
HAL Id: hal-00629294
https://hal.science/hal-00629294

Submitted on 5 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian methods for graph clustering
Pierre Latouche, Etienne E. Birmelé, Christophe Ambroise

To cite this version:
Pierre Latouche, Etienne E. Birmelé, Christophe Ambroise. Bayesian methods for graph clustering.
Andreas Fink, Berthold Lausen, Wilfried Seidel and Alfred Ultsch. Advances in Data Analysis, Data
Handling and Business Intelligence, Springer, pp.229-239, 2009, Studies in Classification, Data Anal-
ysis, and Knowledge Organization, 978-3-642-01043-9. �10.1007/978-3-642-01044-6�. �hal-00629294�

https://hal.science/hal-00629294
https://hal.archives-ouvertes.fr


Bayesian methods for graph clustering

P. Latouche, E. Birmelé, and C. Ambroise
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Summary. Networks are used in many scientific fields such as biology, social sci-
ence, and information technology. They aim at modelling, with edges, the way ob-
jects of interest, represented by vertices, are related to each other. Looking for clus-
ters of vertices, also called communities or modules, has appeared to be a powerful
approach for capturing the underlying structure of a network. In this context, the
Block-Clustering model has been applied on random graphs. The principle of this
method is to assume that given the latent structure of a graph, the edges are inde-
pendent and generated from a parametric distribution. Many EM-like strategies have
been proposed, in a frequentist setting, to optimize the parameters of the model.
Moreover, a criterion, based on an asymptotic approximation of the Integrated Clas-
sification Likelihood (ICL), has recently been derived to estimate the number of
classes in the latent structure. In this paper, we show how the Block-Clustering
model can be described in a full Bayesian framework and how the posterior distri-
bution, of all the parameters and latent variables, can be approximated efficiently
applying Variational Bayes (VB). We also propose a new non-asymptotic Bayesian
model selection criterion. Using simulated data sets, we compare our approach to
other strategies. We show that our criterion can outperform ICL.

Key words: Random graphs, Block-clustering model, Variational EM, Variational
Bayes, Integrated Classification Likelihood, Bayesian model selection.

1 Introduction

For the last few years, networks have been increasingly studied. Indeed, many
scientific fields such as biology, social science, and information technology,
see those mathematical strutures as powerful tools to model the interactions
between objects of interest. Examples of data sets having such structures
are friendship and protein-protein interaction networks, powergrids, and the
Internet. In this context, a lot of attention has been paid on developing models
to learn knowledge from the network topology. Many methods have been
proposed, and in this work, we focus on statistical models that describe the
way edges connect vertices.
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A well known strategy consists in seeing a given network as a realization of
a random graph model based on a mixture distribution ([13, 5]). The method
assumes that, according to its connection profile, each vertex belongs to a
hidden class of a latent structure and that, given this latent structure, all the
observed edges are independent and binary distributed. Many names have
been proposed for this model, and in the following, it will be denoted MixNet,
which is equivalent to the Block-Clustering model of [13].

A key question is the estimation of the MixNet parameters. So far, the op-
timization procedures that have been proposed are based on heuristics or have
been described in a frequentist setting ([5]). Bayesian strategies have also been
developed but are limited in a sense that they can not handle large networks.
All those methods face the same difficulty. Indeed, the posterior distribution
p(Z|X,α,π), of all the latent variables Z given the observed edges X, can not
be factorized. To tackle such problem, [5] proposed a variational approxima-
tion of the posterior, which corresponds to a mean-field approximation.

Another difficulty is the estimation of the number of classes in the mixture.
Indeed, many criteria, such as the Bayesian Information Criterion (BIC) or the
Akaike Information Criterion (AIC) are based on the likelihood p(X|α,π) of
the incomplete data set X, which is intractable here. Therefore, [10] derived a
criterion based on an asymtotic approximation of the Integrated Classification
Likelihood (also called Integrated Complete-data Likelihood). More details
can be found in [2]. They found that this criterion, that we will denote ICL for
simplicity, was very accurate in most situations but tended to underestimate
the number of classes when dealing with small graphs. We emphasize that
ICL is currently the only model based criterion developed for MixNet.

