
HAL Id: hal-00629310
https://hal.science/hal-00629310

Submitted on 5 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A latent logistic model to uncover overlapping clusters
in networks

Pierre Latouche, Etienne E. Birmelé, Christophe Ambroise

To cite this version:
Pierre Latouche, Etienne E. Birmelé, Christophe Ambroise. A latent logistic model to uncover over-
lapping clusters in networks. Atelier AGS (Apprentissage et Graphes pour les Systèmes complexes),
May 2009, Hammamet, Tunisia. pp.3-8. �hal-00629310�

https://hal.science/hal-00629310
https://hal.archives-ouvertes.fr


A Latent Logistic Model to Uncover

Overlapping Clusters in Networks

Pierre Latouche, Etienne Birmelé, Christophe Ambroise

Laboratoire Statistique et Génome
UMR CNRS 8071-INRA 1152-UEVE

La Genopole, Tour Evry 2,
523 place des Terrasses, 91000 Evry

pierre.latouche@genopole.cnrs.fr

Résumé : It is now widely accepted that knowledge can be learnt from networks
by clustering their vertices according to connection profiles. Many deterministic
and probabilistic methods have been developed. Given a network, almost all them
partition the vertices into disjoint clusters. However, recent studies have shown
that these methods were too restrictive and that most of the existing networks
contained overlapping clusters. To tackle this issue, we present in this paper a
latent logistic model, that allows each vertex to belong to multiple clusters, as
well as an efficient approximate inference procedure based on global and local
variational techniques. We show the results that we obtained on a transcriptional
regulatory network of yeast.

Mots-clés : Networks, Clustering methods, Overlapping clusters, Global and lo-
cal variational approaches.

1 Introduction

Networks are used in many scientific fields such as biology, social science, and in-
formation technology. In this context, a lot of attention has been paid on developing
models to learn knowledge from the presence or absence of links between pairs of ob-
jects. Both deterministic and probabilistic strategies have been proposed. Among these
techniques, random graph models (Handcock et al., 2007; Latouche et al., 2008), based
on mixture distributions, have recently received a growing interest. In particular, they
have been shown capable of characterizing the complex topology of real networks, that
is, a majority of vertices with none or very few links and the presence of hubs which
make networks locally dense.

A drawback of such methods is that they all partition the vertices into disjoint clus-
ters, while lots of objects in real world applications typically belong to multiple groups
or communities. For instance, many genes are known to participate in several functio-
nal categories, and actors might belong to several groups of interests. Thus, a graph
clustering method should be able to uncover overlapping clusters.
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This issue has received growing attention in the last few years, starting with an algo-
rithmic approach based on small complete sub-graphs developed by Palla et al. (2005).
More recent works (Airoldi et al., 2008) proposed a mixed membership approach. In
this paper, we present a new mixture model (Latouche et al., 2009) for generating net-
works, depending on (Q+1)2+Q parameters, where Q is the number of components in
the mixture. A latent {0, 1}-vector of length Q is assigned to each vertex, drawn from
products of Bernoulli distributions whose parameters are not vertex-dependent. Each
vertex may then belong to several components, allowing overlapping clusters, and each
edge probability depends only on the components of its endpoints.

Please note that due to the limited size of this paper, we did not include the results
we obtained on toy data sets. We did not include either the proof that the model is
generically identifiable within classes of equivalence. These results can be presented
during AGS2009.

2 Model and Notations

We consider a directed binary random graph G, where V denotes a set of N fixed
vertices and X = {Xij , (i, j) ∈ V2} is the set of all the random edges. We assume that
G does not have any self loop, and therefore, the variables Xii will not be taken into
account.

For each vertex i ∈ V, we introduce a latent vector Zi, of Q independent Boolean
variables Ziq ∈ {0, 1}, drawn from Bernoulli distributions :

Zi ∼

Q
∏

q=1

B(Ziq; αq) =

Q
∏

q=1

αZiq

q (1 − αq)
1−Ziq , (1)

and we denote α = {α1, . . . , αQ} the vector of class probabilities. Note that in the case
of a usual mixture model, Zi would be generated according to a multinational distribu-
tion with parameters (1,α). Therefore, the vector Zi would see all its components set to
zero except one such that Ziq = 1 if vertex i belongs to class q. The model would then
verify

∑Q

q=1
Ziq =

∑Q

q=1
αq = 1, ∀i. In this paper, we relax these constraints using

the product of Bernoulli distributions (1), allowing each vertex to belong to multiple
classes. We point out that Zi can also have all its components set to zero.

