent control) is found to be: 

1 4 3 1
1

2 2 1 1 1

1
[ ( ) ( )

( )]

ref s ref s L
c s

c L c s e

K V v K V v dt K i
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K i Ri v v v
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− + + + −
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are the adjustable parameters in this so-called Double Integral 
Sliding Mode Controller (DISMC).  

The ranges of employable gain parameters
1K ,

2K , 

3K and
4K for the controller design can be found by deriving 

the existence condition. We will find the regions of attraction 
which are imposed by the SMC strategy. For this purpose, the 
local reachability condition 

0
lim 0
e

ss
→

<�  must be satisfied.  

One solution is to compute the regions of attraction in terms 
of these parameters and then choose them in such a way that 
the regions cover all the expected range of operation of the 
converter. Any present state variable is replaced with either its 
upper or lower bound depending on the inequality. Thus, we 
get from a system of inequalities in

1K , 
2K ,

3K and
4K : 

(min) 1 4

2 2(min) 3 1 1(min)

(max) 1 4
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
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
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∫

∫

                  (7) 

where 
(max)eV and

(min)eV denote the maximum and minimum 

input voltages respectively; 
ssv denotes the expected steady 

state output voltage which is basically a DC parameter of a 
small error from the desired reference voltage

refV ; and 



  

1(max)Li ,
1(min)Li ,

2(max)ci  and
2(min)ci are respectively the maximum 

and minimum inductor and capacitor currents when the 
converter is operating at full-load condition. 

1(min)cv denotes 

the minimum voltage of capacitor C1.  

The stability of the converter under the controller can be 
achieved by making the eigenvalues of the Jacobian matrix of 
the system to have negative real parts.  

For FPGA implementation, simplification of the control 
algorithm can reduce logic resource consumption. As the 
steady-state errors in the ISMC are mainly reflected in the 
output voltage, so a simplified DISMC which includes only 
integral voltage control is proposed. 

1 1 2 2 3 1 4 1( )s e e e dt e dt dtβ β β β= + + +∫ ∫ ∫    (8) 

The corresponding sliding surface is relatively straight 
forward with ignorance of the integral of current. The 
equivalent control expression becomes: 

1 3
1

2 2 1 1 1

1
[ ( ) ( )

( )]

ref s ref s
c s

c L c s e

K V v K V v dt
v v

K i Ri v v v

ρ = − + − +
− + + + −

∫           (9) 

From (9), it can be seen that only three parameters are 
needed to turn.  

Simulations using SEPIC hybrid model have been made. 
The comparison waveforms between DISMC (DISM1) and 
simplified DISMC (DISM2) for reference voltage change (0 
to 14V) and a step load changes between 20� and 13.3� is 
shown in Fig. 2. 
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Fig. 2 Simulation response for a reference voltage change (0 to 14V) and a 

load step variation from 20� to 13.3� at 0.0024s 

 
The simulation results show that the DISMC display 

excellent large-signal property (a major feature of the SMC) 
of having a response for load changes. It can be seen that there 
are not steady-state errors for both controls. The lack of 
current item control induces more overshoot but the dynamics 
remains acceptable.  

IV.  EXTENDED KALMAN  FILTER 

As the proposed controls require the knowledge of all the 
states, the use of sensors poses a technological burden 
especially in embedded systems, on the one hand, some 
sensors might not be relatively precise (noisy) such as current 
sensors, and on the other, their integration might increase the 
cost and the system size [21].  

The traditional observers like Luenberger are easy to 
design, but only converge locally. Sliding mode observers can 

be designed as in [22]. However, load variation is not taken 
into account. Moreover, these observers are based on 
continuous time model. An Euler method is generally used to 
discretize the observers on a digital form [23]. For a FPGA 
implementation, a discrete-time observer designed by a 
discrete-time model is preferable.  