In this paper, we extend the work of [6] who developed a variational Bayes
algorithm to learn affiliation models. These are defined by only two proba-
bilities of connection λ and ǫ. Given a network, it is assumed that the edges
connecting nodes of the same class were generated with probability λ while
edges connecting nodes of different classes were drawn with probability ǫ.
The algorithm that they proposed can cluster the nodes and estimate the
probabilities λ and ǫ very quickly. However, affiliation models can not charac-
terize the complex topology of most real networks, which have the majority
of their nodes with none or very few links and exhibit some hubs which make
them locally dense ([5]). Therefore, we propose an efficient Bayesian version of
MixNet, which allows vertices to have different topological behaviors. Thus,
after having presented MixNet in Section 2, we introduce some prior distri-
butions and describe the MixNet Bayesian probabilistic model in Section 3.
We derive the model optimization equations using Variational Bayes and we
propose a new criterion to estimate the number of classes. Finally, in Section
4, we carry out some experiments using simulated data sets to compare the
number of the estimated clusters obtained with the ICL criterion and the
variational frequentist strategy, and our approach.

An extended version of this paper with proofs of the results and more
experiments is available ([8]).
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2 A Mixture Model for Networks

We consider an undirected binary random graph G, where V denotes a set of
N fixed vertices and X = {Xij, (i, j) ∈ V 2} is the set of all the random edges.
We assume that G does not have any self loop. Therefore, the variables Xii

will not be taken into account.
MixNet assumes that each vertex i belongs to an unknown class q among

Q classes and the latent variable Zi reflects our uncertainty as to which one
that is:

Zi ∼ M
(

1, α = {α1, α2, . . . , αQ}
)

,

where we denote α, the vector of class proportions. The edge probabilities are
then given by:

Xij |{ZiqZjl = 1} ∼ B(Xij|πql).

Thus, contrary to affiliation models ([6]), we consider a Q × Q matrix π of
connection probabilities. Note that in the case of undirected networks, π is
symmetric. The latent variables in the set Z = (Z1, . . . ,ZN) are iid and given
this latent structure, all the edges are supposed to be independent. Thus, we
obtain:

p(Z|α) =

N
∏

i=1

M(Zi; 1,α) =

N
∏

i=1

Q
∏

q=1

αZiq
q ,

and

p(X|Z,π) =
∏

i<j

p(Xij |Zi,Zj,π) =

N
∏

i<j

Q
∏

q,l

B(Xij |πql)
ZiqZjl .

3 Bayesian View of MixNet

3.1 Bayesian Probabilistic Model

We now show how MixNet can be described in a full Bayesian framework. To
transform the MixNet frequentist probabilistic model, we first specify some
prior distributions for the model parameters. To simplify the calculations, we
use conjugate priors. Thus, since p(Zi|α) is a multinomial distribution, we
choose a Dirichlet distribution for the mixing coefficients:

p
(

α|n0 = {n0
1, . . . , n

0
Q}
)

= Dir(α; n0) =
Γ (
∑Q
q=1 n

0
q)

Γ (n0
1) . . . Γ (n0

Q)

Q
∏

q=1

α
n0

q−1
q ,

where we denote n0
q, the prior number of vertices in the q-th component of

the mixture. In order to obtain a posterior distribution influenced primarily
by the network data rather than the prior, small values have to be chosen.
A typical choice is n0

q = 1
2 , ∀q. This leads to a non-informative Jeffreys prior



4 P. Latouche, E. Birmelé, and C. Ambroise

distribution. It is also possible to consider a uniform distribution on the Q−1
dimensional simplex by fixing n0

q = 1, ∀q.
Since p(Xij |Zi,Zj,π) is a Bernoulli distribution, we use Beta priors to

model the connectivity matrix π:

p
(

π|η0 = (η0
ql), ζ

0 = (ζ0
ql)
)

=

Q
∏

q≤l

Beta(πql; η
0
ql, ζ

0
ql)

=

Q
∏

q≤l

Γ (η0
ql + ζ0

ql)

Γ (η0
ql)Γ (ζ0

ql)
π
η0

ql−1

ql (1 − πql)
ζ0ql−1,

(1)

where η0
ql and ζ0

ql represent respectively the prior number of edges and non-
edges connecting vertices of cluster q to vertices of cluster l. A common choice
consists in setting η0

ql = ζ0
ql = 1, ∀q. This gives rise to a uniform prior distri-

bution. Since π is symmetric, only the terms of the upper or lower triangular
matrix have to be considered. This explains the product over q ≤ l.