Given two latent vectors Zi and Zj , we assume that the edge Xij is drawn from a
Bernoulli distribution :

Xij |Zi,Zj ∼ B
(

Xij ; g(aZi,Zj
)
)

= e
XijaZi,Zj g(−aZi,Zj

),

where
aZi,Zj

= Z
⊺

i WZj +Z
⊺

i U+V
⊺
Zj +W ∗, (2)

and g(x) = (1+e−x)−1 is the logistic sigmoid function. W is a Q×Q matrix whereas
U and V are Q-dimensional vectors. The first term in (2) describes the interactions
between the vertices i and j. If i belongs only to class q and j only to class l, then
only one interaction term remains (Z⊺

i WZj = Wql). However, the interactions can



become much more complex if one or both of these two vertices belong to multiple
classes. Note that the second term in (2) does not depend on Zj . It models the overall
capacity of vertex i to connect to other vertices. By symmetry, the third term represents
the global tendency of vertex j to receive and edge. Finally, we use W ∗ as a bias, to
model sparsity.

3 Variational Approximations

The log-likelihood of the observed data set is defined through the marginalization :
p(X |α,W̃) =

∑

Z
p(X,Z |α,W̃). This summation involves 2NQ terms and quickly

becomes intractable. To tackle this issue, the Expectation-Maximization (EM) algo-
rithm has been applied on many mixture models. However, the E-step requires the cal-
culation of the posterior distribution p(Z |X,α,W̃) which can not be factorized in the
case of networks. In order to obtain a tractable procedure, we propose some approxi-
mations based on global and local variational techniques.

3.1 The q-transformation (Variational EM)

Given a distribution q(Z), the log-likelihood of the observed data set can be decom-
posed using the Kullback-Leibler divergence (KL) :

ln p(X |α,W̃) = L
(

q; α,W̃
)

+ KL
(

q(Z) || p(Z |X,α,W̃)
)

. (3)

By definition KL(. || .) is always positive and therefore L is a lower bound of the log-
likelihood :

ln p(X |α,W̃) ≥ L
(

q; α,W̃
)

,∀q(Z). (4)

The maximum ln p(X |α,W̃) of L is reached when q(Z) = p(Z |X,α,W̃). Thus,
if the posterior distribution p(Z |X,α,W̃) was tractable, the optimizations of L and
ln p(X |α,W̃), with respect to α and W̃, would be equivalent. However, in the case of
networks, p(Z |X,α,W̃) can not be calculated and L can not be optimized over the en-
tire space of q(Z) distributions. Thus, we restrict our search to the class of distributions
which satisfy :

q(Z) =
N
∏

i=1

q(Zi) =

N
∏

i=1

Q
∏

q=1

B(Ziq; τiq). (5)

Each τiq is a variational parameter and corresponds to the posterior probability of node
i to belong to class q. Note that we do not constrain the vectors τ i = {τi1, . . . , τiQ} to
lay on the Q − 1 dimensional simplex, and thereby, each node can belong to multiple
clusters.

The decomposition (3) and the factorization (5) lead to a variational EM algorithm.
During the E-step, the parameters α and W̃ are fixed ; and by optimizing the lower
bound with respect to the τiqs, the algorithm looks for the best approximation of the pos-
terior distribution. Then, during the M-step, q(Z) is used to optimize the lower bound
and to find new estimates of α and W̃.
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3.2 The ξ-transformation

The lower bound of (3) is given by

L
(

q; α,W̃
)

= EZ[ln p(X |Z,W̃)] + EZ[ln p(Z |α)] − EZ[ln q(Z)], (6)

where the expectations are calculated according to the distribution q(Z). The first term
of (6) is given by :

EZ[ln p(X,Z |α,W̃)] =

N
∑

i 6=j

{

Xij τ̃ i
⊺
W̃τ̃ j + EZi,Zj

[ln g(−aZi,Zj
)]

}

. (7)

Unfortunately, since the logistic sigmoid function is non linear, EZi,Zj
[ln g(−aZi,Zj

)]
can not be computed analytically. Thus, we need a second level of approximation to
carry out the variational E and M steps described previously (Sect. 3.1).