Therefore, an extended Kalman observer taking into 
account the load variation is developed. By choosing the states 

vector as [ ]1 1 2

t

L c L si v i v R , the model (2) can be 

written: 

1 1 1( , , )− − −=k k k kx f x u w                                                    (10) 

With measurement of 
sv  that is 

( , )k k ky h x v=                                                                     (11) 

The random variables kw and kv represent the process and 

measurement noise (respectively). The noise covariance 
matrixes are defined as follows: 

cov( ) ( , )= = tQ w E w w                                                     (12) 

cov( ) ( , )= = tR v E v v                                                       (13) 

Define matrix P as the error covariance of state estimation: 

{ } [ ] [ ]{ }5

1

ˆ ˆ
=

= ⋅ = − ⋅ −∑
tt

k k k i i i i
i

P E e e x x x x                     (14) 

E{.} is the computation of expectation value. 
The EKF is then derived by the following iteration: 
1) Linearization of (10) and (11) 

1 1 1

1

k k k k

k k

x A x Bu G

y Cx
− − −

−

= + +
 =

                                             (15) 

Where A is the Jacobian matrix partial derivatives of f with 
respect to x, G is a constant matrix. 

2) Prediction of the state and covariance 

1 11 1 1

1 11 1 1

ˆ ˆk kk k k k

T
k kk k k k

x A x Bu G

P A P A Q

− −− − −

− −− − −

= + +

= +
                                            (16) 

3) Computation of the Kalman gain 

( ) 1

1 1

−

− −= +t t
k k k k kK P C CP C R                                       (17) 

4) Update estimation with measurement 

( )11 1
ˆ ˆ ˆk kk k k k k kx x K y Cx+− −= + −                                      (18) 

5) Update the error covariance matrix 

11 1+− −= − kk k k k k kP P K CP                                                 (19) 

The covariance matrix Q and R are chosen to get the best 
trade off between stability and convergence time. 

The SMC proposed in section III and the EKF are tested on 
simulation using the Simulink fixed-point toolbox of 
Matlab/Simulink. Indeed the controllers and the observer are 
computed with a fixed-point algorithm in order to keep the 
simulation condition close to practical implementation. Fig. 3 
and 4 give some examples of the simulation results.  

Figs. 3(a) and 3(b) show the waveforms of the measured 
value and the observed value with DISMC (DISM1) for a step 
reference change (0 to 14V) and a load step variation from 
20� to 13.3� at 0.0024s.  
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(a) Output voltage Vs 
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(b) Input current IL1 

Fig. 3 Fixed-point simulation of the DISM1 controller of measured and 

observed value 

In Fig. 4(a) and 4(b), the simplified DISMC (DISM2) 
waveforms of the measured value and the observed value are 
compared for the same simulation conditions.  
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(a) Output voltage Vs 
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(b) Input current IL1 

Fig. 4 Fixed-point simulation of the DISM2 controller of measured and 

observed value 

They show the quick convergence and the robustness of the 
proposed EKF against strong disturbance of the load value. 
With the effectiveness of this observer, DISMC can be 
implemented in the FPGA design. 

V. FPGA IMPLEMENTATION 

Experimental validations of the proposed DISM controllers 
are provided on a 10-100W SEPIC converter to validate the 
theoretical design. Fig. 5 shows the experimental setup of the 
SEPIC converter. The parameters are R1=1.2�, R2=0.8�, 
L1=185�H, L2=13�H, C1=7.6�F, C2=7.6�F, ve=10-20V, 
vs=14V, fs=500kHz. 

 
Fig. 5 500kHz prototype  

The controllers and observer are implemented in 
fixed-point algorithmic calculation in VHDL on a Virtex-II 
Pro XC2VP30 board by Xilinx Inc. An Analog Device A/D 
converter ADS900 component is used for the output voltage 
measurement. A DPWM is required to convert the control 
signal to the variable duty cycle signals which drive the 
switches in the power stage. In order to eliminate undesirable 
limit-cycle oscillation, the DPWM resolution is required as 
the highest possible [24]. Unlike the DSP board where the 
PWM signals of interest is generated by DSP PWM core, in 
the FPGA implementation, a particular attention must be paid 
for the DPWM. 