Thus, the model parameters are now seen as random variables. They de-
pend on parameters n0, η0, and ζ0 which are called hyperparameters in the
Bayesian literature ([9]). The joint distribution of the Bayesian probabilistic
model is then given by:

p(X,Z,α,π|n0,η0, ζ0) = p(X|Z,π)p(Z|α)p(α|n0)p(π|η0, ζ0).

For the rest of the paper, since the prior hyperparameters are fixed and in
order to keep the notations simple, they will not be shown explicitly in the
conditional distributions.

3.2 Variational Inference

The inference task consists in evaluating the posterior p(Z,α,π|X) of all the
hidden variables (latent variables Z and parameters α and π) given the ob-
served edges X. Unfortunately, under MixNet, this distribution is intractable.
To overcome such difficulties, we follow the work of [1, 4] on Bayesian mixture
modelling and Bayesian model selection. Thus, we first introduce a factorized
distribution:

q(Z,α,π) = q(α)q(π)q(Z) = q(α)q(π)
N
∏

i=1

q(Zi),

and we use Variational Bayes to obtain an optimal approximation q(Z,α,π) of
the posterior. This framework is called the mean field theory in physics ([12]).
The Kullback-Leibler divergence enables us to decompose the log-marginal
probability, usually called the model evidence or the log Integrated Observed-
data Likelihood, and we obtain:
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ln p(X) = L
(

q(.)
)

+ KL
(

q(.) || p(.|X
)

, (2)

where

L
(

q(.)
)

=
∑

Z

∫ ∫

q(Z,α,π) ln{
p(X,Z,α,π)

q(Z,α,π)
}dαdπ, (3)

and

KL
(

q(.) || p(.|X)
)

= −
∑

Z

∫ ∫

q(Z,α,π) ln{
p(Z,α,π|X)

q(Z,α,π)
}dαdπ. (4)

Minimizing (4) is equivalent to maximizing the lower bound (3) of (2). How-
ever, we now have a full variational optimization problem since the model
parameters are random variables and we are looking for the best approxi-
mation q(Z,α,π) among all the factorized distributions. In the following, we
use a variational Bayes EM algorithm. We call Variational Bayes E-step, the
optimization of each distribution q(Zi) and Variational Bayes M-step, the ap-
proximations of the remaining factors. We derive the update equations only
in the case of an undirected graph G without self-loop. Our algorithm cycles
through the E and M steps until convergence of the lower bound (11).

Variational Bayes E-step

The optimal approximation at vertex i is:

q(Zi) = M(Zi; 1, τi = {τi1, . . . , τiQ}), (5)

where τiq is the probability (responsability) of node i to belong to class q. It
satisfies the relation:

τiq ∝ eψ(nq)−ψ(
PQ

l=1
nl)

N
∏

j 6=i

Q
∏

l=1

e

τjl

(

ψ(ζql)−ψ(ηql+ζql)+Xij

(

ψ(ηql)−ψ(ζql)

)

)

, (6)

where ψ(.) is the digamma function. Given a matrix τ old, the algorithm builds
a new matrix τnew where each row satisfies (6). It then uses τnew to build a

new matrix and so on. It stops when
∑N

i=1

∑Q

q=1 |τ
old
iq − τnewiq | < e. A rather

small values for e has to be chosen. In the experiments that we carried out,
we chose e = 10−14.

Variational Bayes M-step : Optimization of q(α)

The optimization of the lower bound with respect to q(α) produces a distri-
bution with the same functional form as the prior p(α):

q(α) = Dir(α; n), (7)

where nq = n0
q +

∑N

i=1 τiq is the pseudo number of vertices in the q-th com-
ponent of the mixture.
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Variational Bayes M-step : Optimization of q(π)

Again, the functional form of the prior p(π) is conserved through the varia-
tional optimization:

q(π) =

Q
∏

q≤l

Beta(πql|ηql, ζql), (8)

where ηql and ζql represent respectively the pseudo number of edges and non-
edges connecting vertices of cluster q to vertices of cluster l. For q 6= l, the
hyperparameter ηql is given by:

ηql = η0
ql +

N
∑

i6=j

Xijτiqτjl, and ∀q : ηqq = η0
qq +

N
∑

i<j

Xijτiqτjq . (9)

Moreover, for q 6= l, the hyperparameter ζql is given by:

ζql = ζ0
ql +

N
∑

i6=j

(1−Xij)τiqτjl, and ∀q : ζqq = ζ0
qq +

N
∑

i<j

(1−Xij)τiqτjq. (10)