We use the bound ln g(x, ξ) on the log-logistic sigmoid function introduced by Jaak-
kola & Jordan (2000). When applied on EZi,Zj

[ln g(−aZi,Zj
)], it leads to :

EZi,Zj
[ln g(−aZi,Zj

)] ≥ ln g(−aZi,Zj
, ξij)

= ln g(ξij) −
(τ̃ i

⊺
W̃τ̃ j + ξij)

2
− λ(ξij)

(

EZi,Zj
[(Z̃i

⊺

W̃Z̃j)
2] − ξ2

ij

)

,

(8)
where λ(ξ) = 1

4ξ
tanh( ξ

2
) = 1

2ξ

{

g(ξ) − 1

2

}

. Thus, for each edge (i, j) in the graph,
we have introduced a lower bound which depends on a variational parameter ξij . By
optimizing each function ln g(−aZi,Zj

, ξij) with respect to ξij , we obtain the tightest
bounds to the functions EZi,Zj

[ln g(−aZi,Zj
)]. These bounds are then used during the

variational E and M steps to optimize an approximation of L defined in (6).

4 Experiments

We consider the yeast transcriptional regulatory network described in Milo et al.

(2002) and we focus on a subset of 192 vertices connected by 303 edges. Nodes of
the network correspond to operons, and two operons are linked if one operon encodes a
transcriptional factor that directly regulates the other operon. Such networks are known
to be relatively sparse which makes them hard to analyze. In this Section, we aim at
clustering the vertices according to their connection profile. Using Q = 6 clusters, we
apply our algorithm and we obtain the results in Table 1.

First, we notice that the clusters 1, 3, and 5 contain only two operons each. These
operons correspond to hubs which regulate respectively the nodes of clusters 2, 4, and
6. More precisely, the nodes of cluster 2 are regulated by STE12 and TEC1 which are
both involved in the response to glucose limitation, nitrogen limitation and abundant
fermentable carbon source. Similarly, MSN4 and MSN2 regulate the nodes of cluster 4
in response to different stress such as freezing, hydrostatic pressure, and heat acclima-
tion. Finally, the nodes of cluster 6 are regulated by YAP1 and SKN7 in the presence
of oxygen stimulus. In the case of sparse networks, one of the clusters often contains



cluster size operons
1 2 STE12 TEC1

2 33
YBR070C MID2 YEL033W SRD1 TSL1 RTS2 PRM5 YNL051W PST1 YJL142C SSA4

YGR149W SPO12 YNL159C SFP1 YHR156C YPS1 YPL114W HTB2 MPT5 SRL1 DHH1
TKL2 PGU1 YHL021C RTA1 WSC2 GAT4 YJL017W TOS11 YLR414C BNI5 YDL222C

3 2 MSN4 MSN2

4 32
CPH1 TKL2 HSP12 SPS100 MDJ1 GRX1 SSA3 ALD2 GDH3 GRE3 HOR2 ALD3 SOD2
ARA1 HSP42 YNL077W HSP78 GLK1 DOG2 HXK1 RAS2 CTT1 HSP26 TPS1 TTR1

HSP104 GLO1 SSA4 PNC1 MTC2 YGR086C PGM2

5 2 YAP1 SKN7

6 19
YMR318C CTT1 TSA1 CYS3 ZWF1 HSP82 TRX2 GRE2 SOD1 AHP1 YNL134C HSP78

CCP1 TAL1 DAK1 YDR453C TRR1 LYS20 PGM2

TAB. 1 – Classfication of the operons into Q = 6 clusters. Operons in bold belong to
multiple clusters.

most of the vertices having weak connection profiles, and is therefore not meaning-
ful. Conversely, with our approach, the vectors Zi can have all their components set to
zero, corresponding to vertices that do not belong to any cluster. Thus, we obtained 85
unclassified vertices. Our algorithm was able to uncover two overlapping clusters (ope-
rons in bold in Table. 1). Thus, SSA4 and TKL2 belong to cluster 2 and 4. Indeed, they
are co-regulated by (STE12, TEC1) and (MSN4 and MSN2). Moreover, HSP78, CTT1,
and PGM2 belong to cluster 4 and 6 since they are co-regulated by (MSN4, MSN2) and
(YAP1, SKN7).

5 Conclusion

In this paper, we proposed a new latent logistic model to uncover overlapping clus-
ters. We used both local and global variational techniques and we derived a variational
EM algorithm to optimize the model parameters. We analyzed a transcriptional regula-
tory network of yeast and we showed that our model was able to handle sparsity. We
discovered two overlapping clusters corresponding to co-regulated operons.
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