The main concern of high-frequency high-resolution 
DPWM is to generate signals to meet the output voltage 
accuracy which needs high frequency clock in the approach of 
counter-comparator based DPWM. They require significantly 
large power and unreachable high frequency clock that nullify 
most of the digital control advantages. For example, to 
perfume an 11-bit DPWM with the counter comparator block, 
an 11-bit DPWM is required. Thus for operation at switching 
frequency of 500kHz, the counter comparator block needs a 

112 500 1.024k GHz× = clock. This constraint limits the 
switching frequency on one hand and DPWM resolution on 
the other hand.    

In this paper, a second-order �-Σ architecture [25][26] is 
adapted. Fig. 6 shows the proposed hybrid DPWM structure 
which is composed of an 8-bit �-Σ modulator and an 8-bit 
counter-comparator. For the first, only two adders are used, 
and with a truncator, three least significant bits (LSBs) and 
eight MSBs are generated, respectively. In addition, each 
delay block is realized with only 3-bit D flip-flops and the 
sizes of the adders are reduced accordingly. The ×2 
multiplication block is implemented as a simple 4-bit logic 
shifter. The modulator is clocked at the switching frequency 
by a signal created with the core DPWM. For the 8-bit 
counter-comparator, by comparing counter value and the 
output of the 8-bit �-Σ modulator, the switch of the converter 
is turned on/off via an R-S latch. 



  

CLKF

Fig. 6 Proposed 11-bit FPGA-based Error-feedback DPWM acts as 8-bit �-Σ modulator, 8-bit counter comparator 

 

Fig. 7 Timing-simulation waveforms of the 11-bit DPWM 

The timing-simulation for the complete 11-bit FPGA-based 
DPWM is shown in Fig. 7 with an example ratio of 935, 
which is equal to D[10:0]=“01110100111”. As it is shown, 
the multi-bit �-Σ DPWM can effectively achieve 11-bit 
resolution at high-frequency through only an 8-bit hardware 
Core DPWM, which dramatically reduces the power 
consumption of DPWM module. Thus for operation at 
fs=500kHz switching frequency, the counter comparator 
block merely needs a 82 128sf MHz⋅ =  clock instead of the 

1.024GHz  clock of the classical counter-comparator 
DPWM. Fig. 8 summarize the diagram block of the FPGA 
based SMC controller (indirect SMC algorithm, EKF and 
Hybrid DPWM). 

 

 
 

Fig. 8 Diagram block of the test platform for digitally-controlled SMPS  

 
Fig. 9 and Fig. 10 show the experimental output voltage 

Vs transient response using the proposed DISM1. It can be 
seen that when the SEPIC is in steady-state operation 
condition, the controller maintains the deserved output 
voltage (14V). In transient operation condition when the 
load suddenly varies from 0.7A to 1.08A (20� to 13.3�), 
the controller can quickly regulate the output. The result 
shows that the transient response time is small and the offset 
on the output voltage is almost 400mV, i.e. 3% of the output 
voltage (14V). The experimental results confirm the 
simulation results obtained in section III. 

 

   
 

Fig. 9 Response of Vs with DISM1 when load changes from 0.7A to 1.08A 

 

 
 

Fig. 10 Zoom of output voltage response  

 
The experimental output voltage Vs transient response 

with the proposed DISM2 is shown in Fig. 11 and Fig. 12. 
DISM controller without the integral of current are 
performed for the same load variation. The lack of current 
item control brings more overshoot and oscillation as 
previously underlined with the simulation results. 

 
Fig. 11 Response of Vs with DISM2 when load changes from 0.7A to 1.08A 

 



  

 
Fig. 12 Zoom of output voltage response  

VI.  CONCLUSION 

SEPIC is a good candidate for a universal DC-DC power 
supply. Sliding Mode Control was applied in order to 
provide a fast and stable control law for the SEPIC which is 
not widely used due to the limited control studies being 
carried out on. In this paper, a double integral sliding mode 
control scheme in the indirect form is introduced. It has been 
found that the proposed control strategies provide satisfying 
static and dynamic performances, and at the same time, are 
not complicated to design. Experimental results have been 
conducted on a FPGA platform to validate the different 
controllers. The FPGA implementation is particularly 
interesting since all proposed modules (DPWM, SMC, 
Kalman observer) could be implemented in ASIC to 
potentially achieve high integrated power supply.  
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