Lower Bound

The lower bound takes a simple form after the Variational Bayes M-step.
Indeed, it only depends on the posterior probabilities τiq as well as the nor-
malizing constants of the Dirichlet and Beta distributions:

L
(

q(.)
)

= ln{
Γ (
∑Q
q=1 n

0
q)
∏Q
q=1 Γ (nq)

Γ (
∑Q
q=1 nq)

∏Q
q=1 Γ (n0

q)
}+

Q
∑

q≤l

ln{
Γ (η0

ql + ζ0
ql)Γ (ηql)Γ (ζql)

Γ (ηql + ζql)Γ (η0
ql)Γ (ζ0

ql)
}−

N
∑

i=1

Q
∑

q=1

τiq ln τiq.

(11)

3.3 Model Selection

We have not addressed yet the problem of estimating the number of classes in
the mixture. Given a set of values of Q, our goal is to select Q∗ which maxi-
mizes the log-probability of the observed edges ln p(X|Q). Unfortunately, this
quantity does not have any analytical expression. Indeed, for each value of Q,
it involves integrating over all the hidden parameters as shown in Section 3.2.
Nevertheless, it can be approximated using our Variational Bayes algorithm.
Given a value of Q, the algorithm is used to maximize the lower bound (11).
Meanwhile, the Kullback-Leibler divergence between the factorized and the
unknown posterior distribution decreases. After convergence, although this
distance can not be computed analytically, we expect it to be close to zero,
and therefore, we can use the lower bound as an approximation of ln p(X|Q).
This procedure is repeated for the different values of Q considered.
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Given a value of Q, since MixNet is a mixture model, for any given setting
of the parameters α and π there will be a total of Q! parameters which
lead to the same distribution over the edges. These parameters would differ
only through re-labelling of the components. In a frequentist framework, this
redundancy is irrelevant since we only look for point estimates of the model
parameters. In a Bayesian setting, however, we integrate over all possible
parameter values. Since p(X|Q) is multimodal, variational techniques will tend
to approximate the distribution in the neighborhood of one of the mode and
ignore the others (see [3]). Thus, when comparing different values of Q, we
need to take this multimodality into account. As a consequence, we define a
criterion by subtracting a term lnQ! from the lower bound (11) computed
previously.

In the case of networks, we emphasize that our work led to the first criterion
based on a non-asymptotic approximation of the model evidence, also called
Integrated Observed-data likelihood. When considering other types of mixture
models, [2] showed that such criteria were very powerful to select the number
of classes.

4 Experiments

We present some results of the experiments we carried out to assess our
Bayesian version of MixNet and the model selection criterion we proposed
in Section 3.3. Through all our experiments, we compared our approach to
the work of [5] who used ICL as a criterion to identify the number of classes in
latent structures and the frequentist approach of variational EM to estimate
the model parameters. We considered synthetic data, generated according to
known random graph models and we concentrated on analyzing the capacity
of ICL and our criterion to retrieve the true number of classes in the latent
structures.

4.1 Comparison of The Criteria

In these experiments, we consider simple affiliation models where only two
types of edges exist : edges between nodes of the same class and edges be-
tween nodes of different classes. Each type of edge has a given probability,
respectively πqq = λ and πql = ǫ. Following [10] who showed that ICL tended
to underestimate the number of classes in the case of small graphs, we gen-
erated graphs with only N = 50 vertices to analyze the robustness of our
criterion. Moreover, to limit the number of free parameters, we studied the
case where λ = 1 − ǫ. Thus, we considered three affiliation models shown in
Table 1.

For each affiliation model, we analyzed graphs with QTrue ∈ {2, . . . , 5}
classes mixed in the same proportions α1 = · · · = αQT rue

= 1
QT rue

. Thus, we
studied a total of 12 graph models.
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Table 1 Parameters of the three affiliation models considered

Model λ ǫ

1 0.9 0.1
2 0.85 0.15
3 0.8 0.2

For each of these graph models, we simulated 100 networks. In order to es-
timate the number of classes in the latent structures, we applied our algorithm
and the variational EM approach of [5] on each network, for various numbers
of classes Q ∈ {1, . . . , 6}. Note that, we chose n0

q = 1, ∀q ∈ {1, . . . , Q} for the
Dirichlet prior and η0

ql = ζ0
ql = 1, ∀(q, l) ∈ {1, . . . , Q}2 for the Beta priors. We

recall that such distributions correspond to uniform distributions. Like any
optimization technique, the Bayesian and frequentist methods depend on the
initialization. Thus, for each simulated network and each number of classes Q,
we started the algorithms with five different initializations of τ obtained us-
ing a spectral clustering method ([11]). Then, for the Bayesian algorithm, we
used the criterion we proposed in Section 3.3 to select the best learnt model,
whereas we used ICL in the frequentist approach. Finally, for each simulated
network, we obtained two estimates QICL and QV B of the number QTrue of
latent classes by selecting Q ∈ {1, . . . , 6} for which the corresponding criteria
were maximized.

In Table 2, we observe that for the most structured affiliation model, the
two criteria always estimate correctly the true number of classes except when
QTrue = 5. In this case, the Bayesian criterion performs better. Indeed, it has
a percentage of accuracy of 95% against 87% for ICL.

Table 2 Confusion matrices for ICL and Bayesian (based on Variational Bayes)
criteria. λ = 0.9, ǫ = 0.1 and QTrue ∈ {2, . . . , 5}

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 0 100 0 0
5 0 0 0 13 87 0

(a) QTrue\QICL

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 0 100 0 0
5 0 0 0 4 95 1

(b) QTrue\QV B

These differences increase when considering less structured networks. For
instance, in Table 3 and 4, when QTrue = 5, we notice that the percentage of
accuracy of ICL falls down (respectively 29% and 3%) whereas the Bayesian
criterion remains more stable (respectively 65% and 29%). Thus, when con-
sidering weaker and weaker modular structures, both criteria tend to under-
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estimate the number of classes although the Bayesian criterion appears to be
much more stable.

Table 3 Confusion matrices for ICL and Bayesian (based on Variational Bayes)
criteria. λ = 0.85, ǫ = 0.15 and QTrue ∈ {2, . . . , 5}

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 1 98 1 0
5 0 0 10 61 29 0

(a) QTrue\QICL

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 0 98 2 0
5 0 0 1 29 65 5

(b) QTrue\QV B

Table 4 Confusion matrices for ICL and Bayesian (based on Variational Bayes)
criteria. λ = 0.8, ǫ = 0.2 and QTrue ∈ {2, . . . , 5}

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 14 86 0 0
5 0 17 36 44 3 0

(a) QTrue\QICL

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 5 94 1 0
5 0 4 18 43 29 6

(b) QTrue\QV B

In all the tables presented before, we did not specify what happens when
QTrue = 1. Indeed, both techniques have always a 100% percentage of accu-
racy. We did not stipulate either what happens when QTrue = 6. In general,
our results were very similar to what we obtained when consideringQTrue = 5.
We also used the Adjusted Rand Index ([7]) to evaluate the agreement be-
tween the true and estimated partitions. The computation of this index is
based on a ratio between the number of node pairs belonging to the same
and to different classes when considering the true partition and the estimated
partition. Two identical partitions have an adjusted Rand index equal to 1.
In the experiments we carried out, when the variational EM method and our
algorithm were run on networks with the true number of latent classes, we ob-
tained almost non-distinguishable Adjusted Rand Indices. Moreover, we point
out that we obtained almost the same results in this set of experiments by
choosing uniform distributions (n0

q = 1, ∀q ∈ {1, . . . , Q}) or Jeffreys distri-

butions (n0
q = 1

2 , ∀q ∈ {1, . . . , Q}) for the prior over the mixing coefficients.
Finally, we compared the computational costs of the frequentist approach
of variational EM and our Variational Bayes algorithm. Both are equal to
O(Q2N2). Analyzing a sparse network with 200 nodes takes about a minute,
and about a hour for dense networks.
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5 Conclusion

In this paper, we showed how the MixNet model, also called the Block-
Clustering model, could be described in a full Bayesian framework. Thus,
we introduced priors over the model parameters and we developed a proce-
dure, based on Variational Bayes, to approximate the posterior distribution
of all the hidden variables given the observed edges. In this framework, we de-
rived a new non-asymptotic Bayesian criterion to select the number of classes
in latent structures. We found that our criterion was more relevant than the
criterion we denoted ICL in this paper and which is based on an asymp-
totic approximation of the Integrated Classification Likelihood. Indeed, by
considering small networks and complex modular structures, we found that
the percentage of accuracy of our criterion was always higher. Overall, our
Bayesian approach seems very promising for the investigation of rather small
networks and/or based on complex structures.
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